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Article

Phosphorylation of the synaptonemal complex protein
SYP-1 promotes meiotic chromosome segregation

Aya Sato-Carlton, Chihiro Nakamura-Tabuchi, Stephane Kazuki Chartrand, Tomoki Uchino, and Peter Mark Carlton

Graduate School of Biostudies, Kyoto University, Kyoto, Japan

Chromosomes that have undergone crossing over in meiotic prophase must maintain sister chromatid cohesion some-
where along their length between the first and second meiotic divisions. Although many eukaryotes use the centromere
as a site to maintain cohesion, the holocentric organism Caenorhabditis elegans instead creates two chromosome do-
mains of unequal length termed the short arm and long arm, which become the first and second site of cohesion loss at
meiosis | and Il. The mechanisms that confer distinct functions to the short and long arm domains remain poorly under-
stood. Here, we show that phosphorylation of the synaptonemal complex protein SYP-1 is required fo create these do-
mains. Once crossover sites are designated, phosphorylated SYP-1 and PLK-2 become cooperatively confined to short
arms and guide phosphorylated histone H3 and the chromosomal passenger complex to the site of meiosis | cohesion
loss. Our results show that PLK-2 and phosphorylated SYP-1 ensure creation of the short arm subdomain, promoting
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disjunction of chromosomes in meiosis |.

Introduction

The partitioning of single haploid genomes from a replicated
diploid genome in meiosis requires that the four linked chro-
matids of each homologous chromosome pair come apart from
each other in two successive divisions. Throughout these two
divisions, chromosomes are held together by sister chromatid
cohesion. Cohesion must therefore be released in two discrete
steps, so that chromosomes remain linked between the first and
second division. Organisms with monocentric chromosomes
first release cohesion from chromosome arms in meiosis |
but protect cohesion at the centromere using the protein Shu-
goshin (Kitajima et al., 2004); cohesion at the centromere is
only released in the second division. Many organisms, includ-
ing Caenorhabditis elegans, have holocentric chromosomes
(Dernburg, 2001; Melters et al., 2012), in which kinetochores
are not restricted to a single locus but instead spread over the
entire length of the chromosome. This arrangement presents
a challenge to the two-step loss of chromosome cohesion, be-
cause predefined centromere and chromosome arm domains
do not exist. In C. elegans meiosis, two-step cohesion loss is
achieved by the facultative creation on each chromosome of two
functionally distinct domains separated by the single crossover
(CO; Martinez-Perez et al., 2008). Because the CO has a re-
liably off-center position (Barnes et al., 1995), these domains
have different lengths and are termed the short arm, which loses
cohesion in meiosis I, and the long arm, which retains cohe-
sion until meiosis II (Lui and Colaidcovo, 2013). The mecha-
nisms that determine the functional state of these domains in a
length-dependent manner are not understood.

The synaptonemal complex (SC) is a macroassembly
that plays critical roles in holding homologous chromosomes
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together (Zickler and Kleckner, 1999) and ensuring the cor-
rect distribution of COs (Hayashi et al., 2010) during meiotic
prophase. The SC consists of axial elements, located on the long
axis of each replicated chromosome, and the central element,
which bridges the two axial elements (called lateral elements
after synapsis). Previous studies have shown that several SC
proteins disassemble asymmetrically from either short or long
arms in diplotene and diakinesis, the prophase substages imme-
diately before the first meiotic division. In wild-type animals,
all the central element proteins (SYP-1, SYP-2, SYP-3, and
SYP-4) disassemble from the long arms of bivalents in diplo-
tene, remain on short arms through early diakinesis, and disap-
pear completely by the —2 position (proceeding distally from
the spermatheca, oocyte precursors in diakinesis are designated
as stage —1, —2, =3, etc., oocytes; Nabeshima et al., 2005).
Conversely, two of the four axial element proteins (HTP-1 and
HTP-2) disassemble from short arms in diplotene and remain on
long arms in diakinesis, whereas the remaining two (HTP-3 and
HIM-3) persist on both short and long arms (Martinez-Perez et
al., 2008). This asymmetric disassembly depends on the activity
of Polo-like kinase 2 (PLK-2; Harper et al., 2011). PLK-2 first
localizes to the meiotic pairing centers (PCs), DNA sequences
that promote pairing in cis (Herman and Kari, 1989; McKim
et al., 1993; Villeneuve, 1994; MacQueen et al., 2002; Phillips
et al., 2005) in the leptotene/zygotene transition zone (TZ),
and then relocalizes to the SC from early pachytene. PLK-2
itself becomes enriched on the short arm at late pachytene
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(Pattabiraman et al., 2017). Although PLK-2 localization to the
SC was shown to be dependent on SYP-1 (Harper et al., 2011),
PLK-2 becomes confined to short arms earlier than SYP-1 does
(Pattabiraman et al., 2017), leaving the mechanism of PLK-2
recruitment to the SC unexplained.

Previous studies have found SC-interacting proteins that
also localize to chromosomes asymmetrically as SC proteins
disassemble from either short or long arms. The protein LAB-1
forms a complex with lateral element proteins and protects co-
hesion on long arms at meiosis I (de Carvalho et al., 2008).
LAB-1 localizes to the entire length of the SC from the TZ
through pachytene and becomes confined to long arms in diplo-
tene as SC components disassemble (de Carvalho et al., 2008).
LAB-1 binds to protein phosphatase 1 (PP1), represented by
orthologues gsp-/ and gsp-2 in C. elegans, and promotes the
activity of GSP-1/2 (PP1) on the SC, antagonizing Aurora B
kinase (de Carvalho et al., 2008; Tzur et al., 2012). Aurora B
(C. elegans AIR-2) functions in a protein complex called the
chromosomal passenger complex (CPC) together with INCENP
(ICP-1), Borealin (CSC-1), and Survivin (BIR-1), which to-
gether play a crucial role in triggering cohesin cleavage during
mitosis and meiosis (Carmena et al., 2012, 2014). The CPC also
plays multiple roles in activating the spindle assembly check-
point and destabilizing erroneous microtubule attachment to
the kinetochore to ensure correct orientation of chromatids at
cell division. Previous studies in C. elegans have shown that
AIR-2 (Aurora B) localizes to short arms right before the mei-
osis I division and to the interface between sister chromatids
before the meiosis II division (Kaitna et al., 2002; Rogers et
al., 2002). AIR-2 phosphorylates the meiotic cohesin REC-8 to
trigger cohesin removal and recruits spindle assembly check-
point proteins (Kaitna et al., 2002; Rogers et al., 2002; Dumont
et al., 2010). Because the CPC dictates the site of cohesion loss
and chromosome separation, its localization is strictly regulated
by multiple feedback loops (Carmena et al., 2012). In diverse
eukaryotic cells, two histone marks, phosphorylated histone H3
threonine 3 (H3T3ph) and phosphorylated H2A threonine 120
(H2AT120ph) are bound by the CPC and CPC-interacting Shu-
goshin in mitosis (Kelly et al., 2010; Yamagishi et al., 2010).
H3T3 is phosphorylated by Haspin kinase (Wang et al., 2010,
2011), and this is counterbalanced by the phosphatase activity
of PP1 (Qian et al., 2011), whereas H2AT120 is phosphorylated
by Bubl kinase (Kawashima et al., 2010). Thus, chromatin
carrying both phosphorylated histones functions as a docking
site for the CPC. Although the mechanisms localizing the CPC
to centromeres during mitosis in monocentric organisms have
been well studied, how the CPC localizes to meiotic chromo-
somes in holocentric organisms is not well understood.

Posttranslational modification of the SC has been reported
as a major aspect of its regulation (Fukuda et al., 2012; Jordan
et al., 2012; Leung et al., 2015; Gao et al., 2016; Nadarajan
et al., 2017). Here, we report a role for C-terminal phosphor-
ylation of SYP-1 in establishing the functions of the short and
long arms in stepwise cohesion loss in meiosis. Phosphorylated
SYP-1 promotes PLK-2 localization to the SC, facilitating its
departure from the PCs and progression of meiotic prophase.
Upon CO designation, PLK-2 is required to enrich phosphory-
lated SYP-1 at the short arm, which in turn leads to restriction
of PLK-2 itself to the short arm as well. Phosphorylation of
SYP-1 precedes and is required for the asymmetric disassembly
of SC components in late prophase and for the enrichment of
CPC-recruiting histone marks on the short arms. Loss of SYP-1

JCB e 2018

phosphorylation therefore prevents the formation of asymmet-
ric chromosome domains, leading ultimately to the mislocaliza-
tion of the CPC and failures of the first meiotic division. This
work establishes SYP-1 phosphorylation as a key upstream fac-
tor in the specification of chromosomal domains important for
meiotic chromosome segregation.

Results

C-terminal phosphorylation of SYP-1 is
required for meiotic competence

To gain insight into the possible roles of SC phosphorylation,
we performed a phosphoproteomics analysis using mass spec-
trometry of phosphoprotein-enriched protein lysates from adult
C. elegans, in which roughly half of the cells are oocyte precur-
sor cells in meiotic prophase. We identified 12 phosphorylation
sites at the C terminus of SYP-1 (Fig. 1 A and Table S1), 10 of
which show conservation in other Caenorhabditis species (Fig.
S1 A). To test whether phosphorylation of these residues is im-
portant for SYP-1 function in meiosis, we constructed a strain
expressing a transgene with a nonphosphorylatable SYP-1 al-
lele termed 12A, with all 12 potential phosphoresidues changed
to alanine. In a background lacking the endogenous syp-I gene,
the 12A allele displayed reduced viability (59.5% viable),
and a high incidence of male progeny (Him) phenotype (6%;
Fig. 1 B). The Him phenotype reflects meiotic X chromosome
nondisjunction in XX hermaphrodite self-progeny, because
worms with a single X (XO) develop as males. The syp-1(mel7)
null allele shows severely reduced viability (5% viable) and
38% males in the surviving self-progeny (MacQueen et al.,
2002), indicating that syp-1(12A) is a partial loss-of-function
allele. A wild-type SYP-1 transgene integrated at the same site
as the 12A allele restored fertility to wild-type levels in the
presence of syp-I1(mel7), showing that the defects in the 12A
allele are specific to the introduced mutations. In oocytes un-
dergoing the first meiotic division, we found anaphase chromo-
some bridges between separating chromatin masses (Fig. S1 B)
in 12A and T452A mutants, but not in wild-type animals: 36%
of anaphase I nuclei had chromosome bridges (n = 11 for both
12A and T452A), whereas no bridges were detected in the wild
type (n = 15). This observation suggests that phosphorylation
of the SYP-1 C terminus is required for proper chromosome
segregation during meiosis.

Phosphorylation of SYP-1 Thr 452 is
crucial to the function of SYP-1

To dissect the role of the SYP-1 phosphorylation sites, we
made a series of transgenic worms expressing SYP-1 proteins
with nonphosphorylatable mutations. First, we made syp-1(4A)
mutants in which the first four phosphosites were converted to
alanine, as well as syp-1(8A) mutants in which the last eight
phosphosites were converted to alanine. The transgenic line
expressing SYP-1(4A) showed no progeny inviability or Him
phenotype, whereas the line expressing SYP-1(8A) showed in-
viability and male production comparable to the line expressing
SYP-1(12A) (Fig. 1 B). The most strongly conserved region
within these eight residues contains a putative S-[pS/pT]-P/X
Polo-box domain (PBD)-binding motif, in which phosphoryla-
tion of the central Ser/Thr residue by a priming kinase (Elia et
al., 2003) permits subsequent binding of PLK. Our phosphopro-
teomics analysis detected phosphorylated Thr*? in this putative
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Figure 1. Phosphorylation of the C terminus

______ of SYP-1 is required for correct chromosome
.................. segregation in meiosis. (A) SYP-1 phosphor-
e . ylation sites identified by mass spectrometry,
and schematic diagram of a series of syp-1
phospho mutants. Phosphorylation sites are

depicted in red, and the conserved PBD-bind-

i aA — ing motif [STP] is boxed. For each mutant,
10A the indicated Ser/Thr/Tyr residues are con-
verted to Ala. (B) Percentage of viability and
12A i
B males among the selfprogeny of worms with
the indicated genotypes.
Genotype Embryo Viability (%) (Rat elzwllfiecﬁ:ﬁgﬁgi)i/sj(u/;():ﬁ on)] Total # eggs scored
N2 (wild type) 100.0 0.1 1276
syp-1 (wt); syp-1(me17) 100.0 0 1092
syp-1 (12A); syp-1(me17) 595 6.0 1716
syp-1 (10A); syp-1(me17) 99.9 17 1608
syp-1 (8A); syp-1(me17) 65.4 8.0 1553
syp-1 (4A); syp-1(me17) 100.0 0.1 879
syp-1(14520) ; syp-1(me17) 60.3 81 1028

PBD-binding motif (Ser*!-Thr*2-Pro*3) at a higher level (55
peptide counts total) than the other phosphosites (ranging
from 1 to 24 counts; Table S1). To test whether this putative
PBD-binding motif is important for SYP-1 function, we gener-
ated syp-1(T452A) mutants in which Thr*? in the PBD-binding
motif was converted to alanine, as well as a syp-1(10A) mutant
in which the 10 phosphosites outside the PBD-binding motif
were converted to alanine. The syp-1(T452A) mutants showed
progeny inviability and male production similar to the 12A and
8A mutants. In contrast, syp-/(/0A) mutants were fully viable
and displayed only a weak Him phenotype (Fig. 1 B). This
suggests that phosphorylation at the PBD-binding motif is cru-
cial for SYP-1 function.

Phosphorylated SYP-1 concentrates on
short arms of chromosomes after COs

are designated

To investigate the timing and location of SYP-1 phosphoryla-
tion, we generated two different phospho-specific antibodies:
one against a peptide from SYP-1’s C terminus with phos-
pho-threonine at Thr452 (1-phos antibody) and another against
the same peptide phosphorylated at three residues (Thr450,
Thr452, and Thr455 [3-phos antibody]). Immunofluorescence
staining showed similar patterns with both antibodies but
higher background with the 3-phos antibody; thereafter, the
1-phos antibody was consistently used to detect phosphorylated
SYP-1. The specificity of the antibody to phospho-SYP-1 was
confirmed by lack of staining in T452A mutants (Fig. S1 C).
Using this antibody, we first observed phosphorylated SYP-1
signals in the TZ, coextant with pan-SYP-1 signals along the
entire length of the SC (Fig. 2 A). As meiocytes progress into
late pachytene, and the CO designation marker COSA-1 starts
to appear, SYP-1-phos staining concentrates on short arms and
decreases on long arms, whereas pan-SYP-1 signals are still
detected along the entire SC (Fig. 2, B and C). In diplotene,
SYP-1-phos signal intensity increases further on short arms,
whereas pan-SYP-1 starts to disassemble from long arms, as
previously shown (Martinez-Perez et al., 2008). The obser-
vation that SYP-1-phos signals begin to accumulate on short
arms shortly after GFP::COSA-1 foci are detected suggested
that COs trigger the confinement of SYP-1-phos to short arms.
To test this hypothesis, we examined SYP-1-phos in gonads of

spo-11(me44) mutants, which cannot initiate programmed dou-
ble-strand breaks (DSBs) and therefore lack COs (Dernburg et
al., 1998). In the absence of SPO-11, SYP-1-phos signals start
to appear in the TZ but remain along the entire length of the
SC through late pachytene and eventually disappear from the
SC at the end of pachytene or diplotene (Fig. 2 D), providing
evidence that DSBs are required for the asymmetric distribution
of phosphorylated SYP-1.

The confinement of SYP-1-phos signals to short arms
was reminiscent of the previously reported localization of PLK-
2. PLK-2 first localizes to the PCs during zygotene by binding
to HIM-8 and ZIM proteins, then relocates to the entire length
of the SC in pachytene in a SYP-1-dependent manner, and
later becomes confined to the short arms in a CO-dependent
manner (Harper et al., 2011; Labella et al., 2011; Pattabiraman
et al., 2017). We examined syp-1(12A) and syp-1(T452A) mu-
tants and found that PLK-2 remained at PCs longer, eventu-
ally disappearing from the PCs in the region corresponding to
late pachytene but failing to relocate to the SC (Fig. 3). This
result strongly suggests that the phosphorylated PBD-binding
motif of SYP-1 is required for PLK-2 localization to the SC
in pachytene and subsequent stages. In contrast, in syp-1(10A)
mutants, PLK-2 also remained at PCs longer but eventually did
colocalize weakly to the SC in late pachytene (Fig. S1, D and
E). Because PBD-binding motifs must be phosphorylated at the
central threonine residue (Thr452 in SYP-1) to enable PLK2
recruitment, the conversion of the nearby Thr** to alanine in
the 10A mutant might lower priming phosphorylation at Thr*>
or confer weaker affinity to PLK-2 itself.

To examine whether PLK-2 acts strictly downstream of
SYP-1, we visualized SYP-1-phos in plk-2 mutants. The plk-
2(0k1936) null mutant shows delayed synapsis, but more than
60% of chromosomes do achieve homologous pairing and syn-
apsis, and the number of COs made are sufficient for 33.8%
progeny viability (8.4% male; Harper et al., 2011; Labella et
al., 2011). The presence of meiocytes carrying COs in plk-2
(0k1936) mutants let us examine the confinement of phosphor-
ylated SYP-1 to short arms in this mutant. We found that SYP-1
phosphorylation starting from the TZ is robustly detected in
plk-2(ok1936) mutants but persists over the entire length of the
SC in late pachytene, never becoming confined to short arms
(Fig. 3 D). This observation suggests the existence of a feed-

Synaptonemal complex phosphorylation in meiosis * Sato-Carlton et al.
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Figure 2. Phosphorylated SYP-1 localizes to the entire SC in early prophase and then becomes progressively restricted to the short arm. (A) A wild-type
gonad stained with DAPI (top) and antibodies against phosphorylated SYP-1 (bottom). Bar, 50 pm. (B) High-magnification images of SYP-1-phos (green)
and pan-SYP-1 (magenta) staining from the indicated gonad regions showing SYP-1-phos on chromosomal subdomains in late pachytene. Bars, 5 pm.
(C) Short arm restriction of SYP-1-phos (magenta) in late pachytene nuclei shown by GFP::COSA-1(green) marking of CO designation sites; pan-SYP-1 is
shown in blue. Bar, 5 pm. (D) SYP-1-phos and pan-SYP-1 staining in spo-11 (me44) mutant gonads. Bars, 5 pm.
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Figure 3. Phosphorylation of SYP-1 at
Thr452 (PBD-binding motif) is required for
PLK-2 relocalization from the PC to the SC.
(A) Left: Wild4ype (N2) oocyte precursor cells
in the leptotene/zygotene TZ immunostained
with DAPI (green) and PLK-2 (magenta); right:
oocyte precursor cells in late pachytene in con-
trol gfp::cosa-1 animals immunostained with
PLK-2 (magenta) and HTP-3 (green), or PLK-2
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back loop wherein PLK-2 is required to confine SYP-1-phos to
short arms in response to CO designation, and SYP-1-phos in
turn restricts PLK-2 itself to short arms.

To gain insight into the chromosome segregation defects in 12A
mutants, we next examined earlier steps in meiosis: chromo-
some pairing, synapsis, recombination, and CO designation.
Homologous chromosome pairing was assessed by staining
of ZIM proteins (Phillips and Dernburg, 2006) binding the PC
of chromosomes I and IV (ZIM-3) or V (ZIM-2). When chro-
mosomes are fully homologously paired, the protein ZIM-3,
which binds the PCs of chromosomes I and IV, is seen as two
foci, whereas ZIM-2, binding to chromosome V, shows a sin-
gle focus per nucleus. Chromosome pairing at these sites was
found to be normal in syp-/(12A) mutants (Fig. S2 A and not

(magenta), HTP-3 (cyan) and COSA-1::GFP
(green) in the rightmost column. (B) As in A,
but for syp-1(12A); syp-1{mel7) mutants, and
without COSA-1 staining. (C) As in B, but for
syp-1(T452A) syp-1(mel7) mutants. Immu-
nostaining shows PLK-2 relocalization from
PCs to the SC (short arms) in control animals,
but not in the syp-1 mutants. Bars, 1 pm.
(D) SYP-1-phos and pan-SYP-1 localization in
plk-2(ok1936) mutant gonads. Bars, 5 pm. In
all images, color of text label indicates color of
the corresponding signal in merged images.

depicted). Next, we assessed chromosome synapsis by immuno-
fluorescence against the SC proteins. Immunostaining showed
that SYP-1(12A) protein colocalized with the axial element
protein HTP-3, indicating that the nonphosphorylatable protein
is expressed and correctly localized similarly to wild-type SC
(Fig. 4, A and B). However, in syp-1(12A) and syp-1(T452A)
mutants, we often observed unsynapsed chromosomes, which
are positive for HTP-3 staining but missing SYP-1, in nu-
clei from the region corresponding to wild-type mid and late
pachytene (Fig. 4, B and C). In contrast to /2A and 7452A mu-
tants, we detected neither delayed nor partial synapsis in /0A
mutants (Fig. 4 D). This suggests that SYP-1 phosphorylation
at the PBD-binding motif is necessary to promote timely and
complete SC formation.

We next examined the timing of progression through mei-
otic prophase in syp-/ phosphorylation mutants by measuring
the proportion of the gonad occupied by each substage. Meiotic
nuclei move unidirectionally through the C. elegans gonad in a

Synaptonemal complex phosphorylation in meiosis
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manner that allows the physical span of a substage to serve as
a proxy for its duration (Hirsh et al., 1976; Jaramillo-Lambert
et al., 2007). We found that gonads of both syp-1(12A) and
syp-1(10A) mutants showed delayed exit from the leptotene/
zygotene TZ and early pachytene stages compared with con-
trol animals (Fig. 5, A and B; and Fig. S2, B and C). Previous
studies have shown that meiotic checkpoints monitor the for-
mation of CO intermediates and the status of synapsis (Bhalla
and Dernburg, 2005; Carlton et al., 2006; Saito et al., 2012;
Rosu et al., 2013; Stamper et al., 2013; Kim et al., 2015), ex-
tending the time spent in the TZ and early pachytene for nuclei
lacking CO intermediates. When chromosomes fail to obtain
CO intermediates, the cell cycle checkpoint kinase CHK-2 is
activated and continues to phosphorylate PC proteins, which
keeps PLK-2 bound to PCs (Kim et al., 2015). Subsequently,
PC-bound PLK-2 nucleates the SUN-1-ZYG-12 nuclear enve-
lope complex to connect chromosome ends to the cytoskeleton
and promotes clustering of chromosomes, a cytological marker
for the TZ and early pachytene. (Harper et al., 2011; Labella
et al., 2011; Woglar et al., 2013). Gonads from 12A and 10A
mutants showed an extended region of the TZ, suggesting that
PLK-2 persistence at PCs maintains clustering of chromosomes
in these mutants (Fig. 5 A). Gonads from 12A, T452A, and 10A
mutants also had an extended early pachytene stage, marked by
phosphorylation of the nuclear protein SUN-1 (SUN-1 Ser8-
phos; Penkner et al., 2009; Figs. 5 B and S2 D; T452A is not

Figure 4. Phosphorylation of SYP-1 is re-
quired for timely completion of synapsis.
(A-D) Oocyte precursor cells in mid-pachy-
tene immunostained with SYP-1 and HTP-3
antibodies in wildtype (A), syp-1(12A); syp-
1(mel7) (B), syp-1(T452A); syp-1(mel7) (C),
and syp-1(10A); syp-1(mel7) (D) animals.
DNA is counterstained with DAPI. Unsynapsed
chromosomes in 12A and T452A mutants are
indicated by arrowheads. Bars, 5 pm.

depicted). Delayed exit from early pachytene could be explained
by the complete or partial inability of PLK-2 to transit from PCs
to the SC. In addition, delayed synapsis leading to delayed for-
mation of COs in 12A and T452A mutants would activate the
CHK-2-mediated meiotic checkpoint (Kim et al., 2015), which
promotes retention of PLK-2 by continuous phosphorylation of
PC proteins, delaying the exit from early pachytene.

Next, we examined the contribution of SYP-1 phosphor-
ylation to recombination and CO formation by visualizing the
recombination protein RAD-51 and formation of intact biva-
lents. RAD-51 foci appeared with normal timing in syp-1(12A)
and syp-1(10A) mutants, suggesting that the initiation of pro-
grammed DNA DSBs by SPO-11 is not perturbed in these
mutants. Instead, the number of RAD-51 foci per nucleus was
found to be prominently increased in mid and late pachytene
(zones 4-7) in 12A and less prominently increased in 10A mu-
tants compared with control animals (Fig. 5 C). In 12A mu-
tants, delayed synapsis would be expected to lead to delayed
homologous recombination and activate the CHK-2-mediated
meiotic checkpoint, extending the window during which DSBs
are generated. In contrast, 10A mutants had increased levels of
DSBs without obvious delays in synapsis. This suggests that
persistence of PLK-2 at PCs (or absence of PLK-2 from the
SC) could suffice to maintain the DSB-generating machinery
in an active state with or without activating the upstream ki-
nase CHK-2. In addition, recent results show that PLK-1/2—
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Figure 5. Phosphorylation of SYP-1 is required for timely progression through meiotic prophase and affects CO distribution. (A) The proportion of TZ nuclei
in syp-1(wt); syp-1(mel7), syp-1(12A); syp-1{mel7), and syp-1(10A); syp-1(me17) animals (see also Materials and methods and Fig. S2). Seven gonads
were scored for each genotype. Error bars show SD. Statistical analysis was performed with @ Mann-Whitney fest (**, P < 0.01; ***, P < 0.001). (B) The
proportion of TZ and early pachytene nuclei marked by SUN-1 Ser8-phos staining. Error bars show SD. Seven gonads were scored for each genotype.
**** P <0.0001, Mann-Whitney test. (C) Quantification of recombination marker RAD-51 focus counts in each of seven equal-length zones covering the
TZ to late pachytene. RAD-51 focus numbers per nucleus are depicted as a box plot, with box indicating mean and quartiles, and whiskers indicating the
entire range of measurements. Four gonads were scored for each genotype. The syp-1(12A); syp-1{me17) and syp-1(10A); syp-1(me17) mutants showed
increased levels of RAD-51 compared with the control syp-1(wit); syp-1{mel7). ****, P < 0.0001; *** P < 0.001; **, P < 0.01, Mann-Whitney test.
(D) Representative diakinesis chromosomes from syp-1(wt); syp-1({me17) (left) and syp-1(12A); syp-1{me17) mutant (right) gonads stained with DAPI. Sta-
tistics of DAPI body observations are shown below. A total of 95 nuclei were scored for the control and 104 nuclei scored for 12A mutants. Bars, 5 pm.
(E, left) The timing of appearance of the CO designation marker GFP::COSA-1 is delayed in syp-1(12A); syp-1(me17) mutants. The direction of meiotic
prophase progression is from left to right. The gonad region in which GFP::COSA-1 foci (green) are observed is highlighted with a green dotted line for
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mediated phosphorylation of SYP-4 is required to turn off DSB
formation (Nadarajan et al., 2017). To test whether SYP-1 phos-
phorylation is required for SYP-4 phosphorylation, we immu-
nostained syp-/ phosphomutants and found that SYP-4-phos
signals are still detected (Fig. S2 F) in both 12A and T452A
mutants. This suggests that the increase in RAD-51 focus num-
bers we observe in syp-1(12A) is not solely caused by loss
of SYP-4 phosphorylation.

To investigate whether the increase in recombination in-
termediates in 12A mutants could explain the observed meiotic
chromosome segregation defects and 40% reduction in progeny
viability as a consequence of incomplete recombination, we
next examined bivalent formation in diakinesis by scoring the
number of DAPI-staining bodies in late meiotic prophase. We
found that 12A mutants form meiotic bivalents held together by
chiasmata at nearly wild-type levels (97.1%, n = 104; Fig. 5 D).
The fraction of diakinesis nuclei with univalents (chromosomes
lacking COs) in 12A mutants was 2.9% (7 DAPI bodies: 5 biva-
lents and 2 univalents, n = 104), whereas it was 0% in the wild
type (n=95). We further examined DAPI-staining bodies for the
presence of intra- and interbivalent DNA bridges, morpholog-
ical features suggestive of improperly resolved recombination
intermediates (Saito et al., 2013). We found one intrabivalent
bridge out of 31 (3.2%) examined nuclei in syp-1(12A) and one
interbivalent bridge out of 11 (9.1%) examined nuclei in syp-
1(T452A) compared with none in 48 wild-type nuclei (0%).
This suggests although syp-I phosphomutants show delayed
meiotic progression, a relatively minor fraction of meiocytes
suffer from improperly resolved or unrepaired recombination.

SYP-1 phosphorylation affects CO
distribution

Previous studies have shown that SYP-1 is required for CO dis-
tribution and designation along chromosomes (Hayashi et al.,
2010; Libuda et al., 2013). We tested whether SYP-1 phosphor-
ylation affects the timing and extent of CO designation by visu-
alizing COSA-1 in late pachytene. Meiotic nuclei which obtain
DSBs in mid pachytene acquire competence to load COSA-1 at
eventual CO sites (Yokoo et al., 2012). We observed a signifi-
cant delay in COSA-1 appearance in 12A mutants, consistent
with the observation that the TZ and early pachytene are ex-
tended and meiotic cell cycle progression is delayed. In control
animals, sites marked by GFP::COSA-1 foci start to appear in
late pachytene, which corresponds to ~40% of the meiotic re-
gion of the gonad (the last 40% of the proximal end). In con-
trast, 12A mutants showed GFP::COSA-1 foci appearing only
at the very end of the gonad (last 10% of the proximal end),
where meiotic nuclei finally exit early pachytene and show late
pachytene chromosome morphology (Figs. 5 E and S2 E). In
contrast to 12A mutants, 10A mutants showed wild-type timing
of GFP::COSA-1 foci appearance (Fig. S2 E), indicating that
entrance into late pachytene is not delayed in 10A mutants. Im-
munofluorescence of 10A mutant gonads suggests that although
the TZ and early pachytene (marked by SUN-1 Ser8-phos) are

prolonged in 10A mutants, entrance into late pachytene (marked
by GFP::COSA-1) is not delayed, because of a compensatory
loss of mid pachytene (marked by neither; unpublished data).
Quantitation of GFP::COSA-1 foci revealed an increased frac-
tion of nuclei with 7 COSA-1 foci in 12A mutants (14.3% in
12A compared with 0.6% in control), suggesting that CO des-
ignation is perturbed in the absence of SYP-1 phosphorylation.
Although we detected a slightly increased number of nuclei
with only five GFP::COSA-1 foci in 12A (13.3% in 12A com-
pared with 2.9% in control), eventual completion of a sixth CO
or apoptotic culling would result in a lower frequency of diak-
inesis nuclei with univalents, as we observe. To further assess
the extent of CO recombination in syp-/ phospho mutants, we
measured the genetic distance between the unc-5 and dpy-20
genes on chromosome IV. In control animals, the distance was
calculated as 3.0 cM, in agreement with the reference map dis-
tance of 3.44 cM (WormBase WS260). However, the 12A and
T452A alleles showed significantly larger distances (Fig. 5 F),
suggesting either an elevated CO frequency or changes in the
recombination landscape. Interestingly, the map distance mea-
sured in 12A mutants (8.8 cM) was also significantly larger than
that in T452A mutants (5.2 ¢cM), raising the possibility that the
different levels of SYP-1 phosphorylation might influence CO
designation capacity differently. These experiments show that
loss of SYP-1 phosphorylation alters levels of synapsis and re-
combination as well as CO designation and distribution, which
together are likely to partially contribute to the inviability ob-
served in the syp-/ phosphomutants.

SYP-1 phosphorylation promotes

establishment of short/long arm asymmetry
Previous studies have shown that PLK-2 plays essential roles in
the establishment of short and long arm asymmetry in addition
to its role in homologue pairing and synapsis (Harper et al.,
2011; Labella et al., 2011; Nadarajan et al., 2017; Pattabiraman
et al., 2017). The observed confinement of SYP-1-phos signals
to short arms also raises the possibility that SYP-1 phosphory-
lation is involved in the functional distinction of the short and
long arms. To test this hypothesis, we used immunofluorescence
to examine protein localization on diakinesis chromosomes.
Wild-type SYP-1 departs from long arms as bivalents undergo
diplotene remodeling (Fig. 6 A) and eventually departs from
short arms no later than the —3 oocyte (Fig. S3). In contrast,
we found that nonphosphorylatable SYP-1, as well as SYP-2,
always persists on both the short and long arms of diakinesis
chromosomes until the —2 or —1 oocyte in the syp-1(12A) or
(T452A) mutants (Fig. 6, B and C; and Fig. S3 D; SYP-2 is not
depicted). This result shows that phosphorylation of SYP-1 is
required for its timely removal from long and short arms. We
next visualized proteins reported to dissociate from the short
arm after CO formation: HTP-1/2, LAB-1, and COH-3/4 (de
Carvalho et al., 2008; Martinez-Perez et al., 2008; Severson
and Meyer, 2014). These proteins also remained on both short
and long arms on at least one chromosome in the majority of

the control gfp::cosa-1 and syp-1(12A) gfp::cosa-1; syp-1{mel7) gonads. DNA is counterstained by DAPI (magenta). (E) Right: quantitation of COSA-1
focus numbers from three gonads for the control gfp::cosa-1 or ten gonads for syp-1(12A) gfp::cosa-1; syp-1(mel7) mutants (n = 171 nuclei scored for wild
type, 244 nuclei scored for syp-1(12A)). Bar heights are percentages of nuclei with the given number of COSA-1 foci; error bars show 95% confidence
intervals. Bars: (main) 15 pm; (insets) 1 pm. (F) Measured genetic map distances in centimorgans for the interval unc-5—dpy-20 on chromosome IV scored
on the given number (N) of unc-5 dpy-20/+ + (control), syp-1(12A); unc-5 dpy-20/+ +; syp-1{me17), and syp-1(T452A); unc-5 dpy-20/++; syp-1(mel7)
selfprogeny. **** P < 0.0001; *** P =0.0001484; **, P = 0.001336, Fisher's exact test.
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—1 oocytes in syp-1(12A) and syp-1(T452A) mutants (Fig. 6,
B and C; and Fig. S3 A). These results indicate that C-terminal
phosphorylation of SYP-1 promotes the establishment of short/
long chromosome arm asymmetry, as well as the timely disas-
sembly of SYP-1 from the SC.

To further understand the function of SYP-1 phosphory-
lation, we created alleles with all 12 phosphosites mutated to
D or E (12D or 12E), an alteration that in some cases mimics
phosphorylation. However, we found that viability, male progeny
production, and immunostaining phenotypes of syp-1(12E) and
syp-1(12D) were indistinguishable from syp-1(12A), with SYP-1
persisting on both short and long arms in diakinesis (Fig. S2 C and

tion images of a representative chromosome
pair in —1 or —2 oocytes with immunostaining
for HTP-1/2 (green), SYP-1, and HTP-3 (ma-
genta; B) or LAB-1 (green), SYP-1, and HTP-3
(magenta; C) in the syp-1(wi); syp-1(mel7)
(=1 oocyte), syp-1(12A); syp-1{mel7) (-1
oocyte), and syp-1(T452A); syp-1(mel7) (-2
oocyte) gonads. The 12A and T452A mutant
gonad shows aberrant persistence of SYP-1 on
both arms (see also Fig. S3 D), and HTP-1/2
and LAB-1 on short arms, in —1 or =2 oocytes.
In B and C, representative chromosomes are
presented with the color of image label indicat-
ing the color of immunostaining in the merged
image. Full-projection images of each nucleus
are shown in the rightmost column, with the
chromosome pair shown on the left encircled.
The cruciform axis of HTP-3 is visible only for
chromosomes lying perpendicular to the op-
tical axis. Bars: (magnified insets) 1 pm; (full
projection images at right) 5 pm.

Fig. S3, B-D). From this, we conclude that SYP-1(12D) or (12E)
may functionally resemble the nonphosphorylatable 12A alleles
rather than mimicking constitutively phosphorylated SYP-1.

The arm asymmetry defects and anaphase bridges we observed
in syp-1(12A) mutants next prompted us to examine the local-
ization of the CPC. Loss of arm asymmetry caused by labo-
ratory-1 or htp-1 mutations has been linked to mislocalization
of AIR-2 (Aurora B) and the CPC, of which AIR-2 (Aurora
B) is a part, leading to chromosome segregation defects (de
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Carvalho et al., 2008; Martinez-Perez et al., 2008). To exam-
ine whether syp-1(12A) mutations lead to CPC mislocalization,
we looked at —1 oocytes of 12A mutants. In control animals
expressing GFP::AIR-2, we observed the expected concen-
tration of AIR-2 (Aurora B) on short arms in —1 oocytes, fol-
lowed by its localization to the meiotic spindle in anaphase I
and relocalization between sister chromatids at metaphase II.
In contrast, in syp-1(12A) mutants, AIR-2 (Aurora B) was faint
and disorganized in many of the corresponding oocytes, as
well as on chromosomes in metaphase/anaphase I (Fig. 7 A).
Similarly, the CPC component INCENP (ICP-1 in C. elegans)
shows robust localization to short arms in wild-type —1 oocyte
nuclei, whereas syp-1(12A) and syp-1 (T452A) mutants had
significantly reduced levels of ICP-1 signals in the correspond-
ing nuclei: 81% of nuclei showed reduced ICP-1 signals com-
pared with the wild type, whereas 19% of nuclei showed no
ICP-1 signal on any chromosomes in 12A mutants (Figs. 7 B
and S4). In plk-2 mutants, an even stronger loss of ICP-1 from
short arms was observed in —1 oocytes: 40% of nuclei showed
reduced ICP-1 signals compared with the wild type, whereas
60% of nuclei showed no ICP-1 staining on any chromosomes.
We noted that the magnitude of ICP-1 reduction does not cor-
respond to the level of progeny viability in syp-1(12A) (60%
viability) or plk-2 (0k1936) (34% viability; Harper et al., 2011)
mutants. Further examination revealed that although wild-type
gonads always show ICP-1 signals on short arms from the —3
or —4 oocyte stage, some of the syp-1(12A) and plk-2 (0k1936)
mutant gonads have ICP-1 signals on prometaphase I chromo-
somes, but not diakinesis chromosomes (Fig. S4 A [plk-2]; 12A
is not depicted). This suggests that ICP-1 is sometimes capa-
ble of rapidly accumulating on chromosomes upon entrance to
the meiosis I division without significant prior accumulation
in prophase. This is likely a result of redundant positive feed-
back mechanisms that enhance CPC localization (Carmena et
al., 2012) and could partially explain the significant progeny
viability observed in syp-1(12A) and plk-2 (0k1936) mutants.
Consistent with reduced localization of the CPC in syp-1(12A)
mutants, levels of H3Ser10 phosphorylation, which is mediated
by AIR-2 (Aurora B) kinase (Hsu et al., 2000), were also re-
duced in syp-1(12A) mutants compared with the wild type (Fig.
S4 D). The mislocalization of the CPC could lead to failures
in triggering cohesin cleavage and the spindle assembly check-
point and could explain the anaphase chromosome bridges and
loss of viability found in syp-7/(12A) mutants.

Because LAB-1 has been shown to promote the phos-
phatase activity of GSP-2 (PP1) at the SC in wild-type animals
(Tzur et al., 2012), and because we observed mislocalization
of LAB-1 and the CPC in syp-1(12A) mutants, we next exam-
ined the localization of phosphorylated H3T3, which has been
shown to recruit the CPC and is a substrate of PP1 in other
model organisms (Qian et al., 2011). In wild-type germlines,
H3T3ph signals appeared on the short arm of diakinesis chro-
mosomes from the —3 to —4 oocyte stage. In contrast, H3T3ph
was strikingly reduced or absent from short arms in —1 oocytes
in syp-1(12A) mutants (Figs. 7 C and S4 C). This suggests that
in 12A mutants, LAB-1 mislocalizes to both long and short
arms, promoting dephosphorylation of H3T3 via GSP-2 (PP1)
on the entire chromosome.

To confirm that PP1 dephosphorylates H3T3ph in C. ele-
gans meiosis, we immunostained H3T3ph in worms homozy-
gous for the gsp-2(PP1) deletion allele #m301. In contrast to the
short arm—specific H3T3ph staining in wild type, gsp-2(PP1)
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mutants showed H3T3 phosphorylation over the entire chro-
mosome from diakinesis onward (Fig. 8 A). This suggests that
dephosphorylation of H3T3 by PP1 is likely to be conserved
in C. elegans. Similarly to H3T3ph staining, ICP-1 was pres-
ent all over chromosomes in gsp-2 (PP1) mutants by immuno-
fluorescence (Fig. 8 B).

Collectively, the high incidence of defects in the asym-
metric disassembly of SC components and compromised CPC
localization likely explain the bulk of reduced viability in syp-
1(12A) and (T452A) mutants by causing chromosome segrega-
tion problems at meiosis I. The loss of short/long arm asymmetry
in the nonphosphorylatable SYP-1 alleles and the dynamic lo-
calization of SYP-1-phos signals are two independent lines of
evidence that strongly suggest that phosphorylation of SYP-1 is
a key element of the molecular cascade that establishes domains
of successive cohesion loss de novo in response to COs.

Discussion

Here, we have shown that phosphorylation of SYP-1 at its
PBD-binding motif promotes timely synapsis and progres-
sion of meiotic prophase, affects recombination rates, and
is critical for early steps in establishing the short and long
arm chromosome domains essential for correct meiotic dis-
junction. SYP-1 phosphorylation begins at the TZ as SYP-1
proteins polymerize between axial elements. Once COs are
made and meiocytes enter the late pachytene stage, phosphor-
ylated SYP-1 and PLK-2 localize to short arms and vacate the
long arms. This asymmetric distribution is required for the full
establishment of functionally distinct short and long arms in
diplotene and diakinesis. Prevention of SYP-1 phosphoryla-
tion at its PBD-binding motif disrupts PLK-2 relocation from
PCs to the SC, delays synapsis and CO formation, and de-
lays the exit from the TZ and early pachytene. Without SYP-1
phosphorylation, meiotic defects from early and late prophase
lead to mislocalization of the CPC, resulting in chromosome
missegregation and reduced progeny viability. Collectively,
our results suggest that PLK-2 acts through SYP-1 (poten-
tially through SYP-1’s PBD-binding motif) to ensure confine-
ment of the chromosome segregation machinery to the short
arm subdomain, promoting correct segregation of holocentric
chromosomes in meiosis I.

PLK-2 has been shown to bind to PC proteins at nuclear
envelope-associated LINC complexes to promote chromosome
pairing and synapsis in the TZ (Harper et al., 2011; Labella et
al., 2011). Our results raise the possibility that SYP-1 protein
phosphorylated at its PBD-binding motif in the nascent SC
could provide a new binding site for PLK-2. This new site could
promote meiotic events in two ways: (1) by allowing PLK-2 to
move off of PCs (possibly in cis), promoting the progression of
the cell cycle, and (2) by recruiting PLK-2 to the SC to establish
short and long arm distinction. PLK-2 bound to SYP-1-phos
could then phosphorylate other proteins in the vicinity of the
SC, initiating a phosphorylation cascade.

Phosphorylated SYP-1 localizes to the short arm imme-
diately after COSA-1 focus formation in late pachytene, sug-
gesting that this relocation is one of the earliest events to take
place after recombination intermediates are committed to COs.
Another SC central component, SYP-3, has been shown to dy-
namically move onto and off of chromosomes during meiotic
prophase. In a process dependent on PLK-2, this exchange
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Figure 7. SYP-1 phosphorylation is required for correct localization of CPC components (AIR-2 and ICP-1) and the CPC-guiding histone mark (H3T3ph).
(A) Localization of GFP::AlR-2 (green) on meiotic chromosomes fixed and stained with DAPI (magenta) at different stages preceding and during the mei-
ofic divisions in control (gfp::air-2)(top) and gfp::air-2; syp-1(12A); syp-1{me17) (bottom) animals. Bars, 5 pm. (B) ICP-1 is enriched on short arms in —1
oocytes in syp-1(wit); syp-1{mel7) animals (top), whereas some —1 oocytes lack ICP-1 localization in syp-1(12A); syp-1(mel7) mutants (bottom; see also
the whole-nucleus image in Fig. S4). The ICP-1 localization in —1 oocytes was categorized as follows in syp-1(wt); syp-1(mel7), syp-1(12A); syp-1(mel7),
and plk-2(ok1936): all six DAPI bodies had robust ICP-1 staining on short arms (category 1), some DAPI bodies had partial or weak ICP-1 staining (cate-
gory 2), or no DAPI bodies had ICP-1 staining (category 3). The analysis was limited to —1 oocyte nuclei carrying six bivalents. Bars, 1 pm. (C) H3T3ph
staining in —1 oocyte nuclei in N2 wild-type (top) and syp-1(12A); syp-1(mel7) mutants (bottom); representative images are shown above quantitation
(see also the whole-nucleus image in Fig. S4). Bars, 1 pm. In the scatterplot below, each point is a measurement of a single DAPI body. Error bars indicate
mean and SD of all points. The number of DAPI bodies/points counted for H3T3ph is 151 for wild type and 111 for syp-1(12A) mutants. ****, P <

0.0001, Mann-Whitney test.

becomes less dynamic after COs are made (Pattabiraman et al.,
2017). Thus, the asymmetric relocalization of phosphorylated
SYP-1 coincides with a large-scale reduction in the dynamic
properties of the SC, raising the possibility that both of these
PLK-2-dependent events are mechanistically connected.

The SYP-1 phosphomutants also affected COSA-1 focus
number and CO recombination rate. In the 12A allele, COSA-1
foci representing CO designation sites departed from the wild-
type number of six per nucleus, with ~13.5% of nuclei having
five foci and 14.3% having seven foci. Perturbation of the SC
by partial loss of SYP-1 has been shown to increase COSA-1
number (Hayashi et al., 2010; Libuda et al., 2013); perhaps the

alterations in our mutant alleles act in a similar fashion by af-
fecting the level of SYP-1 incorporation or the overall integrity
of the SC. In contrast, the genetic distance of the unc-5—dpy-
20 interval on chromosome IV increased by more than a factor
of two in 12A mutants. The disagreement between the change
in COSA-1 foci and the large increase in the genetic map we
observed has several nonexclusive possible explanations, in-
cluding generation of additional COs not marked by COSA-1, a
shift of CO formation to a central position (the unc-5—dpy-20
interval roughly bounds the central third of chromosome IV),
or a bias in recovery of chromosomes with COs in this region
in the surviving progeny.
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Figure 8. GSP-2/PP1 restricts the CPC-guiding histone mark H3T3ph and ICP-1 to short arms. (A and B) H3T3ph immunostaining shown in green
(A) or ICP-1 immunostaining shown in green (B) in —1 oocytes in wild type (top) and gsp-2(tm301) mutants (bottom). Short and long arms are marked
by HTP-3 staining (magenta). Representative chromosomes with cruciform HTP-3 staining indicated by circles are shown in the rightmost panels.

Bars: (leff) 5 pm; (right) T pm.

Loss of SYP-1 phosphorylation nearly always resulted in
abnormal persistence of SC or SC-interacting proteins in diplo-
tene and diakinesis, and ICP-1 was never observed at wild type
levels in —1 oocytes in syp-1(12A) mutants. These very pen-
etrative phenotypes contrast with the relatively high viability
(60%) of syp-1(12A) mutant self-progeny. If spermatogenesis
and oogenesis were equally compromised, this level of viability
would suggest that gamete production succeeds at least 77% of
the time in the absence of SYP-1 phosphorylation. This would
imply that despite the localization defects observed in prophase
in syp-1(12A) mutants, redundant pathways suffice to deposit
CPC components at the short arm by metaphase I in a subset
of nuclei. Why some chromosomes in syp-/(12A) mutants ul-
timately succeed in recruiting the CPC to short arms and suc-
cessfully segregate in meiosis while others do not remains to
be determined. One possible explanation is the unpredictable
nature of CO position. In C. elegans, the obligatory single CO
is most likely to occur in the terminal thirds of chromosomes
(Barnes et al., 1995). Because establishment of short and long
arm domain patterning appears to be determined by the physi-
cal distance from the CO to the chromosome ends, perhaps the
mechanisms behind this functional distinction could be con-
founded on chromosomes that happen to receive more centrally

located COs. More generally, if COs at different positions (cen-
tral, arm, or terminal) of chromosomes vary with respect to the
ease or speed of subsequent long and short arm domain pattern-
ing, then nuclei with an excess of “difficult” COs may be more
likely to harbor chromosomes that fail in downstream steps of
short and long arm establishment in a sensitized background
such as syp-1(12A) mutants. Similar reasoning could account
for the fact that the syp-1(10A) mutant has a slight but signifi-
cant increase in male production without an increase in embry-
onic lethality, which suggests the X chromosome has a higher
nondisjunction rate than autosomes in this mutant. Compared
with autosomes, the X chromosome has a smaller region of sup-
pressed crossing over near the chromosome midpoint (Rockman
and Kruglyak, 2009), predicting a higher incidence of centrally
located COs. Such COs, though occurring with low frequency,
could result in failure to effectively establish the long and short
arm domains in syp-1(10A) mutants.

The observation that synapsis is delayed in syp-1(12A) or
(T452A) mutants, but not in syp-1(/0A) mutants, suggests that
SYP-1 phosphorylation at its PBD-binding domain promotes
the timely progression of synapsis. Although immunofluo-
rescence against both native and HA-tagged PLK-2 failed to
detect PLK-2 on the SC in the TZ or early pachytene in 10A
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mutants, a residual amount of PLK-2 at the SC below our de-
tection threshold may suffice to promote timely completion of
synapsis in this mutant. However, the fact that many chromo-
somes achieve timely synapsis even in plk-2 mutants shows
that PLK-2 is not strictly necessary for synapsis. The mecha-
nism of synapsis facilitation by PLK-2 remains unknown but
could involve distributive phosphorylation of SC components,
which may alter SC structure or binding affinity. In addition to
containing the PBD-binding motif, the C terminus of SYP-1
interacts with SYP-3 (Schild-Priifert et al., 2011), raising the
further possibility that phosphorylation of SYP-1 at T452 may
modulate its binding capacity to SYP-3 and promote assem-
bly of central components.

How could the localization of phosphorylated SYP-1 on
the short arm lead to subsequent localization of the CPC on the
same domain at the end of meiotic prophase? Our data show
that SYP-1 phosphorylation controls the correct distribution of
one of the CPC-guiding histone modifications, phosphorylated
histone H3T3. We have shown that SYP-1 phosphorylation is
critical for LAB-1 restriction to the long arms, where it nor-
mally locally increases the activity of PP1 (Tzur et al., 2012),
which we have shown to counteract H3T3 phosphorylation. A
previous study in fission yeast demonstrated that the H3T3 ki-
nase Haspin is recruited to centromeres by the cohesin regulator
Pds5 (Yamagishi et al., 2010). If this mechanism is conserved
in C. elegans, then we would expect Haspin to be recruited to
the axis region of the SC, because cohesins and the C. elegans
orthologue of Pds5, EVL-14, associate with the lateral elements
(Pasierbek et al., 2001; Kim et al., 2014). Although our detec-
tion of globally high H3T3ph levels in gsp-2 mutants shows
that PP1 likely suppresses Haspin activity all over chromatin
during diakinesis, additional negative reinforcement may be
required specifically at the axis region of the long arms where
Pds5 may increase the amount of Haspin present. In addition
to this potential mechanism of negative regulation on the long
arms we describe, previous work has also shown that Haspin
is phosphorylated and activated by PLK in Xenopus laevis ex-
tracts (Ghenoiu et al., 2013). PLK-2 constrained to the SC short
arm by phosphorylated SYP-1 could similarly activate Haspin,
and subsequently enrich the CPC at short arms, in C. elegans.
Our findings, combined with previous results, suggest major
functions of SYP-1 phosphorylation in guiding the localization
of the CPC by suppressing H3T3 phosphorylation on long arms
while promoting it on short arms.

Materials and methods

C. elegans strains and conditions

C. elegans strains were grown using standard procedures (Brenner,
1974) at 20°C. Wild-type worms were from the N2 Bristol strain. The
following mutations, transgenes, and balancers were used in this study:
mel07[plk-2::HA] (I), plk-2(0k1936)/hT2[bli-4(e937) let-?(q782)
qls48 (L), gsp-2(tm301)/eT1(unc-36)(1;111), melsS [Ppie-1::gfp::
cosa-1 + unc-119(+)] (Il), icmSi44 [Psyp-1::syp-1(T452A) + unc-
119(+)](1l), icmSi35 [Psyp-1::syp-1(4A) + unc-119(+)](Il), icmSi33
[Psyp-1::syp-1(8A) + unc-119(+)](1l), icmSi42 [Psyp-1::syp-1(10A)
+ unc-119(+)](1l), icmSi25 [Psyp-1::syp-1(12A) + unc-119(+)]
(1), icmSi31 [Psyp-1::syp-1(12E) + unc-119(+)] line 2 (II), icmSi32
[Psyp-1::syp-1(12E) + unc-119(+)] line 3 (1I), icmSi28 [Psyp-1::s-
yp-1(12D) + unc-119(+)] (1l), icmSi24 [ Psyp-1::syp-1(wild type) + unc-
119(+)] (11), zim-2 (tm574) (IV), spo-11(me44)/nT1[unc-?(n754) let-?

qls50](1V;V), syp-1(mel7)/mT1[unc-?(n754) let-?(m435)] (1V;V), unc-
119(ed3) (1ll); ltls14[pie-1p::GFP-TEV-STag::air-2 + unc-119(+)],
unc-5 (e53), dpy-20(el1282ts) (1V).

For all mutant analyses, we used homozygous mutant progeny
of heterozygous parents.

The syp-I phospho mutants were generated using Mos-SCI
(Frgkjaer-Jensen et al., 2008) with pCFJ151 plasmids and the strain
EG6699. To generate syp-1 (12A), (I12E), and (12D) mutants, the
syp-1 gene fragments were synthesized with respective mutations by
Invitrogen GeneArt Strings and cloned into pCFJ151 using Gibson
assembly cloning kit (New England BioLabs). The rest of the syp-1
phosphomutations were created by either mutating syp-1 (wt) or (12A)
genes cloned in pCFJ151 using PCR-based mutagenesis (for T452A) or
by stitching syp-1 (wt) and (12A) gene fragments by Gibson assembly
cloning (for 4A and 8A mutants). The following primer set was used
for PCR-based mutagenesis for T452A: forward, 5'-CCATTGATG
ACGAGCGCACCACTTACCGCAGCTACtAGACCGTTGAAACGA
AC-3’; and reverse, 5'-GTTCGTTTCAACGGTCTaGTAGCTGCG
GTAAGTGGTGCGCTCGTCATCAATGG-3'. This complementary
primer set introduces an additional synonymous mutation (indicated by
a lowercase t in the forward primer/lowercase a in the reverse primer),
because we designed this template to function with either Mos-SCI or
CRISPR/Cas9, and this synonymous mutation disrupts a potential pro-
tospacer adjacent motif (PAM) sequence. At least two transgenic lines
were generated for each transgene for mutant phenotype analysis. All
syp-1 transgenes contain the promoter (500 bp upstream of the gene)
and the 3" UTR (97 bp downstream of the gene). The insertion of the
syp-1 transgene was verified by DNA sequencing.

Phosphoproteomics

Wild-type N2 and pph-4.1(tm1598)/hT2[bli-4(e937) let-?(q782) qls48]
worms were grown on NGM plates containing 25 pg/ml carbenicillin
and 1 mM IPTG spread with HT115 bacteria either carrying an empty
RNAI vector (L4440; http://www.addgene.org/1654) or a pph-4.1-
RNAI plasmid. To generate the pph-4.1 RNAIi plasmid, the 695-bp
region spanning the second, third, and fourth exons of pph-4.1 was
amplified from C. elegans N2 genomic DNA using primers 5-GCT
CGTGAAATCCTAGC-3" (forward) and 5'-CGAATAGATAACCGG
CTC-3" (reverse) flanked by Notl and Ncol sites and cloned into
L4440. First, N2 and pph-4.1(tm1598)/hT2[bli-4(e937) let-?(q782)
qls48] worms (PO) synchronized by starvation were transferred to
new plates with food, and worms at the L4 larval stage were harvested
in M9 + 0.01% Tween buffer, washed three times with M9 + 0.01%
Tween buffer, and distributed to either control or pph-4.1 RNAI plates.
Approximately 30 h later, these worms on RNAI plates were harvested
in M9 + 0.01% Tween buffer and bleached to collect embryos. Collected
F1 embryos were distributed to fresh RNAI plates. At time points when
these F1 worms were either 1 or 3 d after L4 stage, half of the F1
plates were exposed to 10 Gy y-rays to induce DNA damage. 4 h after
irradiation, worms were harvested in M9 buffer, washed three times
with M9 buffer, and frozen at —80°C. 2 ml pelleted, frozen worms
prepared in this manner was thawed and dissolved in 5 ml urea lysis
buffer (20 mM Hepes, pH 8.0, 9 M urea, | mM sodium orthovanadate,
2.5 mM sodium pyrophosphate, and 1 mM p-glycerol-phosphate),
sonicated for 1 min at 30-s intervals 10 times until worm bodies were
broken up. The worm lysates were spun down at 20,000 g for 15 min,
and supernatants were subjected to PTMScan analysis (Cell Signaling
Technology); phosphorylated peptides were enriched by phospho-
(Ser/Thr) kinase substrate antibody-immobilized protein A beads and
analyzed by liquid chromatography—tandem mass spectrometry using
an LTQ-Orbitrap-Elite ESI-CID (Thermo Fisher). Phosphoenrichment
antibodies were obtained from CST (catalog numbers 9607, 6966,
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8139, 8738, 9624, 6967, 5759, 9942, 10001, 9614, 9477, 8134, 2325,
5243, and 3004). Protein assignments were made using Sorcerer.
Peptide counts indicated in Table S1 show pooled counts from all
conditions of worms (+ RNAI, irradiation, or age) used in this assay.

Microscopy, cytology, and antibodies

For all cytological preparations, we followed protocols described
previously (Phillipsetal.,2009). Images were acquired on a Deltavision
personalDV microscope (Applied Precision/GE Healthcare) with a
CoolSNAP ES2 camera (Photometrics) at 23°C, using 60x PlanApoN
1.42 NA or 100x UPlanSApo 1.4 NA oil-immersion objectives
(Olympus) and immersion oil (LaserLiquid; Cargille) at a refractive
index of 1.513. The Z spacing was 0.2 pm, and raw images were
subjected to constrained iterative deconvolution followed by subpixel
chromatic shift correction using scripted control of the Priism (Chen
et al., 1996) software suite (see code chromatic-shift at https://github
.com/pmcarlton/deltavisionquant). Image acquisition was performed
with the softWoRx suite (Applied Precision/GE Healthcare). Image
postprocessing for publication was limited to linear intensity scaling
and maximum-intensity projection using OMERO (Burel et al.,
2015). The following antibodies used in the present study have been
described previously: HTP-1 (Martinez-Perez et al., 2008; provided
by E. Martinez-Perez, Imperial College London, London, England,
UK), LAB-1 (de Carvalho et al., 2008) and phosphorylated SYP-4
(Nadarajan et al., 2017; provided by M. Colaiacovo, Harvard Medical
School, Boston, MA), PLK-2 (Labella et al., 2011; provided by
M. Zetka, McGill University, Montreal, Canada), ICP-1 (Oegemaetal.,
2001; provided by K. Oegema, Ludwig Institute for Cancer Research,
San Diego, CA), HIM-8 (Phillips et al., 2005), HTP-3 (MacQueen
et al., 2005), SYP-1 (Harper et al., 2011), and ZIM-3 (Phillips and
Dernburg, 2006; provided by A. Dernburg, Lawrence Berkeley
National Laboratory, Berkeley, CA), SUN-1:Ser8p (Penkner et al.,
2009; provided by V. Jantsch, University of Vienna, Vienna, Austria),
and COH-3/4 (Severson and Meyer, 2014; provided by A. Severson,
Cleveland State University, Cleveland, OH). Antibodies generated
for this work were rabbit-SYP-1_1Phos antibodies generated using
the phosphopeptide [SAPLMTSpTPLTAATR], rabbit-SYP-1_3Phos
antibodies generated using the phosphopeptide [SAPLM(pT)
S(pT)PL(pT)AATR] by Eurofins, all used at 1:100 dilution. All the
phospho-specific antibodies were affinity purified using the SulfoLink
Immobilization kit (44999; Thermo Fisher) using nonphosphorylated
and phosphorylated peptides. The following commercial antibodies
were used: anti-GFP (1:500 dilution; 12600500; Roche), anti-
Histone H3Thr3ph (Phospho-Histone H3 [Thr3; D5GI1I] mAb,
1:10,000 dilution; 13576S; Cell Signaling Technology), anti-Histone
H3Ser10Phos (39254, 1:1,000 dilution), rabbit RAD-51 antibody from
SDIX/Novus Biologicals (1:1,000 dilution; #29480002, lot# G3048-
009A02; Active Motif), rabbit anti-HIM-3 antibody (1:500 dilution;
53470002; SDIX/Novus), anti-HA (1:500 dilution; 901501; Covance/
BioLegend), and anti-ZIM-2 (1:500 dilution; 49270002; SDIX/
Novus). Secondary antibodies used were DyLight488, DyLight594,
DyLight649, or Alexa Fluor 488—conjugated AffiniPure antibodies
(1:500 dilution; Jackson ImmunoResearch). All immunofluorescence
was performed on adult worms at 1 d after L4.

For H3T3 phosphorylation intensity measurements, Fiji (Schin-
delin et al., 2012) was used to calculate the intensity of H3T3ph on
DAPI bodies. Regions of interest were drawn based on DAPI-positive
pixels in —1 oocyte nuclei, and the mean H3Thr3ph pixel intensity
within regions of interest was measured. To subtract background inten-
sity, background regions were drawn in the same nucleus outside of the
DAPI bodies, whose mean pixel intensity was taken as the background
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intensity. Intensity data were statistically analyzed by the Mann—Whit-
ney test. The number of DAPI bodies counted for H3T3ph is 151 for the
wild type and 111 for syp-1(12A) mutants. Quantifications of the length
of SUN-1 Ser8ph staining as well as the TZ (defined by clustered nu-
clei without resolvable chromatids) and RAD-51 foci were performed
as described previously (Sato-Carlton et al., 2014). For quantification
of RAD-51 foci per nucleus, the nuclei on the coverslip-proximal side
of four gonads were scored for each genotype. The numbers of nuclei
scored for zones 1-7 were 142, 163, 173, 146, 127, 111, and 92 for wt;
210, 241, 172, 129, 142, 104, and 104 for syp-1(10A); and 154, 144,
86, 75, 83,79, and 74 for syp-1(12A).

Genetic recombination frequencies

Recombination frequencies were calculated as described previously
(Zalevsky et al., 1999). p, the map distance, is calculated from the frac-
tion R of recombinant self-progeny, as P = I — [(1 — 2R)*?]. Males of
genotype icmSi25 [Psyp-1::syp-1(12A) + unc-119(+)]; syp-1(mel7)/
nTl[unc-?(n754) let-? qls50], icmSi44 [Psyp-1::syp-1(T452A) +
unc-119(+)]; syp-1(mel7)/mT1[unc-?(n754) let-? qls50] or N2 were
crossed with icmSi25 [Psyp-1::syp-1(12A) + unc-119(+)]; unc-5
(e53), dpy-20(el282ts); syp-1(mel7), icmSi44 [Psyp-1::syp-1(T452A)
+ unc-119(+)]; unc-5 (e53), dpy-20(el282ts); syp-1(mel7) or unc-5
(e53) dpy-20(el282ts) hermaphrodites, respectively. Hermaphrodite
cross-progeny were picked to single plates, and their progeny were
scored for Unc Dpy, wild type, and Unc non-Dpy or Dpy non-Unc
recombinants. The assay was performed at 23°C to observe the tem-
perature-sensitive phenotype of dpy-20(e1282ts). We noted that syp-
1(12A); syp-1(mel7) and syp-1(T452A); syp-1(mel7) animals generate
a small population of sick progeny (worms with abnormal morphology
such as arrested development, reduced pigment, early death or Unc;
2.3% and 2.1% of total progeny, respectively) and also that syp-1(12A);
syp-1(mel7) animals generate a small number of Dpy progeny (0.4%
of total progeny, presumably because of aneuploidy observed in these
mutants). The sick progeny observed in 12A or T452A mutants could
be falsely scored as Unc non-Dpy animals in the recombination assay,
and indeed, we found more Unc non-Dpy animals than Dpy non-Unc
in these mutants. Therefore, we limited our analysis to the class of Dpy
non-Unc animals to calculate the recombination rate (i.e., multiplied
the number of Dpy non-Unc recombinants by two to estimate the true
number of recombinants). Because syp-1(12A); syp-1(mel7) animals
were seen to spontaneously generate 0.4% Dpy progeny, we subtracted
this percentage from the total number of observed Dpy non-Unc prog-
eny in this cross before calculating.

Statistics

Experiments in Fig. 5 (A-C), Fig. 7 C, and Fig. S2 (B, C, and E) were
tested for significance using the unpaired Mann—Whitney U test with
two-sided p-values. Confidence intervals in Fig. 5 E (95%) were cal-
culated from the binomial distribution using the Clopper—Pearson
method. Experiments in Fig. 5 F and Fig. S1 B were tested for signifi-
cance using Fisher’s exact test with two-sided p-values.

Online supplemental material

Fig. S1 shows conservation of the SYP-1 PBD-binding motif
among six nematode species and characterizes syp-/ phospho mu-
tants. Fig. S2 characterizes syp-/ phospho mutants. Fig. S3 shows
aberrant persistence of SYP-1 and cohesin subunits COH-3/4 in
diakinesis nuclei in syp-/(12A) mutants. Fig. S4 shows mislocal-
ization of CPC components and CPC-related histone marks in syp-
1(12A) mutants. Table S1 shows tandem mass spectrometry spectra
of SYP-1 phosphopeptides.
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A SYP-1 C-terminus, 6-species comparison (data from Wormbase WS253 release) Tff_?
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Csp5_scaffold_00481.g11927.t1 (C. sinica) - - - DTAEID--DYSQNI TPLNR- - -
F26D2.2 (C. elegans syp-1) +++DTIDIVESDYSDRV TPLTA- - -
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Figure S1. Conservation of the SYP-1 PBD-binding motif among six nematode species, and characterization of syp-1 phospho mutants. (A) C-terminal
amino acid sequence of SYP-1 and its orthologues in six nematode species. Pink highlights Ser, Thr, or Tyr residues conserved in five or more species;
green highlights Ser or Thr only present in C. elegans. The conserved PBD-binding motif STP is boxed. (B) DAPI staining images of anaphase | oocyte nuclei
in syp-1(wt); syp-1{mel7), syp-1(12A); syp-1{mel7), and syp-1(T452A); syp-1({mel7) mutants. Table shows the number of anaphases with visible bridges
and the total number of anaphases scored (N). *, P = 0.02207, Fisher's exact test. Bars, 5 pm. (C) Loss of SYP-1-phos staining in syp-1(T452A) mutants.
SYP-1-phos is shown in green, and pan-SYP-1 is shown in magenta. Bar, 5 pm. (D) PLK-2 immunostaining in late pachytene nuclei in wild-type (top) and
syp-1(10A); syp-1(mel7) (bottom) gonads. Bars, 5 pm. (E) Late pachytene nuclei in control (plk-2::HA) and plk-2::HA; syp-1({10A) gfp::cosa-1, syp-1({mel7)
gonads were fixed and stained with antibodies against HA (green) or HA (green) and GFP (magenta) for the 10A mutant. PLK-2::HA is detected at reduced
levels on the SC in 10A mutants. Bars, 5 pm.
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Figure S2. Characterization of syp-1 phospho mutants. (A) Homologous chromosome pairing is normal in syp-1 nonphosphorylatable mutants. Pairing
was visualized by immunostaining of ZIM-3 (green), which binds to the PCs of chromosomes | and IV in the wild type and syp-1(12A); syp-1(mel7) mutant.
As meiocytes progress from the zone containing mitotically proliferating cells (left) to meiotic prophase (right), unpaired homologous chromosomes (four
ZIM-3 foci per nucleus) become paired (two foci per nucleus) in the leptotene/zygotene TZ. DNA is counterstained with DAPI (magenta). Bars, 5 pm.
(B) PLK-2 is required to extend the TZ in syp-1(12A) mutants. PLK-2 is essential to induce chromosome clustering, a defining feature of TZ nuclei, and very
few or almost no TZ nuclei are found in plk-2 mutants (Harper et al., 2011; Labella et al., 2011). The proportion of the TZ was calculated by dividing the
length of the TZ by the length of TZ + pachytene. The plk-2(ok1936); syp-1(12A) double-mutant gonads similarly possessed few or no leptotene/zygotene
nuclei compared with syp-1(12A) controls. ***, P < 0.001, Mann-Whitney test. Error bars indicate mean and SD. (C) The proportion of combined TZ and
early pachytene region, marked by SUN-1 Ser8 phosphorylation, was extended in syp-1(12D); syp-1(me17), syp-1(12E); syp-1(me17), and plk-2(ok1936);
syp-1{12A) double mutants to a similar level as syp-1(12A); syp-1({me17) mutants as well as plk-2 mutant gonads, previously reported to have an extended
region of SUN-1 Ser8 phosphorylation (Harper et al., 2011). *** P < 0.0001, Mann-Whitney test. Error bars indicate mean and SD. (D) Representative
gonad images of syp-1 (wt); syp-1{mel7) and syp-1(12A); syp-1{me17) animals with DAPI (blue) and SUN-1 Ser8-phos staining (green in the top panel
and white in the lower panel). The gonad region with SUN-1 Ser8-phos staining is highlighted with a dotted line. Bars, 15 pm. (E) The appearance of
GFP::COSA-1 foci is delayed in syp-1(12A) but not in syp-1(10A) mutants. Quantification of the proportion of nuclei with GFP::COSA-1 in gfp::cosa-1,
gfp::cosa-1 syp-1(10A); syp-1({mel7), gfp::cosa-1 syp-1(12A); syp-1({mel7) and gfp::cosa-1; zim-2 (tm574). The proportion was calculated by dividing
the length of the gonad region positive for GFP::COSA-1 by the combined length of the TZ and pachytene. The zim-2 mutant is defective for homologous
pairing of chromosome V, and delays entrance into late pachytene by activating a meiotic checkpoint (Phillips and Dernburg, 2006). This allows zim-2 to
be used as a positive control for delayed GFP::COSA-1 formation. For each genotype, four gonads were scored. Error bars show SD. *, P < 0.05, Mann-
Whitney test. Error bars indicate mean and SD. (F) SYP-4-phos immunostaining of late pachytene nuclei in wild type N2, syp-1(T452A); syp-1(mel17), and
syp-1(12A); syp-1({mel7) mutants. Bars, 5 pm.
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N2 (wild type) 100.0 0.1 1276
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Figure S3. Aberrant persistence of SYP-1 and cohesin subunits COH-3/4 in diakinesis nuclei in syp-1(12A) mutants. (A) Immunostaining of —1 oocyte

nuclei with COH-3/4 (green), SYP-1 (grayscale), and HTP-3 (magenta) antibodies. COH-3/4 aberrantly persists on both long and short arms in =1 oo-

cyte nuclei in syp-1(12A); syp-1(mel7) mutants. (B) Percentage of viability and male progeny of worms with the indicated genotypes. For each mutant,
y YP YP g Y progeny genotyp

all 12 Ser/Thr/Tyr phosphosites are converted to either Asp or Glu. (C) Oocyte anaphase | nucleus with anaphase chromosome bridges in syp-1(12D);

syp-1(me17) or syp-1(12E); syp-1{mel7) mutants. Bars, 5 pm. (D) Pan-SYP-1 staining (green) of diakinesis nuclei in wildtype, syp-1(12A); syp-1(mel7),
syp-1(T452A); syp-1(mel7), syp-1(12D); syp-1({mel7), and syp-1(12E); syp-1(mel7) animals. SYP-1 is normally detected on short arms until the —4 or -3
oocyte stage and disappears by the —2 oocyte stage in the wild-type, whereas it always persists on both arms until the =2 or —1 oocyte stage in the syp-1
phosphomutants indicated. DNA is counterstained with DAPI (magenta). Bars, 5 pm.
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Figure S4. Mislocalization of CPC components and CPC-related histone marks in syp-1(12A) mutants. (A) Inmunostaining of -2, -1, and prometaphase
oocyte nuclei with SYP-1 (magenta) and ICP-1 (green) antibodies in the plk-2 (ok1936) gonad. Although ICP-1 is not detected in —1 oocyte nuclei, accumu-
lation of ICP-1 is found in oocyte prometaphase nuclei. Arrowheads indicate sperm nuclei. (B and C) Maximum-intensity projection images of the whole —1
oocyte nucleus with ICP-1 (green, top) or H3T3ph (green, middle) and HTP-3 (magenta) staining in syp-1(wi) (top), syp-1{mel7); syp-1(12A) (middle), and
syp-1{me17) (B and C, bottom) and syp-1(T452A); syp-1(me17) (B) animals. Partial projections of the chromosomes indicated by circles are presented with
the long axis rotated to the vertical in Fig. 4 (B and C). Both ICP-1 and H3T3ph staining levels are reduced in 12A mutants. Arrowheads indicate sperm
DNA. (D) Immunostaining of histone H3S10ph (green) and HTP-3 (magenta) in —1 oocyte nuclei of wild-type N2 and syp-1(12A); syp-1{me17) animals.
H3S10ph staining levels are reduced in 12A mutants. Bars, 5 pm.



Provided online is Table S1, in Excel, showing the details and counts of phosphopeptides obtained from
mass spectrometry. For all phosphopeptides detected only once, mass spectrometry spectra were
manually examined, and peptides with high-confidence assignment are indicated. The tandem mass spec-
trometry spectra showing m/z and intensity values for these manually reviewed peptides are shown with
accompanying spectrum images in sheets 2-8 in the same Excel file.
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