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1 Introduction

Dynamics of non-Abelian gauge theories depends not only on the gauge coupling constant

but also on the topological θ angle. Since its discovery, the dependence of vacua and

excitations on the parameter θ has been a key issue to understand the topological nature

of gauge theories [1–6]. The strongly interacting sector in the Standard Model of particle

physics is the SU(3) vector-like gauge theory, and thus all the interactions preserve the CP

invariance except for this topological term. It is widely believed that the θ angle of quantum

chromodynamics (QCD) is quite small because CP in the strong sector is well maintained

in our universe according to the experiment on neutron’s electric dipole moment [7].

For four-dimensional SU(n) Yang-Mills theory, the angle θ is periodic in 2π, and thus

the requirement of CP invariance of theory raises two candidates: θ = 0 and θ = π.

Understandings on the vacuum structure at θ = π are of particular importance, and many

studies have been devoted to it using various techniques, including large-n limit, effective

models, and chiral perturbation [8–23]. In certain limits (for example large n), one can show

that SU(n) Yang-Mills theory possesses the first-order phase transition at θ = π and breaks

CP spontaneously. This tells us that physics at θ = π is dramatically different from that at

θ = 0, and it is not known what would happen in generic cases. Recently, in ref. [24], a new
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technique has been developed for SU(n) pure Yang-Mills theory and also for SU(n) Yang-

Mills theory with adjoint matter fields, which gives a rigorous constraint on the vacuum

structure at θ = π by discussing an ’t Hooft anomaly matching. More interestingly, it

reveals under reasonable assumptions that the first-order phase transition at θ = π survives

at finite temperatures at least until the deconfinement transition happens. The purpose of

this paper is to extend and apply their technique to study the θ = π dynamics of other gauge

theories, especially SU(n)× SU(n) Yang-Mills theory with bifundamental matter fields.

Bifundamental gauge theories have acquired an interesting position among a lot of

gauge theories. The number of color n provides a hidden expansion parameter of strongly

coupled gauge theories [25], and the limit n→∞ is governed by the planar diagrams. The

same limit has also an interesting possibility to relate non-supersymmetric gauge theories

and supersymmetric Yang-Mills theory [26–34]. Let us pick up an SU(n) × SU(n) gauge

theory with one bifundamental Dirac fermion for example. Although it is not supersym-

metric, it is a daughter theory of the orbifold equivalence to N = 1 supersymmetric SU(2n)

Yang-Mills theory at least diagrammatically. The condition of the nonperturbative orbifold

equivalence has also been discussed extensively, and one must know the vacuum structure

to judge the equivalence [35–43]. Although it is not yet known whether the nonperturba-

tive equivalence holds for bifundamental gauge theories, they exhibit rich dynamics [41–43]

and it is an important and interesting topic to study them in order to deepen our under-

standings on nonperturbative gluon-dynamics. The supersymmetric bifundamental gauge

theory is also an interesting topic for the same purpose, and the string theory picture is

very useful there [44].

In this paper, we give a rigorous constraint on the vacuum structure of SU(n)×SU(n)

gauge theories with bifundamental matter fields at finite topological angles. Since the

theory has two SU(n) gauge groups, it has two topological angles θ1 and θ2. The theory

is CP invariant at (θ1, θ2) = (0, 0), (π, 0), (0, π) and (π, π), and we discuss the global

consistency of ’t Hooft anomalies to see whether the vacuum is continuously connected

without breaking CP at those points. We propose phase diagrams in the θ1-θ2 plane that

are consistent with the constraints, and give its heuristic interpretation based on the dual

superconductor model of confinement.

This paper is organized as follows: in section 2, we review the basics for the SU(n)

Yang-Mills theory to make the paper self-contained. We also give a review on how the

rigorous constraint on the CP symmetry at θ = π can be derived for it. In section 3,

we discuss the bifundamental SU(n) × SU(n) gauge theory at finite topological angles,

and interpret our result based on the dual superconductor model of confinement. We give

conclusions in section 4. We give a review on necessary computations of topological field

theories in appendix A.

2 Review on su(n) Yang-Mills theory

In this section, we give a brief review on four-dimensional Yang-Mills theory with the gauge

Lie algebra su(n) in order to make the paper self-contained. Especially, we consider the
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case where the gauge group is SU(n) or PSU(n) = SU(n)/Zn. For more details of this

subject, see e.g. refs. [45–48].

2.1 Electric and magnetic charges

We first discuss all the possible electric and magnetic charges especially for the gauge group

G = SU(n) and G = SU(n)/Zn. For slightly more general settings, let Ĝ = SU(n) be the

universal cover of the gauge group, and the gauge group is given by G = Ĝ/H with a center

subgroup H < Zn.

Let us consider the electric charge first. Classically, all the electric charges belong

to representations of the Lie algebra su(n), i.e., elements of the weight lattice. After

quantization, each electric charge can emit and absorb gluons that belong to the adjoint

representations, and thus only the number of boxes in Young tableau (mod n) are relevant

to characterize the electric charge for low-energy dynamics. We can then label the electric

charge of (test) particles by ze ∈ Zn for any su(n) gauge theories to discuss infrared

properties. When the gauge group is G = SU(n)/H, the particle must be invariant under

H < Zn and only such ze ∈ Zn are allowed. When G = SU(n), the allowed electric charges

are ze = 0, 1, . . . , n− 1. For G = SU(n)/Zn, the only allowed electric charge is ze = 0. The

electric charge of dynamical particles must be some of these charges, too, but not all of

them need to be dynamical.

Magnetic charges are in the representation of the GNO dual gauge group G∨ [49].

Universal covers of the original and dual gauge groups Ĝ, Ĝ∨ have the same center group,

and thus electric and magnetic charges for candidates of test particles are labeled by

(ze, zm) ∈ Zn × Zn. (2.1)

For test particles being genuine point-like objects, the set of allowed charges must satisfy

Dirac quantization condition: for both (ze, zm) and (z′e, z
′
m) being test particles, they must

satisfy
1

n
(zez

′
m − z′ezm) = 0 mod 1. (2.2)

This is also called the mutual locality condition.

2.2 SU(n) Yang-Mills theory and its genuine line operators

The four-dimensional SU(n) pure Yang-Mills theory is described by,

S = − 1

2g2

∫
Tr(G ∧ ∗G) +

iθ

8π2

∫
Tr(G ∧G), (2.3)

where G is the field strength of the SU(n) gauge field a:

G = da+ a ∧ a. (2.4)

In our convention, a = iaiµT
idxµ is locally an n × n anti-Hermitian matrix-valued one-

form, and Tr(T iT j) = 1
2δ
ij . The theory is invariant under the SU(n) gauge transformation

a 7→ g−1ag + g−1dg, and the physical observables must respect the gauge invariance. The
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Wilson line in the fundamental representation along a closed line C is a gauge invariant

object,

W (C) = Tr

[
P exp

∮
C
a

]
. (2.5)

One can measure the electric charge ze = 1 of the Wilson line by introducing a topolog-

ical surface operator [48, 50]. In this sense, SU(n) Yang-Mills theory has a global center

symmetry that is called electric Zn one-form symmetry.

Since theory has a fundamental Wilson line in the spectrum of genuine line operators

as mentioned above, there is no magnetic line operators as a genuine line object. Indeed,

let (ze, zm) be a charge of the line operator, then the Dirac quantization condition with

the fundamental Wilson line with charge (1, 0) claims

zm = 0 mod n. (2.6)

This means that there is no magnetic or dyonic genuine line. The genuine line operators

with different electric charges are given by W (C)k with ze = k = 0, 1, . . . , n− 1.

2.3 SU(n)/Zn Yang-Mills theory

Let us next consider the SU(n)/Zn gauge theory, and the general argument on the electric

charge shows that the purely electric line operators must be invariant under Zn, such as

W (C)n. Since the Dirac quantization condition with allowed electric particles does not

give any constraints on zm, the genuine line with zm = 1 is possible. Let us assume that

we have a theory with a magnetic or dyonic line with charge (ze, zm) = (−p, 1) with some

p = 0, 1, . . . , n − 1. The Dirac quantization says that the charge (z′e, z
′
m) of other genuine

line operators must satisfy

z′e = −pz′m mod n. (2.7)

Therefore, the electric charge of line operators with zm = 1 is fixed to −p once the line with

(ze, zm) = (−p, 1) exists. p is a new parameter of SU(n)/Zn gauge theories, which is called

the discrete theta angle [45–48], and it specifies the spectrum of genuine line operators.

We can construct SU(n)/Zn Yang-Mills theory by coupling SU(n) Yang-Mills the-

ory (2.3) to the following Zn topological field theory [46],

STFT =
i

2π

∫
F ∧ (dA+ nB) +

inp

4π

∫
B ∧B. (2.8)

This topological field theory is a low-energy effective description of the spontaneous (one-

form) gauge symmetry breaking U(1) → Zn when the fields with charge n are con-

densed [51]. Here, A and B are one-form and two-form U(1) gauge fields, respectively,

and F is a two-form auxiliary field (see appendix A for this topological field theory). We

require that the action is invariant under the one-form U(1) gauge transformation,

A 7→ A− nλ, B 7→ B + dλ, F 7→ F − pdλ, (2.9)

and then p must be an integer due to the gauge invariance.1

1In this paper, we implicitly assume that we consider field theories only on spin manifolds.
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In order to couple SU(n) Yang-Mills theory to Zn topological field theory (2.8), we

first extend the gauge group from SU(n) to U(n) = (SU(n) × U(1))/Zn, and identify this

U(1) factor with that of the U(1) gauge field A in (2.8). Correspondingly, the SU(n) gauge

field a is replaced by the U(n) gauge field,

A = a+
1

n
A1n, (2.10)

and the gauge field strength becomes

G = dA+A ∧A. (2.11)

Under the U(1) one-form gauge transformation, G is transformed as

G 7→ G − dλ1n. (2.12)

In order to obtain the SU(n)/Zn gauge theory instead of U(n) gauge theory, we postulate

the invariance under the U(1) one-form gauge transformation, and then the gauge invariant

combination is given by G +B1n (for notational simplicity, the identity matrix 1n will be

omitted below). As a result, the classical action for the SU(n)/Zn Yang-Mills theory is

given by

S = − 1

2g2

∫
Tr((G +B) ∧ ∗(G +B)) +

iθ

8π2

∫
Tr((G +B) ∧ (G +B))

+
i

2π

∫
F ∧ (dA+ nB) +

inp

4π

∫
B ∧B. (2.13)

Locally, we obtain B = − 1
ndA by integrating out F , and its substitution recovers the

original SU(n) Yang-Mills action but this operation is ill-defined globally. Spectrum of

local operators on topologically trivial manifolds is unchanged by this gauging procedure,

but there is a crucial difference on nontrivial topologies or with non-local operators as we

shall see below.

If one tries to define the Wilson line by (2.5), it is not gauge invariant under the

U(n) gauge transformation. We can define two kinds of gauge-invariant line operators with

(ze, zm) = (1, 0) and (0, 1) but they need a topological surface (∂Σ = C) in general in order

to maintain the U(n) 0-form and U(1) 1-form gauge invariance:

W (C,Σ) = Tr

[
P exp

∮
C
a

]
exp

[
1

n

∮
C
A+

∫
Σ
B

]
, (2.14)

H(C,Σ) = exp

[∫
Σ

(F + pB)

]
. (2.15)

We now claim that the action (2.13) indeed describes the Yang-Mills theory of gauge group

SU(n)/Zn with the discrete theta angle p. Indeed, let us consider H(C,Σ)W (C,Σ)−p that

has charge (ze, zm) = (−p, 1):

H(C,Σ)W (C,Σ)−p = exp

(∫
Σ
F

)(
Tr

[
P exp

∮
C
a

]
exp

[
1

n

∮
C
A

])−p
. (2.16)
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Superficially, it depends on the surface Σ, but the equation of motion of A claims that
1

2πiF ∈ H
2(X,Z), and thus exp(

∫
Σ F ) does not depend on the choice of surfaces Σ satisfying

∂Σ = C. Therefore, the theory (2.13) have the dyonic genuine line operator with charge

(ze, zm) = (−p, 1), which is concretely given by H(C,Σ)W (C,Σ)−p.

Let us also explain why p is called the discrete theta angle. For this purpose, we

consider the shift θ 7→ θ + 2π. The change of the action (2.13) under this shift is given by

∆S =
i

4π

∫
Tr((G +B) ∧ (G +B)) =

i

4π

∫
Tr(G ∧ G)− in

4π

∫
B ∧B. (2.17)

The first term is in 2πiZ on spin four-manifolds due to the index theorem, and thus the 2π

shift of θ changes p to p − 1 (mod n). This is a consequence of the fact that the electric

charge of dyons is shifted by θ/2π because of the θ angle, and often called the Witten

effect [52]. As a result, the periodicity of θ is extended to 2πn from 2π. Since n different

choices of p for the SU(n)/Zn gauge theory is related by 2π shifts of θ, p is called the

discrete theta angle, although this is not always true for other gauge groups [45].

2.4 Spontaneous CP breaking at θ = π of SU(n) Yang-Mills theory

We also review how one can claim the spontaneous breaking of CP at θ = π following the

procedure with use of an ’t Hooft anomaly, which was recently developed in ref. [24]. We

assume that SU(n) Yang-Mills theory at θ = 0 is trivially gapped with unbroken CP , and

also that the first-order phase transition does not happen at any 0 < θ < π. Let us couple

the theory to background Zn two-form gauge fields B as we have done in section 2.3.

Even after this coupling, CP must be still unbroken by choosing appropriate p at θ = 0.

If CP is broken after gauging the Zn one-form symmetry, then this means that there is a

mixed ’t Hooft anomaly between the CP symmetry and Zn one-form symmetry. Since an

’t Hooft anomaly is renormalization group invariant [48, 53], there must be a certain degree

of freedom carrying the same anomaly and surviving in the infrared limit. The assumption

on the trivially gapped state claims that there is no such degree of freedom, and thus there

must be a way to couple to the Zn two-form gauge field B without breaking CP .

Note that the CP transformation flips the sign of the
∫
B ∧B term, and effectively p

is mapped to −p under the CP transformation. Therefore, above discussion claims that

we can choose the discrete theta angle satisfying2

p = −p mod n (2.18)

in order not to break CP at θ = 0. Since this has a solution (e.g., p = 0 mod n is always

a solution), the assumption on the gap and unbroken CP at θ = 0 is consistent. Let us

discuss the fate of CP symmetry at θ = π. In the SU(n) Yang-Mills theory, θ = π is

CP -invariant because CP flips θ = π to θ = −π and one can shift θ to θ + 2π. After

considering the coupling to the Zn two-form gauge field B, this procedure changes p to

2The condition derived here is different from and weaker than that given in ref. [24] since we only consider

theories on spin manifolds while they consider theories on non-spin manifolds as well as spin ones. It does not

affect the consequence about the fate of CP symmetry at θ = π. Therefore, discussion given here slightly ex-

tends the applicability of the result given in ref. [24] to SU(n) Yang-Mills theories also with adjoint fermions.
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−p − 1 because CP flips p to −p and the 2π shift of θ changes −p to −p − 1 due to the

Witten effect. In order not to break CP due to the coupling to B at θ = π, we must choose

the discrete theta angle satisfying

p = −p− 1 mod n, (2.19)

but this is inconsistent with our choice at θ = 0.3 Therefore, CP is broken after coupling

SU(n) Yang-Mills theory at θ = π to Zn background two-form gauge fields for any choice

of the discrete theta angle p preserving CP at θ = 0.

For consistency, there must be some low-energy degrees of freedom in the SU(n) Yang-

Mills theory at θ = π that explains the CP breaking after coupling it to Zn two-form gauge

fields [24]. There are several possible candidates for this:

• The vacua are trivially gapped but degenerate. Each of them breaks CP sponta-

neously.

• The vacuum is gapped with unbroken CP symmetry but described by a nontrivial

topological field theory.

• The theory contains massless excitations.

If one further assumes or proves that the gap does not close at finite θ and the theory

does not show the topological phase transition, CP is broken spontaneously and there is a

first-order phase transition at θ = π. This interesting discussion given in ref. [24] does not

rely on any specific microscopic details, and thus the consequence is very general as long as

the theory has the Zn one-form symmetry (i.e., matters are in the adjoint representation)

and satisfies the assumption about the mass gap or topological excitations.

3 SU(n) × SU(n) bifundamental gauge theory

We consider a gauge theory with the gauge group SU(n)1 × SU(n)2 and bifundamental

matter fields. We use the convention that the gauge fields ai of SU(n)i are realized as

the traceless and anti-Hermitian n × n matrix-valued local one-form. Our argument in

the following is valid for any kinds of the bifundamental matter fields, but, as a specific

example, one can consider single bifundamental Dirac field Ψ: Ψ belongs to the fundamental

representation of SU(n)1 and to the anti-fundamental representation of SU(n)2, and it is

realized as an n × n matrix-valued four-component Dirac fields. The SU(n)1 × SU(n)2

gauge transformation (u1, u2) acts on Ψ and ai as Ψ 7→ u1Ψu†2 and ai 7→ uiaiu
†
i + uidu

†
i .

3If n is even, p = −p−1 (mod n) does not have any integer solutions, and thus there is a mixed ’t Hooft

anomaly. This claims that all the states form pairs under CP . For odd n, the condition p = −p− 1 (mod

n) can be solved by putting p = (n − 1)/2, and thus there is no ’t Hooft anomaly. This means that there

exist quasi-vacua that keep CP invariance. However, p = (n−1)/2 is not the CP -invariant choice at θ = 0;

the vacuum is not such a CP -invariant state at θ = π since we have assumed that there is no first-order

phase transition at 0 < θ < π. We shall explain this point in more detail in section 3.4.
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The classical action of the theory is given by

S = − 1

2g2
1

∫
Tr(G1 ∧ ∗G1)− 1

2g2
2

∫
Tr(G2 ∧ ∗G2) +

∫
Tr Ψ( /D +m)Ψ

+
iθ1

8π2

∫
Tr(G1 ∧G1) +

iθ2

8π2

∫
Tr(G2 ∧G2), (3.1)

where Gi is the field strength of the SU(n)i gauge group,

Gi = dai + ai ∧ ai, (3.2)

and

/DΨ = γµ(∂µΨ + a1µΨ−Ψa2µ). (3.3)

We assume that m > 0, and the matter part does not break CP explicitly. We denote the

electric and magnetic charge of the SU(n)1×SU(n)2 gauge group as (ze1, zm1)⊕ (ze2, zm2),

then the bifundamental Dirac field has the charge (1, 0) ⊕ (n − 1, 0) mod n. This theory

has fundamental Wilson lines

W1(C) = Tr

[
P exp

∮
C
a1

]
, W2(C) = Tr

[
P exp

∮
C
a2

]
, (3.4)

and they have charge (1, 0)⊕ (0, 0) and (0, 0)⊕ (1, 0), respectively. W1W
−1
2 has the same

charge with the dynamical fermion of this theory.

Let us describe the (0-form) symmetries of this theory. U(1)V is the phase rotation of

the fermionic field

Ψ 7→ eiφΨ,Ψ 7→ e−iφΨ, (3.5)

and this does not act on gauge fields ai. If g2
1 = g2

2 and θ1 = θ2, there is the (Z2)I symmetry,

which interchanges two gauge fields

a1 ↔ −at2 (3.6)

and acts on fermions as Ψ 7→ Ψt. Except for these internal symmetries, there exist usual

charge conjugation C, parity P , and time reversal T symmetries. When the (Z2)I symmetry

and charge conjugation is combined, the gauge fields are transformed as a1 ↔ a2.

Recall that the SU(n) pure Yang-Mills theory has the electric Zn one-form symmetry,

and thus this theory has Zn×Zn one-form symmetry when the mass m of the Dirac fermion

is infinitely large. At finite m, the bifundamental Dirac fermion becomes dynamical, and

it breaks Zn ×Zn one-form symmetry to the stabilizer subgroup of W1W
−1
2 . The Zn ×Zn

one-form symmetry is explicitly broken to the diagonal Zn one-form symmetry. Under this

electric one-form symmetry, W1 and W2 have the same charge.

We study the consistency on the dynamics at θ = π using a mixed ’t Hooft anomaly

with this electric one-form symmetry, and constrain structures of the phase diagram. For

that purpose, we first discuss gauging of Zn one-form symmetry. For simplicity of discus-

sion, we assume that the vacua are always trivially gapped, and we will study how the

first-order phase transition happens as a function of θ1 and θ2.
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3.1 Coupling with the Zn two-form gauge fields

We couple the above SU(n)1 × SU(n)2 bifundamental gauge theory to Zn gauge fields in

order to obtain (SU(n)1×SU(n)2)/(Zn)diagonal gauge theory. First, we discuss the possible

charges of genuine line operators with dynamical matter fields. Bifundamental matters have

the charge (1, 0)⊕ (−1, 0), and thus, in order for the line with charge (ze1, zm1)⊕ (ze2, zm2)

to be a genuine line, the Dirac quantization condition requires

1

n
(zm1 − zm2) = 0 mod 1. (3.7)

This means that two magnetic charges modulo n for SU(n)1,2 gauge groups must be the

same. Let us consider the case where the theory have a genuine line operator with the

magnetic charge zm1 = zm2 = 1. The Dirac quantization further restricts the possible

purely electric genuine lines. To see it, let (ze1, 0)⊕ (ze2, 0) be a charge of the genuine line,

then we get

ze1 + ze2 = 0 mod n, (3.8)

from the Dirac quantization. As a result, the purely electric lines are given by (W1W
−1
2 )k

for k = 0, 1, . . . , n− 1.

We shall obtain such a theory by coupling the SU(n) × SU(n) bifundamental gauge

theory to a Zn topological field theory. We introduce the Zn two-form gauge field B, and

its classical action is given by the same action in (2.8):

STFT =
i

2π

∫
F ∧ (dA+ nB) +

inp

4π

∫
B ∧B. (3.9)

Here, A and B are U(1) one-form and two-form gauge fields, and the equation of motion for

F requires nB = −dA, which makes B a Zn two-form gauge field. We consider theories only

on spin manifolds since we would like to include the case where bifundamental matters are

Dirac fermions, then the parameter p must be an integer mod n: the condition on p being

an integer comes from the requirement on the U(1) one-form gauge invariance of (3.9). p

is identified with p+ n since integration out of F yields

STFT = 2πi
p

n

(
1

2

∫
dA

2π
∧ dA

2π

)
, (3.10)

and difference of p by multiples of n gives the difference of STFT in 2πiZ. Hence, it does

not affect the result in quantum theories.

To couple SU(n) gauge fields a1, a2 to B, we first extend the gauge group SU(n)1 ×
SU(n)2 to

SU(n)1 × SU(n)2 ×U(1)

Zn
, (3.11)

and replace the SU(n) gauge fields a1 and a2 by U(n) gauge fields

A1 = a1 +
1

n
A1n, A2 = a2 +

1

n
A1n. (3.12)

The U(1) gauge field A = Tr(A1) = Tr(A2) is the same with the one that appears in (3.9),

and this creates the coupling of theories that we want. This U(1) gauge field A does not
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couple to bifundamental fields, and it can be easily checked by an explicit form of the

covariant derivative (3.3).

We construct the Wilson and ’t Hooft line operators, which need not be genuine but

must be gauge-invariant. After that, we study the spectrum of genuine line operators to

check whether we have obtained the (SU(n)1 × SU(n)2)/Zn gauge theory. The former

definitions of Wilson lines in (3.4) are no longer gauge-invariant after gauging the Zn one-

form symmetry. Let Σ be a two-dimensional surface with C = ∂Σ, and the gauge-invariant

Wilson loops are defined by

W1(C,Σ) = Tr

[
P exp

(∮
C
a1

)]
exp

(∮
C

1

n
A+

∫
Σ
B

)
, (3.13)

W2(C,Σ) = Tr

[
P exp

(∮
C
a2

)]
exp

(∮
C

1

n
A+

∫
Σ
B

)
. (3.14)

The magnetic one with charge (0, 1)⊕ (0, 1) is also defined by

H(C,Σ) = exp

(∫
Σ

(F + pB)

)
. (3.15)

Using Wilson lines, the genuine line operator of charge (1, 0)⊕ (−1, 0) is given by

W1(C,Σ)W2(C,Σ)−1 = Tr

[
P exp

(∮
C
a1

)](
Tr

[
P exp

(∮
C
a2

)])−1

. (3.16)

We can also construct a dyonic genuine line object,

H(C,Σ)W1(C,Σ)−p = exp

(∫
Σ
F

)(
Tr

[
P exp

∮
C

(
a1 +

1

n
A

)])−p
, (3.17)

which has the charge (−p, 1) ⊕ (0, 1). By multiplying (W1W
−1
2 )k to it, we can generally

obtain the genuine line operator HW−p1 (W1W
−1
2 )k with the charge (−p + k, 1) ⊕ (−k, 1)

mod n. The discrete theta angle p designates the sum of electric charge for the genuine

dyonic particles with the magnetic charges 1.

Since the topological θ angle is the central issue of our discussion, we compute how it

is changed after the gauging in an explicit manner. In oder to maintain the 1-form gauge

invariance, we should replace the gauge field strength G1 and G2 by G1 + B and G2 + B,

respectively, where Gi are the U(n) field strengths of Ai; Gi = dAi +Ai ∧ Ai. As a result,

the topological θ term becomes

Sθ =
∑
i=1,2

iθi
8π2

∫
Tr [(Gi +B) ∧ (Gi +B)]

=
∑
i=1,2

iθi
8π2

∫
{Tr(Gi ∧ Gi) + 2B ∧ Tr(Gi) + nB ∧B} . (3.18)

Using the equation of motion of F , Tr(Gi) = dA = −nB, we obtain

Sθ =
∑
i=1,2

iθi
8π2

∫
{Tr(Gi ∧ Gi)− nB ∧B} . (3.19)

Using the consistency of the local counter term p with the CP symmetry, we will

discuss the possible phase structure of the SU(n)× SU(n) bifundamental gauge theories in

the following sections.
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3.2 Spontaneous CP breaking at (θ1, θ2) = (π, 0) and (0, π)

We first constrain the possible dynamics of bifundamental gauge theories at (θ1, θ2) = (π, 0)

or (θ1, θ2) = (0, π). We follow the same logic given in ref. [24], and start with the assumption

that the vacuum at θ1 = θ2 = 0 is trivially gapped without breaking the CP symmetry.

Therefore, there must be a way to gauge other symmetries without breaking the CP

symmetry at θ=0 by using an ’t Hooft anomaly matching condition. Especially when

gauging the electric Zn symmetry, the local counter term inp
4π

∫
B ∧B can be chosen to be

CP invariant from this argument, and such p must satisfy

2p = 0 mod n, (3.20)

since
∫
B ∧B flips its sign under the CP transformation.

We further assume that the vacua are always trivially gapped and that there is a way to

continuously connect (θ1, θ2) = (0, 0) and (θ1, θ2) = (π, 0), (0, π) without phase transitions.

We will show that there exists first-order phase transition associated with the spontaneous

CP breaking at (θ1, θ2) = (π, 0) and at (θ1, θ2) = (0, π) under this assumption.

Let us discuss the CP symmetry at θ1 = π with θ2 = 0 after gauging the Zn one-form

symmetry. Since CP flips the orientation, p and θi change their signs and become −p and

−θi, respectively. In oder to consider the theory at θ1 = π, we must consider not only the

change θ1 = π 7→ θ′1 = −π but also the shift θ′1 = −π 7→ θ′1 + 2π = π to discuss its CP

invariance. Under these transformations, the topological θ term is changed by

∆Sθ =
2πi

8π2

∫
Tr(G1 ∧ G1)− in

4π

∫
B ∧B. (3.21)

The first term is in 2πiZ, and thus does not affect the path integral. The second term shifts

the value of p by −1. As a result, p is changed to p 7→ −p−1 under the CP transformation

at (θ1, θ2) = (π, 0), and thus the condition for the CP invariance at (θ1, θ2) = (π, 0) after

gauging is given by

p = −p− 1 mod n. (3.22)

For even n, there is no such integer p. Therefore, there is an ’t Hooft anomaly, and all

the quasi-vacua must form pairs under CP or become gapless to saturate the anomaly.

For odd n, p = (n − 1)/2 satisfies this condition, but it is inconsistent with the choice

of p at θ1 = θ2 = 0. Since we put an assumption that a vacuum at (θ1, θ2) = (π, 0) is

continuously connected to the CP -invariant vacuum at θ1 = θ2 = 0, consistency condition

requires the existence of low-energy degrees of freedom to saturate this inconsistency, such

as degenerate vacua or massless excitations. Since we have also assumed that the mass gap

does not close, there exists the first-order phase transition at (θ1, θ2) = (π, 0) in both cases

associated with the spontaneous CP breaking.

The same argument holds for (θ1, θ2) = (0, π), and we can argue the spontaneous CP

breaking there.

3.3 Vacuum structure around θ1 = θ2 = π

Let us next discuss the consistency condition for CP at θ1 = θ2 = π. This case is somewhat

tricky, since there are two topologically distinct ways that connect (θ1, θ2) = (π, π) and
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Figure 1. Two different paths connecting (θ1, θ2) = (0, 0) and (θ1, θ2) = (π, π) ∼ (−π, π).

(θ1, θ2) = (0, 0) (See figure 1). Since both θ1 and θ2 are 2π periodic for the gauge group

SU(n) × SU(n), θ1 = θ2 = π and θ1 = −θ2 = −π are equivalent. We will discuss whether

we encounter the first-order phase transition when changing θ1 and θ2 continuously from

(θ1, θ2) = (0, 0) to (θ1, θ2) = (π, π) or (−π, π).

Let us consider the case (θ1, θ2) = (π, π). After gauging the Zn symmetry, we must use

the 2π periodicity of both θ1 and θ2 to discuss the CP symmetry, and under these shifts

the topological term (3.19) is changed by

∆Sθ =
2πi

8π2

∑
i=1,2

∫
Tr(Gi ∧ Gi)−

2in

4π

∫
B ∧B. (3.23)

On spin manifolds, the first term is in 2πiZ and does not affect the path integral. It thus

changes p to p− 2. One can understand this from the spectrum of genuine line operators.

Originally, spectrum of genuine line operators are given by (−p + k, 1) ⊕ (−k, 1) mod n

with k = 0, . . . , n − 1. Since they have the monopole charge 1, the 2π shift of θ1,2 causes

the shift of charge (−p+ k+ 1, 1)⊕ (−k+ 1, 1) due to the Witten effect, and they become

(−p+2+k′, 1)⊕(−k′, 1) mod n with k′ = 0, . . . , n−1 by putting k′ = k−1. Notice that the

spectrum is not changed only when n = 2, and this will become important for our result.

Let us consider whether there is a way to gauge the electric one-form symmetry without

breaking the CP invariance at θ1 = θ2 = π. After gauging, we have a local counter term
inp
4π

∫
B ∧ B, which flips the sign under CP . It can be described effectively by the map

p 7→ −p, and θ1,2 = π 7→ −π. To get the original topological angle, we perform the 2π shift

of both θ1 and θ2 that changes −p 7→ −p−2. As a result, the CP invariance at θ1 = θ2 = π

after gauging requires to choose p satisfying

p = −p− 2 mod n. (3.24)

This always has the integer solution, and thus there is an CP -invariant quasi-vacuum which

may or may not be the true vacuum. Let us next discuss the global consistency condition.

If θ1 = θ2 = 0 and θ1 = θ2 = π can be continuously connected without breaking CP at

θ1 = θ2 = π, then the integer solution p at θ1 = θ2 = π must also be consistent with the

CP -invariant regularization at θ1 = θ2 = 0; this says that

2 = 0 mod n. (3.25)

The vacuum at θ1 = θ2 = 0 can be continuously changed to the CP -invariant vacuum at

θ1 = θ2 = π without closing the mass gap only if this condition holds.
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(a) CP is unbroken at (θ1, θ2) = (π, π). (b) CP is broken at (θ1, θ2) = (π, π).

Figure 2. Possible phase boundaries of SU(n)× SU(n) bifundamental gauge theories in the θ1-θ2
plane (n ≥ 3).

For n ≥ 3, the above global consistency relation cannot be true. One possibility is

that the vacua at θ1,2 = 0 and θ1,2 = π are separated by first-order phase transitions.

Another possibility is that the vacuum at θ1,2 = π breaks CP spontaneously to saturate

the inconsistency. For n = 2, we cannot impose any constraints on the state at θ1 = θ2 = π

from our argument, and basically any possibilities are allowed.4

Next, let us consider what happens when connecting θ1 = θ2 = 0 and θ1 = −θ2 = −π.

In this case, the CP transformation at (θ1, θ2) = (−π, π) is associated with the shift θ1 7→
θ1−2π and θ2 7→ θ2 +2π. The change of the topological term under these shifts is given by

∆Sθ =
i

4π

∫
Tr(−G1 ∧ G1 + G2 ∧ G2) ∈ 2πiZ. (3.26)

Therefore it does not affect the path integral at all. In this case, the CP transformation

changes p 7→ −p mod n as in the case of θ1 = θ2 = 0. When connecting θ1 = θ2 = 0

and θ1 = −θ2 = −π, the global consistency holds and thus the vacua can be continuously

connected without the phase transition and CP needs not be broken at θ1 = −θ2 = −π.

By combining the result and respecting the 2π periodicity of θ1,2, we obtain figure 2 as

a possible phase boundary of the first-order phase transition in the θ1-θ2 plane when n ≥ 3.

Whether the phase boundary opens at (θ1, θ2) = (π, π) depends on details of the dynamics

such as matter contents. In figure 2a, we consider the possibility when the CP symmetry

is unbroken at θ1 = θ2 = π. In this case, the first-order phase transition line must separate

θ1 = θ2 = 0 and θ1 = θ2 = π, but θ1 = θ2 = 0 and θ1 = −θ2 = π can be smoothly

4This might be because we consider theories defined only on spin manifolds. If we restrict our attention

to theories without fermions, then theories can be defined also on non-spin manifolds. We can repeat the

same argument for non-spin cases at least formally just by changing the identification of the discrete theta

angle from p ∼ p + n to p ∼ p + 2n. The necessary condition for unbroken CP given by (3.25) becomes

2 = 0 mod 2n, and then we would find that CP must be broken for all n ≥ 2. Since we are not familiar

with non-spin case, however, let us leave it as a speculative remark.
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connected. In figure 2b, the CP symmetry is spontaneously broken at θ1 = θ2 = π,

and thus there is a first-order phase transition line around it. In this case, θ1 = θ2 = 0

and θ1 = −θ2 = π would be separated by another first-order line because the vacuum at

θ1 = θ2 = 0 is continuously connected to the CP -invariant quasi-vacuum at θ1 = −θ2 = π

but not to the true CP -broken vacuum according to the global consistency relation.

One may wonder whether the first-order phase transition line in figure 2 can terminate

so that one can smoothly change (θ1, θ2) from (0, 0) to (2π, 0) without phase transitions. In

figure 2, this is impossible and we claim that it is a general result for n ≥ 3. By repeating

the same argument on the CP transformation after gauging the Zn symmetry, the condition

for the CP invariance at (θ1, θ2) = (2π, 0) is given by p = −p−2 mod n. Of course this has

the solution, but it is inconsistent with the CP invariant choice at (θ1, θ2) = (0, 0) when

n ≥ 3. This means that if we could connect (θ1, θ2) = (0, 0) and (2π, 0) without any phase

transition and without closing the mass gap, then CP must be spontaneously broken at

(θ1, θ2) = (2π, 0) but this is the contradiction because (θ1, θ2) = (0, 0) and (2π, 0) must

be equivalent for SU(n) × SU(n) gauge theories. If we further assume that the mass gap

does not close at generic (θ1, θ2), then (θ1, θ2) = (0, 0) and (2π, 0) must be separated by

the first-order phase transition line when n ≥ 3. For n = 2, this is not the case.

3.4 Interpretation via the dual superconductor picture

The purpose of this section is to understand the result intuitively from the dual super-

conductor model of confinement [9, 54, 55]. Let us first consider the case m → ∞ and

bifundamental matters decouple. Then, we have two decoupled SU(n) Yang-Mills theories,

so let us start with the discussion for the SU(n) Yang-Mills theory.

3.4.1 SU(n) Yang-Mills theory

Following the dual superconductor model, we assume that confinement of SU(n) Yang-Mills

theory on R4 is caused by condensation of magnetic monopoles or dyons. Let us say that

their charges are given by (−k, 1) mod n with k = 0, 1, . . . , n − 1 at θ = 0. This assumes

that all the Wilson loops with nontrivial center elements obey the area law. There are n

candidates of condensed particles, and correspondingly there are n different quasi-vacua.

To be specific, let us assume that the magnetic monopole with charge (0, 1) condenses at

θ = 0 in the true vacuum. Now, we turn on the finite topological θ angle, and the Witten

effect shifts charges of dyons to (−k+ θ/2π, 1). Since the charge of each dyon goes back to

its original value only after the shift of 2πn, each branch of quasi-vacua are 2πn periodic

in θ instead of 2π periodic. However, the true vacuum must be 2π periodic in terms of θ,

so there must be some jump among quasi-vacua between 0 < θ < 2π.

Let us pay attention to the charge at θ = π. Assuming that no phase transition

occurs for 0 < θ < π, then the charge of condensed particles (magnetic monopole at θ = 0)

becomes (θ/2π, 1) due to the Witten effect. It is not invariant under the CP transformation

at θ = π although the theory is CP invariant. Under the CP transformation, the charge

(1/2, 1) is mapped to (−1/2, 1), and thus the quasi-vacua with charges (±1/2, 1) must

have the same energy because of the CP symmetry of the theory. Therefore, the first-

order phase transition occurs at θ = π, and the true vacua jumps from the branch with the
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Figure 3. Schematic figure on the ground state energy E(θ) of the SU(n) Yang-Mills theory

based on the dual superconductor model for n = 3. There are n different branches labeled by the

condensed charge (θ/2π − k, 1) of dyons (k = 0, 1, . . . , n− 1), and each branch is 2πn periodic.

condensed charge (θ/2π, 1) to the another branch with the condensed charge (−1+θ/2π, 1)

(see figure 3). This is how the CP symmetry is spontaneously broken at θ = π for pure

SU(n) Yang-Mills theory in the dual superconductor scenario.

To summarize the case for the SU(n) Yang-Mills theory, let us denote E0(θ) as the

energy of the quasi-vacuum with the condensed charge (θ/2π, 1). CP symmetry tells us

that E0(θ) = E0(−θ), and n-ality shows that E0(θ+2πn) = E0(θ). There are n candidates

for the condensate, (−k+θ/2π, 1) with k = 0, . . . , n−1, and the energy of the true vacuum is

ESU(n)(θ) = min{E0(θ − 2πk) | k = 0, 1, . . . , n− 1}. (3.27)

If E0 is smooth, it is natural to have the bump for E(θ) at θ = π, at which the branch

jumps from E0(θ) to E0(θ − 2π) with the first-order phase transition (see figure 3). In

the large-n limit, it is well established that the Yang-Mills vacuum is described by the

minimum of n branches [8, 18].

Before going to the case of bifundamental gauge theories, let us deepen our under-

standings on the meaning of the global consistency condition about ’t Hooft anomaly

matching. CP invariance at θ = π requires that p = −p−1 mod n, and it cannot be solved

for even n. In the dual superconductor picture, the condensed particles at θ = π have

charges (±1/2, 1), . . . , (±(n − 1)/2, 1) and they form n/2 CP -invariant pairs. Including

quasi-vacua, no states can be invariant under CP , and this is suggested by the ’t Hooft

anomaly. Next, let us consider the case of odd n, then ’t Hooft anomaly does not exist by

setting p = (n − 1)/2. The condensed charges are given by (±1/2, 1), . . . , (±(n − 2)/2, 1)

and (n/2, 1). Since the quasi-vacuum with the condensed charge (n/2, 1) is invariant under

CP (see figure 3), one cannot argue the spontaneous CP breaking at θ = π without putting

another assumption. The point is that the state with the charge (n/2, 1) at θ = π is not

continuously connected to the vacuum with the charge (0, 1) at θ = 0, so the absence of

the first-order phase transition at 0 < θ < π can purge this state from our consideration on

vacua. In the language of the consistency condition, this is implied by the fact that there

is no common integer p for the CP invariance at θ = 0 and θ = π.
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Figure 4. Energies of the quasi-vacua of the SU(n)× SU(n) gauge theory in the limit of m→∞
when θ = θ1 = θ2.

3.4.2 SU(n) × SU(n) bifundamental gauge theories

Let us now discuss SU(n) × SU(n) Yang-Mills theory. Considering the limit m → ∞ so

that bifundamental matters decouple, we just have two copies of the above argument.

We first connect θ1 = θ2 = 0 and θ1 = θ2 = π. We select the path θ1 = θ2 for

instance and denote the common angle as θ := θ1 = θ2. We now have n2 candidates

for the condensed particles with the charge (−k + θ/2π, 1) ⊕ (−` + θ/2π, 1) mod n with

k, ` = 0, 1, . . . , n− 1, and thus the ground-state energy is given by

ESU(n)×SU(n)(θ) = min{E0(θ − 2πk) + E0(θ − 2π`) | k, ` = 0, . . . , n− 1}. (3.28)

By assumption that the monopole (0, 1) condenses for the SU(n) Yang-Mills theory at

θ = 0, the quasi-vacuum with (θ/2π, 1) ⊕ (θ/2π, 1) is selected when θ is close to zero. At

θ = π, CP is broken and the ground state must be at least two-fold degenerate. In our

limit m→∞, there is four-fold degeneracy at θ = π, and the condensed charges for those

four states are

(θ/2π, 1)⊕ (θ/2π, 1), (θ/2π − 1, 1)⊕ (θ/2π − 1, 1),

(θ/2π − 1, 1)⊕ (θ/2π, 1), (θ/2π, 1)⊕ (θ/2π − 1, 1). (3.29)

This is because the CP symmetry is extended to Z2 × Z2 from Z2 in the limit m → ∞
as a result of the decoupling between two SU(n) Yang-Mills theories. If we assume that

E0(θ) is smooth and monotonically increasing for 0 < θ < 2π, there is the first-order phase

transition from the sate with condensed charge (θ/2π, 1) ⊕ (θ/2π, 1) to the another one

with (θ/2π − 1, 1)⊕ (θ/2π − 1, 1) at θ = π (see figure 4).

Let us turn on finite m and make the bifundamental matters dynamical. Then, the CP

symmetry becomes Z2 and the accidental four-fold degeneracy at θ = π must be resolved.

Let us first notice that states with the charge (θ/2π, 1) ⊕ (θ/2π, 1) and (θ/2π − 1, 1) ⊕
(θ/2π − 1, 1) cannot be mixed by dynamical bifundamental fields since the difference of

their charges is different from the bifundamental charge (1, 0)⊕(−1, 0). On the other hand,

the difference of two charges (θ/2π, 1)⊕ (θ/2π− 1, 1) and (θ/2π− 1, 1)⊕ (θ/2π, 1) is given

by (1, 0)⊕ (−1, 0), and this is nothing but the charge of dynamical matter fields Ψ. These
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(a) CP is unbroken at θ = π.
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(b) CP is broken at θ = π.

Figure 5. Two possibilities of the mixing of states due to dynamical bifundamental matter fields

when θ = θ1 = θ2 are around π.

states can be mixed as a result of interacting bifundamental matters, which leads to the

non-degenerate quasi-vacuum with the mass gap.

If the energy of the mixed states of (θ1/2π, 1) ⊕ (θ2/2π − 1, 1) and (θ1/2π − 1, 1) ⊕
(θ2/2π, 1) is lowered by dynamical matter fields as in figure 5a, then the mixed state is

selected as the ground state around θ = π. In this case, CP (and (Z2)I if exists) need

not be broken, but the first-order phase transition happens across the path connecting

θ = 0 and θ = π. If the energy of the mixed states of (θ/2π, 1) ⊕ (θ/2π − 1, 1) and

(θ/2π− 1, 1)⊕ (θ/2π, 1) is lifted as in figure 5b, then they drop out from the consideration

and there is the first order phase transition from the state with (θ/2π, 1)⊕ (θ/2π, 1) to the

one with (θ/2π − 1, 1)⊕ (θ/2π − 1, 1). In this case, CP is spontaneously broken at θ = π.

We can also understand why no phase transition is required when connecting θ1 =

θ2 = 0 and θ1 = −θ2 = −π. For instance, let us pick up a path with θ1 = −θ2, and denote

θ′ = −θ1 = θ2. By taking the limit m → ∞, we can again consider possible phases using

the dual superconductor picture. The four-fold degeneracy at θ′ = π happens at m = ∞,

and the condensed charges for those four states are given by

(−θ′/2π, 1)⊕ (θ′/2π, 1), (−θ′/2π + 1, 1)⊕ (θ′/2π − 1, 1),

(−θ′/2π + 1, 1)⊕ (−θ′/2π, 1), (−θ′/2π, 1)⊕ (θ′/2π − 1, 1). (3.30)

figure for the vacuum energy is almost the same with figure 4 just by replacing the label

of charges in a straightforward manner.

Let us turn on dynamical bifundamental fields by making m finite. In this case, the

states with charges (−θ′/2π, 1) ⊕ (θ′/2π, 1) and (−θ′/2π + 1, 1) ⊕ (θ′/2π − 1, 1) can be

mixed by dynamical matter fields, while the states with (−θ′/2π + 1, 1) ⊕ (θ′/2π, 1) and

(−θ′/2π, 1) ⊕ (θ′/2π − 1, 1) cannot be mixed. Depending on relative energies of those

states, we obtain figure 6 for quasi-vacua of bifundamental gauge theories as a function of

θ′ = −θ1 = θ2. By checking charges of condensed particles, we can notice that figures 5a

and 6a are connected, and CP is unbroken at θ1 = θ2 = π. Similarly, figures 5b and 6b are

connected, and CP is spontaneously broken at θ1 = θ2 = π. These explain two possible

phase boundaries shown in figures 2a and 2b, respectively.
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(b) CP is broken at θ′ = π.

Figure 6. Two possibilities of the mixing of states due to dynamical bifundamental matter fields

when θ′ = −θ1 = θ2 are around π.

Let us briefly comment on the semiclassical result for this theory on R3 × S1 with the

double-trace deformation when g2
1 = g2

2 and θ1 = θ2 [56]. Normally the semiclassical com-

putation on the non-Abelian gauge theory breaks down due to the infrared renormalons,

and perturbative computations on the small circle compactification gives qualitatively dif-

ferent answers from the nonperturbative results of the theory on R4. By performing a twist

with appropriate matter contents and/or some deformations of the theory, the volume de-

pendence of the partition function can become mild so as to evade the phase transition on

the compactification radius most probably in the large-n limit [56–77]. According to the

computation with this idea for the SU(n) × SU(n) Yang-Mills theory with “one” bifun-

damental Dirac fermion, the interchange symmetry (Z2)I is unbroken and the first-order

phase transition happens at θ = π associated with the spontaneous CP breaking [56]. In

the language of the dual superconductor model, this suggests that, when n is large with this

specific matter content, the states with (θ/2π, 1)⊕(θ/2π−1, 1) and (θ/2π−1, 1)⊕(θ/2π, 1)

are unfavored, and that the first order phase transition occurs at θ = π by jumping from

the state with (θ/2π, 1) ⊕ (θ/2π, 1) to the another one with (θ/2π − 1, 1) ⊕ (θ/2π − 1, 1).

Let us also comment that this unbroken (Z2)I is the essential ingredient for the orbifold

equivalence of this theory, and the question whether it is broken or not on R4 is not yet

settled [40–43]. We cannot answer this question only from our analysis, but let us com-

ment that both phase diagrams shown in figure 2 are consistent with the unbroken (Z2)I
symmetry along the line θ1 = θ2 when g2

1 = g2
2.

We have so far explained how CP is spontaneously broken at θ = π for bifundamental

theories, but our result suggests that it needs not happen if n = 2. We close this section

by observing why n = 2 can be special. Let us consider the case with θ = θ1 = θ2

for example, then above conclusion comes from the fact that the states with condensed

particles (θ/2π, 1) ⊕ (θ/2π, 1) and (θ/2π − 1, 1) ⊕ (θ/2π − 1, 1) mod n cannot be mixed.

This is because the difference of these charges of condensed particles is (1, 0)⊕ (1, 0) mod

n, while the charge of dynamical bifundamental matters is (1, 0) ⊕ (−1, 0) mod n. These

two are different for n ≥ 3, but they are the same at n = 2. Therefore, for n = 2, these two

states can also be mixed by dynamical bifundamental fields, and thus we need no first-order

phase transition lines that separate θ = 0 and θ = π.
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4 Conclusion

We have studied the phase structure for SU(n) × SU(n) bifundamental gauge theories at

finite topological angles by applying consistency for mixed ’t Hooft anomalies of CP and

center symmetry. For the gauge group SU(n)× SU(n), there are two topological angles θ1

and θ2, and there are four CP invariant points, (θ1, θ2) = (0, 0), (π, 0), (0, π), and (π, π).

We discuss that there must be a first-order phase transition at (θ1, θ2) = (π, 0) and (0, π)

associated with spontaneous breaking of the CP symmetry, so there is a first-order phase

transition line through these points. The global consistency is discussed at (θ1, θ2) = (π, π)

but there are two different ways to connect (θ1, θ2) = (0, 0) and (θ1, θ2) = (π, π) because

the point is equivalent to (θ1, θ2) = (−π, π). We observe for n ≥ 3 that the vacua at

(θ1, θ2) = (0, 0) and (θ1, θ2) = (π, π) cannot be continuously connected without breaking

the CP symmetry at (θ1, θ2) = (π, π), but also that the vacua at (θ1, θ2) = (0, 0) and

(θ1, θ2) = (−π, π) can without breaking any symmetries. We propose phase diagrams in

the θ1-θ2 plane that are consistent with these constraints. To understand it better, we

give a heuristic interpretation of the result based on the dual superconductor model of

confinement and the role of dynamical bifundamental fields is clarified.

The SU(n)× SU(n) gauge theory with one bifundamental Dirac fermion is a daughter

theory of the orbifold equivalence with N = 1 supersymmetric SU(2n) Yang-Mills theory

in the planar limit at least diagrammatically, and its nonperturbative equivalence is still

in question. For the nonperturbative equivalence, the interchange symmetry (Z2)I must

be unbroken, and we need further investigation for the (non)equivalence. Our constraint

does not relate the center Zn symmetry with the (Z2)I symmetry, so we need more detailed

knowledge on dynamics. We point out that the phase diagrams proposed in this paper is

consistent with this (Z2)I symmetry when θ1 = θ2. In order to get microscopic details,

numerical simulation is an important subject to study the nonperturbative dynamics. It,

however, suffers from the sign problem at finite topological angles, so the technique to cure

the sign problem must be further developed, such as Lefschetz-thimbles [78–91], complex

Langevin method [92–99], etc., for this purpose. Careful treatment of the cancellation of

these signs is crucial to obtain the physics at θ = π correctly, because the drastic difference

between θ = 0 and θ = π originates from different interference of the microscopic dynamics

in various topological sectors [100].
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A Quick review on topological field theories

This section is a minimal reminder for computing the BF -type topological field theories,

which is necessary in the main text of this paper. The basic object is the action

S =
i

2π

∫
Xd

BdA(i), (A.1)

where Xd is a closed, oriented, d-dimensional manifold, A(i) is a U(1) i-form gauge field,

and B is an R-valued (d− i− 1)-form field. The requirement of U(1) n-form gauge fields is

that
∫
S dA(i) ∈ 2πiZ for any [S] ∈ H(i+1)(X,Z). In other words, dA(i)/2πi ∈ H(i+1)(X,Z).

To understand how the computation goes, let us compute∫
DA(i) exp

(
i

2π

∫
X
BdA(i)

)
. (A.2)

Since dA(i)/2πi ∈ H i+1(X,Z), we can decompose dA(i) as

dA(i) = dφ(i) + 2πi
∑
k

nkδ(Jk), (A.3)

where φ(i) is a (globally-defined) i-form, nk are integers, Jk are generators of

Hd−(i+1)(X,Z), and δ(Jk) are their delta-functional forms, i.e. their Poincaré duals. There-

fore,∫
DA(i) exp

(
i

2π

∫
X
BdA(i)

)
=

∫
Dφ(i) exp

(
i

2π

∫
X
Bdφ(i)

)∏
k

∑
nk∈Z

e
nk

∫
Jk

B


= δ

(
B

2πi
∈ Hd−i−1(X,Z)

)
. (A.4)

The last formal expression with the delta function means that this functional integral does

not vanish only if B/2πi is an element of the integer-valued cohomology: the integration

over φ(i) requires that dB = 0, so B/2πi ∈ Hd−i−1(X,R). If
∫
Jk B 6∈ 2πiZ, the summation

over n vanishes, and thus we get the result.

The relevant 4-dimensional topological field theory in this note is

S =
ip

4πn

∫
X

dA ∧ dA, (A.5)

where X is a closed, oriented 4-manifold, and A is a U(1) 1-form gauge field. For generic

4-manifold, S ∈ 2πi p2nZ. To see this, we can write this action as

S =
2πip

2n

∫
X

dA

2π
∧ dA

2π
=

2πp

2n

∑
k

nn

∫
Jk

dA

2π
∈ 2πip

2n
Z. (A.6)

Especially when X is a spin manifold, we can use the index theorem to state that the

Chern character
∫

exp(dA
2π ) ∈ Z, and thus

S =
2πip

n

(
1

2

∫
X

dA

2π
∧ dA

2π

)
=

2πip

n

∫
X

edA/2π ∈ 2πip

n
Z. (A.7)
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Therefore, p must be identified with mod 2n if X is a non-spin manifold, but p must be

identified with mod n for spin manifolds. Let X be spin and p ∈ Z, then the theory has

the U(1) 1-form gauge symmetry under

A 7→ A− nλ, (A.8)

where λ is also a U(1) 1-form gauge field. Indeed, the change of the action under this

transformation is

∆S = 2πip

(
−
∫

dλ

2π
∧ dA

2π
+
n

2

∫
dλ

2π
∧ dλ

2π

)
. (A.9)

Each term inside the parenthesis gives an integer, and thus e∆S = 1 when p ∈ Z.

Using the auxiliary R-valued 2-form field F (magnetic field strength) and U(1) 2-form

gauge field B, we can dualize this theory as

S =
i

2π

∫
F ∧ (dA+ nB) +

inp

4π

∫
B ∧B. (A.10)

Integrating out F , nB = −dA and we obtain the original action. If we integrate out A,

F/2πi ∈ H2(X,Z) and one can introduce a dual U(1) 1-form gauge field AD as F = dAD.

Substitution of the result, we get a different expression for the same topological field theory,

S =
in

2π

∫
B ∧ dAD +

inp

4π

∫
B ∧B. (A.11)

The fact that F = dAD is an important notice for defining dyonic genuine line operators

since
∫

Σ F =
∫
∂ΣAD does no longer depend on the choice of the surface Σ up to an

irrelevant phase in 2πiZ.
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[56] M. Shifman and M. Ünsal, QCD-like theories on R3 × S1: a smooth journey from small to

large r(S1) with double-trace deformations, Phys. Rev. D 78 (2008) 065004

[arXiv:0802.1232] [INSPIRE].
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