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It has recently been shown that a set of the generalized type IIB supergravity equations follows
from the requirement of kappa symmetry of the type IIB Green–Schwarz superstring theory
defined on an arbitrary background. In this paper, we show that the whole bosonic part of the
generalized type II supergravity equations can be reproduced from the T -duality covariant equa-
tions of motion of the double field theory by choosing a non-standard solution of the strong
constraint. Then, by using the doubled formalism, we show the Weyl invariance of the bosonic
string sigma model on a generalized gravity background.According to the dual-coordinate depen-
dence of the dilaton, the Fradkin–Tseytlin term nicely removes the Weyl anomaly. This result
seems likely to support that string theories can be consistently defined on arbitrary generalized
supergravity backgrounds.
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1. Introduction

A generalization of the type IIB supergravity recently proposed in Ref. [1] is a fascinating subject in
string theory.1 This generalized system includes extra vector fields as well as the standard component
fields of the type IIB supergravity. The classical action has not been revealed yet, and only the
equations of motion are presented. Hereafter, we will refer to them as the generalized supergravity
equations of motion (GSE) for simplicity.

It is well known that the on-shell condition of type IIB supergravity ensures the kappa invariance
of the Green–Schwarz string theory [5,6]. Conversely, in a recent paper [7], the GSE have been
reproduced by solving the kappa-symmetry constraints, generalizing the well-known fact. So far, it
is considered that type IIB string theories on generalized supergravity backgrounds would not be
Weyl invariant, though still scale invariant. Therefore, it has not been clear whether string theory is
consistently defined on such backgrounds.

It is worth noting that a T -duality transformation rule from a solution of the GSE to a solution of
standard supergravity is given in Ref. [1]. On the other hand, one can map a solution of standard
supergravity with a linear dilaton to a solution of the GSE by performing a formal T -duality trans-
formation along a direction for which the dilaton is not isometric [8]. These results indicate that
solutions of standard supergravity and the GSE should be treated on an equal footing in the context
of string theory, because the T -duality is a symmetry of string theory. However, there is a puzzle for

1 This was originally proposed to support a q-deformed AdS5 × S5 background [2–4] as a solution.

© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3Downloaded from https://academic.oup.com/ptep/article-abstract/2017/5/053B07/3855711/Weyl-invariance-for-generalized-supergravity

by Kyoto University Library user
on 18 October 2017



PTEP 2017, 053B07 J. Sakamoto et al.

the Weyl invariance. The Weyl invariance of string theories defined on solutions of the GSE may be
broken, as discussed in Ref. [1], though string theories on solutions of standard supergravity are Weyl
invariant. Due to the T -duality symmetry, it seems likely that Weyl invariance should be preserved
even for the solutions of the GSE in a certain manner.2

In order to clarify the issue of Weyl invariance under T -duality transformations, it is useful to
utilize the manifestly T -duality-covariant formulations of supergravity and string theory: double
field theory (DFT) [9–15]3 and the double sigma model (DSM) [16–21]. In the previous work [22],
a modification of the DFT was studied so as to incorporate the GSE (in the context of the DFT for
the NS–NS sector).4 The modified DFT (mDFT) allows us to reproduce the GSE by choosing a
section under which all of the fields do not depend on the dual coordinates. In this paper, we will
show that the extra generalized vector X M of the mDFT can always be removed with a redefinition
of the dilaton. In this sense, the mDFT is no more than the usual DFT, and it should rather be called
the (m)DFT. The point is that this redefinition introduces the dual-coordinate dependence into the
dilaton (while keeping the strong constraint intact), and this dual-coordinate dependence is the origin
of the modification of the supergravity equations of motion. Moreover, we extend the (m)DFT by
including the R–R fields and show that the GSE are definitely reproduced from the O(D, D) covariant
equations of motion of the (m)DFT. We then find the relation between the R–R potentials and their
strengths, the O(D, D) transformation rule, and the generalized type IIA supergravity equations of
motion. We also argue that the usual DFT action is nothing but the action for the GSE.

After formulating the GSE from the perspective of the DFT, we will consider the string sigma
model defined on the doubled target space, namely the DSM. As is well known, the Weyl anomaly
of the string sigma model is canceled if the NS–NS background satisfies the supergravity equations
of motion [24]. Here, the Weyl anomaly coming from the background metric Gmn and the Kalb–
Ramond field Bmn is canceled by adding a counterterm to the string action, the Fradkin–Tseytlin
term [25]. For a more general case in which the background satisfies the GSE, we can no longer
find an appropriate counterterm to cancel the Weyl anomaly in the usual consideration, and hence
the Weyl symmetry is broken to the scale symmetry [1] (see also Refs. [26–29]). This has been the
common understanding so far. In this paper, we consider the DSM defined on a general solution
of the GSE, and elucidate that the Weyl anomaly can always be canceled by introducing a linear
dual-coordinate dependence into the dilaton of the Fradkin–Tseytlin term.5 In this sense, the usual
supergravity backgrounds and solutions of the GSE can be treated on an equal footing in string
theory.

This paper is organized as follows. In Sect. 2, after giving a short review of the mDFT [22], we
reinterpret the mDFT as the usual DFT with a modified section. In Sect. 3, we review the R–R
sector of the DFT and then reproduce the generalized type IIA and IIB supergravity equations by
employing the modified section. We also present the T -duality transformation rule for solutions of
the generalized type II supergravities. In Sect. 4, we discuss the Weyl invariance of the string sigma
model defined on a solution of the GSE. Section 5 is devoted to conclusions and discussion.

2 We are grateful to A. A. Tseytlin for useful discussions on this point.
3 For earlier observations along this direction, see footnotes 1 and 23 of Ref. [8].
4 More recently, it was proposed in Ref. [23] that the whole bosonic sector of the GSE can be reproduced

from the manifestly U -duality-covariant formulation of supergravity, the exceptional field theory, by choosing
a non-standard section and considering a certain Scherk–Schwarz-type ansatz. See Sect. 5 for more details.

5 For an earlier argument on the recovery of Weyl invariance in the doubled formalism, see, for example,
footnote 23 of Ref. [1].

2/21
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/5/053B07/3855711/Weyl-invariance-for-generalized-supergravity
by Kyoto University Library user
on 18 October 2017



PTEP 2017, 053B07 J. Sakamoto et al.

2. NS–NS sector of (m)DFT

In this section, we introduce the mDFT proposed in Ref. [22], in which only the NS–NS sector was
studied and the R–R fields have not been included yet. We first give a short introduction to the mDFT.
Then, we show that the mDFT can be regarded as the conventional DFT with a non-standard solution
of the strong constraint.

2.1. A brief review of mDFT

Let us give a short introduction to the mDFT. In the absence of the R–R fields, the set of GSE in D
dimensions takes the following form:

Rmn − 1

4
Hmpq Hn

pq + DmXn + DnXm = 0,

1

2
DkHkmn −

(
X kHkmn + DmXn − DnXm

) = 0,

R− 1

2
|H3|2 + 4 DmX m − 4 X mXm = 0, Xm ≡ Im + Zm. (2.1)

Here we have defined |αp|2 ≡ 1
p! αm1...mp αm1...mp , and the D-dimensional indices m, n, . . . are raised or

lowered with the metric Gmn. The covariant derivative Dm is the conventional Levi–Civita connection
associated with Gmn, and Hkmn ≡ 3 ∂[kBmn]. A vector field I m and a one-form Zm are defined so as
to satisfy

DmIn + DnIm = 0, I k Hkmn + DmZn − DnZm = 0, I m Zm = 0. (2.2)

The conventional dilaton is included in Zm as follows:

Zm = ∂m�+ Um. (2.3)

Note that the equations of motion in Eq. (2.1) reduce to the conventional supergravity ones if I m = 0
and Um = 0 are satisfied. Since the GSE depend on � and Um only through the combination Zm,
there is an ambiguity in the decomposition of Z = d�+ U into d� and U . Namely, at the level of
the equations of motion, there is a local symmetry,

�(x)→ �(x)+ ω(x), U (x)→ U (x)− dω(x). (2.4)

Therefore, for a given solution of the GSE, we can always choose the dilaton to satisfy

£I � = I m ∂m� = 0. (2.5)

In Ref. [22], by using techniques developed in the DFT, the above equations of motion have been
reformulated in a manifestly O(D, D) T -duality-covariant form,

S̊MN = 0, S̊ = 0, £̂X HMN = 0, £̂X d = 0, X M X M = 0. (2.6)

In order to explain these equations, let us begin with some basics (see Ref. [22] for more details). We
consider the equations of motion in a 2D-dimensional doubled spacetime with the local coordinates
(xM ) = (xm, x̃m), where x̃m are called the dual coordinates while xm are the conventional coordinates
in the supergravity. We then introduce the generalized metric HMN on the doubled spacetime, which
can be parameterized as

H(x) = (HMN
) =

(
Gmn − Bmp Gpq Bqn Bmk Gkn

−Gmk Bkn Gmn

)
(2.7)

3/21
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/5/053B07/3855711/Weyl-invariance-for-generalized-supergravity
by Kyoto University Library user
on 18 October 2017



PTEP 2017, 053B07 J. Sakamoto et al.

in terms of the conventional metric Gmn and the Kalb–Ramond field Bmn. The T -duality-invariant
dilaton d(x), often called the DFT dilaton, can be related to the conventional dilaton �(x) as

e−2d = e−2�
√|G|. (2.8)

A generalized vector field X M , which is absent in the conventional DFT, is parameterized as

(
X M ) =

(
I m

Um + Bmn I n

)
, (2.9)

where I m and Un here are identified with the ones appearing in the GSE. The 2D-dimensional indices
M , N , . . . are raised or lowered with the O(D, D) metric,

(ηMN ) ≡
(

0 δn
m

δm
n 0

)
, (ηMN ) ≡

(
0 δm

n

δn
m 0

)
. (2.10)

The generalized diffeomorphisms in the doubled spacetime are generated by the generalized Lie
derivative £̂V , which acts on HMN (x) and d(x) as

£̂V HMN = V K ∂KHMN +
(
∂M V K − ∂K VM

)HKN +
(
∂N V K − ∂K VN

)HMK ,

£̂V e−2d = ∂M
(
e−2dV M ). (2.11)

We suppose that all of the fields and gauge parameters satisfy the so-called strong constraint,

ηMN ∂M A(x) ∂N B(x) = ∂mA(x) ∂̃mB(x)+ ∂̃mA(x) ∂mB(x) = 0, (2.12)

where A(x) and B(x) are fields or gauge parameters. Then, the generalized diffeomorphisms can
be regarded as gauge symmetries of the DFT, and the associated gauge algebra is closed. In order
to satisfy the strong constraint (2.12), we usually consider a solution in which all of the fields and
gauge parameters are independent of x̃m. On the other hand, we will take a different solution when
we describe the GSE, as we will discuss in Sect. 2.2.

2.1.1. Equations of motion
Let us now explain the equations of motion (2.6). The last three equations in Eq. (2.6), which
reproduce (2.2) and (2.5), indicate that the generalized vector X M is a null generalized Killing
vector. On the other hand, the first two equations in Eq. (2.6) describe the dynamics of HMN (x)
and d(x) . In particular, the first equation reproduces the first two equations in Eq. (2.1) and the
second equation leads to the last equation in Eq. (2.1). In fact, S̊MN and S̊ are the generalized Ricci
tensor/scalar associated with the covariant derivative satisfying (see Ref. [22] for more details)

∇̊KηMN = 0, £̂V = £̂∇V , ∇̊KHMN = 0, ∇̊M d + X M = 0. (2.13)

The explicit expressions of the modified quantities, the generalized connection �̊MNK , the gen-
eralized Ricci tensor S̊MN , and the generalized Ricci scalar S̊, in terms of (HMN , d, X M ) or
(Gmn, Bmn, �, I m, Um), can be found in the preceding paper [22] (see Sects. 3.2, 4.1, and 4.2 therein).
The corresponding quantities in the conventional DFT, �MNK , SMN , and S, can be reproduced from
these modified quantities by setting X M = 0. Conversely, the modified quantities (�̊MNK , S̊MN , S̊)

can be obtained from (�MNK , SMN , S) with the replacement

∂M d → ∂M d + X M . (2.14)

The meaning of this shift will be clarified in the next subsection.
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2.2. (m)DFT for “DFT on a modified section”

In this subsection, we show that the mDFT, which was reviewed in the previous subsection, is
equivalent to the conventional DFT with a non-standard solution of the strong constraint. In this
sense, the mDFT should rather be called the (m)DFT.

Let us first prove that by performing a certain generalized coordinate transformation, the null
generalized Killing vector X M can always be brought into the following form:6

X M ≡
(

I m

Um + Bmn I n

)
=
(

I m

0

)
(I m : constant). (2.15)

This statement can be regarded as a generalization of the well-known fact in the Riemannian geometry
that we can always find a certain coordinate system where the components of a Killing vector are
constant (see, for example, Ref. [31]).

From the strong constraint, we can always find a section where all of the fields (HMN , d, X M ) are
independent of the dual coordinates. With this choice of section, the null and the generalized Killing
properties lead to the conditions (2.2) and (2.5). Since I m is a Killing vector field, we can always
find a certain coordinate system (xm) = (xμ, y) in which the Killing vector is a coordinate basis:
I m = c δm

y , where c is a constant. In such a coordinate system, both Gmn and � are independent of y.
The three-form H3 is also independent of y, as we can easily show £I H3 = 0 from Eq. (2.2). Thus,
we can generally expand H3 as

H3 = h3 + c−1 ιI H3 ∧ dy = h3 − c−1 dZ ∧ dy
(
ιI h3 = 0

)
, (2.16)

where we used Eq. (2.2), and h3 should satisfy £I h3 = 0 that follows from £I H3 = 0 and £I Z = 0.
From this expansion, we find an expansion of the B-field satisfying H3 = dB2,

B2 = b2 − c−1 U ∧ dy
(
ιI b2 = 0, h3 = db2

)
, (2.17)

where we used dZ = dU , and b2 can always be chosen such that £I b2 = 0 is satisfied. This shows
that we can always take a gauge (for generalized diffeomorphisms) so that Bmn is also independent
of y (i.e., £I B2 = 0), and all of the NS–NS fields are now independent of y. From Eq. (2.17) and
ιI U = 0, which comes from Eqs. (2.2) and (2.5), we also find the relation

ιI B2 − U = 0. (2.18)

This completes the proof that a null generalized Killing vector X M can always be brought into the
form (2.15).

Then, since all of the fields are independent of y, the ỹ dependence can sneak in without violating
the strong constraint. Indeed, in a coordinate system where Eq. (2.15) is realized, the shift (2.14)
from the DFT to the mDFT can be interpreted as an implicit introduction of the linear ỹ dependence
into the dilaton d∗(x) or �∗(x):

(∂M d) =
(

∂md
0

)
→ (∂M d + X M ) =

(
∂md
I m

)
= (∂M d∗), d∗ ≡ d + c ỹ. (2.19)

6 Our proof partially follows the discussion given in Sect. 3.1 of Ref. [30].
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When the dilaton does not depend on ỹ (i.e., c = 0), I m vanishes and the modification disappears.
From the above argument, solutions of the mDFT can always be described as solutions of the DFT
in which the dilaton has a linear dual-coordinate dependence.

Conversely, let us consider a solution of the DFT where the DFT dilaton has a linear dual-coordinate
dependence, d∗ = d(x)+ cm ỹm with constant cm . From the identification

∂M d + X M = ∂M d∗, (2.20)

we obtain that
I m = cm, Um + Bmn I n = 0. (2.21)

Note here that d∗, say the (m)DFT dilaton, can have only linear dependence on the dual coordinates
with constant coefficients if we prefer to avoid the explicit appearance of the dual coordinates in I m

and ∂md. Suppose that all of the fields, collectively denoted by ϕ, are independent of ỹ. Then the
strong constraint requires that

0 = ∂M d ∂M ϕ = I m ∂mϕ = £I ϕ. (2.22)

Here, in the last equality we have used the fact that I m is constant in order to express the condition
in a covariant form. Then, the following conditions, namely Eqs. (2.2) and (2.5), are automatically
satisfied:

£I Gmn = 0, I m ∂m� = 0, ιI H3 + dU = 0, I m Um = 0. (2.23)

Here, the dilaton � is defined through the relation

e−2d = e−2�
√|G|, (2.24)

and it is independent of ỹ. When the R–R fields are also introduced, they should also satisfy

£I Fp = 0. (2.25)

From the above viewpoint, it is not necessary to look for the action for the GSE. The DFT action
supplies the 2D-dimensional equations of motion of the DFT. If the DFT dilaton has the dual-
coordinate dependence, the equations of motion take the form of the GSE.

3. Ramond–Ramond sector of (m)DFT

In this section, we introduce the R–R fields by following the well-established formulation of the
DFT [32–36].7 The whole bosonic part of the GSE is reproduced from the equations of motion of
the DFT by choosing a modified section.

3.1. Ramond–Ramond sector of DFT

3.1.1. Gamma matrices and O(D, D) spinors
It is convenient to introduce the gamma matrices {γ M } = {γ m, γm} satisfying the O(D, D) Clifford
algebra,8 {

γ M , γ N} = ηMN . (3.1)

7 The approaches in Refs. [32,33], [35], and [34,36], respectively, are slightly different from each other. In
this paper, we basically follow the approach of Refs. [32,33]. It is also useful to follow [35] when we consider
the type II supersymmetric DFT [37].

8 In this paper, we call the Pin(D, D) group simply O(D, D).
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Here, the gamma matrices are real and satisfy γ m = (γm)T. The gamma matrices with multi-indices
are defined as

γ M1···Mp ≡ γ [M1 · · · γ Mp], γ m1···mp ≡ γ [m1 · · · γ mp] = γ m1 · · · γ mp . (3.2)

From the anti-commutation relations,

{γ m, γn} = δm
n , {γ m, γ n} = 0 = {γm, γn}, (3.3)

the γm can be regarded as fermionic annihilation operators. The Clifford vacuum |0〉 is defined so as
to satisfy

γm|0〉 = 0, 〈0|0〉 = 1, (3.4)

where 〈0| ≡ |0〉T. By acting γ m matrices on |0〉, an O(D, D) spinor can be constructed as

|αp〉 ≡ 1

p! αm1...mp γ m1···mp |0〉, (3.5)

and it is in one-to-one correspondence with a p-form, αp ≡ 1
p! αm1...mp dxm1 ∧ · · · ∧ dxmp . A formal

sum of O(D, D) spinors,

|α〉 ≡
∑

p

1

p! αm1...mp γ m1···mp |0〉, (3.6)

corresponds to a poly-form α =∑p αp .
The O(D, D) transformations are generated by γ MN satisfying

[γ MN , γL] = γK (T MN )K
L, (T MN )K

L ≡ 2 ηK[M δ
N ]
L . (3.7)

By utilizing the generators, one can define the following quantities:

SeT ≡ e
1
2 hm

n [γm, γ n] [
em

n ≡ (ehT
)m

n], eB ≡ e
1
2 Bmn γ mn

, eβ ≡ e
1
2 βmn γmn . (3.8)

We can easily show that they satisfy

SeT γN S−1
e = γM (eT)M

N , eB γN e−B = γM (B)M
N , eβ γN e−β = γM (β)M

N ,

eT ≡
(

(eT)m
n 0

0 (e−1)m
n

)
, B ≡

(
δm

n 0
Bmn δn

m

)
, β ≡

(
δm

n βmn

0 δn
m

)
. (3.9)

It is helpful to define the correspondent of the flat metric as

Sk ≡ γ0 γ 0 − γ 0 γ0 = S−1
k = ST

k , Sk γN S−1
k = γM kM

N ,

(kM
N ) ≡

(
km

n 0
0 km

n

)
, (km

n) ≡ diag(−1,+1, . . . ,+1) ≡ (km
n) ≡ (kmn). (3.10)

The correspondent of the B-untwisted metric,9

(ĤMN ) ≡
(

Gmn 0
0 Gmn

)
, Gmn ≡ em

k en
l kkl , (Gmn) ≡ (Gmn)

−1, (3.11)

9 See Ref. [38] for discussions of the untwisted form of generalized tensors.
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can also be defined as

SĤ ≡ Se Sk SeT = ST
Ĥ, Se ≡ (SeT)T, SĤ γN S−1

Ĥ = (γ M )T ĤMN . (3.12)

This gives a natural metric,

〈α|SĤ|β〉 =
∑
p,q

1

p! q! αm1···mp βn1···nq〈0| γmp···m1 SĤ γ n1···nq |0〉

=
∑
p,q

1

p! q! αm1···mp βn1···nq〈0| γmp···m1 (γl1···lq)T SĤ |0〉Gl1n1 · · ·Glqnq

= √|G|∑
p

1

p! G
m1n1 · · ·Gmpnp αm1···mp βn1···np = 〈β|SĤ|α〉. (3.13)

The charge conjugation matrix is defined as

C ≡ (γ 0 ± γ0) · · · (γ D−1 ± γD−1) (D : even/odd),

C γ M C−1 = −(γ M )T, C−1 = (−1)
D(D+1)

2 C = CT. (3.14)

By using C and SĤ, the Hodge dual can be constructed as

C SĤ γ m1···mp |0〉 = √|G| (−1)pGm1n1 · · ·Gmpnp γn1···np C|0〉

= 1

(D − p)! (−1)
p(p+1)

2 εm1···mp
n1···nD−p γ n1···nD−p |0〉, (3.15)

where ε01···(D−1) = +√|G| and indices are raised or lowered with Gmn.
The correspondent of the generalized metric is defined as

SH ≡ e−BT
SĤe−B = ST

H, SH γN S−1
H = (γ M )T HMN ,

(HMN ) =
(

δk
m Bmk

0 δm
k

)(
Gkl 0
0 Gkl

)(
δl

n 0
−Bln δn

l

)
. (3.16)

As stressed in Ref. [33], SH is a particular parameterization of the fundamental field S that cor-
responds to the generalized metric HMN before providing a parameterization. If we take another
parameterization of the generalized metric,

(HMN ) =
(

δk
m 0

−βmk δm
k

)(
g̃kl 0
0 g̃kl

)(
δl

n βkn

0 δn
l

)
, (3.17)

then the field S is parameterized as

SH̃ ≡ eβT
SȞeβ , SȞ ≡ Sẽ Sk SẽT. (3.18)

For later discussion, it is also convenient to define the following quantity,

K ≡ −C S = C KT C, K γM K−1 = −HM
N γN , (3.19)

and the chirality operator

γ D+1 ≡ (−1)NF , NF ≡ γ m γm. (3.20)
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The chirality operator acts on an O(D, D) spinor as

γ D+1 |α〉 =
∑

p

(−1)p|αp〉. (3.21)

A chiral/anti-chiral spinor corresponds to a poly-form with even/odd degree.

3.1.2. The classical action and equations of motion
The dynamical fields that correspond to the R–R fields are introduced as O(D, D) spinors,

|A〉 ≡
∑

p

1

p! Am1···mp γ m1···mp |0〉, (3.22)

which transform under generalized diffeomorphisms [32,33] as follows:

δV |A〉 = £̂V |A〉 ≡ V M ∂M |A〉 + ∂M VN γ M γ N |A〉. (3.23)

Depending on the type IIA or IIB theory, |A〉 takes a definite chirality,

γ 11|A〉 = ∓|A〉 (IIA/IIB). (3.24)

It is easy to show that under the strong constraint, the R–R field strength,

|F〉 ≡ /∂|A〉 ≡ γ M ∂M |A〉, (3.25)

transforms covariantly under generalized diffeomorphisms.
From the strong constraint, the operator /∂ is nilpotent, and one can readily see that the field strength

is invariant under the gauge transformations for the R–R fields,

δλ|A〉 = /∂|λ〉, (3.26)

where |λ〉 is an arbitrary O(D, D) spinor which respects the chirality (3.24). The Bianchi identity
also follows from the nilpotency /∂2 = 0,

/∂|F〉 = /∂2|A〉 = 0. (3.27)

In the democratic formulation [39,40], the self-duality relation should be imposed at the level of
the equations of motion. In our convention, it takes the form

|F〉 = K |F〉. (3.28)

From this expression and the Bianchi identity, we obtain the following relation:

/∂K |F〉 = 0. (3.29)

This is nothing but the equation of motion for the R–R field, as we will see below.
Now, let us write down the bosonic part of the (pseudo-)action for the type II supergravity,

L = e−2dS − 1

4
〈F | S |F〉 = e−2dS + 1

4
〈F |K |F〉, (3.30)

where we have defined 〈F | ≡ 〈F |CT. Taking a variation with respect to A, we obtain

δAL = 1

2
〈δA| /∂K |F〉 − ∂M

[
1

2
〈δA| γ M K |F〉

]
, (3.31)
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and as expected, the equations of motion for A reproduce (3.29). The variation with respect to the
DFT dilaton becomes

δdL = −2e−2dS δd + ∂M
(
4e−2dHMN ∂N δd

)
, (3.32)

and there is no contribution from the R–R fields. Finally, the variation with respect to the generalized
metric gives rise to

δHL = −1

2
e−2dSMN δHMN − ∂M

[
e−2d∇N δHMN ]+ 1

4
〈F | δK |F〉

= −1

2

(
e−2dSMN − 1

4
H(M

K 〈F | γ N )K K |F〉
)

δHMN − ∂M
[
e−2d∇N δHMN ]

= −1

2
e−2d(SMN + EMN ) δHMN − ∂M

[
e−2d∇N δHMN ], (3.33)

where we have employed the identity [33]

δK = 1

2
H(M

K γ N )K K δHMN , (3.34)

in the second equality, and defined the “energy–momentum tensor” [32,33]

EMN ≡ 1

4
e2d

[
〈F | (γ (M )T

S γ N ) |F〉 − 1

2
HMN 〈F | S |F〉

]
. (3.35)

In summary, the equations of motion of the DFT are given by

SMN + EMN = 0, S = 0, /∂ K |F〉 = 0. (3.36)

3.1.3. The classical action and equations of motion in the conventional formulation
Next, let us show that the expressions we obtained above indeed reproduce the well-known
expressions in conventional supergravity by choosing (2.7), (2.8), and ∂̃m = 0.

From Eq. (3.23) and ∂̃m = 0, the transformation of the R–R field under a generalized
diffeomorphism becomes

δV |A〉 =
[
vm ∂m + ∂mvn γ m γn + 1

2 (∂mṽn − ∂nṽm) γ mn] |A〉
= |£vA+ dṽ ∧ A〉, (3.37)

and it is equivalent to a conventional diffeomorphism and a B-field gauge transformation. The field
strength (3.25) and the Bianchi identity (3.27) take the following form:

|F〉 = /∂|A〉 = γ m ∂m|A〉 = |dA〉, /∂|F〉 = |dF〉 = 0. (3.38)

The self-duality relation for the R–R field strength becomes

|F〉 = −C e−BT
SĤe−B |F〉 = −eBC SĤe−B |F〉. (3.39)

If the B-untwisted field strength is defined as

|F̂〉 ≡ e−B |F〉, (3.40)
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which is invariant under the B-field gauge transformations, (3.39) can be rewritten as

|F̂〉 = −C SĤ |F̂〉. (3.41)

From Eq. (3.15), we obtain the following relations:

−C SĤ |F̂〉 = −
∑

p

1

p! F̂m1···mp C SĤγ m1···mp |0〉 =
∑

p

(−1)
p(p+1)

2 +1 |∗F̂p〉, (3.42)

and the self-duality relation (3.28) becomes

∗F̂p = (−1)
p(p+1)

2 +1F̂10−p, F̂p = (−1)
p(p−1)

2 ∗ F̂10−p. (3.43)

From this relation and the Bianchi identity for F̂ ,

dF̂ + H3 ∧ F̂ = 0, (3.44)

the equation of motion becomes

d ∗ F̂ − H3 ∧ ∗F̂ = 0, (3.45)

where, compared to the Bianchi identity, the sign in front of H3 is flipped, according to the sign in
Eq. (3.43).

From Eq. (3.13), the action (3.30) becomes

L = √|G|[e−2�

(
R+ 4 Dm∂m�− 4 |∂�|2 − 1

2
|H3|2

)
− 1

4

∑
p

|F̂p|2
]

. (3.46)

In order to evaluate the equations of motion (3.36), let us recall that SMN takes the form [22]

(SMN ) =
(

2 G(m|k s[kl] Bl|n) − s(mn) − Bmk s(kl) Bln Bmk s(kn) − Gmk s[kn]
s[mk]Gkn − s(mk) Bkm s(mn)

)
,

s(mn) ≡ Rmn − 1

4
Hmpq Hn

pq + 2Dm∂n�, s[mn] ≡ −1

2
DkHkmn + ∂k� H k

mn. (3.47)

In fact, EMN also takes a similar form. From the rewriting

EMN = 1

4
e2d 〈F̂ | [(γK )T SĤ γL − 1

2 ĤKL SĤ
] |F̂〉 (−BT)K

M (−B)L
N , (3.48)

it is straightforward to derive

(EMN ) =
(
−2 G(m|k Kkl Bl|n) + Tmn + Bmk T kl Bln −Bmk T kn + Gmk Kkn

−Kmk Gkn + T mk Bkm −T mn

)
,

Tmn ≡ 1

4
e2�

∑
p

[
1

(p− 1)! F̂(m
k1···kp−1F̂n)k1···kp−1 −

1

2
Gmn |F̂p|2

]
,

Kmn ≡ 1

4
e2�

∑
p

1

(p− 2)! F̂k1···kp−2 F̂mn
k1···kp−2 . (3.49)
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Thus, the equations of motion (3.36) are summarized as

Rmn − 1

4
Hmpq Hn

pq + 2Dm∂n� = Tmn, R+ 4 Dm∂m�− 4 |∂�|2 − 1

2
|H3|2 = 0,

− 1

2
DkHkmn + ∂k� H k

mn = Kmn, d ∗ F̂p − H3 ∧ ∗F̂p+2 = 0,

(3.50)

where p is even/odd for type IIA/IIB supergravity.

3.2. Generalized type IIA/IIB equations

As discussed in Sect. 2.2, the equations of motion for the (m)DFT can be obtained by introducing a
linear x̃m dependence into the DFT dilaton or the conventional dilaton,

d → d∗ ≡ d + I m x̃m, � → �∗ ≡ �+ I m x̃m. (3.51)

According to this replacement, the equations of motion for the NS–NS sector are modified [22].
On the other hand, because there is no dilaton dependence in the equations of motion for the R–R
sector, one may deduce that the R–R sector should not be modified. However, as we see in various
examples,10 the R–R fields |A〉 or |F〉 already include a non-linear dual-coordinate dependence
through the dilaton �∗,

|A〉 = e−�∗ |A〉, |F〉 = e−�∗ |F〉, (3.52)

where A and F , to be called the �∗-untwisted fields, are supposed to be independent of the dual
coordinates. In fact, these rescaled fields, A and F , appear more naturally in the vielbein formulations
of the DFT discussed in Refs. [35] and [34,36].

In terms of the �∗-untwisted fields, we obtain the relation

|F〉 = e�∗ /∂(e−�∗ |A〉) = /∂|A〉 − ( /∂�∗) |A〉 = γ m (∂m − ∂m�) |A〉 − I m γm |A〉
= |dA− d� ∧A− ιI A〉. (3.53)

The Bianchi identity is also modified in a similar manner,

0 = e�∗ /∂(e−�∗ |F〉) = |dF − d� ∧ F − ιI F〉. (3.54)

More explicitly, we obtain

Fp+1 = dAp − d� ∧Ap − ιI Ap+2, dFp − d� ∧ Fp − ιI Fp+2 = 0. (3.55)

If we further introduce the (�∗, B)-untwisted fields11 defined as

F̂ ≡ e−B2∧F , Ĉ ≡ e−B2∧A, (3.56)

10 J. Sakamoto, Y. Sakatani, and K. Yoshida, work in progress.
11 The flat components of Ĉ correspond to the fundamental fields in Refs. [34,36] by taking the conventional

parameterization of the generalized vielbein in terms of the vielbein for Gmn and Bmn.
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the relation between the potential and the field strength is represented by

F̂ = e−B2∧[d(eB2∧C)− d� ∧ (eB2∧C)− ιI (e
B2∧C)

]
= dC − Z ∧ C − ιI C + H3 ∧ C (Z ≡ d�+ ιI B2). (3.57)

Namely, the (p+ 1)-form field strength is given by

F̂p+1 = dCp − Z ∧ Cp − ιI Cp+2 + H3 ∧ Cp−2. (3.58)

The Bianchi identity becomes

dF̂p − Z ∧ F̂p − ιI F̂p+2 + H3 ∧ F̂p−2 = 0. (3.59)

The gauge transformation of the R–R potential is expressed as

δλC = dλ̂− Z ∧ λ̂− ιI λ̂+ H3 ∧ λ̂, (3.60)

and the invariance of the field strength requires the nilpotency

0 = (d − Z ∧ −ιI + H3∧)2λ̂ = −£I λ−
(
dZ + ιI H3 − ιI Z

) ∧ λ. (3.61)

But this is indeed satisfied from the strong constraint (2.23) and £I λ = 0.
The equations of motion become (see Ref. [22] for the modification of the NS–NS sector)

Rmn − 1

4
Hmpq Hn

pq + 2Dm∂n�+ DmUn + DnUm = Tmn,

R+ 4 Dm∂m�− 4 |∂�|2 − 1

2
|H3|2 − 4

(
I mIm + U mUm + 2 U m ∂m�− DmU m) = 0,

− 1

2
DkHkmn + ∂k� H k

mn + U k Hkmn + DmIn − DnIm = Kmn, (3.62)

d ∗ F̂p − Z ∧ ∗F̂p − ιI ∗ F̂p−2 − H3 ∧ ∗F̂p+2 = 0,

where we have introduced the following quantities:

Tmn = 1

4

∑
p

[
1

(p− 1)! F̂(m
k1···kp−1F̂n)k1···kp−1 −

1

2
Gmn |F̂p|2

]
,

Kmn = 1

4

∑
p

1

(p− 2)! F̂k1···kp−2 F̂mn
k1···kp−2 . (3.63)

For the type IIB case, these equations are nothing but the generalized type IIB equations (in the
democratic form).

3.2.1. Redefinitions of the Ramond–Ramond fields
Our fundamental fields are (A, F). However, depending on the situation, it may be more convenient to
introduce various untwisted quantities. For completeness, let us introduce the following redefinitions
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of the R–R fields:

(Č, F̌)
eβ∨←−−−−−−−−−

β-untwist
(A, F)

e−B2∧−−−−−−−−→
B-untwist

(Ĉ, F̂)

eImx̃m

⏐⏐�I -untwist

(Č, F̌)
eβ∨←−−−−−−−−−

β-untwist
(A, F)

e−B2∧−−−−−−−−→
B-untwist

(Ĉ, F̂)

e�

⏐⏐��-untwist

(Č, F̌)
eβ∨←−−−−−−−−−

β-untwist
(A, F)

e−B2∧−−−−−−−−→
B-untwist

(Ĉ, F̂) (3.64)

For example, the (I , B)-untwisted fields are defined as

Ĉ ≡ eI m x̃me−B2∧A = e−�C, F̂ ≡ eI m x̃me−B2∧F = e−� F̂ , (3.65)

the potentials and the field strengths are related through

F̂p+1 = dĈp − U ∧ Ĉp − ιI Ĉp+2 + H3 ∧ Ĉp−2, (3.66)

and the Bianchi identities become

dF̂p − U ∧ F̂p − ιI F̂p+2 + H3 ∧ F̂p−2 = 0. (3.67)

In particular, when we study non-geometric T -folds, it is more convenient to define the
(I , β)-untwisted fields12

|Č〉 ≡ eI m x̃meβ |A〉, |F̌〉 ≡ eI m x̃meβ |F〉 (3.68)

or

Č ≡ eI m x̃meβ∨A, F̌ ≡ eI m x̃meβ∨F , (3.69)

where we have defined an operation β∨ that acts on a p-form αp as

β ∨ αp ≡ 1

2
βmn ιmιnαp. (3.70)

For the β-untwisted quantities, the natural metric is the metric g̃mn introduced in Eq. (3.17). For
example, the self-duality relation (3.28) takes the form

�F̌p = (−1)
p(p+1)

2 +1F̌10−p, F̌p = (−1)
p(p−1)

2 � F̌10−p, (3.71)

and the same relations hold for F̌ and F̌, where � is the Hodge star operator associated with g̃mn .
Also, if there is no modification I m, the Lagrangian for the R–R sector becomes

LR–R = −1

4

√|g̃|∑
p

1

p! g̃
m1n1 · · · g̃mpnp F̌m1···mp F̌n1···np . (3.72)

12 J. Sakamoto, Y. Sakatani, and K. Yoshida, work in progress. A definition of β-untwisted R–R fields is
discussed in Ref. [41].
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3.3. T -duality transformation rules

In this subsection, we present the T -duality transformation rule in a coordinate system in which
(2.15) is realized. If the fields (HMN , d, Ap) are independent of a coordinate z, the following T -
duality transformation along the z-direction maps a solution of the (m)DFT to another one of the
(m)DFT:

HMN → H′MN = (T H )MN ,  ≡ (M
N ) ≡

(
δm

n − δm
z δz

n δm
z δn

z

δz
m δz

n δn
m − δz

m δn
z

)
,

|A〉IIA → |A′〉IIB = (γz − γ z) |A〉IIA, |A〉IIB → |A′〉IIA = (γ z − γz) |A〉IIB,

d → d ′ = d + I z z, I z → I ′z = 0, I i → I ′i = I i. (3.73)

Here, xi is an arbitrary coordinate other than z. In the component expression, the above rule is
represented by the following map:

G′ij = Gij − Giz Gjz − Biz Bjz

Gzz
, G′iz =

Biz

Gzz
, G′zz =

1

Gzz
,

B′ij = Bij − Biz Gjz − Giz Bjz

Gzz
, B′iz =

Giz

Gzz
,

�′ = �+ 1

4
ln

∣∣∣∣det G′mn

det Gmn

∣∣∣∣+ I zz, I ′i = I i, I ′z = 0,

A′i1···ip−1z = Ai1···ip−1 , A′i1···ip = Ai1···ipz. (3.74)

For the other R–R fields, the transformation rules are given by

A′i1···ip−1z = e−I zzAi1···ip−1 , A′i1···ip = e−I zzAi1···ipz,

Ĉ′i1···ip−1z = Ĉi1···ip−1 − (p− 1)
Ĉ[i1···ip−2|z|Gip−1]z

Gzz
,

Ĉ′i1···ip = Ĉi1···ipz + p Ĉ[i1···ip−1 Bip]z + p (p− 1)
Ĉ[i1···ip−2|z| Bip−1|z|Gip]z

Gzz
. (3.75)

4. Scale invariance and Weyl invariance

Let us recall the conventional bosonic string sigma model in the critical dimension D = 26,13

S = − 1

4πα′

∫
d2σ
√−γ

(
Gmn γ ab − Bmn εab) ∂aX m ∂bX n, (4.1)

where a, b = τ , σ , ετσ = +1/
√−γ , and ετσ = −√−γ . This system is scale invariant (or UV

finite) at the one-loop level [26], if the beta functions

βG
mn = α′

(
Rmn − 1

4
Hmpq Hn

pq
)

, βB
mn = α′

(
−1

2
DkHkmn

)
, (4.2)

take the following forms:14

βG
mn = −2 α′D(mZn), βB

mn = −α′
(
Zk Hkmn + 2 D[mIn]

)
, (4.3)

13 In the following discussion, we will not show the ghost sector explicitly.
14 In terms of the DFT, these equations can neatly be summarized as SMN = £̂Y HMN [22], where (Y M ) =

(U m, Im + Bmn U n) is an arbitrary generalized vector and Zm = ∂m�+ Um .
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where I m and Zm are arbitrary vectors. The condition for Weyl invariance is more restrictive, and it
is satisfied only when I m and Zm have the following forms:

I m = 0, Zm = ∂m�. (4.4)

This is because the trace of the energy–momentum tensor takes the form

2α′ 〈T 〉 = (βG
mn γ ab − βB

mn εab) ∂aX m ∂bX n, (4.5)

and the non-vanishing β-function can be canceled by adding the Fradkin–Tseytlin term,

SFT = 1

4π

∫
d2σ
√−γ R(γ ) �, (4.6)

only when Eq. (4.4) is satisfied. Indeed, SFT gives a contribution to 〈T 〉 as

4π√−γ
γ ab δSFT

δγ ab
=
(

DmDn� γ ab − 1

2
∂k� H k

mn εab
)

∂aX m ∂bX n + Dm�
2πα′√−γ

δS

δX m , (4.7)

and by using the equations of motion for X m,

0 = 2πα′√−γ

δS

δX m = Gmn

[
Da∂aX n +

(
γ n

kl γ
ab + 1

2
H n

kl ε
ab
)

∂aX k ∂bX l
]

, (4.8)

where the covariant derivative Da is associated with the intrinsic metric γab and γ n
kl is the Christoffel

symbol associated with Gmn, this contribution to 〈T 〉 precisely cancels the Weyl anomaly (4.5) for
(4.4). For general I m and Zm, we cannot find a suitable local counterterm and the Weyl anomaly
cannot be canceled.

In the following, by considering the doubled spacetime, we show that the Fradkin–Tseytlin term
can completely cancel the Weyl anomaly if I m and Zm satisfy the conditions (2.2) and (2.5). When
these conditions are satisfied, I m and Zm can be replaced by the (m)DFT dilaton d∗ or �∗, which
have dual-coordinate dependence. In order to treat the dual coordinates, we consider the DSM in
which the number of the embedding functions is doubled: (XM ) = (X m, X̃m) . For convenience, we
choose the coordinates

(xm) = (xμ, yi) (μ = 0, . . . , D − N − 1; i = 1, . . . , N ) (4.9)

on the target space such that the background fields (Gmn, Bmn, �) depend only on xμ, and the
modified dilaton �∗ has the form �∗ = � + I i ỹi. Then, the essence of our argument is that the
contribution of the Fradkin–Tseytlin term (with � replaced by �∗) to the trace 〈T 〉 can be written as

4π√−γ
γ ab δSFT

δγ ab
= Da[∂M �∗(X) ∂aX

M ] = Da[∂μ�(X ) ∂aX μ + I i ∂aỸi
]

= Da(Zm ∂aX m)− ∂[mIn] εab ∂aX m ∂bX n +Da[I i (∂aỸi − Gin εb
a ∂bX n − Bin ∂aX n)

]
= 1

2

[
2 D(mZn) γ ab − (Zk Hkmn + 2 ∂[mIn]) εab] ∂aX m ∂bX n

+ Zm 2πα′√−γ

δS

δX m + I i Da(∂aỸi − Gin εb
a ∂bX n − Bin ∂aX n). (4.10)

By using the equations of motion for X m and the self-duality relations

∂aỸi − Gin εb
a ∂bX n − Bin ∂aX n = 0, (4.11)
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which are also obtained as the equations of motion of the DSM, as we will explain below, the
contribution from the Fradkin–Tseytlin term can completely cancel the Weyl anomaly (4.5).

In order to explain the self-duality relation, let us consider Hull’s double sigma model,

S = 1

4πα′

∫ [
1

2
HMN (X ) PM ∧ ∗γ PN − (dX̃m + Cm

) ∧ dX m
]

, (4.12)

where we have introduced the quantities

PM (σ ) ≡ dX
M (σ )+ CM (σ ), (CM ) =

(
0

Cm

)
, (4.13)

and the generalized metric HMN (X ) are supposed to be independent of (Y I ) ≡ (Y i, Ỹi) . The
equations of motion for Cm give rise to

dX̃m + Cm = Gmn ∗γ dX n + Bmn dX n, (4.14)

which is equivalent to the well-known self-duality relation

PM = ∗γ HM
N PN . (4.15)

Using the above equations of motion for Cm and eliminating the combination dX̃m + Cm from the
above action, we obtain the conventional string sigma model action for X m,

S = 1

4πα′

∫ (
Gmn dX m ∧ ∗γ dX n + Bmn dX m ∧ dX n). (4.16)

Thus, the DSM is classically equivalent to the conventional sigma model. By combining the equations
of motion for Y i and Cm, we can show that

dCi = d
(
Gin ∗γ dX n + Bin dX n) = 0, (4.17)

and Ci is a closed form. Thus, using the local symmetry

Ỹi(σ )→ Ỹi(σ )+ αi(σ ), Ci(σ )→ Ci − dαi(σ ), (4.18)

we can (at least locally) set Ci = 0, and the equations of motion for Ci become

dỸi = Gin ∗γ dX n + Bin dX n. (4.19)

This is nothing but the key relation (4.11).
The one-loop β-function of the DSM is computed in Refs. [42–44] by using the background field

method, and the result is consistent with the conventional string sigma model. There, in order to
cancel the Weyl anomaly, the T -duality-invariant Fradkin–Tseytlin term [19],15

SFT = 1

8π

∫
d2σ
√−γ R(γ ) d(X ), (4.20)

has been introduced, though the dilaton is supposed to be independent of the dual coordinates and
the equations of motion of the (m)DFT have not been reproduced. By replacing d(X ) with d∗(X , Ỹ ),

15 This reduces to the conventional one after integrating over the auxiliary fields Cm [19].
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Weyl invariance follows from the same calculation as (4.10). Therefore, the bosonic string sigma
model is Weyl invariant, as long as the background fields satisfy the GSE. When we consider the
type II Green–Schwarz superstring theories, the β-functions receive additional corrections coming
from the R–R field strength [i.e.. Tmn and Kmn in Eq. (3.62)] [1]. However, there is no explicit I m

and Zm dependence in Tmn and Kmn, hence the (modified) Fradkin–Tseytlin term is enough for the
cancelation of the Weyl anomaly for the NS–NS sector of the general backgrounds of the GSE. As
for the β-functions for the R–R fields, we still have much to do.

In the literature [26–29], the difference between scale invariance (or finiteness) and Weyl invariance
has been studied, but our result has alleviated the gap. The only thing remaining is that the scale
invariance does not require any condition for I m and Zm, while the Weyl invariance is realized only
when the conditions in Eqs. (2.2) and (2.5) are satisfied. We expect that this small difference is
intrinsic to the bosonic string, and when we consider the type II Green–Schwarz superstring theory
the scale invariance may require the same conditions (2.2) and (2.5), which are also required from
the kappa symmetry of the superstring theory.

Before closing this section, let us comment on the central charge identity [24,45], namely the
constancy of S. As discussed in Ref. [22], one can show the identity only from the differential
Bianchi identity and the equations of motion for the generalized metric, SMN = 0,

∂M S = 2 HMN ∇KSKN = 0. (4.21)

In Ref. [22], the differential Bianchi identity has not been proven in the presence of X M , and it has
not been clear whether S̊MN = 0 can generally show the central charge identity. However, as we have
found that the mDFT is just the conventional DFT, the differential Bianchi identity and S̊MN = 0
indicate that S̊ is constant.

5. Conclusion and discussion

In this paper, the bosonic part of the GSE is completely reproduced from the (m)DFT. When all of
the fields are independent of the dual coordinates, the equations of motion of the DFT lead to the
conventional supergravity equations, while when the dilaton has a linear dual-coordinate dependence,
the GSE are reproduced. The type IIA supergravity equations of motion have been presented in the
same manner as the type IIB equations, and the T -duality transformation rules between the type IIA
and the type IIB have been provided. The discrepancy between the scale invariance and the Weyl
invariance of the bosonic string theory has been resolved by introducing dual-coordinate dependence
into the Fradkin–Tseytlin term. The existence of the doubled space is indispensable to our discussion.

In this paper, we have considered a T -duality covariant language of the DFT for simplicity, but
the GSE can also be derived from a U -duality covariant generalization, the exceptional field theory
(EFT) [23]. When we describe the type IIB theory in the Ed(d) EFT, following the convention of Ref.
[46], the generalized coordinates are introduced as

(xμ, xM) = (xμ, xm, yα
m, ym1m2m3 , yα

m1···m5
, ym1···m6, m, . . .), (5.1)

where the ellipsis is not necessary for d ≤ 7. Here, xμ (μ = 0, 10 − d) are the coordinates on the
non-compact directions, xm (m = 1, . . . , d − 1) are the conventional coordinates on the torus T d−1,
and the other coordinates are winding coordinates associated with various type IIB branes (see Ref.
[46] for more detail). The index α = 1, 2 is for the fundamental representation of the SL(2) S-duality
symmetry. In the exceptional space, a doubled torus can be seen as a 2(d − 1)-dimensional space
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with coordinates (xm, y1
m). For convenience, let us consider the decomposition

(xm) = (xa, xi) (a = 1, . . . , d − N − 1; i = d − N , . . . , d − 1). (5.2)

Then, if the dilaton depends on (xμ, xa) and also has a linear coordinate dependence on y1
i , and

all of the other fields are functions of (xμ, xa), the GSE can be reproduced from the equations of
motion of the EFT. In the case of d = 6 and N = 1, where y∗+ ≡ y1

i , the coordinates (xa, y∗+) are
precisely the coordinates used in Ref. [23], which can be identified with the conventional coordinates
in the type IIA theory (from the linear map of Ref. [46]). In this sense, the result of this paper is
consistent with that of Ref. [23]. However, the Scherk–Schwarz ansatz employed in Ref. [23] was
not necessary in our approach. The dual derivatives of the dilaton generate the extra vector fields, and
the GSE follows automatically from the equations of motion of the EFT. On the other hand, when
we consider the generalized type IIA supergravity, the generalized coordinates are parameterized as

(xμ, xI ) = (xμ, xi, yi1i2 , yi1···i5 , yi1···i7, i, . . .), (5.3)

and the x̃i coordinates of the DFT can be identified with yiz [46], where xz is the coordinate on the
M -theory circle. Thus, if the dilaton has linear dependence on yiz, the equations of motion of the
EFT lead to the generalized type IIA supergravity equations.

Note that the dual coordinate y1
i in the exceptional space is not invariant under the S-duality sym-

metry. The dilaton also is not a singlet under the S-duality. Thus, the generalized type IIB supergravity
is not covariant under the S-duality. Namely, under the S-duality transformation, a solution of the
GSE is mapped to a configuration which does not satisfy the GSE, although it is still a solution of
the EFT. It may be interesting to see whether there exists a U -duality-covariant generalization of the
GSE. Of course, we already know that the EFT can describe all such solutions, and the EFT may
be enough. In addition, from the point of view of the eleven-dimensional supergravity, the dilaton
is the eleventh component of the metric, and the introduction of dual-coordinate dependence into
the dilaton breaks the eleven-dimensional general covariance. That would be the reason why the
“generalized eleven-dimensional supergravity” has not been found. Again, it is not necessary to look
for such a generalized eleven-dimensional theory and the EFT is enough, which has a huge gauge
symmetry that includes the eleven-dimensional diffeomorphisms.

Utilizing the result of this paper, we can straightforwardly study a supersymmetric generalization
of the GSE in detail. The type II supersymmetric DFT has been constructed in Ref. [37]. By taking a
non-standard section of the (m)DFT, one can identify how the extra vector fields modify the equations
of motion and supersymmetry transformations. It will be important to complete this analysis and the
obtained result should be compared with that of Ref. [7].

It is also important to study a supersymmetric generalization of the DSM analysis. The GSE can
be derived from the requirement of kappa symmetry, while Weyl invariance (at quantum level) has
not followed directly from kappa symmetry (at a classical level). The result obtained here implies the
equivalence of kappa symmetry andWeyl invariance, and detailed analysis based on a supersymmetric
DSM, such as Refs. [47,48], would be important future work.

The present work has provided positive evidence that superstring theories defined on solutions of
the GSE are Weyl invariant. We further expect that superstring theories can be consistently defined
on arbitrary solutions of the DFT/EFT. It will be an interesting future direction to be addressed.
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