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Abstract. In the seat reservation problem, there are k stations, s1

through sk, and one train with n seats departing from the station s1

and arriving at the station sk. Each passenger orders a ticket from sta-
tion si to station sj (1 ≤ i < j ≤ k) by specifying i and j. The task of
an online algorithm is to assign one of n seats to each passenger online,
i.e., without knowing future requests. The purpose of the problem is to
maximize the total price of the sold tickets. There are two models, the
unit price problem and the proportional price problem, depending on
the pricing policy of tickets. In this paper, we improve upper and lower
bounds on the competitive ratios for both models: For the unit price
problem, we give an upper bound of 4

k−2
√

k−1+4
, which improves the

previous bound of 8
k+5

. We also give an upper bound of 2
k−2

√
k−1+2

for
the competitive ratio of Worst-Fit algorithm, which improves the previ-
ous bound of 4

k−1
. For the proportional price problem, we give upper and

lower bounds of 3+
√

13

k−1+
√

13
(≃ 6.6

k+2.6
) and 2

k−1
, respectively, on the compet-

itive ratio, which improves the previous bounds of 4+2
√

13

k+3+2
√

13
(≃ 11.2

k+10.2
)

and 1
k−1

, respectively.

1 Introduction

The seat reservation problem, first introduced by Boyar and Larsen [4], is the
following online problem. There are k stations s1 through sk, and one train
with n seats numbered 1 through n. The train departs from the station s1 and
is destined for the station sk. An input is a sequence of requests, where each
request specifies an interval of the form [i, j) (1 ≤ i < j ≤ k), meaning that
the current passenger wants to buy a ticket from station si to station sj . The
task of an online algorithm is to select which seat to assign to this passenger (if
there are more than one available seats), without knowing future requests. In
this problem, we consider only fair algorithms, i.e., if there is a seat available for
the current passenger, it cannot reject her request. The purpose of the problem
is to maximize the income, i.e., the sum of the prices of the sold tickets.

There are two models, the unit price problem and the proportional price prob-
lem, depending on the pricing policy of tickets. In the unit price problem, all



tickets have the same price of 1. In the proportional price problem, the price of
a ticket is proportional to the distance traveled, i.e., the price of a ticket from
si to sj is j − i.

The performance of an online algorithm is evaluated by the competitive anal-
ysis. Let ALG be an online algorithm and σ be an input sequence. Let OPT be
an optimal offline algorithm, namely, it optimally works after knowing the com-
plete information of σ. Also, let pALG(σ) and pOPT (σ) be the income obtained
by ALG and OPT , respectively, for σ. If pALG(σ) ≥ r ·pOPT (σ)−d for any input
σ, where d is a constant independent of σ, we say that ALG is r-competitive⋆.

Boyar and Larsen [4] studied the competitive ratios for both the unit price
and the proportional price models. In particular, they studied three natural
algorithms, First-Fit, Best-Fit, and Worst-Fit. First-Fit assigns each request to
the available seat with the smallest number. Best-Fit assigns a request to a seat
such that the empty space containing the current request interval is minimized
(ties are broken arbitrarily). For example, suppose that there are eight stations
and three seats, and that the current configuration is like Fig. 1, where shaded
areas are assigned. Suppose that the next request is for the interval [4, 6). We
cannot assign it to seat 1. The empty space of seat 2 (seat 3, resp.) containing
this interval is from s2 to s6 (from s4 to s7, resp.) and is of size 4 (3, resp.). So,
Best-Fit selects seat 3 for this request. Conversely, Worst-Fit assigns a request
to a seat such that the empty space containing the current request interval is
maximized (again, ties are broken arbitrarily). In an example of Fig 1, if Worst-
Fit receives a request for [4, 6), then it assigns it to seat 2. Table 1, taken from
[6], summarizes the best known results on the competitive ratios.

Fig. 1. An example configuration of assignment.

Our Contributions. In this paper, we improve both upper and lower bounds
on the competitive ratios. Our results are summarized in Table 2, where results
obtained in this paper are highlighted in boldface. For the unit price problem,
we improve an upper bound from 8

k+5 to 4
k−2

√
k−1+4

. To improve a lower bound,
we can see from Table 1 that it is hopeless to try to sophisticate the analysis for
⋆ There is an alternative definition such that competitive ratios are always at least 1.

But here we use this definition following the previous seat reservation papers.



Table 1. Upper and lower bounds on the competitive ratios.

Unit Price Proportional Price

Any deterministic algorithm r ≤ 8
k+5

r ≤ 4+2
√

13

k+3+2
√

13
(≃ 11.2

k+10.2
)

Worst-Fit 2
k
≤ r ≤ 4

k+1
r = 1

k−1

First-Fit/Best-Fit 2
k
≤ r ≤

2− 1
k−1

k−1
1

k−1
≤ r ≤ 4

k+2

Table 2. New results (results obtained in this paper are highlighted in boldface).

Unit Price Proportional Price

Any deterministic algorithm r ≤ 4

k−2
√
k−1+4

r ≤ 3+
√

13

k−1+
√

13
(≃ 6.6

k+2.6
)

Worst-Fit 2
k
≤ r ≤ 2

k−2
√
k−1+2

r = 1
k−1

First-Fit/Best-Fit 2
k
≤ r ≤

2− 1
k−1

k−1
2
k−1

≤ r ≤ 4
k+2

First-Fit or Best-Fit because an almost tight upper bound is already known for
these algorithms, but there is some room for Worst-Fit. However, we show that
Worst-Fit is also hopeless by improving its upper bound from 4

k−1 to 2
k−2

√
k−1+2

.
For the proportional price problem, we improve both upper and lower bounds.
We improve an upper bound from 4+2

√
13

k+3+2
√

13
(≃ 11.2

k+10.2 ) to 3+
√

13
k−1+

√
13

(≃ 6.6
k+2.6 ).

For a lower bound, we show that First-Fit and Best-Fit achieve the competitive
ratio of 2

k−1 , which improves the previous bound of 1
k−1 . As a result, we improve

the lower bound of the problem itself also. Note that previous lower bounds
were obtained by using only the fact that algorithms are fair, and hence such
bounds hold for any fair online algorithms. In contrast, the result in this paper
is obtained by considering properties that are specific to First-Fit and Best-Fit.

Related Results. Besides the competitive analysis, Boyar and Larsen [4] ana-
lyzed the problem using the accommodating ratio, which takes not all the possible
input sequences but only accommodating sequences into account. An accommo-
dating sequence is a sequence for which an optimal offline algorithm can accom-
modate all the requests. They gave upper and lower bounds of 8k−9

10k−15 and 1
2 ,

respectively, on the accommodating ratio for the unit price problem [4]. Later,
Bach et al. [1] gave the matching upper bound of 1

2 .
There are some results on randomized algorithms. Boyar and Larsen [4] gave

an upper bound of 8k−9
10k−15 on the accommodating ratio for the unit price problem

in the oblivious adversary model. Furthermore, Bach et al. [1] improved both
upper and lower bounds for this problem and gave a matching bound of 7

9 .



Boyar, Larsen, and Nielsen [5] generalized the accommodating ratio. They in-
troduced a variable α(≥ 1) and allowed α-sequences as possible input sequences.
An α-sequence is a sequence for which an optimal offline algorithm can accommo-
date all the requests using αn seats. Then, they gave upper and lower bounds on
the generalized accommodating ratio for the unit price problem. Boyar et al. [2]
extended the above performance guarantees to more general ones for α(≤ 1) and
gave several upper and lower bounds of First-Fit, Worst-Fit, and other online
algorithms.

Boyar and Medvedev [6] used the relative worst order ratio to compare the
performance of online algorithms (without using optimal offline algorithms).
They showed that for both the unit price and the proportional price problems,
First-Fit and Best-Fit are better than Worst-Fit.

Boyar, Krarup, and Nielsen [3] proposed a variant that allows x seat changes
for each request, i.e., one ticket can be divided into at most x + 1 tickets for
sub-intervals. They obtained several upper and lower bounds on the competitive
and accommodating ratios.

Kohrt and Larsen [7] proposed a problem that lies in between the offline and
online models. The task of an algorithm is not to assign a seat to a request
but only to decide whether the request can be accepted or not (by arranging
the previously accepted requests). They proposed an algorithm as well as an
appropriate data structure, and proved that its running time is optimal.

2 The Unit Price Problem

For better understanding, we give a simple example for k = 4 and n = 2
(see Fig. 2). Consider the following input sequence σ = (r1, r2, r3, r4, r5), where
r1, r2, r3, r4, and r5 are requests for intervals [1, 2), [3, 4), [1, 4), [2, 4), and [1, 2),
respectively. Suppose that an online algorithm A assigns both r1 and r2 to seat
1. Then, it must assign r3 to seat 2 because we only consider fair algorithms. So,
it can accept neither r4 nor r5 and hence its income is 3. On the other hand, an
optimal offline algorithm for σ assigns r1 and r2 into seats 1 and 2, respectively.
It can then reject r3 and accommodate both r4 and r5. So the income of this
algorithm is 4.

2.1 An Upper Bound

We first improve a general upper bound.

Theorem 1. No online algorithm for the unit price problem is more than
4

k−2
√

k−1+4
-competitive.

Proof. Let A be an arbitrary online algorithm. Let m and c be arbitrary positive
integers, and define k = m2 + 1 be the number of stations and n = 2cm be the
number of seats. Our adversary first gives the request sequence σ1 consisting
of 2c requests for the interval [1, 2), 2c requests for the interval [2, 3), . . ., 2c



Fig. 2. An example of the unit price problem.

requests for the interval [m, m + 1). All the requests in σ1 must be assigned by
algorithm A because A is a fair algorithm.

Let R be the set of seats to which A assigns requests for σ1. We give a current
assignment configuration in Fig. 3, in which seats are sorted appropriately: In
region (i), at least one request is assigned for each seat. There may be or may
not be assigned requests in region (ii). In region (iii), one request for the interval
[m,m + 1) is assigned for each seat. No request is assigned in region (iv).

Fig. 3. Assignment configuration for σ1 by algorithm A.

The adversary selects subsequent sequences depending on the size of R. It
executes Case (1) if |R| < c(m + 1) and Case (2) otherwise.

Case (1): The adversary gives the following request sequences σ2, σ3, and σ4 in
this order: σ2 consists of 2cm− |R| requests for the interval [1, k). σ3 consists of
|R|−2c requests for the interval [m, k). σ4 consists of 2c requests for the interval
[m+1, k). It is easy to see that A accepts all the requests in σ2, σ3, and σ4 because
of the fairness, and hence after receiving σ4, the whole region (iv) in Fig. 3 is
filled with these requests. Finally, the adversary gives the sequence σ5 consisting
of 2cm−|R| requests for the interval [m, m+1), 2cm−|R| requests for the interval



[m+1,m+2), . . ., and 2cm−|R| requests for the interval [k− 1, k), all of which
are rejected by A. Thus, the income of A is 2cm + (2cm− |R|) + (|R| − 2c) + 2c.

On the other hand, consider an algorithm which assigns each request of σ1 to
different seats. Then, it can reject all the requests in σ2, and hence can accept all
the requests in σ3, σ4, and σ5. Thus, the income of the optimal offline algorithm
is at least 2cm + (|R| − 2c) + 2c + (k − m)(2cm − |R|). Hence, the competitive
ratio in this case is

2cm + (2cm − |R|) + (|R| − 2c) + 2c

2cm + (|R| − 2c) + 2c + (k − m)(2cm − |R|)

=
4cm

2cm + |R| + (k − m)(2cm − |R|)

<
4

k − 2
√

k − 1 + 4

because |R| < c(m + 1).
Case (2): The adversary gives the request sequences σ2, σ′

2, σ3, and σ4 in
this order, where σ2, σ3, and σ4 are the same as before and σ′

2 consists of
|R| − 2c requests for the interval [1,m + 1). It is easy to see that A rejects
all the requests in σ′

2 but accepts all the requests in σ2, σ3, and σ4. So, again,
the whole region (iv) in Fig. 3 is filled with these requests. Finally, the adversary
gives the sequence σ′

5 consisting of |R|−2c requests for the interval [m+1,m+2),
|R| − 2c requests for the interval [m + 2,m + 3), . . ., and |R| − 2c requests for
the interval [k − 1, k), all of which are rejected by A. Thus, the income of A is
2cm + (2cm − |R|) + (|R| − 2c) + 2c.

On the other hand, consider an algorithm which assigns each request of σ1

using First-Fit. Then, it accepts all the requests in σ2, σ′
2, σ4, and σ′

5, but rejects
all the requests in σ3. Thus, the income of an optimal offline algorithm is at least
2cm+(2cm−|R|)+(|R|−2c)+2c+(k−m−1)(|R|−2c). Hence, the competitive
ratio in this case is

2cm + (2cm − |R|) + (|R| − 2c) + 2c

2cm + (2cm − |R|) + (|R| − 2c) + 2c + (k − m − 1)(|R| − 2c)

=
4cm

4cm + (k − m − 1)(|R| − 2c)

≤ 4
k − 2

√
k − 1 + 4

because |R| ≥ c(m + 1). ⊓⊔

2.2 An Upper Bound for Worst-Fit

Recall from Sec. 1 that Worst-Fit assigns each request to a seat such that the
empty space containing the current request interval is maximized. As we have



mentioned in Sec. 1, Worst-Fit has been a good candidate for improving a lower
bound. But we rule out this possibility by giving an almost tight upper bound
for it.

Theorem 2. The competitive ratio of Worst-Fit for the unit price problem is
at most 2

k−2
√

k−1+2
.

Proof. As in the proof of Theorem 1, let m and c be arbitrary positive integers,
and let k = m2 + 1 and n = 2cm. First, we give the sequence σ1 consisting
of 2c requests for the interval [1, 2), 2c requests for [2, 3), . . ., 2c requests for
[m,m+1). Worst-Fit assigns these n = 2cm requests to different seats. Next, we
give σ2, σ3, and σ4 in this order where σ2 consists of 2cm − 2c requests for the
interval [1,m+1), σ3 consists of 2cm−2c requests for the interval [m, k), and σ4

consists of 2c requests for the interval [m+1, k). Worst-Fit rejects all the requests
in σ2 and accommodates all the requests in σ3 and σ4. So, after receiving σ4,
all the seats are full in the interval [m + 1, k). Finally, we give σ5 consisting of
2cm − 2c requests for [m + 1,m + 2), 2cm − 2c requests for [m + 2,m + 3), . . .,
2cm− 2c requests for [k− 1, k). Worst-Fit rejects all these requests. The income
of Worst-Fit is then 2cm + (2cm − 2c) + 2c.

On the other hand, consider an algorithm which assigns requests in σ1 using
First-Fit. Then it can accommodate all the requests in σ2, and it rejects all the
requests in σ3. Hence, it can accept all the requests in σ4 and σ5, so the income of
an optimal offline algorithm is at least 2cm+(2cm−2c)+2c+(k−m−1)(2cm−2c).
Thus the competitive ratio is

2cm + (2cm − 2c) + 2c

2cm + (2cm − 2c) + 2c + (k − m − 1)(2cm − 2c)

=
4cm

4cm + (k − m − 1)(2cm − 2c)

=
2

k − 2
√

k − 1 + 2
.

⊓⊔

3 The Proportional Price Problem

Recall that in the proportional price problem, the price of a ticket from si to sj

is j − i.

3.1 An Upper Bound

Theorem 3. No online algorithm for the proportional price problem is more
than 3+

√
13

k−1+
√

13
-competitive.



Proof. Consider an arbitrary online algorithm A, and let k and n(= 2m for
a positive integer m) be the numbers of stations and seats, respectively. The
adversary first gives the sequence σ1 consisting of m requests for the interval
[1, 2) and σ2 consisting of m requests for the interval [2, 3). Let R be the set of
seats to which A assigns both requests of σ1 and σ2. The current configuration
is given in Fig. 4, in which assigned areas are shaded.

Fig. 4. Assignment configuration for σ1 and σ2 by algorithm A.

The adversary selects subsequent sequences depending on the size of R. It
executes Case (1) if |R| < (

√
13−2)m

3 and Case (2) otherwise.
Case (1): The adversary gives σ3 and σ4 in this order such that σ3 consists of
|R| requests for the interval [1, 3) and σ4 consists of m − |R| requests for the
interval [1, k). A accepts all the requests in σ3 but rejects all the requests in σ4,
so that its income is 2m + 2|R|.

On the other hand, consider an algorithm which uses m seats to assign both
requests of σ1 and σ2. Then, it can accomodate all the requests in σ3 and σ4

and hence the income of an optimal offline algorithm is at least 2m+2|R|+(k−
1)(m − |R|). The competitive ratio is then

2m + 2|R|
2m + 2|R| + (k − 1)(m − |R|)

<
2 + 2

√
13−2
3

2 + 2
√

13−2
3 + (k − 1)(1 −

√
13−2
3 )

=
3 +

√
13

k + 2 +
√

13

because |R| < (
√

13−2)m
3 .

Case (2): The adversary gives σ3, σ′
4, and σ′

5 in this order where σ3 is the same
as before, σ′

4 consists of m − |R| requests for the interval [2, 3), and σ′
5 consists



of |R| requests for the interval [2, k). A accommodates all the requests of σ3 and
σ′

4, but rejects all the requests of σ′
5, so, its income is 2m + 2|R| + (m − |R|).

On the other hand, consider an algorithm which assigns requests of σ1 and
requests of σ2 to different seats, i.e., each of 2m seats contains exactly one
request. Then, it can reject all the requests of σ3 and can accommodate all the
requests of σ′

4 and σ′
5, and hence the income of an optimal offline algorithm is

at least 2m + (m − |R|) + (k − 2)|R|. The competitive ratio is

2m + 2|R| + (m − |R|)
2m + (m − |R|) + (k − 2)|R|

≤
3 +

√
13−2
3

3 −
√

13−2
3 + (k − 2)

√
13−2
3

=
3 +

√
13

k − 1 +
√

13

because |R| ≥ (
√

13−2)m
3 . ⊓⊔

3.2 Lower Bounds for First-Fit and Best-Fit

Recall that First-Fit assigns each request to the available seat with the smallest
number, and Best-Fit assigns a request to a seat such that the empty space
containing the current request interval is minimized. We improve lower bounds
on the competitive ratio for these algorithms, improving a general lower bound
for the proportional price problem.

Theorem 4. Both First-Fit and Best-Fit are 2
k−1 -competitive for the propor-

tional price problem.

Proof. We give a proof for First-Fit (denoted FF hereafter). The proof for Best-
Fit is exactly the same. Consider an arbitrary input σ. If, for every seat, the
total length of intervals assigned by FF is at least two, then we are done since
FF earns at least 2n and an optimal offline algorithm OPT can earn at most
(k − 1)n for an instance with k stations and n seats. If FF rejects no request
in σ, then again we are done. Hence, we assume that there is a seat q to which
only an interval of length 1, say I = [i, i + 1), is assigned. Let r be the request
assigned to q by FF. We can see that no seat has a vacant space for I since if
such a seat q′ exists, assigned intervals of q and q′ do not overlap, contradicting
the definition of FF.

Let RI be the set of requests for intervals containing I assigned by FF. By
the above observation, |RI | = n. Partition RI into R

(1)
I and R

(≥2)
I so that R

(1)
I

is the set of requests for exactly the interval I, and R
(≥2)
I = RI \ R

(1)
I is the set

of requests for intervals of length at least 2, containing I (see the upper figure
of Fig. 5). Also, let S(1) and S(≥2) be the sets of seats to which requests in R

(1)
I

and R
(≥2)
I , respectively, are assigned. Note that |S(1)| = |R(1)

I |, |S(≥2)| = |R(≥2)
I |,

and |S(1)| + |S(≥2)| = n.



Suppose that there is a request r′ in R
(1)
I that is rejected by OPT . Let R′

be the set of requests for intervals containing I, accommodated by OPT . Since
OPT is fair but rejected r′, |R′| = n and any request in R′ precedes r′. Since
the interval I is full for both OPT and FF, and since r′ is accepted by FF
but rejected by OPT , there is a request r′′ ∈ R′ rejected by FF. Note that
r′′ precedes r′ since r′′ ∈ R′, but FF rejected r′′ while it accepted r′. So, the
interval requested by r′′ must include an interval other than I, and when FF
rejected r′′, there must be a seat q′′ in which the interval I was empty but some
other intervals were assigned. If at this moment, FF has already received the
request r and has assigned it to the seat q, then we can merge q and q′′ without
overlapping, contradicting the definition of FF. So, the request r has not been
given to FF yet. But then q was empty for the whole interval at this moment,
and FF could have assigned r′′ to q, a contradiction. So, any request in R

(1)
I is

accepted by OPT .
Now, let S be the set of seats to which OPT assigns requests in R

(1)
I , and

R(S) be the set of requests assigned to S by OPT . Define R = R(S) \R
(1)
I (see

the lower figure of Fig. 5). Because FF is fair and the seat q (of FF) eventually
contains only a request for the interval I, FF accommodates all the requests in
R. Also, since requests in R do not contain the interval I, R, R

(1)
I , and R

(≥2)
I

are pairwise disjoint.

Fig. 5. Assignment configurations of FF and OPT for σ.



For the set X of requests, let p(X) be the total price of tickets for requests
in X. Then, the income of FF is at least p(R(1)

I ) + p(R(≥2)
I ) + p(R) ≥ |S(1)| +

2|S(≥2)|+p(R) = |S|+2(n−|S|)+p(R) because |S(1)| = |S| and |S(1)|+|S(≥2)| =
n. On the other hand, the income of OPT is at most (k−1)(n−|S|)+ |S|+p(R).
So, we have that

pFF (σ)
pOPT (σ)

≥ 2(n − |S|) + |S| + p(R)
(k − 1)(n − |S|) + |S| + p(R)

≥ 2
k − 1

,

which completes the proof. ⊓⊔

4 Concluding Remarks

In this paper, we narrowed the gap between upper and lower bounds on the
competitive ratios for the seat reservation problem for both the unit price and
the proportional price problems. An apparent future work is to further narrow
the gaps for both models.

To obtain a better bound for the unit price problem, we need to develop other
algorithms as we discussed in this paper. For the proportional price problem,
there still remains a gap between upper and lower bounds for First-Fit and
Best-Fit (see Table 2). Narrowing the gap for these algorithms is one of the next
possible challenges. We finally give a short remark on this direction.

Let us generalize the problem to a loop-line, namely, sk = s1. So, there could
be a request for an interval [j, i) (j > i), which means that the passenger is to
get on the train at station sj and go to station si by way of station sk. (Strictly
speaking, we must consider the number of laps. However, here we consider the
case of only one lap, e.g., intervals [2, 4) and [5, 3) overlap. This definition may
not be practical, but is meaningful for the analysis of First-Fit and Best-Fit, as
one can see below.) For this setting, we can derive a matching bound of 2

k−1 for
First-Fit and Best-Fit. The upper bound will be proved below, and the lower
bound can be derived from exactly the same way as Theorem 4 because the proof
of Theorem 4 holds for the loop-line model also. This suggests that to improve
the lower bound for First-Fit and Best-Fit, we need arguments that do not hold
for the loop-line model.

Upper bound proofs for First-Fit and Best-Fit for loop-line model. We
give a proof for First-Fit (FF). The proof for Best-Fit is exactly the same. Let
k be the number of stations and n = 2m be the number of seats. We give the
following sequences to FF: σ1 consisting of m requests for [1, 2); σ2 consisting
of m requests for [2, 3); σ3 consisting of m requests for [1, 3); σ4 consisting of
m requests for [2, k); and σ5 consisting of m requests for [3, 2). It is not hard
to see that FF accommodates all the requests in σ1, σ2, and σ3, but rejects all
the requests in σ4 and σ5. So, the income of FF is 4m. On the other hand, an
optimal offline algorithm assigns requests in σ1 and requests in σ2 to different
seats. Then it can reject all the requests of σ3, and can accept all the requests
in σ4 and σ5, so its income is 2m(k − 1).
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