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Abstract

In the stable marriage problem that allows incomplete preference lists, all stable match-
ings for a given instance have the same size. However, if we ignore the stability, there
can be larger matchings. Biró et al. defined the problem of finding a maximum cardi-
nality matching that contains minimum number of blocking pairs. They proved that this
problem is not approximable within some constant δ > 1 unless P=NP, even when all
preference lists are of length at most 3. In this paper, we improve this constant δ to n1−ε

for any ε > 0, where n is the number of men in an input.

Key words: approximation algorithms, the stable marriage problem, approximation
ratio, polynomial-time reduction

1. Introduction

The stable marriage problem (SM for short), introduced by Gale and Shapley [3] (see
also [7]), is defined as follows: An instance consists of the same number n of men and
women and each person’s preference list. A preference list is a totally-ordered list that
includes all members of the opposite sex in accordance with the owner’s preference. The
problem requires to find a stable matching, a perfect matching M between men and women
in which there is no pair of man m and woman w, that are not matched together in M

but each prefers the other to one’s partner in M . Such a pair (m, w) is called a blocking
pair for M . Gale and Shapley [3] proved that there is at least one stable matching in any
instance, and proposed an O(n2)-time algorithm to find one.

One possible extension of SM is to allow incomplete preference lists (SMI for short);
namely, each person includes a subset of the members of the opposite sex in the preference
list. Those who are included in a person p’s preference list are said to be acceptable to
p. Now a matching is defined as a set of disjoint pairs of mutually acceptable man and
woman, and hence is not necessarily perfect. Accordingly, the definition of a blocking
pair is extended as follows: A mutually acceptable pair of man m and woman w is a
blocking pair for a matching M if (i) m and w are not matched together in M , (ii) either
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m is single or prefers w to his partner in M , and (iii) either w is single or prefers m to
her partner in M . There can be many stable matchings for one instance, but all stable
matchings are of the same size [6].

However, if we do not care about the stability, there can be larger matchings in general.
So, we may sometimes want to obtain larger matchings by sacrificing the stability, but
even in such a case, it is still natural to seek a matching which is as stable as possible.
Related to this consideration, Biró et al. [2] defined the following optimization problem,
called MAX SIZE MIN BP SMI: Given an SMI instance, find a matching that minimizes
the number of blocking pairs among all the maximum cardinality matchings. For integers
p and q, MAX SIZE MIN BP (p, q)-SMI is the restriction of MAX SIZE MIN BP SMI
so that each man’s preference list is of length at most p, and each woman’s preference
list is of length at most q. p = ∞ or q = ∞ means that the lengths of preference lists
are unbounded. Biró et al. [2] showed the following results; (1) MAX SIZE MIN BP (∞,
∞)-SMI is NP-hard and cannot be approximated within the ratio of n1−ε for any constant
ε > 0, unless P=NP; (2) MAX SIZE MIN BP (3, 3)-SMI is APX-hard and cannot be
approximated within the ratio of 3557

3556
≃ 1.00028 unless P=NP; (3) MAX SIZE MIN BP

(2, ∞)-SMI is solvable in O(n3) time.
In this paper, we improve the hardness of the above (2), namely, we improve the

constant 3557

3556
to n1−ε for any constant ε > 0. Our reduction uses basically the same idea

as the one used in [2] to prove the above (1). In [2], some persons need to have preference
lists of unbounded lengths for two reasons: One is for garbage collection, and the other
is to create a large gap on the costs between “yes”-instances and “no”-instances. We
perform a non-trivial modification of the construction and demonstrate that such gadgets
can be replaced by persons with preference lists of length at most three.

Research on finding almost stable matchings is very active recently. Abraham et
al. [1] consider the problem of finding a matching with the fewer blocking pairs in the
stable roommates problem, and proved that in most variants the problem is hard, even to
approximate. In addition to the number of blocking pairs, there are some other definitions
of instability, such as the number of agents involved in blocking pairs and the number of
blocking pairs relative to the size of the matching (see [4, 5] for example).

2. Main Result

Theorem 2.1. MAX SIZE MIN BP (3, 3)-SMI is not approximable within n1−ε where n

is the number of men in a given instance, for any ε > 0, unless P = NP .

Proof. We demonstrate a polynomial-time reduction from the same problem as [2], EX-
ACT Maximal Matching (EXACT-MM) restricted to subdivision graphs of cubic graphs,
which is NP-complete [8]. A graph G is a subdivision graph if it is obtained from another
graph H by replacing each edge (u, v) of H by two edges (u, w) and (w, v) where w is a
new vertex. In this problem, we are given a graph G which is a subdivision graph of some
cubic graph, as well as a positive integer K, and asked if G contains a maximal matching
of size exactly K. Hereafter, we simply say “EXACT-MM” to mean EXACT-MM with
the above restrictions.

Given an instance (G, K) of EXACT-MM, we construct an instance I of MAX SIZE
MIN BP (3, 3)-SMI in such a way that (i) I has a perfect matching, (ii) if (G, K) is
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a “yes”-instance of EXACT-MM, then I has a perfect matching with small number of
blocking pairs, and (iii) if (G, K) is a “no”-instance of EXACT-MM, then any perfect
matching of I has many blocking pairs.
(

m

r

)

–gadget. Before going to the main body of the reduction, we first introduce the
(

m

r

)

–
gadget. This gadget plays a role of garbage collection, just as X and Y in the proof of
Theorem 1 of [2].

Let X be a set of men of size m where X = {x1, · · · , xm}, and r (0 < r ≤ m)
be an integer. The

(

m

r

)

–gadget (with respect to X and r), denoted C(X, r), consists of
the following 2mr − r men (

⋃

1≤i≤m Ai) ∪ (
⋃

1≤j≤r Cj) and 2mr women (
⋃

1≤i≤m Bi) ∪
(
⋃

1≤j≤r Dj).

Ai = {aj
i : 1 ≤ j ≤ r}, Bi = {bj

i : 1 ≤ j ≤ r} (1 ≤ i ≤ m)
Cj = {ci

j : 2 ≤ i ≤ m}, Dj = {di
j : 1 ≤ i ≤ m} (1 ≤ j ≤ r)

Each person’s preference list is defined in Fig. 1. A person p’s preference list “p : a b c”
means that p prefers a, b, and c in this order. For each xi ∈ X, the unique woman b1

i of
C(X, r) who includes xi in her preference list is referred to as C(X, r)[xi].

a1
i : di

1 b2
i b1

i b1
i : a1
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Figure 1: Preference lists of C(X, r)

The role of the gadget C(X, r) is to receive any subset X ′ ⊆ X such that |X ′| = r

without creating many blocking pairs, as formally stated in the following lemmas. In the
following lemmas, we assume that each man xi ∈ X includes the woman C(X, r)[xi](= b1

i )
in his preference list.

Lemma 2.2. Let X be a set of men and r be an integer such that 0 < r ≤ |X|. Then, for
any X ′ ⊆ X such that |X ′| = r, there is a matching M for X and C(X, r) such that (i) all
members of C(X, r) are matched, (ii) all men in X ′ are matched with women in C(X, r)
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and all men in X \X ′ are single, and (iii) no person in X is included in a blocking pair,
and the number of blocking pairs for M is at most r.

Proof. Let X ′ = {xi1 , xi2 , · · · , xir} (1 ≤ i1 < i2 < · · · < ir ≤ m). We construct the
matching M as follows. For each j (1 ≤ j ≤ r), add the following pairs to M : (ak

ij
, bk+1

ij
)

for k = 1, . . . , j − 1; (ak
ij
, bk

ij
) for k = j + 1, . . . , r; (aj

ij
, d

ij
j ); (ck+1

j , dk
j ) for k = 1, . . . , ij − 1;

(ck
j , d

k
j ) for k = ij + 1, . . . , m; and (xij , b

1
ij
). (Fig. 2 gives an example for a specific ij.)

Also, for each i such that xi ∈ X \X ′, add (ak
i , b

k
i ) for k = 1, . . . , r to M . It is easy to see

that (i) and (ii) are satisfied. Also, it is straightforward to check that blocking pairs are

only (c
ij
j , d

ij
j ) (1 ≤ j ≤ r, ij 6= 1), and hence there are at most r blocking pairs. �

Lemma 2.3. Let X be a set of men and r be an integer such that 0 < r ≤ |X|. Let M be
any matching for X and C(X, r) that matches all members of C(X, r). Then the number
of single men in X is |X| − r.

Proof. This is obvious because any member in C(X, r) includes only persons in C(X, r)
and X in the preference list, and there are r more women than men in C(X, r). �

When X is a set of women, we similarly define the
(

m

r

)

–gadget by exchanging the roles
of men and women.

Main Part of the Reduction. Let I ′ = (G, K) be an instance of EXACT–MM, where
G is a subdivision graph of some cubic graph and K is a positive integer. Since G is
a bipartite graph, we can write it as G = (U, W, E) such that U = {u1, · · · , un1

} and
W = {w1, · · · , wn2

}, where each vertex in U (W , respectively) has degree exactly 2 (3,
respectively). (Hence n1 and n2 are related as 2n1 = 3n2.) Without loss of generality, we
may assume that K < min(|U |, |W |) and that G has a matching of size K.

As in [2], we give the following definitions: For each ui ∈ U , let wpi
and wqi

be the
two neighbors of ui in G, where pi < qi, and for each wj ∈ W , let urj

, usj
, and utj be the

three neighbors of wj in G, where rj < sj < tj. Also, for each ui ∈ U and wj ∈ W such
that (ui, wj) ∈ E, define σj,i = 1, 2 according to whether wj is wpi

or wqi
respectively, and

define τi,j = 1, 2, 3 according to whether ui is urj
or usj

or utj respectively. For a given
ε > 0, define B = ⌈3

ε
⌉ and C = (n1 + n2)

B+1.
For each vertex ui ∈ U , we construct 2C +3 men and 2C +2 women, whose preference

lists are given in Fig. 3, where men’s lists are given in the left and women’s lists are given
in the right of the figure. We denote U(ui) the set of these men and women. Define the
set U0 = {u0

1, · · · , u
0
n1
} (consisting of men, one from each U(ui) (1 ≤ i ≤ n1)). We then

construct
(

n1

n1−K

)

–gadget C(U0, n1 − K).
Similarly, for each wj ∈ W , we construct 3C + 3 men and 3C + 4 women, whose

preference lists are given in Fig. 4. We denote W(wj) the set of these men and women.
Define the set W 0 = {w0

1, · · · , w
0
n2
} (consisting of women, one from each W(wj) (1 ≤ j ≤

n2)), and construct
(

n2

n2−K

)

–gadget C(W 0, n2 − K).
The reduction is now completed. The resulting instance I contains the same number

n = (2 + 2C + 2n1 − 2K)n1 + (3 + 3C + 2n2 − 2K)n2 + K of men and women. Note
that each person’s preference list is of length at most three. It is not hard to see that the
reduction can be performed in time polynomial in the size of I ′.
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Properties of Gadgets. Before proceeding to the correctness proof, we prove useful
lemmas:

Lemma 2.4. For any edge (ui, wj) ∈ E, we can form a matching M restricted to people
in U(ui)∪W(wj) so that (i) all people in U(ui)∪W(wj) are matched, (ii) M contains at
most 2 blocking pairs, and (iii) for any extension of M to a complete matching of I, no
person in U(ui) ∪W(wj) will create a blocking pair with a person not in U(ui) ∪W(wj).

Proof. We construct a matching M as follows. Since (ui, wj) ∈ E, there are integers k

and l such that σj,i = k and τi,j = l, by the definition of σ and τ . We first add (uk
i , w

l
j) to

M . Next, we consider people in U(ui). Add the following pairs to M : (g1
i,1, z

2
i ); (gs

i,1, e
s−1

i,1 )

for s = 2, . . . , C; (g1
i,2, e

C
i,1); (gs

i,2, e
s−1

i,2 ) for s = 2, . . . , C; and (u0
i , e

C
i,2). If k = 1, then

add (u2
i , z

1
i ), otherwise, add (u1

i , z
1
i ). Finally, we consider people in W(wj). Add the

following pairs to M : (v3
j , h

1
j,1); (f s

j,1, h
s+1

j,1 ) for s = 1, . . . , C − 1; (fC
j,1, h

1
j,2); (f s

j,2, h
s+1

j,2 ) for

s = 1, . . . , C − 1; (fC
j,2, h

1
j,3); (f s

j,3, h
s+1

j,3 ) for s = 1, . . . , C − 1; and (fC
j,3, w

0
j ). If l = 1, add

(v1
j , w

2
j ) and (v2

j , w
3
j ); if l = 2, add (v1

j , w
1
j ) and (v2

j , w
3
j ); if l = 3, add (v1

j , w
1
j ) and (v2

j , w
2
j ).

It is straightforward to verify that Condition (i) is satisfied. To see that Conditions
(ii) and (iii) hold, observe the following: In U(ui), all men of the form gs

i,t for any t, s, and
u0

i are matched with their first choices. Clearly, these men do not form a blocking pair.
Also, women who include only these men in their preference lists cannot form a blocking
pair. So, only u1

i , u2
i , z1

i , and z2
i can form a blocking pair. If we check the cases of k = 1

and k = 2, we can verify that at most one blocking pair is possible. Similarly, in W(wj),
all women of the form hs

j,t for any t, s, and w0
j are matched with their first choices. So,

only v1
j , v2

j , v3
j , w1

j , w2
j , and w3

j can be a part of a blocking pair. We may conclude that
there is at most one blocking pair by checking cases l = 1, 2, 3. �

Lemma 2.5. In any matching of I that matches all members of U(ui) (W(wj), respec-
tively), all people in U(ui) (W(wj), respectively), except for one man (woman, respec-
tively), are matched among themselves.

Proof. This is true because any woman in U(ui) includes only men in U(ui) in her pref-
erence list. The case for W(wj) can be proved similarly. �

Lemma 2.6. Suppose that (ui, wj) ∈ E. Let M be any matching of I such that all
people in U(ui) and W(wj) are matched by M and both (u0

i , C(U0, n1 − K)[u0
i ]) and

(w0
j , C(W 0, n2−K)[w0

j ]) are in M . Then there are at least C blocking pairs for M (formed
by only people in U(ui) ∪W(wj)).

Proof. Since (u0
i , C(U0, n1 − K)[u0

i ]) ∈ M and all people in U(ui) are matched in M ,
by tracing the women’s preference lists, the partners of women in U(ui) are uniquely
determined, namely, (gs

i,t, e
s
i,t) ∈ M for any t, s, and (ut

i, z
t
i) ∈ M for t = 1, 2. Similarly,

we may uniquely determine the pairs within W(wj), namely, (f s
j,t, h

s
j,t) ∈ M for any t, s,

and (vt
j, w

t
j) ∈ M for t = 1, 2, 3.

Since (ui, wj) ∈ E, there are integers k and l such that σj,i = k and τi,j = l by the
definition of σ and τ . Then, all (gs

i,k, h
s
j,l) (1 ≤ s ≤ C) are blocking pairs for M . �

5



Correctness of the Reduction. We first show that I admits a perfect matching. As we
have assumed that G has a matching of size K, let it be M ′. For each edge (ui, wj) ∈ M ′,
we match people in U(ui) and W(wj) as in the proof of Lemma 2.4. There are exactly

n1 − K unmatched vertices in U . Let Ũ0(⊆ U0) consist of men corresponding to these
unmatched vertices, i.e. Ũ0 = {u0

i : ui ∈ U is unmatched in M ′}. We match people
in Ũ0 and

(

n1

n1−K

)

–gadget C(U0, n1 − K) as in the proof of Lemma 2.2. Also, for each

i such that u0
i ∈ Ũ0, match every woman in U(ui) to her first choice man. Similarly,

there are exactly n2 − K unmatched vertices in W . Define W̃ 0(⊆ W 0) as W̃ 0 = {w0
j :

wj ∈ W is unmatched in M ′}. Again, using the proof of Lemma 2.2, we match people

in W̃ 0 and
(

n2

n2−K

)

–gadget C(W 0, n2 − K). Finally, for each j such that w0
j ∈ W̃ 0, match

every man in W(wj) to his first choice woman. By a careful observation, together with
Lemma 2.2 (i) and (ii) and Lemma 2.4 (i), it can be verified that the above constriction
yields a perfect matching.

Now suppose that G has a maximal matching M ′ of size K. We construct a perfect
matching M of I from M ′ as described above. We will count the number of blocking pairs
for M . By Lemma 2.2 (iii), C(U0, n1−K) and C(W 0, n2−K) contain at most n1−K and
n2 − K blocking pairs, respectively, and people in these gadgets do not create blocking
pairs with people outside respective gadgets. Next we look at gadgets corresponding to
vertices. For a pair of vertices ui and wj such that (ui, wj) ∈ M ′, there are at most 2
blocking pairs formed by people in U(ui) and W(wj) by Lemma 2.4 (ii). Since |M ′| = K,
there are at most 2K such blocking pairs. Also, by Lemma 2.4 (iii), people in U(ui) and
W(wj) do not form blocking pairs with people outside U(ui)∪W(wj). Finally, we consider
the gadgets corresponding to the vertices unmatched in M ′. Consider the gadget U(ui)
where ui is unmatched in M ′. By the construction of M , all women in U(ui) are matched
with their first choices, and cannot form a blocking pair. Hence only the possibility is
that a man gs

i,σj,i
forms a blocking pair with a woman hs

j,τi,j
for some j and s. If this is the

case, then (ui, wj) ∈ E, but by the maximality of M ′, wj is matched in M ′. Then, by the
construction of M , hs

j,τi,j
must be matched with her first choice and hence (gs

i,σj,i
, hs

j,τi,j
)

cannot be a blocking pair. Similarly, no people in W(wj) where wj is unmatched in M ′

cannot form a blocking pair. In summary, the total number of blocking pairs is at most
(n1 − K) + (n2 − K) + 2K = n1 + n2.

Conversely, suppose that there is a perfect matching M of I that contains less than
C blocking pairs. By Lemma 2.5, for each ui ∈ U , all people in U(ui), except for one
man (which we call a free-man), are matched among themselves. Hence there are exactly
n1 free-men. By Lemma 2.3, M matches exactly n1 − K men from U0 with women in
C(U0, n1 − K). Clearly, all these men are free-men. So, there are K remaining free-men.
We will define free-women similarly, and by a similar argument, there are K remaining
free-women. Since M is a perfect matching, these men and women are matched together.

Define M ′ as M ′ = {(ui, wj) : (x, y) ∈ M, x ∈ U(ui), y ∈ W(wj)}. If (x, y) ∈ M for
some x (∈ U(ui)) and y (∈ W(wj)), then (ui, wj) ∈ E by the construction of preference
lists of I. Also, it is easy to see that x and y are one of K free-men and free-women,
respectively, mentioned above. Hence, M ′ is a matching of G of size K. We show that M ′

is maximal. For, suppose not. Then, there is an edge (ui, wj) ∈ E both of whose endpoints
are unmatched in M ′. By the construction of M ′, u0

i ∈ U(ui) is matched with the woman

6



C(U0, n1 − K)[u0
i ] and w0

j ∈ W(wj) is matched with the man C(W 0, n2 − K)[w0
j ], in M .

But then by Lemma 2.6, M contains at least C blocking pairs, a contradiction. Hence
M ′ is maximal, and we can conclude that if G has no maximal matching of size K, then
there is no perfect matching of I with less than C(= (n1 + n2)

B+1) blocking pairs.
Hence, the existence of (n1 + n2)

B-approximation algorithm for MAX SIZE MIN BP
(3, 3)-SMI implies a polynomial-time algorithm for EXACT–MM, which implies P=NP.
We will show that (n1 + n2)

B ≥ n1−ε. Recall that

n = (2 + 2C + 2n1 − 2K)n1 + (3 + 3C + 2n2 − 2K)n2 + K, (1)

by which we obtain n ≤ 5(n1 + n2)
B+2, and hence

(n1 + n2)
B ≥ 5−

B
B+2 n

B
B+2 . (2)

We may assume without loss of generality that n1 ≥ 3. Since each vertex in U and W has
degree 2 and 3, respectively, 2n1 = 3n2. So, we have n1 + n2 ≥ 5. Also, K < min(n1, n2)

by hypothesis. Thus, Equation (1) implies that n ≥ 5B and hence, 5−
B

B+2 ≥ n−
1

B+2 . Since
B + 2 ≥ 3

ε
, Inequality (2) implies that (n1 + n2)

B ≥ n1−ε, which completes the proof. �
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ij

�
�

�
�b

j−1

ij
b
j−1

ij
: a

j−1

ij
a

j−2

ij

�
�

�
�

a
j
ij

: d
ij
j

�
�

�
�b

j+1

ij
b
j
ij

b
j
ij

: a
j
ij

a
j−1

ij

�
�

�
�

a
j+1

ij
: d

ij
j+1 b

j+2

ij
b
j+1

ij

�
�

�
� b

j+1

ij
: a

j+1

ij

�
�

�
�a

j
ij

...
...

ar−1

ij
: d

ij
r−1 br

ij
br−1

ij

�
�

�
� br−1

ij
: ar−1

ij

�
�

�
�ar−2

ij

ar
ij

: d
ij
r br

ij

�
�

�
� br

ij
: ar

ij

�
�

�
�ar−1

ij

d1
j : c2

j

�
�

�
�a

j
1

c2
j : d2

j d1
j

�
�

�
� d2

j : c3
j

�
�

�
�c2

j a
j
2

c3
j : d3

j d2
j

�
�

�
� d3

j : c4
j

�
�

�
�c3

j a
j
3

c4
j : d4

j d3
j

�
�

�
� d4

j : c5
j

�
�

�
�c4

j a
j
4

...
...

c
ij−1

j : d
ij−1

j d
ij−2

j

�
�

�
� d

ij−1

j : c
ij
j

�
�

�
�c

ij−1

j a
j
ij−1

c
ij
j : d

ij
j d

ij−1

j

�
�

�
� d

ij
j : c

ij+1

j c
ij
j a

j
ij

�
�

�
�

c
ij+1

j : d
ij+1

j

�
�

�
�
d

ij
j d

ij+1

j : c
ij+2

j c
ij+1

j

�
�

�
�
a

j
ij+1

...
...

cm−1

j : dm−1

j

�
�

�
�dm−2

j dm−1

j : cm
j cm−1

j

�
�

�
�a

j
m−1

cm
j : dm

j

�
�

�
�dm−1

j dm
j : cm

j

�
�

�
�aj

m

Figure 2: A part of the matching described in the proof of Lemma 2.2
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u1
i : z1

i w
τi,pi
pi z1

i : u1
i u2

i

u2
i : z1

i z2
i w

τi,qi
qi z2

i : u2
i g1

i,1

g1
i,1 : z2

i h1
pi,τi,pi

e1
i,1 e1

i,1 : g1
i,1 g2

i,1

g2
i,1 : e1

i,1 h2
pi,τi,pi

e2
i,1 e2

i,1 : g2
i,1 g3

i,1

g3
i,1 : e2

i,1 h3
pi,τi,pi

e3
i,1 e3

i,1 : g3
i,1 g4

i,1

...
...

gC−1

i,1 : eC−2

i,1 hC−1
pi,τi,pi

eC−1

i,1 eC−1

i,1 : gC−1

i,1 gC
i,1

gC
i,1 : eC−1

i,1 hC
pi,τi,pi

eC
i,1 eC

i,1 : gC
i,1 g1

i,2

g1
i,2 : eC

i,1 h1
qi,τi,qi

e1
i,2 e1

i,2 : g1
i,2 g2

i,2

g2
i,2 : e1

i,2 h2
qi,τi,qi

e2
i,2 e2

i,2 : g2
i,2 g3

i,2

g3
i,2 : e2

i,2 h3
qi,τi,qi

e3
i,2 e3

i,2 : g3
i,2 g4

i,2

...
...

gC−1

i,2 : eC−2

i,2 hC−1
qi,τi,qi

eC−1

i,2 eC−1

i,2 : gC−1

i,2 gC
i,2

gC
i,2 : eC−1

i,2 hC
qi,τi,qi

eC
i,2 eC

i,2 : gC
i,2 u0

i

u0
i : eC

i,2 C(U0, n1 − K)[u0
i ]

Figure 3: Preference lists of U(ui)
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v1
j : w1

j w2
j w1

j : v1
j u

σj,rj
rj

v2
j : w2

j w3
j w2

j : v1
j v2

j u
σj,sj
sj

v3
j : w3

j h1
j,1 w3

j : v2
j v3

j u
σj,tj

tj

f 1
j,1 : h1

j,1 h2
j,1 h1

j,1 : v3
j g1

rj ,σj,rj
f 1

j,1

f 2
j,1 : h2

j,1 h3
j,1 h2

j,1 : f 1
j,1 g2

rj ,σj,rj
f 2

j,1

f 3
j,1 : h3

j,1 h4
j,1 h3

j,1 : f 2
j,1 g3

rj ,σj,rj
f 3

j,1

...
...

fC−1

j,1 : hC−1

j,1 hC
j,1 hC−1

j,1 : fC−2

j,1 gC−1
rj ,σj,rj

fC−1

j,1

fC
j,1 : hC

j,1 h1
j,2 hC

j,1 : fC−1

j,1 gC
rj ,σj,rj

fC
j,1

f 1
j,2 : h1

j,2 h2
j,2 h1

j,2 : fC
j,1 g1

sj ,σj,sj
f 1

j,2

f 2
j,2 : h2

j,2 h3
j,2 h2

j,2 : f 1
j,2 g2

sj ,σj,sj
f 2

j,2

f 3
j,2 : h3

j,2 h4
j,2 h3

j,2 : f 2
j,2 g3

sj ,σj,sj
f 3

j,2

...
...

fC−1

j,2 : hC−1

j,2 hC
j,2 hC−1

j,2 : fC−2

j,2 gC−1
sj ,σj,sj

fC−1

j,2

fC
j,2 : hC

j,2 h1
j,3 hC

j,2 : fC−1

j,2 gC
sj ,σj,sj

fC
j,2

f 1
j,3 : h1

j,3 h2
j,3 h1

j,3 : fC
j,2 g1

tj ,σj,tj
f 1

j,3

f 2
j,3 : h2

j,3 h3
j,3 h2

j,3 : f 1
j,3 g2

tj ,σj,tj
f 2

j,3

f 3
j,3 : h3

j,3 h4
j,3 h3

j,3 : f 2
j,3 g3

tj ,σj,tj
f 3

j,3

...
...

fC−1

j,3 : hC−1

j,3 hC
j,3 hC−1

j,3 : fC−2

j,3 gC−1
tj ,σj,tj

fC−1

j,3

fC
j,3 : hC

j,3 w0
j hC

j,3 : fC−1

j,3 gC
tj ,σj,tj

fC
j,3

w0
j : fC

j,3 C(W 0, n2 − K)[w0
j ]

Figure 4: Preference lists of W(wj)
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