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Abstract Manufacturing methods using molds, such as cast-
ing and injection molding, are widely used in industries.
A basic requirement when using such manufacturing meth-
ods is that design engineers must design products so that
they incorporate certain geometrical features that allow the
mold parts to be removed from the created solid object. In
the present study, we propose a manufacturability evaluation
method especially adapted for the use of molds. To evaluate
the manufacturability, we introduce fictitious physical mod-
els that are described by steady-state anisotropic advection-
diffusion equations. In these fictitious physical models, ma-
terial domains have a virtual source term and the advection
directions are aligned with the directions along which the
mold parts are parted. Void regions, where the values of
all fictitious physical fields are high, then represent either
undercut geometries that would prevent the mold from be-
ing released, or interior voids that cannot be cast. Conse-
quently, manufacturability can be evaluated using these fic-
titious physical fields. Furthermore, in the present study, we
integrate this evaluation method with topology optimization
and propose a scheme for imposing a molding constraint
within the topology optimization procedure. This newly pro-
posed topology optimization method can consider the po-
sition of mold parting lines prior to the detailed optimiza-
tion procedure. Several numerical examples are provided to
demonstrate the validity and effectiveness of the proposed
method.
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1 Introduction

Manufacturing methods exploiting the use of molds in cast-
ing or injection processes are widespread in many indus-
tries. The most important manufacturing requirements when
using a molding process is to ensure that the shape of the
product has certain geometrical features that allow the mold
parts to be removed, while maximizing the performances of
the product under consideration [1], a design process that
usually requires much trial and error and relies on the expe-
rience of design engineers. In such scenarios, the design for
manufacturing (DFM) process [2] is often used. The DFM
concept aims to obtain product designs that are easy to man-
ufacture and some studies incorporate CAE analysis for a
casting process as a DFM tool [3, 4]. In DFM, it is impor-
tant to consider the performance of products together with
their manufacturing costs and manufacturability. However,
conventional DFM typically focuses on a simple method for
evaluating manufacturing costs [2, 5, 6] via, for example,
simplification and standardization of design and manufac-
turing processes [7], although the lowering of performances
due to such simplification has recently been considered in
some research [8, 9]. Research on DFM methods for im-
proving product designs while ensuring their performance
is relatively scarce, and reliance on design engineers’ ex-
pertise to achieve product design improvements that also
maintain or improve performance is still the norm. To ame-
liorate this situation, a new design support system that can
consider product performances together with their manufac-
turing costs and manufacturability in the early design phase
is required [10].

In the present study, we therefore propose a manufac-
turability evaluation method that can be incorporated in struc-
tural optimization process as a DFM tool. To evaluate manu-
facturability, we introduce fictitious physical models that are
described by steady-state anisotropic advection-diffusion equa-
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tions. In these fictitious physical models, virtual heat genera-
tion occurs in material domains and the advection directions
are aligned with the direction along which the mold parts
are parted. Void regions, where the values (i.e. the fictitious
temperatures) of all fictitious physical fields are high, then
represent either undercut geometries that would prevent the
mold from being released, or interior voids that cannot be
cast. In this manner, manufacturability can be evaluated us-
ing the fictitious physical fields.

Furthermore, by incorporating the proposed method in
a structural optimization method, well-known as a powerful
tool for deriving optimal structures based on mathematical
and physical principles, it can be applied within the struc-
tural design process. Structural optimization can be classi-
fied into three types: sizing [11, 12], shape [13, 14], and
topology optimization [15, 16]. Among these, topology op-
timization offers the greatest potential for exploring high-
performance structures, and has been applied in various com-
plex problems in the literature [17–19]. The field of topol-
ogy optimization for structural problems is essentially ma-
ture, and the results of topology optimization approaches are
effectively used in many industries, such as automobile and
aeronautical industries. In particular, the solid isotropic ma-
terial with penalization (SIMP) method [20] is particularly
popular in the topology optimization field. Level set-based
shape optimization methods [21–23], which essentially ex-
clude grayscale areas that may appear in the optimal con-
figurations obtained by SIMP methods, are another popular
approach in structural optimization.

Among these structural optimization methods, the objec-
tive of topology optimization in most previous research has
mainly focused on deriving optimal structures for certain de-
vices to improve their performance. As a result, when topol-
ogy optimization solutions are applied in practical manufac-
turing circumstances, design engineers often must interpret
and modify the results to satisfy manufacturability condi-
tions [24]. However, maintaining the performance of opti-
mal configurations obtained during subsequent shape mod-
ification processes is often difficult for design engineers.
Consequently, the performance of modified design candi-
dates is often far below that of the originally obtained opti-
mal solutions. This difficulty may make the use of topology
optimization in real world engineering a challenging task.
To overcome this problem, it is important to consider manu-
facturing requirements during the optimization process. How
to implement manufacturing constraints, i.e., constraints due
to particular manufacturing requirements, is now one of the
most interesting topics in the field of topology optimization.

Manufacturing constraints are types of geometrical con-
straints that ensure that optimal configurations have certain
desired geometrical features that permit their manufacture
using certain processes. Researchers have proposed a variety
of methods for imposing geometrical constraints in shape

and topology optimization [25]. Length scale constraints are
one of the most studied geometrical constraints in topology
optimization. Imposing a minimum length scale constraint
prevents the appearance in optimal configurations of exces-
sively complex substructures and hinges that would be diffi-
cult to manufacture. Several minimum length scale geomet-
rical constraint methods have been proposed for use in SIMP
schemes [26–28].

On the other hand, maximum length scale constraints
are also important in certain manufacturing processes. In die
casting, for instance, a maximum length scale constraint can
suppress the appearance of void shrinkage cavities that de-
crease fatigue strength, which may occur in large structural
members. A consequence of imposing a maximum length
scale constraint can also be exploited as a structural redun-
dancy measurement, whereby loads are redistributed and load
paths diversified by replacing each large structural member
with a number of smaller features [29]. Several methods for
imposing maximum length scale constraints have been pro-
posed [29, 30].

Length scale control methods that can impose both min-
imum and maximum length scale constraints have also been
proposed [31, 32] using a level set-based shape optimization
scheme. Other schemes for imposing certain manufacturing
constraints in shape and topology optimizations have also
been proposed. For additive manufacturing (AM), Brack-
ett et al. [33] summarized the issues for the application of
topology optimization in AM. Leary et al. [34] proposed
a method in which the obtained optimal configurations are
modified to satisfy an overhang constraint required to avoid
the use of support material in AM, and additional schemes
for imposing overhang constraints during the optimization
procedure have been proposed [35, 36]. Li et al. [37] pro-
posed a connectivity constraint to avoid enclosed voids in
structures by introducing a virtual scalar field.

As for molding constraints, Zhou et al. proposed a math-
ematical formulation of a molding constraint [38] in a SIMP
scheme. Xia et al. proposed a molding constraint method
[1] in a level set-based shape optimization scheme by limit-
ing the advection velocity in the Hamilton-Jacobi equation,
a method later extended by Allaire et al. [39]. Addition-
ally, uniform cross-section surface constraints, also called
extrusion constraints, have been proposed to simplify certain
designs and promote manufacturability [39–41]. A cross-
section constraint can be a sufficient, but not necessary, con-
dition for manufacturability in casting processes.

In the present study, we incorporate the proposed mold-
ing manufacturability evaluation method in a topology opti-
mization procedure to obtain optimal configurations for cer-
tain devices that provide high performance while ensuring
manufacturability using molding techniques. Here, molding
manufacturability is evaluated according to fictitious physi-
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Fig. 1 Undercut geometry.

cal fields, with the molding constraint imposed in the ficti-
tious physical models.

The remainder of this paper is organized as follows. First,
we introduce the methodology for evaluating manufactura-
bility when using molds via fictitious physical models that
are governed by advection-diffusion equations. Next, we briefly
discuss topology optimization methods and formulate a mold-
ing constraint within a topology optimization by applying
the evaluation method. Based on this formulation, we define
optimization problems that not only maximize the perfor-
mance of a particular device but also ensure its manufactura-
bility. We then construct an optimization algorithm for the
topology optimization using the FEM. Finally, we provide
two- and three-dimensional numerical examples to confirm
the applicability of the proposed method.

2 Evaluation of mold manufacturability via fictitious
physical models

2.1 Clarification of requirements

MoldParting line

Parting direction +d

Parting direction -d

Mold

Molded part

Interior void

Fig. 2 Geometry with an interior void.

First, we clarify the geometrical feature requirements for
manufacturability when using molding techniques. Struc-
tural features that would be problematic when using cast-

ing or injection molding can be classified into two types:
(1) undercut geometry that would prevent the mold from be-
ing disassembled; and (2) the presence of one or more inte-
rior voids within the structure, which would make manufac-
turing impractical. Figure 1 shows an example of undercut
geometry, where the lower mold section is captured by an
undercut, preventing the mold parts from being separated
at the given parting line in the given parting direction. Fig-
ure 2 shows an example of geometry with an interior void,
an empty region that is completely contained within the cast
material. Manufacturing structures that include an interior
void by casting or injection molding is extremely cumber-
some. On the other hand, a structure free from both under-
cuts and interior voids can be manufactured using a con-
ventional mold, as shown in Fig. 3. The direction in which
a mold is disassembled is called the parting direction, de-
noted as +ddd and −ddd in these figures, and the line on which
two parts of a mold make contact is called the parting line.
When a product will be manufactured using casting or injec-
tion molding, design engineers must ensure that undercuts
and interior voids are avoided.

2.2 Formulation for a process using two-part molds

2.2.1 Introduction of fictitious physical models

When a designed component has a simple structure, it is
easy to determine whether or not it can be manufactured us-
ing a molding technique. However, when a design engineer
designs a component that has a complex structure, it may
be difficult to evaluate such manufacturability. In particular,
when using structural optimization methods to derive op-
timal structures, design engineers inevitably must interpret
and modify the initially obtained results, to satisfy manufac-
turability requirements. Consequently, a trial and error pro-
cess is required and design engineers must have broad expe-
rience when designing sophisticated components that will be
manufactured by casting or injection molding. To overcome
these issues, we propose a molding manufacturability eval-
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Fig. 3 Manufacturable geometry for casting or injection molding processes.
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Fig. 4 Virtual light shined on a structure: (a) From bottom to top; (b) From top to bottom.

uation method using fictitious physical models to implicitly
evaluate geometrical features.

Analysis domain D

Material domain

Void domains

1χ

0χ

Fig. 5 Characteristic function.

Consider two cases, one in which light is shined upon a
structure from a line Γ1 at the bottom toward line Γ2 at the
top, and the other in which light travels from top line Γ2 to
bottom line Γ1, both along the parting direction, as shown in
Fig. 4. Undercut and interior void regions can then be de-
scribed as regions that receive no light, shadow regions in
both cases. Analogously, we consider virtual heat flows that
are only conducted along parting directions. That is, we in-

troduce two fictitious physical models that are mathemat-
ically described with advection-diffusion equations, using
opposite advection directions. Let ψ1 and ψ2 denote the state
variables, and let AAA and VVV denote the non-dimensional sec-
ond order diffusion tensor and the non-dimensional advec-
tion vector, respectively. We introduce two fictitious physi-
cal models, described as

−L2div(AAA∇ψ1)+LVVV ·∇ψ1 = β χ(1−ψ1) in D (1)

ψ1 = 0 on Γ1 (2)

nnn ·∇ψ1 = 0 on ∂D\Γ1
(3)

−L2div(AAA∇ψ2)−LVVV ·∇ψ2 = β χ(1−ψ2) in D (4)

ψ2 = 0, on Γ2, (5)

nnn ·∇ψ2 = 0 on ∂D\Γ1
(6)

where β is a parameter, nnn is the outward unit vector normal
to ∂D, and L is the length of the analysis domain along the
parting direction for non-dimensionalization. χ is the char-
acteristic function defined in the analysis domain D and it
has a value of 1 in the material domain and 0 in void do-
mains, as shown Fig. 5.
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In this model, AAA is anisotropic and has larger values in
the parting direction than those in the orthogonal direction,
and VVV is a vector aligned with the ddd direction. If we set β and
the norm of VVV to sufficiently large values, ψ1 approaches 1 in
the material domain and shadow regions when viewed from
Γ1, and ψ2 approaches 1 in material domain and shadow
regions when viewed from Γ2. Consequently, the void re-
gions where the values of both fictitious physical fields, ψ1
and ψ2, are high correspond to shadow regions and rep-
resent either undercuts or interior void regions. Therefore,
the presence of undercut and interior void regions can be
evaluated by visualizing the shadow regions using the term
ψ1ψ2(1− χ) that represents the intersection of the shadow
regions. The validity of these fictitious physical models is
confirmed in Section 5. The proposed method solves physi-
cal models described with partial differential equations, sim-
ilar to the method used in existing CAE tools, so the pro-
posed method is highly compatible.

Virtual light

Virtual light

Optimized part Optimized part

1\ MD

2\ MD

1M

2M

Fig. 6 Mold design using fictitious physical models.

2.2.2 Application to structural optimization

We can easily incorporate the molding manufacturability eval-
uation method described above with a structural optimiza-
tion to obtain optimal structures for certain product parts
or components that provide high performance while ensur-
ing manufacturability based on the use of molds. Consider
a structural optimization problem to determine an optimal
configuration of a domain filled with material in order to
minimize the value of an objective functional, F . Let Ω and
Γ denote the material domain and its boundary, respectively.
Denote by fd and fb the integrands of the objective func-
tional defined in the domain Ω and on boundary Γ , respec-
tively. A position vector in Ω and its state variable vector
are denoted as xxx and uuu, respectively. A structural optimiza-
tion problem is then formulated as

inf
Ω

F =
∫

Ω

fd(xxx,uuu,∇uuu)dΩ +
∫

Γ

fb(xxx,uuu,∇uuu)dΓ . (7)

On the other hand, undercut and interior void regions
can be nullified in the structural optimization procedure by
minimizing the following functional:

FM =
∫

D
ψ1ψ2(1−χ)dΩ . (8)

That is, by minimizing FM together with objective functional
F , which aims to improve a physical performance of a cer-
tain device, the molding constraint is incorporated in the
structural optimization.

2.2.3 Application to mold design

Furthermore, once the optimization procedure is finished,
appropriate mold designs for manufacturing the structurally
optimized product components can be created using the fic-
titious physical models. Let domains M1 and M2 be respec-
tively defined as follows:

M1 = {∀xxx ∈ D : ψ1 < c} (9)

M2 = {∀xxx ∈ D : ψ2 < c} , (10)

where c ∈ (0,1) is a real constant. M1 represents the regions
in the model that are illuminated from Γ1 and M2 represents
regions illuminated from Γ2, as shown in Fig. 6. That is, M1
and M2 respectively represent the domain of each mold. If
a domain M1 ∩M2 exists, it can be included in either half
of the mold in this example. We note that the optimal loca-
tions of parting lines and gates should also be considered for
casting processes. However, for simplicity, the focus of the
present study is to obtain an optimal configuration that pro-
vides high performance together with suitable geometrical
manufacturability at the conceptual design stage.

2.3 Formulation for process using molds with multiple
parts

The above evaluation method can easily be generalized to a
process using molds consisting of multiple parts. Figure 7(a)
shows the case where a three-part mold is proposed for use
in a manufacturing process for a particular product shape.
However, the upper part (Mold part 1) and the lower part
(Mold part 2) cannot be separated in the given parting di-
rection, since there is an undercut at the right side of the
molded part. To evaluate the geometrical features here, con-
sider cases in which virtual light illuminated the structure
from multiple directions, each of which corresponds to the
parting direction of a particular mold part. Undercut and in-
terior void regions can then be described as regions that are
shadow regions in all cases, as shown in Fig. 7(b). In the
same manner as that used in the two-part mold case (Section
2.2), we introduce multiple fictitious physical models that
are mathematically described using the advection-diffusion
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Fig. 7 Generalization to mult-part molds: (a) Three-part mold; (b) Virtual light shined on structure.

equation, each of which corresponds to the parting direction
for each mold part.

First, we assume that m represents the number of mold
parts. Let ψi, AAAi and VVV i (i = 1,2, . . . ,m) denote the state
variables, the non-dimensional second order diffusion ten-
sor, and the non-dimensional advection vector, respectively.
We introduce fictitious physical models described as

−L2
i div(AAAi∇ψi)+LiVVV i ·∇ψi = β χ(1−ψi) in D (11)

ψi = 0, on Γi, (12)

nnn ·∇ψi = 0 on ∂D\Γi
(13)

for all indices i = 1,2, . . . ,m, where

Γi = {∀xxx ∈ ∂D : dddi ·nnn > 0} , (14)

with ∂D representing the boundary of D and dddi the parting
direction of ith mold part. Li (i = 1,2, . . . ,m) is the length of
the analysis domain D along each parting direction for non-
dimensionalization. In this model, AAAi is anisotropic, with
larger values in each parting direction than those in the or-
thogonal direction, and VVV i is a vector in the direction oppo-
site that of each parting direction. In the same manner as for
the two-part mold case, undercut and interior void regions
can then be evaluated by the term (1− χ)∏

m
i=1 ψi. That is,

the case of the two-part mold described in Section 2.2 is a
special case where AAA1 = AAA2 and VVV 1 =−VVV 2.

The molding constraint for a mold with more than two
parts can also be imposed in the structural optimization pro-
cedure in the same manner as that described in Section 2.2.2,
by minimizing the following functional:

Fm
M =

∫
D
(1−χ)

m

∏
i=1

ψidΩ . (15)

By minimizing Fm
M together with the objective functional F ,

a molding constraint for a mold with three or more parts can
be incorporated into the structural optimization.

We can also design molds with three or more parts in
the same manner as that described in Section 2.2.3. Let the
domain Mi be defined as

Mi = {∀xxx ∈ D : ψi < c} , (16)

for all indices i = 1,2, . . . ,m where c ∈ (0,1) is a real con-
stant. Mi then represents domain filled with the ith mold part.
If there is an intersection of multiple domains, it can be in-
corporated into any convenient mold part.

2.4 Predetermination of parting lines in the structural
optimization

In the above method for structural optimization, the part-
ing lines are determined according to the mold design after
the optimization procedure. However, in practical engineer-
ing, it is often attractive to be able to predetermine parting
lines, based on the cost of fabricating the mold. The pro-
posed method can be extended to allow predetermination of
mold parting lines in a structural optimization.

Predetermining mold parting lines is comparable to pre-
determining certain parts of the analysis domain that is in-
cluded in a certain mold part. Let Mpre

i for i = 1,2, . . . ,m
denote a sub-domain of the analysis domain that is prede-
termined to be filled with the ith mold part, and let Dund

represent a sub-domain of the analysis domain for which
the particular mold part it is to be included in is undeter-
mined, as shown in Fig. 8. In this case, shadow regions in
Mpre

i viewed from Γi represent either undercuts or interior
voids, since Mpre

i should be included in the ith mold part.
Consequently, the molding constraint for this case can be
imposed in the structural optimization procedure by mini-
mizing the following functional:

Fpre
M =

m

∑
i=1

∫
Mpre

i

(1−χ)ψidΩ +
∫

Dund
(1−χ)

m

∏
i=1

ψidΩ . (17)
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3 Topology optimization

3.1 Formulation

In the present study, we focus on topology optimization,
which offers the most potential for exploring superior struc-
tures among the structural optimization methods. The key
idea of topology optimization is the replacement of a struc-
tural optimization problem with a material distribution prob-
lem by introducing a fixed design domain and the character-
istic function that assumes values of 1 or 0 in the fixed de-
sign domain. Let Ω and D denote the material domain and
fixed design domain, respectively. The characteristic func-
tion χΩ ∈ L∞(D) is then defined as

χΩ (xxx) =

{
1 for xxx ∈ Ω

0 for xxx ∈ D\Ω ,
(18)

where complementary domain D \Ω represents a void do-
main. This characteristic function χΩ is the same as that in-
troduced in Section 2.2 as χ . Since the characteristic func-
tion can be very discontinuous, some relaxation or regular-
ization technique is usually used, and the homogenization
design method [15] is a representative approach for relaxing
the design domain.

On the other hand, level set-based shape optimization
methods [21–23] that regularize the design space have been
proposed. In these methods, structural boundaries are clearly
expressed by the iso-surface of a scaler function, namely,
the level set function. However, these methods do not allow
the topological changes that generate new boundaries dur-
ing the optimization procedure, since the level set function
in conventional level set-based optimization methods is up-
dated using the Hamilton-Jacobi equation, which requires
that the property of the function as a signed distance func-
tion be maintained. To allow the creation of the new bound-
aries, Allaire et al. [42] incorporated the bubble method [43]
with a level set-based structural optimization method. On

Fixed design domain D

Material domain

Level set function

Fig. 9 Level set-based structural representation.

the other hand, Yamada et al. proposed a level set-based
topology optimization method [40, 44] in which the level
set function is defined as a piecewise constant function and
is updated using a reaction-diffusion equation. This method
allows topological changes that generate new boundaries to
occur during the optimization and is the method adopted in
the present study, as described below.

Using the level set function φ , structural boundaries are
implicitly represented by the iso-surface of the level set func-
tion as follows (see Fig. 9):

1≥ φ(xxx)> 0 for xxx ∈ Ω \∂Ω

φ(xxx) = 0 for xxx ∈ ∂Ω

0 > φ(xxx)≥−1 for xxx ∈ D\Ω .

(19)

Based on this structural representation, the characteristic func-
tion χΩ is redefined as χφ , using the level set function as
follows:

χφ =

{
1 for φ ≥ 0
0 for φ < 0.

(20)

Let fd and fb denote the integrands of an objective func-
tional, the former defined in the fixed design domain D and
the latter defined on Γ , the boundary of D. Then, an opti-
mization problem to minimize an objective functional, F ,
under an inequality constraint, G, is formulated as

inf
χφ

F [χφ ] =
∫

D
fd(xxx,χφ )dΩ +

∫
Γ

fb(xxx,χφ )dΓ (21)

subject to G[χφ ] =
∫

D
g(xxx,χφ )dΩ −Gmax ≤ 0, (22)

where g represents the integrand of the constraint functional
and Gmax represents the upper limit of the constraint func-
tional. The above optimization problem is ill-posed [45], so
some types of relaxation or regularization are required.

3.2 Level set function updating scheme

We denote a fictitious time, t, and assume that the level set
function φ is implicitly a function of t. Using the scheme de-
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veloped in previous research [40, 44], the level set function
is updated using the following time evolution equation:

∂φ

∂ t
=−K(J′− τ∇

2
φ), (23)

where K > 0 is a coefficient of proportionality and J′ is the
design sensitivity, i.e., the gradient of the Lagrangian. The
second term of the right-hand side of the above equation,
τ∇2φ , is a diffusion term and it ensures the smoothness of
the level set function. The diffusion term regularizes the
topology optimization problem and the regularization pa-
rameter, τ , affects the degree of geometrical complexity of
the optimized configurations. A uniform cross-section sur-
face constraint, also called an extrusion constraint, can eas-
ily be imposed by redefining the regularization parameter τ

as an anisotropic second order tensor, τττ , and replacing the
above reaction-diffusion equation with the following:

∂φ

∂ t
=−K(J′−div(τττ∇φ)). (24)

If a component of the tensor in the constraint direction is set
to a large value, the level set function will remain constant
in the constraint direction, due to the large diffusion. Con-
sequently, the obtained optimal configurations will reflect
the imposition of a uniform cross-section surface constraint,
which may improve manufacturability.

3.3 Minimum mean compliance problem

We first formulate a minimum mean compliance problem
considering casting or injection molding manufacturability,
using the fictitious physical models presented in Section 2.3.

Consider an elastic structure occupying a material do-
main Ω that is fixed at boundary Γu, with a traction ttt applied
at Γt. Let uuu1, CCC and εεε respectively denote the displacement
field, the elastic tensor, and the strain tensor, represented as
εεε(uuu1) =

1
2 (∇uuu1 +∇uuuT

1 ). Using the level set-based structural
representation expressed in Eqs. (19) and (20), the optimiza-
tion problem to determine an optimal configuration of the
material domain Ω that has a minimum mean compliance
and appropriate manufacturability features under a volume
constraint can be formulated as follows:

inf
χφ

F =
∫

Γt

ttt ·uuu1dΓ + γ̄Fm
M (25)

subject to:

G1 =
∫

D
χφ dΩ−Vmax ≤ 0 (26)

E1 =
∫

Γt

ttt · ũuudΓ −
∫

D
εεε(uuu1) : CCCχφ : εεε(ũuu)dΩ = 0 (27)

EFPM
i =

∫
D

β χφ (1−ψi)ψ̃idΩ −
∫

D
L2

i ∇ψ̃i ·AAAi∇ψidΩ

−
∫

D
ψ̃iLiVVV i ·∇ψidΩ = 0, (28)

for all variables (uuu1, ũuu) ∈ U ×U and (ψi, ψ̃i) ∈ T i×T i,
where

U = {ũuu ∈ H1(D)N : ũuu = 000 on Γu}, (29)

T i = {ψ̃ ∈ H1(D) : ψ̃ = 0 on Γi}, (30)

for all indices i = 1,2, . . . ,m, where m is the number of
molds and N is the number of spatial dimensions. In the
above formulation, the first term of the objective functional
represents the mean compliance and the second term is the
objective functional expressing the molding constraint. γ̄ is
a weighting coefficient applied to the molding constraint. G1
represents the volume constraint and Vmax is the upper limit
of the allowable material volume. E1 is a weak form equi-
librium equation for the displacement field, uuu1. EFPM

i for i =
1,2, . . . ,m are the weak forms of the governing equations of
the fictitious physical models formulated in Eqs. (11) – (13).
ũuu and ψ̃i are the test function of the weak forms of Eqs. (27)
and (28), and H1(D) is a Sobolev space. The above opti-
mization problem is converted into a non-constrained prob-
lem using Lagrange’s method for undetermined multipliers.

3.4 Optimum design problem for a compliant mechanism

Next, we formulate an optimum design problem for a com-
pliant mechanism [46, 47] considering casting or injection
molding manufacturability, using the fictitious physical mod-
els described in Section 2.3.

Consider a material domain Ω , fixed at boundary Γu,
with a traction ttt in applied at Γin. Let uuu2 denote the displace-
ment field. By introducing a dummy traction, tttout, represent-
ing the direction of the specified deformation at output port
Γout, an optimum design problem for a compliant mechanism
can be formulated as the following mutual mean compliance
maximization problem:

inf
χφ

F =−
∫

Γout
tttout ·uuu2dΓ + γ̄Fm

M (31)

subject to:

G1 =
∫

D
χφ dΩ−Vmax ≤ 0 (32)

E2 =
∫

Γout
tttout · ũuudΓ −

∫
Γout

koutuuu2 · ũuudΓ −
∫

Γin

kinuuu2 · ũuudΓ

−
∫

D
εεε(uuu2) : CCCχφ : εεε(ũuu)dΩ = 0 (33)

EFPM
i =

∫
D

β χφ (1−ψi)ψ̃idΩ −
∫

D
L2

i ∇ψ̃i ·AAAi∇ψidΩ

−
∫

D
ψ̃iLiVVV i ·∇ψidΩ = 0, (34)

for all variables (uuu2, ũuu) ∈ U ×U and (ψi, ψ̃i) ∈ T i×T i

and all indices i = 1,2, . . . ,m. In the above formulation, the
first term of the objective functional represents the mutual
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mean compliance and the second term is the objective func-
tional that imposes the molding constraint. G1 represents the
volume constraint and Vmax is the upper limit of the allow-
able material volume. E2 is the weak form equilibrium equa-
tion of the displacement field, uuu2. The second and the third
terms of E2 represent Robin boundary conditions, for which
parameters kout and kin allow the setting of reaction forces,
due to deformation at boundaries Γout and Γin, that automat-
ically ensure appropriate structural stiffness.

3.5 Sensitivity analysis

To derive the design sensitivity, we represent the objective
functional as follows:

F =
∫

Γ

f (uuu)dΓ + γ̄Fm
M , (35)

where uuu = uuu1 for the minimum mean compliance problem
and uuu = uuu2 for the optimum design problem for a compliant
mechanism. The Lagrangian, J, for the optimization prob-
lem is defined as

J =F [vvv,θi,χφ ]+λG[χφ ]

+Eα [vvv, ṽvv,χφ ]+ γ̄

m

∑
i=1

EFPM
i [θi, θ̃i,χφ ], (36)

where vvv and θi are the state variables, λ is the Lagrange mul-
tiplier for the inequality volume constraint, and ṽvv and θ̃i are
the Lagrange multipliers for the governing equations. α = 1
for the minimum mean compliance problem and α = 2 for
the compliant mechanism design problem. The stationary
conditions for Lagrange multipliers ṽvv and θ̃i require that
each Gâteaux derivative of the Lagrangian with respect to
the Lagrange multipliers ṽvv and θ̃i be equal to 0, as follows:

dJ(ṽvv;δ ṽvv) = Eα [vvv,δ ṽvv,χφ ] = 0 (37)

dJ(θ̃i;δ θ̃i) = γ̄EFPM
i [θi,δ θ̃i,χφ ] = 0, (38)

for all indices i = 1,2, . . . ,m. The above conditions can be
satisfied if the state variables vvv and θi correspond to the solu-
tions of the governing equations uuu and ψi, respectively. Sim-
ilarly, the stationary conditions for the state variables vvv and
θi require that each Gâteaux derivative of the Lagrangian
with respect to the state variables vvv and θi be equal to 0, as
follows:

dJ(vvv;δvvv) = F [δvvv,θ1,θ2,χφ ]+Eα [δvvv, ṽvv,χφ ] = 0 (39)

dJ(θi;δθi) = F [vvv,δθi,χφ ]+ γ̄EFPM
i [δθi, θ̃i,χφ ] = 0, (40)

for all indices i = 1,2, . . . ,m. To satisfy these conditions, we
introduce the following equations using the adjoint variable

method:

Ẽ1 =
∫

Γt

ttt · p̃ppdΓ −
∫

D
εεε(ppp) : CCCχφ : εεε(p̃pp)dΩ = 0 (41)

Ẽ2 =−
∫

Γout
tttout · p̃ppdΓ −

∫
Γout

kout ppp · p̃ppdΓ −
∫

Γin

kin ppp · p̃ppdΓ

−
∫

D
εεε(ppp) : CCCχφ : εεε(p̃pp)dΩ = 0 (42)

ẼFPM
i =

∫
D
(1−χφ )

m

∏
j=1, j 6=i

ψ jξ̃idΩ −
∫

D
β χφ ξiξ̃idΩ

−
∫

D
L2

i ∇ξ̃i ·AAAi∇ξidΩ +
∫

D
ξ̃iLiVVV i ·∇ξidΩ

−
∫

∂D\(Γi)
LiVVV i ·nnnξiξ̃idΓ

=0, (43)

for all variables (ppp, p̃pp)∈U ×U and (ξi, ξ̃i)∈T i×T i, and
all indices i = 1,2, . . . ,m. In the above formulation, Ẽ1 rep-
resents the adjoint equation for the minimum mean compli-
ance problem and Ẽ2 represents the adjoint equation for the
compliant mechanism optimum design problem. Note that
since Ẽ1 is identical to E1, due to the minimum mean com-
pliance problem being self-adjoint, we can easily obtain that
ppp = uuu1. ẼFPM

i for i = 1,2, . . . ,m represent the weak forms
of the adjoint equations for the variables, ψi, and p̃pp and ξ̃i
are the test functions of the weak forms of Eqs. (41)–(43).
Substituting these adjoint variables for the ṽvv and θ̃i in the
condition formulations (39) and (40) satisfies the stationary
conditions. Finally, the design sensitivity can be derived as
follows:

J′ =F [uuu,ψi,δ χφ ]+λG[δ χφ ]

+Eα [uuu, ppp,δ χφ ]+ γ̄

m

∏
i=1

EFPM
i [ψi,ξi,δ χφ ]

=F ′C + γ̄F ′M +λ , (44)

where

F ′C =− εεε(ppp) : CCC : εεε(uuu), (45)

F ′M =
m

∑
i=1

β (1−ψi)ξi−
m

∏
i=1

ψi. (46)

The level set function is updated using Eqs. (23) and (44).
The details of the optimization algorithm are described next.

4 Numerical implementation

4.1 Optimization algorithm

In the optimization algorithm, the initial level set function is
set in the first step and the governing equations are solved
using the finite element method (FEM) in the second step.
In the third step, the objective functional is evaluated using
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Material domain

Void domain

1

2

Parting direction +d

Parting direction -d

(a)

Material domain

Void domain

1

2

Parting direction +d

Parting direction -d

(b)

Fig. 10 Evaluation models: (a) with undercut (Case 1); (b) manufacturable (Case 2).

Eqs. (25) or (31). If the objective functional is converged,
the optimization procedure is halted, otherwise the adjoint
equations are solved using the FEM. In the fourth step, the
sensitivities are evaluated. In the fifth step, the level set func-
tion is updated using the reaction-diffusion equation and the
optimization procedure then returns to the second step.

4.2 Approximated characteristic function

In the present study, the characteristic function χφ is re-
placed with a smoothed Heaviside function Hφ , since χφ is
discontinuous and numerical oscillations occur during the
optimization procedure, as follows:

Hφ =


1 for φ > w
1
2 +

φ

w

(
15
16 −

φ2

w2

(
5
8 −

3
16

φ2

w2

))
for −w≤ φ ≤ w

0 for φ <−w,

(47)

where w represents the width of the transition.
Furthermore, we use the ersatz material approach [23].

That is, the equilibrium equations (27) and (33) are respec-
tively approximated with the following equations:

∫
Γt

ttt · ũuudΓ −
∫

D
εεε(uuu1) : CCC

(
Hφ (1−d)+d

)
: εεε(ũuu)dΩ = 0,

(48)

∫
Γout

tttout · ũuudΓ −
∫

Γout
koutuuu2 · ũuudΓ −

∫
Γin

kinuuu2 · ũuudΓ

−
∫

D
εεε(uuu2) : CCC

(
Hφ (1−d)+d

)
: εεε(ũuu)dΩ = 0, (49)

where d represents the ratio of the Young’s modulus for the
two materials, one structural and the other void. Parameter
d is introduced to avoid singularities in the stiffness matrix.

4.3 Normalization for sensitivity scaling

The scale of the sensitivity F ′C for the mean compliance or
the mutual mean compliance is significantly influenced by
the scale of the fixed design domain and the setting of the
boundary conditions, whereas the scale of the sensitivity F ′M
for the molding constraint is relatively constant, due to the
non-dimensional definition of the fictitious physical mod-
els. This makes it difficult to set appropriate values for the
weighting coefficient, γ̄ . In the present study, we therefore
normalize the sensitivity F ′C, as follows:

F̄ ′C =
F ′C
∫

D dΩ∫
D |F ′C|dΩ

. (50)

Then, we replace the sensitivity J′ in Eq. (44) with the nor-
malized sensitivity, so that

J̄′ = F̄ ′C + γF ′M, (51)

where γ is a weighting coefficient. Consequently, the reaction-
diffusion equation for updating the level set function is re-
defined as

∂φ

∂ t
=−K(J̄′− τ∇

2
φ). (52)

This reaction-diffusion equation is discretized in the time
direction using the finite difference method and in the spatial
direction using the FEM.

5 Numerical examples

5.1 Evaluation of manufacturability

We first examine the validity of the manufacturability eval-
uation method using the two fictitious physical models. We
consider two structures, Case 1 that has undercut geome-
try, and Case 2 that has appropriate manufacturability, as
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1.0

(a)

ψ2

0.0

1.0

(b)

Fig. 11 Fictitious physical fields: (a) ψ1; (b) ψ2.

0.0

1.0

ψ1ψ2(1 – χ)

(a)

0.0

1.0

ψ1ψ2(1 – χ)

(b)

Fig. 12 The distribution of ψ1ψ2(1−χ) for the structures: (a) with undercut (Case 1); (b) that can be manufactured (Case 2).

β = 10 β = 100 β = 1000 β = 10000

Vy = 10

Vy = 100

Vy = 1000
0.0

1.0

ψ1

Fig. 13 Fictitious physical field ψ1.

respectively shown in Figs. 10(a) and (b). We evaluate the
manufacturability of these structures when a two-part mold
is used and the parting direction is aligned with the vertical
axis. Values for the diffusion tensor AAA and advection vector
VVV of the fictitious physical models were set as follows:

AAA =

[
ε 0
0 1

]
, VVV =

[
0
Vy

]
, (53)

where ε = 10−2 and Vy = 100. Parameter β in Eqs. (1) and
(4) was set to 104. Figures 11(a) and (b) show the fictitious

physical fields ψ1 and ψ2 obtained by solving Eqs. (1) – (6),
and Fig. 12(a) shows the distribution of ψ1ψ2(1− χ) for
Case 1. Figure 12(b) shows the distribution of ψ1ψ2(1− χ)

for Case 2. As shown, regions with high values of ψ1ψ2(1−
χ) correspond to shadow regions, indicating a geometry that
would be problematic to manufacture. We can confirm that
such regions are successfully highlighted using the proposed
fictitious physical models incorporating advection-diffusion
equations, indicating that our proposed method can function
effectively as a DFM tool.
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5.2 Dependency of ψ1 and ψ2 on advection velocity and
parameter β value

To determine appropriate parameter settings, we first exam-
ine the dependency of the fictitious physical fields ψ1 and ψ2
with respect to different settings of the advection velocity VVV
and value for β , defined in Eqs. (1)–(6). In this example, we
use the same model as that shown in Fig. 10(a). That is, we
assume a two-part mold with opposed vertical parting di-
rections for the parts. Values for the diffusion tensor AAA and
advection vector VVV of the fictitious physical models were set
as indicated in Eq. (53). To ensure that the values of the fic-
titious physical fields ψ1 and ψ2 correctly represent shadow
and non-shadow areas, namely that ψ1 and ψ2 are nearly 0
in “light-irradiated” regions and 1 in shadow regions, appro-
priate values for Vy and β must be set. We only deal with ψ1
here, since the properties of ψ1 and ψ2 are very similar. Fig-
ure 13 shows fictitious physical field ψ1 for various settings
of Vy and β , and indicates that β should be set to values at
least 10 times larger than that of the advection velocity, Vy.

5.3 Topology optimization for two-dimensional minimum
mean compliance problem

t u

0.8 m

0
.4

 m

Fixed design domain D

t

Parting direction d

Parting direction -d

Fig. 14 Fixed design domain and boundary conditions of the two-
dimensional problem.

We now combine the proposed method with the level
set-based topology optimization. First, the proposed method
is applied to a two-dimensional minimum mean compliance
problem to confirm the validity and utility of the proposed
molding constraint. Figure 14 shows the fixed design do-
main and boundary conditions. The isotropic linearly elas-
tic material employed has Young’s modulus = 210 GPa and
Poisson’s ratio = 0.31, respectively. The upper limit of the
allowable volume was set to 40% of the volume of the fixed
design domain. The regularization parameter τ was set to
1×10−4. We assume a two-part mold that parts in opposite
directions along the y-axis for this two-dimensional prob-
lem. In all of the following examples of the two-dimensional

problem, the diffusion tensor AAA and advection vector VVV of
the fictitious physical models were set as indicated in Eq. (53),
and parameter β was set to 10Vy. In the following examples,
we examine the dependency of the optimal configurations
on the value of parameter γ and on the initial configuration.

5.3.1 Dependency of optimal configurations on parameter γ

First, we examine the dependency of the optimal configura-
tions with respect to different settings of parameter γ . In this
example, Vy was set to 100 and the fixed design domain was
filled with material for the initial configuration.

Various obtained optimal configurations are depicted in
Fig. 15(a)–(g). The optimal configuration obtained in the ab-
sence of a molding constraint is shown in Fig. 15(a), for
comparison, and we observe that several interior voids are
present, indicating that this configuration cannot be manu-
factured by casting or injection molding. On the other hand,
the optimal configurations in Fig. 15(c)–(g) show geomet-
rical features that are appropriate for manufacturing when
the mold parting direction is set along the y-axis. However,
as shown in Fig. 15(b), when γ is set to a relatively small
value, the molding constraint fails to prevent the inclusion
of void areas in the optimal configuration. When γ is set to
too large a value, the performance of the obtained optimal
configuration (Fig. 15(g)) is considerably below that of the
other configurations (Fig. 15(a)–(f)). However, the obtained
optimal configurations are almost identical when γ is set in
the range of 0.5–10. Consequently, we can confirm that opti-
mal configurations with appropriate manufacturability show
little dependency on the value of weighting coefficient γ .

5.3.2 Dependency of optimal configurations on the initial
configuration

Next, we examine the dependency of the optimal configu-
rations with respect to different setting of the initial con-
figurations, using three different configurations. The initial
configuration for Case 1 has material filling the fixed design
domain, a configuration of eight holes for Case 2, and ma-
terial filling only the lower half of the fixed design domain
for Case 3. In this example, γ and Vy were set to 1 and 100,
respectively.

Initial, intermediate, and obtained optimal configurations
are shown in Fig. 16. The obtained optimal configuration are
almost identical in these three cases, so we confirm that the
dependency of the optimal configurations on the initial con-
figuration is extremely low. Furthermore, the results shown
in Fig. 16 demonstrate that intermediate results during the
optimization procedure can violate the molding constraint,
although it is satisfied in the final optimal configurations.
This advantageous behavior occurs because the proposed
method does not restrict the design space, but imposes the
molding constraint via the fictitious physical models.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 15 Optimal configurations: (a) without molding constraint, mean compliance = 2.90×10−8 J; (b) γ = 0.1, mean compliance = 2.91×10−8

J; (c) γ = 0.5, mean compliance = 2.97×10−8 J; (d) γ = 1.0, mean compliance = 2.97×10−8 J; (e) γ = 5.0, mean compliance = 2.97×10−8 J;
(f) γ = 10, mean compliance = 2.97×10−8 J; (g) γ = 50, mean compliance = 3.17×10−8 J.

Initial configuration Step 30 Step 60 Optimal configuration

(a)

Initial configuration Step 30 Step 60 Optimal configuration

(b)

Initial configuration Step 30 Step 60 Optimal configuration

(c)

Fig. 16 Initial configurations, intermediate results and optimal configurations: (a) Case 1; (b) Case 2; (c) Case 3.
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Fig. 17 Fixed design domain and boundary conditions of the three-
dimensional minimum mean compliance problem.

5.4 Topology optimization for three-dimensional minimum
mean compliance problem

We now apply the proposed method to a three-dimensional
minimum mean compliance problem. Figure 17 shows the
fixed design domain and the boundary conditions. Since the
design model is symmetrical, the fixed design domain is de-
fined as only the left half of the illustrated design domain.
The inner surfaces of the cylindrical shapes are fixed and
the applied traction ttt is described as follows:

ttt =


1000 N 0≤ y≤ 0.25
500 N 0.75≤ y≤ 1.0
0 N otherwise,

(54)



14 Yuki Sato et al.

(a)

(b)

(c)

Fig. 18 Optimal configurations for the three-dimensional minimum mean compliance problem: (a) non-geometrical constraint, mean compliance
= 8.05×10−10 J; (b) uniform cross-section surface constraint, mean compliance = 8.64×10−10 J; (c) proposed molding constraint imposed, mean
compliance = 8.19×10−10 J.

Fig. 19 Optimal configuration for the three-dimensional minimum mean compliance problem with predetermined mold parting line, mean com-
pliance = 8.37×10−10 J.

where y = 0 at the upper surface of the design model. The
isotropic linearly elastic material has Young’s modulus =
210 GPa and Poisson’s ratio = 0.31, respectively. The up-
per limit of the allowable volume was set to 40% of the vol-
ume of the fixed design domain. We again assume the use
of a two-part mold with parting directions opposed along
the y-axis. In this problem, to demonstrate the effectiveness
of the proposed method, we compare the optimal configura-
tions obtained without a geometrical constraint, when using
a uniform cross-section surface constraint, and when using
the molding constraint. The regularization parameter τ was
set to 1× 10−4 except for the case of the uniform cross-
section surface constraint, where the x and z components of
τττ in Eq. (24) were both set to 1×10−4 and the y component

of τττ was set to 1×10−1. In the fictitious physical models de-
fined in Eqs. (1)–(6), diffusion tensor AAA and advection vector
VVV of the fictitious physical models were set as follows:

AAA =

ε 0 0
0 1 0
0 0 ε

 , VVV =

 0
Vy
0

 , (55)

where ε = 10−2. Parameters γ and Vy were set to 1 and 100,
respectively.

Figure 18 shows the obtained optimal configurations.
The optimal solution shown in Fig. 18(a) that was obtained
only by focusing on improvement of the physical perfor-
mance has the smallest mean compliance among these three
solutions, although manufacturing this configuration by cast-
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Fig. 20 Fixed design domain and boundary conditions of the optimum design problem for compliant mechanism.

(a)

(b)

Fig. 21 Optimal configurations for the optimum design problem of a compliant mechanism obtained (a) without the molding constraint (mutual
mean compliance = 2.66×10−10 J); and (b) with molding constraint imposed (mutual mean compliance = 2.43×10−10 J).

ing might be difficult since an undercut is included no matter
where the parting surface is set. On the other hand, the opti-
mal configuration shown in Fig. 18(b), obtained by imposing
a uniform cross-section surface constraint, is simple enough
to be manufactured by casting. As is obvious, however, the
physical performance, i.e. the mean compliance, of this re-
sult is not as good as that of the optimal solution shown in

Fig. 18(a). The optimal configuration shown in Fig. 18(c)
also has favorable manufacturability and the mean compli-
ance is lower than that for Fig. 18(b). Therefore, the optimal
solution obtained when imposing the molding constraint is a
better design candidate when manufacturability is a prereq-
uisite.
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(a) (b) (c)

Fig. 22 Mold parts and parting directions for manufacturing the optimal configuration obtained with molding constraint imposed: (a) ddd1 (Mold
part 1); (b) ddd2 (Mold part 2); (c) ddd3 (Mold part 3).

Mold part 3

Mold part 4

Mold part 1 Mold part 2

Fig. 23 Sequential separation of molds parts.

5.4.1 Predetermination of parting line location

Next, we examine the effectiveness of predetermining the
location of the parting line for a two-part mold. We assume
a two-part mold with opposed parting directions along the
y-axis, with the parting line predetermined on the surface
y = 0.05, i.e., at middle of the design domain, based on the
formulation in Section 2.4. All parameters are the same as
those used in Section 5.4.

Figure 19 shows the optimal configuration. The mean
compliance of the optimal configuration here is lower than
that of the optimal configuration shown in Fig. 18(b), al-
though it is higher than that of the optimal configuration
shown in Fig. 18(c), where the molding constraint is im-
posed but the parting line is not predetermined. This result
indicates that the optimal configuration with the parting line
location preset at y = 0.05 can be manufactured, and that
setting the location of the mold parting line prior to the op-

timization procedure is a useful alternative to allowing the
proposed method to determine the location.

5.5 Topology optimization for an optimum design problem
of a compliant mechanism

The proposed method is now applied to an optimum design
problem for a compliant mechanism. In this example, the
molds for manufacturing the optimized structure will also
be designed. Figure 20 shows the fixed design domain and
the boundary conditions. Since the design model is symmet-
rical, the fixed design domain is defined as the upper half
of the design domain. A traction, ttt in, is applied at bound-
aries ttt in that are fixed along the x and y axes. The isotropic
linearly elastic material has Young’s modulus = 210 GPa
and Poisson’s ratio = 0.31, respectively. The upper limit of
the allowable volume was set to 20% of the volume of the
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(a) (b)

Fig. 24 Deformed shapes of optimal configurations for the optimum design problem for a compliant mechanism obtained (a) without the molding
constraint; (b) with the molding constraint.

fixed design domain. We assume that a four-part mold will
be used to manufacture the obtained compliant mechanism
design, and let the parting directions be denoted as ddd1, ddd2,
ddd3 and ddd4, as shown in Fig. 20. The regularization parame-
ter τ was set to 1×10−4. Due to the symmetry of the design
model and the definition of the fixed design domain, we in-
troduce three fictitious physical models that correspond to
mold parts with parting directions ddd1, ddd2, and ddd3. In the fic-
titious physical models defined in Eqs. (11)–(13), the diffu-
sion tensors AAAi and advection vectors VVV i for i = 1,2,3 of the
fictitious physical models were set as follows:

AAA1 = AAA2 =

ε 0 0
0 1 0
0 0 ε

 , AAA3 =

ε 0 0
0 ε 0
0 0 1

 , (56)

VVV 1 =

 0
−Vy

0

 , VVV 2 =

 0
Vy
0

 , VVV 3 =

 0
0
Vz

 , (57)

where ε = 10−2. Parameter γ was set to 5, and Vy = Vz =

100.
Figure 21 shows the obtained optimal configurations.

The optimal solution shown in Fig. 21(a) obtained when fo-
cusing only on improvement of the physical performance
has a larger mutual mean compliance than that of the re-
sult shown in Fig. 21(b) that was obtained considering the
manufacturability. However, the optimal solution obtained
when considering the manufacturability has a simpler struc-
ture than that obtained without the molding constraint im-
posed, which facilitates manufacturing by casting.

Figure 22 shows the mold parts for manufacturing the
optimal configuration shown in Fig. 21(b). Mold part 4, whose
parting direction is ddd4, is identical to that shown in Fig. 22(c)
due to the symmetry of the fixed design domain. The shapes
of the mold parts are obtained using Eq. (16). As mentioned
in Section 2.3, when certain domains intersect, such domains
can be included in any relevant mold part. Here, the order in

which the mold parts are separated depends on which inter-
secting domains are included in particular mold parts. In the
example shown in Fig. 22, Mold part 3 consists of M3, Mold
part 1 consists of

(
M1∩Dy+

)
\M3, and Mold part 2 con-

sists of
(
M2∩Dy−

)
\M3, where Dy+ and Dy− are defined as

follows:

Dy+ = {∀xxx ∈ D : y≥ 0} , (58)

Dy− = {∀xxx ∈ D : y < 0} , (59)

where y = 0 at the center of the design model. In the cur-
rent case, the order in which the mold parts are parted from
the cast object is illustrated in Fig. 23. First, Mold part 3
and Mold part 4 are parted and then Mold part 1 and Mold
part 2 are parted. That is, Mold part 1 and Mold part 2 oper-
ate as casting cores, and the optimal configuration obtained
considering the molding constraint is appropriate for man-
ufacture by casting. Note that this mold part design does
not include gates, through which molten material enters the
mold.

Figure 24 shows the deformed shapes of the two ex-
amples of the compliant mechanism three-dimensional de-
sign problem. As shown, the optimal configuration obtained
when the molding constraint is imposed deforms in the spec-
ified direction, confirming the utility of the proposed method.

6 Conclusion

This paper presented a method for evaluating the manufac-
turability of designs when using casting, based on the use of
fictitious physical models, and extended it to a scheme for
imposing a molding constraint within a topology optimiza-
tion procedure. We achieved the following:

1. The geometrical requirements for manufacturability us-
ing molds were clarified, aiming to facilitate the creation
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of molds in situations where design engineers must en-
sure that the components do not incorporate undercuts
or interior voids.

2. Fictitious physical models were introduced to implic-
itly represent the manufacturability when using casting
or injection molding techniques. The fictitious physical
models were mathematically described using advection-
diffusion equations. A molding constraint for use in a
structural optimization process was then formulated us-
ing the fictitious physical models.

3. In the numerical implementation, an optimization algo-
rithm was constructed and the non-dimensional sensitiv-
ity was used to enable simple adjustment of a weighting
coefficient.

4. Two- and three-dimensional numerical examples were
provided. The dependencies of the distribution of the
fictitious physical fields on the setting of advection ve-
locity VVV and parameter β were examined. The proposed
method was then applied to topology optimization de-
sign problems and obtained manufacturable optimal con-
figurations.

5. In two-dimensional design problems, optimal configura-
tions obtained for each numerical example demonstrated
a very low dependency on the setting of the molding
constraint weighting coefficient (parameter γ), and the
initial configurations.

6. In the minimum mean compliance problem, the proposed
method provided an optimal configuration that was man-
ufacturable and had the lowest mean compliance except
for the optimal configuration where a molding constraint
was not imposed, which could not be manufactured. Fur-
thermore, we demonstrated that the proposed method
can set the location of the parting line relative to mold
parts prior to the optimization procedure.

7. An optimal design for a compliant mechanism to be man-
ufactured using a four-part mold was obtained. The ob-
tained optimal configuration deformed in the specified
direction even though the molding constraint was im-
posed.

The authors hope to conduct future research to construct
a topology optimization method that can consider the entire
casting process, including the determination of optimal lo-
cations of parting lines and gate layout.
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