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Abstract

Numerical verification of postseismic crustal deformation analysis, computed using a large-scale finite
element simulation, was carried out, by proposing new criteria that consider the characteristics of the
target phenomenon. Specifically, pointwise displacement was used in the verification. In addition,
the accuracy of the numerical solution was explicitly shown by considering the observation error of
the data used for validation. The computational resource required for each analysis implies that high-
performance computing techniques are necessary to obtain a verified numerical solution of crustal de-
formation analysis for the Japanese Islands. Such verification in crustal deformation simulations should
take on greater importance in the future, since continuous improvement in the quality and quantity of
crustal deformation data is expected.

Keywords:

1 Introduction

Numerical simulation is widely used in science and engineering. To assure the quality of results ob-
tained by numerical simulation, a process known as “verification and validation (V&V)” has been
proposed[18]. Verification is a process that checks whether a numerical model assumed for a certain
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physical phenomenon (e.g., a partial differential equation) is solved correctly by the simulation code.
This process is typically used for setting an appropriate discretization size, within which the numerical
solution converges. Validation is a process that checks whether the numerical model reasonably explains
the target physical phenomenon. This classification avoids confusion when discussing differences be-
tween results of numerical solutions and actual observation data.

In the field of solid earth science, coseismic (during an earthquake) and postseismic (after an earth-
quake) crustal deformation due to fault dislocation in a subduction zone has been studied. The time and
spatial scale of the deformation is of the order of 10° ~ 10! years and 10°km x 10°km horizontally,
respectively. Many studies have used analytical solutions with simplified structures [14][4] to calculate
crustal deformation, since analytical solutions do not require the same computational power as numeri-
cal solutions. However, since interplate faulting in a subduction zone has a complex and heterogeneous
three-dimensional (3D) structure, numerical simulation methods; e.g., finite element (FE) methods, are
suitable for analyzing deformation around this system. Some recent studies attempted to use an FE
model at a relatively low resolution to include the 3D structure of the subduction zone in the simulation
[12] [17]. Ongoing development of observational techniques has yielded more detailed data on crustal
deformation and crustal structure. In Japan, for example, crustal deformation data have been collected
by GEONET [5], the observation error of which is of the order of mm. In focal regions of subduction
earthquakes, some observation systems are already in service with observation errors of the order of cm
(e.g., DONET [10]). Detailed geometric data of 3D heterogeneous crustal structure are also available in
those focal regions (e.g., Koketsu et al. [11]). Crustal deformation data are used for validation of nu-
merical simulation results or inversion analysis of earthquake fault slips, while crustal structure data are
applied to construction of numerical simulation models. It is desirable to carry out simulations of crustal
deformation at a resolution and accuracy similar to those data, at the appropriate time and spatial scales
for the target problem. This is not, however, an easy task: even with the newest computational environ-
ments, construction of simulation models and performing the simulation itself becomes computationally
costly.

To overcome the problem of computational cost, high-performance computing (HPC) is necessary.
Ichimura et al. [9] developed a tool to compute coseismic and postseismic crustal deformation on a
large-scale computer such as the K computer, currently the fastest supercomputer in Japan, using an
FE model of similar high-fidelity to the crustal structure data (HFM: high-fidelity model). That paper
mainly discussed a fast and scalable computational method. We expect that such a high-fidelity crustal
deformation simulation method will become a standard tool for analyzing crustal deformation, as more
global crustal structure data of subduction zones are expected to be available in the future. To discuss
the necessity for high-fidelity analysis, it is also important to examine the quality of simulation results.
However, none of the verification methods used in other fields are applicable to the target simulation. For
instance, the typical verification methods used in computer-aided engineering (CAE) are based on stress
distribution [8]. In computational seismology, some studies (e.g., Martin [3]) used criteria to quantify
the level of agreement between two wave forms such as the goodness-of-fit scores [2]. These verification
criteria are not applicable to the characteristics of crustal deformation simulations; the simulation results
need to be compared with pointwise displacement data spread across a wide area.

In this paper, we seek to carry out verification of the numerical solutions computed in [9] by checking
the convergence of the numerical solution. To clarify the accuracy of the results which the problem
setting provides, we propose new verification criteria that are more suitable for the characteristics of the
crustal deformation simulation mentioned above. For the evaluation of accuracy, we also consider the
observation error of crustal deformation data to be used for validation, inversion analysis of earthquake
fault slip, etc. We also discuss the computation time for the target simulation to show that HPC facilities
are essential to assure the quality of the simulation results.
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2 Target problem

Details of the target problem for verification are provided in Ichimura et al. [9], and described briefly
here. We describe coseismic and postseismic crustal deformation as linear elasticity and the Maxwell
model of viscoelasticity, as:

i+ fi=0,

1
Oij = Aéudij + 21&;j — %(O-ij - go'kkfsij),

€j = 5 (ij + uji)-

Here, o7, f; are the stress tensor and outer force. ( ), ( ).i»0ij» 1, €ij, w; are first-order derivative in
time, first-order derivative in the ith coordinate, Kronecker delta, viscosity coefficient, strain tensor and
displacement, respectively. A, u are Lame’s constants. These governing equations are for the Maxwell
model, and equivalent to those of linear elasticity when 7 = co. Since the equations do not include the
acceleration term, the problem can be solved as a quasi-static problem, and so a larger time-step length
can typically be taken. We used an FE method to solve the equation using the formulation of Parker
et al. [15], after which the problem becomes equivalent to the solution of a linear equation in Ku = f
for each time step. Earthquake fault slip was introduced by using the split-node technique [13], and
Dirichlet boundary conditions were imposed at the sides and bottom of the target domain. Specifically,
displacements in the normal direction at points on the side and bottom planes are fixed to zero, while
there are no imposed values in other directions [1]. To solve Ku = f on a large-scale supercomputer
such as the K computer, Ichimura et al. [9] developed a scalable and fast linear solver. The basic
algorithm consists of a Conjugate Gradient method and Element-by-Element method [13] to achieve
memory efficiency. To improve the convergence of the CG solver, an adaptive preconditioner was used
in combination with a multigrid approach based on elements of different polynomial orders. The code
was parallelized using both Message Passing Interface (MPI) and OpenMP (hybrid parallelization). We
computed response displacement due to a point source in a multilayered elastic/visco elastic half—space
using the method above, and compared the numerical solution with an analytical solution computed
using the method of Fukahata and Matsu’ura [4]. We found our numerical solution agreed well with the
analytical solution [9].

The target problem is a simulation of coseicmic and postseismic crustal deformation of the Japanese
Islands due to the 2011 Tohoku-oki Earthquake. The target domain for the analysis is shown in Figure
1. To carry out FE analyses, we need geometry data for the crustal structure of the Japanese Islands, to
construct an FE mesh. For the ground surface, JTOPO30, an elevation data set in 900-m resolution, was
used. For the Philippine Sea Plate and Pacific Plate, two types of data were applied: For the focal region,
the detailed data of Koketsu et al. [11] were used, whereas the CAMP model [6] was used elsewhere.
The thickness of the elastic layer of the continental plate and the elastic slab of the Philippine Sea Plate
were set to be 30 km, and the elastic slab of the Pacific Plate to be 80 km. Viscoelastic layers were
located below each elastic layer. The viscosity of the viscoelastic layers was set to be n = 5 x 10'3Pa s
following Hashimoto et al. [6]. For FE mesh construction for HFM, we used a meshing technique
using a background grid[9]. This method allows to set an arbitrary mesh resolution ds in the interface
between each layer, with slight approximation of geometry to maintain the mesh quality. At the same
time, unnecessary elements are merged to generate larger elements elsewhere. A quadratic tetrahedral
element type was used (Figure 2). Hereafter, “mesh size” also refers to ’ds”, the resolution of the layer
interface. Figure 3 shows the FE model constructed for the target area. The mesh is constructed in a
Cartesian coordinate system. The target area is 0 < x < 2944 km west-to-east, 0 < y < 2752 km
south—to—north, and -850 < z < 0 km vertically. In construction of the basic settings used hereonin,
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Figure 2: Two-dimensional schematics of FE mesh con-
struction for HFM. We set arbitrary resolution of mesh ds
in the interface between each layer by using background
grid. At the same time, unnecessary elements are merged
to generate larger elements elsewhere. The element type
is quadratic tetrahedral element.

Figure 1: The target domain for our
simulation (black dashed line) and the
input fault slip of the 2011 Tohoku-oki
Earthquake[20] (color contour).

Continental
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. B Pacific
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2944km
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Overview Close-up view

Figure 3: HFM constructed in the target domain. The ground surface is divided by the plate for the
continent, Philippine Sea Plate, and Pacific Plate. The close-up view shows that the FE mesh represents
the geometry of each layer in details.

the degrees-of-freedom of the FE model was 9,997,100,409, and the number of quadratic tetrahedral
elements was 2,479,581,830. For earthquake fault slip in the 2011 Tohoku-oki Earthquake, we input the
fault-slip distribution estimated by Yagi et al. [20] onto the fault plane of this model. The location of
the fault plane is also shown in Figure 1.
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3 Evaluation method of accuracy

The goal of verification is to estimate the numerical error caused by the discretization [18]. Studies
of FE analyses often use Richardson extrapolation for this purpose, by using numerical solutions with
different descretization sizes to analyze convergence rate [16]. On the other hand, approximation of
geometry is necessary to maintain the mesh quality in the process of constructing FE mesh in such a
large domain as our target, as mentioned in Section 2. We have confirmed that numerical solutions
computed by our method approaches certain values as the discretization size gets smaller, by drawing
convergence curve associated with our numerical solution. However, we also found that slight change
in geometry is sensitive to the convergence curve with respect to the discretization sizes, which made
it difficult to apply error analysis using Richardson extrapolation to our computation method. Thus we
need an alternative verification strategy, and so made it as following. Based on the fact that the numerical
solution approaches to certain value as the discretization size gets smaller, we seek to find certain spatial
discretization size with which the error is expected to be sufficiently small. We used the same approach
for the time step length and the domain size. Here, for simplicity, we firstly present basic settings based
on some prescribed analyses. By comparing the solution using basic settings with those of a different
mesh size, time-step length and target domain, we show convergence of the solution using basic settings.
For the basic settings, ds=1000m, d¢t=30days, and the target domain is that shown in Figure 1. Here
we define Model A as an FE model with the same parameters as the basic model but with ds=750m,
Model B as an FE model with the same parameters as the basic model but with dt=15days and Model
C as an FE model where the side and bottom surfaces of which are extended by 64km to the normal
direction (See the summary of model settings in Table 1). On land, we used 1198 observation points,
which were equivalent to the locations of GEONET observation points included in the target domain.
On the seafloor, out of those serviced by the Japan Coast Guard and Tohoku University, the seven points
that were studied in Sun et al. [17] were used.

As discussed previously, simulation results of postseismic crustal deformation are usually used in
pointwise comparison with crustal deformation data. Note that a pointwise metric is stricter than the one
based on integrated value, such as norm of displacement vector for whole the target domain, but proper
for typical application problems such as inversion analysis of earthquake fault slip proposed by Yabuki
& Matsu’ura [19]. Therefore, we evaluated the results at the locations of observation points where data
for post seismic crustal deformation have been collected. This manner requires less postprocessing, and
enables relatively clear visualization. For evaluation of convergence with respect to pointwise displace-
ment, we seek to show that changes of computed displacements lie within a certain range when making
changes to mesh size, time-step length and target domain. The term “certain range” refers to a relative
difference of less than 1%. Here we define:

&a = |u'(r) — u(r)|
uw'(r) — u(r)
& =————I,
u(r)

where ¢,, €, are absolute and relative differences, and u(r) and «’'(r) are displacements in Point r com-
puted with the basic settings and with the amended parameters. However, if the magnitude of the
displacement is significantly small, the relative difference tends to be larger. It is therefore not always
easy to evaluate these points using only relative difference. Hamanaka [7] reported that the observation
errors of GEONET routine solutions are 2 mm horizontally and 1 cm vertically, which we used for eval-
uation of g, hereafter. Here, we determined that if the absolute value of the displacement is smaller than
the observation error, the solution at that point is also included within the acceptable “certain range”
without any additional conditions. In other words, at each observation point, the conditions

Horizontal:
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Table 1: Comparison of the settings of the four models.

ds dt area
Basic setting  1000m  30days Figurel
Model A 750m  30days Figurel
Model B 1000m  15days Figurel

Model C  1000m  30days Figurel+64km in the side and bottom planes

C}l = (u < 200mm A &, <2mm),
C2 = (u>200mm A & <0.01),

C;L \% Cﬁ = {true},

Vertical:
CV' = (u < 1000mm A g, < 10mm) ,
C? = (u > 1000mm A &, <0.01),

C! v C? = {true),

should be satisfied. Note that observation error is used only to decide which error to use as a metric
for the evaluation, relative or absolute, and so we do not use any physical measurement values in this
process. It is natural to introduce criteria which are coordinate-dependent, because errors in simulations
or observations are sometimes coordinate-dependent (in our case, GEONET routine solutions error as
mentioned above). The expressions are written in such a way that they are convenient for evaluation
or visualization of differences, because all points are easily divided into two groups depending on the
displacement value, as shown in the next section.

4 Results

Firstly we show the simulation results using HFM with the basic settings. The accumulated postseismic
crustal deformation(coseismic + postseismic) for 10 years after the earthquake (including coseismic
deformation) are shown in Figure 4. After the elastic response due to coseismic fault slip, viscoelastic
response due to relaxation of stress merely contributes the difference of displacement between coseismic
deformation and postseismic crustal deformation.

Next, we show the difference in the simulation results of the accumulated postseismic crustal de-
formation using models A, B and C. We plotted relative difference and absolute difference in the same
figure because absolute error is used for checking the condition C ;l (or Ci) and relative error for C,% (or
C?). Hence the observation points for checking C }L and Ci (or C! and C?) do not overlap with each
other. Relative error is plotted in blue and gold coloration, while absolute error is plotted in green and
red. Since these two legends do not have common color with each other, the readers can judge which
kind of error is being evaluated in a specific evaluation point only by its color. In cases where the value
of the error was larger than the maximum value of the color bar in the legend, the point has been plotted
in orange. Figure 5 illustrates the differences between the basic model and Model A. At almost all of
the points, the difference is significantly small. In the z component, larger differences can be seen in
seafloor observation points and in the Tohoku area. Figure 6 illustrates the differences between the basic
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Figure 4: Coseismic and postseismic deformation (10 years after the earthquake) due to earthquake
fault slip computed by HFM. Note that the displacements are plotted in different scales according to
their location, whether on the land and on the seafloor.
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Figure 5: Comparison between the basic model and model A (ds = 750m). Relative error is plotted with
a color legend of blue and gold, while absolute error green and red. In z component, larger differences

can be seen in seafloor observation points and Tohoku area. There are no orange points, which means
the numerical solution satisfies the criteria.
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Figure 7: Comparison between the basic model and model C (boundaries are extended by 64km). Rel-
ative error is plotted with a color legend of blue and gold, while absolute error green and red. In the
x component, larger difference can be seen in the locations far from the focal region than in the other
components. There are no orange points, which means the numerical solution satisfies the criteria.
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model and Model B. Again differences are significantly small at almost every point. Also, the influence
of time-step length on these differences appears to be independent of point location. Figure 7 illustrates
the differences between the basic model and Model C. In the x component, larger differences can be
seen at locations far from the focal region than in the other components. This is probably because de-
formation in the x component is significantly larger than that of the other components (See Figure 4):
The error due to the Dirichlet conditions imposed in the model boundaries may be expected to increase.
Although the difference between these figures reflects the characteristics of the variable parameter, there
are no orange points in any of the figures. This suggests that numerical solution of the basic model
satisfies the criteria given in Section 3.

To compute a 10-year simulation using the basic model, we used 8192 nodes on K computer (1/10 of
the entire resource) for 2.4 hours. It is clear that greater computation resources are needed for equivalent
analyses using Models A, B and C due to their finer discretization or larger area. In addition, many
prescribed analyses have been carried out for determining the basic system. These facts indicate that
HPC techniques, which enable our scalable program to run on a state-of-the-art supercomputing system
such as the K computer, are indispensable for this type of verification analysis.

5 Concluding remarks

Although verification, one of the two components of V&V,is important for assuring the quality of results
obtained by numerical simulation, explicit verification has not been commonly applied to numerical sim-
ulation of crustal deformation. In this paper, we carried out numerical verification of the problem solved
using HFM [9], by checking the convergence of numerical solutions with respect to mesh size, time-step
length, and target domain. Since our computation method, specialized for an analysis in a large target
domain, cannot apply widely used verification methods such as error analysis using Richardson extrap-
olation, we took another verification strategy. Specifically, considering the characteristics of crustal
deformation simulation, we proposed verification criteria which used pointwise displacement for ver-
ification. In our criteria, the accuracy of the numerical solutions was explicitly shown by considering
the observation error of the data used in validation. The computational time required for each analysis
implies that HPC facilities are necessary for such verification, for crustal deformation analysis of the
Japanese Islands. HPC in combination with such a verification method may be expected to assure the
quality of crustal deformation simulations.

The quantity of crustal deformation data, in particular, seafloor observation data at high accuracy, is
expected to increase in the future. Carrying out verification in simulations of crustal deformation will
become more important in analysis of these data.
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