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1 Introduction

Conformal field theories (CFTs) with large N structure are quite important since they

can be utilized to investigate holographic dual gravity theory among others. In particular,

CFTs with higher spin symmetry broken in 1/N are useful to examine symmetry breaking

in dual higher spin gauge theories. In [1, 2], the critical O(N) scalar model and the

Gross-Neveu model [3, 4] in d dimensions were studied, and the anomalous dimensions of

higher spin currents in these models were reproduced by applying the method of conformal

perturbation theory. A famous example of higher spin gauge theory on AdS space is given

by Vasiliev theory [5–7], and the two models are supposed to be holographic dual to the

type A and type B Vasiliev theories [8–10]. The anomalous dimensions of higher spin

currents correspond to the masses of higher spin fields, and the CFT computation in the
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conformal perturbation theory was interpreted from the bulk theory in terms of Witten

diagrams. This paper addresses a continuation of these works.

Higher spin gauge theory is expected to describe superstring theory in the tensionless

limit [11], and turning on string tension should correspond to breaking higher spin gauge

symmetry. In [1, 2], the double-trace type deformations of free O(N) bosons and free

U(N) fermions were examined, but there are only two fixed points, where one of them

is free and the other is interacting with higher spin symmetry broken in 1/N . Since the

string tension is a parameter of theory, it should be mapped to a marginal deformation of

CFT dual to higher spin gauge theory. Therefore it is better to work on a model which

has higher spin dual and admits marginal deformations. As a simple example, we examine

N = 2 supersymmetic U(N) model with N free complex scalars and fermions in three

dimensions.1 The model is proposed to be dual to a supersymmetric Vasiliev theory on

AdS4 [9, 10], and it admits deformations exactly marginal at least to the 1/N order.

We compute the anomalous dimensions of higher spin currents in the deformations

of supersymmetric model to the 1/N order but to all orders in deformation parameters

mainly with the help of conformal perturbation theory. Furthermore, we interpret the

CFT computation in terms of bulk higher spin theory. Let us denote φi and ψi (i =

1, 2, . . . , N) as the free complex bosons and fermions in the supersymmetric model. A

marginal deformation of the theory is given by

∆λS = λ

∫
d3xO(x)Õ(x) (1.1)

with O = φ̄iφi and Õ = ψ̄iψi. The scalar operators are dual to bulk scalar fields, and the

deformation corresponds to mixing the boundary conditions of these scalars [16]. Higher

spin symmetry is broken with non-zero λ, and the anomalous dimensions of higher spin

currents are obtained to the 1/N order but to all orders in λ, see (3.22) below. There is

another type of marginal deformation as

∆κS = κ

∫
d3xK̄(x)K(x) (1.2)

with K = φ̄iψi and K̄ = ψ̄iφi. The fermionic operators are dual to bulk fermionic fields,

and the deformation corresponds to mixing the boundary conditions of these spinors. The

anomalous dimensions of higher spin currents are computed to the 1/N order but to all

orders in κ, see (4.19) below.2 We can include both the deformations simultaneously, and

supersymmetry is preserved when 2λ = κ.3

1Another type of examples are given by Chern-Simons-matter theories in three dimensions [12–14], and

the anomalous dimensions of higher spin currents have been computed in [15] recently.
2The anomalous dimensions are computed in conformal perturbation theory up to the κ2 order. Higher

order corrections in κ are examined in a different method as used in [17] for the Gross-Neveu model in 1/N -

expansion. The method is enough to obtain the all order expression of anomalous dimensions. However, it

is suitable to use the conformal perturbation theory if one wants to relate with dual higher spin theory.
3The condition can be derived by writing the marginal deformation preserving supersymmetry with

superfields and expanding it in terms of component fields as was done in [9]. The same condition can be

obtained also from the dual gravity theory. The boundary conditions of bulk scalars and spinors preserve

supersymmetry when their deformation parameters are the same, see, e.g., [18]. The parameters correspond

to λ̃, κ̃ in (3.14), (4.13), thus the condition is deduced from λ̃ = κ̃.
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Figure 1. One-loop Witten diagram for the two point function of dual higher spin current.

. . . . . . 

. . . 

Figure 2. Bulk-to-bulk propagator along the loop may be replaced by the product of bulk-to-

boundary operators and boundary two point functions.

We adopt the conformal perturbation theory to compute the anomalous dimensions,

which enables us to borrow the previous results in [1, 2]. The main reason to use the method

is that the CFT computation can be understood in terms of bulk theory. The relation is

known between the masses of higher spin fields and the anomalous dimensions of dual

higher spin currents, which may be read off from two point function of the currents. The

two point function is computable from the bulk theory through Witten diagrams and the

contributions to anomalous dimensions arise from loop diagrams as in figure 1. However,

the bulk one-loop computation is notoriously difficult in higher spin gauge theory as is well

known for gravity theory with spin two gauge field.

In [1, 2] (based on previous works in [19–21]) the difficulty is evaded by utilizing the

Witten’s argument in [16] that deforming boundary theory by double-trace type operators is

dual to changing the boundary condition of dual bulk fields. Once we admit the dictionary,

the diagram with modified bulk-to-bulk propagators along the loop can be rewritten as a

product of tree diagrams only with bulk-to-boundary propagators and boundary two point

functions as in figure 2. Furthermore, we can see that the bulk computation with tree

Witten diagrams is equivalent to the boundary one in the conformal perturbation theory

to the 1/N order. Therefore, what we have to do is to show that the modification of

bulk-to-bulk propagators can be written only in terms of bulk-to-boundary operators and

boundary two point functions without relying the AdS/CFT dictionary. This was already

done for the bulk scalar fields in [19–21]. For the holography with 3d O(N) scalars, it was

applied in [1], and the same idea was already suggested in [20]. In this paper, we first

– 3 –



J
H
E
P
0
3
(
2
0
1
7
)
0
4
7

repeat the analysis of [21] in a slightly different way as was done in [19, 20], and then apply

it to the case with bulk spinor fields.

The organization of this paper is as follows; in the next section, we introduce the

supersymmetric model with free bosons and fermions, and write down our notation for

higher spin currents. Then we explain how to read off the anomalous dimensions form two

point functions of higher spin currents in conformal perturbation theory. In section 3, we

compute the anomalous dimensions in the presence of deformation (1.1). We first obtain

them to the λ2 order and then incorporate higher order corrections. In subsection 3.3, we

re-examine the model in the formulation with auxiliary fields. In section 4, we study the

case with another marginal deformation (1.2). In section 5, we derive the map from the

one-loop diagram as in figure 1 to a product of tree Witten diagrams as in figure 2. We first

reproduce the known result with bulk scalar propagators and then extend the analysis to

the case with bulk spinor propagators. Section 6 is devoted to conclusion and discussions.

In appendices, the detailed computations of Feynman integrals are given.

2 Preliminary

We examine supersymmetric U(N) model in three dimensions consisting of N complex

scalars φi and Dirac fermions ψi (i = 1, 2, · · · , N). The free action is given by

S =

∫
d3x

[
∂µφ̄

i∂µφi + ψ̄i/∂ψi
]
, (2.1)

where the Gamma matrices satisfy {γµ, γν} = 2gµν . Two point functions are

〈φi(x1)φ̄j(x2)〉 = Cφ
δij

|x12|
, 〈ψi(x1)ψ̄j(x2)〉 = −Cφ/∂1

δij

|x12|
, Cφ =

1

4π
(2.2)

in the coordinate representation and

〈φi(p)φ̄j(−p)〉 =
δij

|p|2
, 〈ψi(p)ψ̄j(−p)〉 = −

i/pδij

|p|2
(2.3)

in the momentum representation. Here and in the following we adopt the formula of Fourier

transform as

Φ(p) =

∫
d3x

(2π)3/2
Φ(x)e−ip·x . (2.4)

In the current case, we should set Φ = φi or ψi.

The free boson and fermion theories have conserved currents Jµ1···µs and J̃µ1···µs with

traceless symmetric indices. Introducing null polarization vector ε with ε · ε = 0, we denote

J εs(x) = Jµ1···µs(x)εµ1 · · · εµs and J̃ εs(x) = J̃µ1···µs(x)εµ1 · · · εµs . For the explicit forms, we

use the conventions in [22] as

J εs(x) =
s∑

k=0

ak∂̂
kφ̄i∂̂s−kφi , ak =

(−1)k

2

(
s
k

)(
s−1
k−1/2

)(
s−1
−1/2

) , (2.5)
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and

J̃ εs(x) =
s−1∑
k=0

ãk∂̂
kψ̄iγ̂∂̂s−k−1ψi , ãk = (−1)k

(
s−1
k

)(
s

k+1/2

)(
s

1/2

) . (2.6)

Here we have represented as

∂̂ ≡ ε · ∂ , γ̂ ≡ ε · γ = /ε . (2.7)

With the expressions, the two point functions are computed as (see [2] and references

therein)

Ds
0 ≡ 〈J εs(x1)J εs(x2)〉 = Cs

(x̂12)2s

(x2
12)1+2s

, Cs = 22s−2NC2
φsΓ(2s) , (2.8)

and

D̃s
0 ≡ 〈J̃ εs(x1)J̃ εs(x2)〉 = C̃s

(x̂12)2s

(x2
12)1+2s

, C̃s = 22sNC2
φs
−1Γ(2s) . (2.9)

The relations

C̃s = 22s−2Cs or D̃s
0 = 22s−2Ds

0 (2.10)

will be used for later analysis.

We deform the free action (2.1) by adding

∆λ,κS = ∆λS + ∆κS , (2.11)

where ∆λS and ∆κS are given in (1.1) and (1.2), respectively. We treat the additional

part in conformal perturbation theory as〈
n∏
a=1

Φa(xa)

〉
λ,κ

=

〈∏n
a=1 Φa(xa)e

−∆λ,κS
〉

0〈
e−∆λ,κS

〉
0

. (2.12)

Here Φa is an operator and the right hand side is computed in the free theory.

In the presence of deformations, the higher spin currents J εs(x) and J̃ εs(x) are not con-

served anymore and possess anomalous dimensions. We read off them from the two point

functions of higher spin currents by using the modified correlators as in (2.12). In the cur-

rent case, there are two types of higher spin currents, and we would meet a diagonalization

problem to obtain the anomalous dimensions, see, e.g., [23]. Denoting two independent

linear combinations as J ε,αs (x) with α = 1, 2, the two point functions are of the forms

〈J ε,αs (x1)J ε,βs (x2)〉λ,κ = Nαβ
s

(x̂12)2s

(x2
12)1+2s+γαβs

, (2.13)

which are fixed by the symmetry. Here we have used x̂12 = ε · x12. We may change the

basis for J ε,αs (x) such that

Nαβ
s = δαβ + nαβs +O(N−2) , Nαβ

s γαβs = δαβγαs +O(N−2) (2.14)

with nαβs , γαs of order 1/N . Then the two point functions become

〈J ε,αs (x1)J ε,βs (x2)〉λ,κ

= δαβ
(x̂12)2s

(x2
12)1+2s

− δαβγαs
(x̂12)2s

(x2
12)1+2s

log(x2
12) + nαβs

(x̂12)2s

(x2
12)1+2s

+O(N−2) . (2.15)
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Therefore, the anomalous dimension γαs of J ε,αs to the 1/N order can be read off from the

factor in front of log(x2
12).

3 Deformation with bosonic operators

In this section we deform the supersymmetric model by (1.1) and compute the anomalous

dimensions of higher spin currents. We first study them to the first non-trivial order in

the deformation parameter λ in the next subsection and then systematically include higher

order corrections in subsection 3.2. In subsection 3.3, we rewrite the deformed action by

introducing auxiliary fields, and examine the relations to previous works on the critical

O(N) scalars and the Gross-Neveu model such as in [2, 24].

3.1 Anomalous dimensions to the first non-trivial order

We deform the free theory by the marginal deformation in (1.1). The two point functions

of the scalar operators O(x) = φ̄iφi and Õ(x) = ψ̄iψi at λ = 0 are given by

〈O(x1)O(x2)〉0 =
NC2

φ

x2
12

, 〈Õ(x1)Õ(x2)〉0 =
2NC2

φ

(x2
12)2

. (3.1)

We would like to compute the two point functions of higher spin currents in the presence

of marginal deformation. The modified correlators in (2.12) to the first non-trivial orders

both in λ and 1/N are

〈J εs(x1)J εs(x2)〉λ = 〈J εs(x1)J εs(x2)〉0 + λ2I1 +O(λ4) , (3.2)

〈J̃ εs(x1)J̃ εs(x2)〉λ = 〈J̃ εs(x1)J̃ εs(x2)〉0 + λ2I2 +O(λ4) , (3.3)

〈J εs(x1)J̃ εs(x2)〉λ = λ2I3 +O(λ4) . (3.4)

Here I1, I2, and I3 are defined by the following integrals as

I1 =
1

2

∫
d3x3d

3x4〈J εs(x1)J εs(x2)O(x3)O(x4)〉0〈Õ(x3)Õ(x4)〉0 , (3.5)

I2 =
1

2

∫
d3x3d

3x4〈J̃ εs(x1)J̃ εs(x2)Õ(x3)Õ(x4)〉0〈O(x3)O(x4)〉0 , (3.6)

I3 =
1

2

∫
d3x3d

3x4〈J εs(x1)O(x3)O(x4)〉0〈J̃ εs(x2)Õ(x3)Õ(x4)〉0 . (3.7)

In order to read off the anomalous dimensions, we need to extract terms proportional to

log(x2
12) from the integrals. Such terms from the above integrals have been already obtained

in [1, 2], so we can just borrow the results there. See appendix A.1 for details.

As explained in the previous section, we need to solve the diagonalization problem to

obtain the anomalous dimensions by choosing a proper linear combination of currents to

satisfying the conditions (2.14). In the present case, the proper choice turns out to be

J ε,±s =
1√
2Cs

J εs ±
1√
2C̃s

J̃ εs . (3.8)

– 6 –



J
H
E
P
0
3
(
2
0
1
7
)
0
4
7

The two point functions of these currents are

〈J ε,±s (x1)J ε,±s (x2)〉λ

= 〈J ε,±s (x1)J ε,±s (x2)〉0 + λ2

[
1

2Cs
I1 +

1

2C̃s
I2 ±

s

2Cs
I3

]
+O(λ4) , (3.9)

where we have used a relation in (2.10). Using the results in appendix A.1, the anomalous

dimensions to the λ2 order and to the leading order in the 1/N -expansion are read off as4

γ±s =
λ2N

12π2

(s− 1)(s+ 1)

(2s− 1)(2s+ 1)
∓ Ps

λ2N

8π2

s

(2s− 1)(2s+ 1)
+O(λ4) (3.10)

with

Ps =
1 + (−1)s

2
. (3.11)

Thus we have

γ±s =
λ2N

12π2

(s− 1)(s+ 1)

(2s− 1)(2s+ 1)
+O(λ4) (3.12)

for odd s and

γ±s =
λ2N

24π2

s∓ 2

2s∓ 1
+O(λ4) (3.13)

for even s. Here J ε,±1 correspond to spin 1 currents for global symmetry U(1) ⊗ U(1) ∈
U(N) ⊗ U(N), which are not broken by the deformation as γ±1 = 0. Moreover, J ε,+2

corresponds to the energy momentum tensor, and hence we have γ+
2 = 0.

3.2 Higher order corrections

We would like to move to the higher order corrections in the λ-expansion. A large part of

corrections can be incorporated simply by replacing the parameter λ2 in (3.12) and (3.13)

by, say, λ2/(1 + λ̃2) with

λ̃ =
N

8
λ . (3.14)

However, not all of the corrections can be treated in this way, and new integrals should be

evaluated as well.

A type of correction can be summarized by the replacements of 〈Õ(x3)Õ(x4)〉0 in (3.5)

by 〈Õ(x3)Õ(x4)〉λ and 〈O(x3)O(x4)〉0 in (3.6) by 〈O(x3)O(x4)〉λ. In the momentum rep-

resentation, the two point functions (3.1) at λ = 0 become

G(p) = 〈O(p)O(−p)〉0 =
N

8

1

|p|
, G̃(p) = 〈Õ(p)Õ(−p)〉0 = −N

8
|p| . (3.15)

Therefore, at finite λ, the two point functions become

〈O(p)O(−p)〉λ = G(p) + λ2G(p)G̃(p)G(p) + λ4G(p)G̃(p)G(p)G̃(p)G(p) + · · ·

= G(p)(1− λ̃2 + λ̃4 − · · · ) = G(p)
1

1 + λ̃2
, (3.16)

4As in (3.14) below, a convenient parameter is not λ but λ̃ = Nλ/8. Therefore, we take large N but

keep λ̃ finite. In this sense, the expressions in (3.10) are of the 1/N order and of the λ̃2 order.

– 7 –
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and similarly

〈Õ(p)Õ(p)〉λ = G̃(p)
1

1 + λ̃2
.

Therefore, the corrections of this type simply replace λ̃2 by λ̃2/(1 + λ̃2). For (3.7) we may

rewrite as

λ2I3 =
λ2

2

∫
d3x3d

3x4d
3x5d

3x6〈J εs(x1)O(x3)O(x4)〉0〈J̃ εs(x2)Õ(x5)Õ(x6)〉0

× δ(3)(x35)δ(3)(x46) . (3.17)

Higher order corrections modify the delta functions (or the identities in the momentum

representation) as

1 + λ2G(p)G̃(p) + λ4G(p)G̃(p)G(p)G̃(p) + · · · = 1

1 + λ̃2
. (3.18)

This means that we should replace each λ̃ by λ̃/(1 + λ̃2), i.e., λ̃2 by (λ̃/(1 + λ̃2))2.

At the λ4 order, we can see that the following new types of integral appear as

I4 =
1

2

∫
d3x3d

3x4d
3x5d

3x6〈J εs(x1)O(x3)O(x4)〉0〈J εs(x2)O(x5)O(x6)〉0 (3.19)

× 〈Õ(x3)Õ(x5)〉0〈Õ(x4)Õ(x6)〉0 ,

I5 =
1

2

∫
d3x3d

3x4d
3x5d

3x6〈J̃ εs(x1)Õ(x3)Õ(x4)〉0〈J̃ εs(x2)Õ(x5)Õ(x6)〉0 (3.20)

× 〈O(x3)O(x5)〉0〈O(x4)O(x6)〉0 .

The integrals have been already evaluated in [2], and we use the results, see appendix A.1.

Further higher order corrections in λ replace 〈Õ(x3)Õ(x4)〉0 with 〈Õ(x3)Õ(x4)〉λ in (3.19)

(and similarly for (3.20)) as before.

Summarizing the above analysis, the two point functions of higher spin currents at

finite λ can be given by

〈J ε,±s (x1)J ε,±s (x2)〉λ = 〈J ε,±s (x1)J ε,±s (x2)〉0 +

(
8

N

)2 λ̃2

1 + λ̃2

[
1

2Cs
I1 +

1

2C̃s
I2

]

±
(

8

N

)2
(

λ̃

1 + λ̃2

)2
s

2Cs
I3 +

(
8

N

)4
(

λ̃2

1 + λ̃2

)2 [
1

2Cs
I4 +

1

2C̃s
I5

]
, (3.21)

where we can still use the linear combinations in (3.8). Referring to the results in ap-

pendix A.1, the anomalous dimensions to the 1/N order are thus5

γ±s =
16

3Nπ2

λ̃2

1 + λ̃2

(s− 1)(s+ 1)

(2s− 1)(2s+ 1)

+ Ps
8

Nπ2

∓( λ̃

1 + λ̃2

)2

−

(
λ̃2

1 + λ̃2

)2
 s

(2s− 1)(2s+ 1)
. (3.22)

5In CFTs with higher spin symmetry broken in 1/N , broken symmetry still provides quite strong con-

straints on correlators as shown in [14]. The dependence on the deformation parameter λ̃ in (3.22) may be

explained by using broken symmetry as was done in [15] for similar parameter dependence in Chern-Simons

matter theories. The same argument can be applied to (4.19) as well.

– 8 –



J
H
E
P
0
3
(
2
0
1
7
)
0
4
7

This is a main finding in this paper. Setting s = 1, we obtain γ±1 = 0, thus the global

U(1)⊗ U(1) ∈ U(N)⊗ U(N) symmetry is not broken to the full orders in λ̃. For γ+
s with

even s, we can rewrite as

γ+
s =

8

3Nπ2

λ̃2

1 + λ̃2

s− 2

2s− 1
. (3.23)

In particular, we have γ+
2 = 0, and this means that the the deformation (1.1) is exactly

marginal to the 1/N order.

It is useful to examine the results (3.22) in the limit λ̃→∞, which are given as

γ±s →
16

3Nπ2

(s− 1)(s+ 1)

(2s− 1)(2s+ 1)
− Ps

8

Nπ2

s

(2s− 1)(2s+ 1)
. (3.24)

The limit of supersymmetric model should correspond to the sum of the critical U(N) vec-

tor model and the Gross-Neveu model. This can be seen both from CFT viewpoint as in the

next subsection and from the dual gravity theory as in [9, 10], see also section 5. The anoma-

lous dimensions for the critical U(N) model can be found in [2] with a slight modification of

O(N) case in [25], and those for the Gross-Neveu model were computed in [17]. See [26–28]

for recent related works. Comparing these results and (3.24), we find agreements.

3.3 Introducing auxiliary fields

In this subsection, we describe the deformation of supersymmetric model by (1.1) as

S =

∫
d3x

[
∂µφ̄

i∂µφi + ψ̄i/∂ψi + σ̃O + σÕ − 1

λ
σσ̃

]
, (3.25)

where we have introduced auxiliary fields σ, σ̃. We may study the model by treating the

last term in (3.25) perturbatively. It is useful to move to this formulation for the purpose

to see more direct relations to previous works as in [2, 24]. This is because the last term

in (3.25) vanishes at λ → ∞ limit, where the theory reduces to the sum of the critical

U(N) model and the Gross-Neveu model.

Using the large N factorization of O and Õ, the effective propagators for σ, σ̃ become

(see, e.g., [24])

Gσ(p) = 〈σ(p)σ(−p)〉0 = (−〈O(p)O(−p)〉0)−1 = − 8

N
|p| , (3.26)

Gσ̃(p) = 〈σ̃(p)σ̃(−p)〉0 = (−〈Õ(p)Õ(−p)〉0)−1 =
8

N

1

|p|
. (3.27)

At the limit λ → ∞, corrections to the two point functions of higher spin currents come

from the integrals I1, I2, I4, I5 in (3.5), (3.6), (3.19), (3.20) but with 〈ÕÕ〉0, 〈OO〉0 replaced

by 〈σσ〉0, 〈σ̃σ̃〉0. This can be seen from (3.21) at λ̃→∞, for instance. The regularization

with ∆ used in the appendix A.1 may be understood by the shifts of exponents as

Gσ(p) = 〈σ(p)σ(−p)〉0 = − 8

N

1

(p2)−1/2+∆1
, (3.28)

Gσ̃(p) = 〈σ̃(p)σ̃(−p)〉0 =
8

N

1

(p2)1/2+∆2
, (3.29)

where we should set ∆1, ∆2 properly.
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Higher order corrections in 1/λ can be understood also in this formulation. Here we

set ∆1 + ∆2 = 0 for simplicity, but it is not so difficult to work with ∆1 + ∆2 6= 0. Due to

the last term in (3.25), the effective propagators should be corrected as

〈σ(p)σ(−p)〉1/λ = Gσ(p) + λ−2Gσ(p)Gσ̃(p)Gσ(p) + · · · = 1

1 + λ̃−2
Gσ(p) , (3.30)

〈σ̃(p)σ̃(−p)〉1/λ = Gσ̃(p) + λ−2Gσ̃(p)Gσ(p)Gσ̃(p) + · · · = 1

1 + λ̃−2
Gσ̃(p) . (3.31)

Replacing 〈σσ〉0, 〈σ̃σ̃〉0 by 〈σσ〉1/λ, 〈σ̃σ̃〉1/λ, we reproduce the previous result in (3.21) ex-

cept for the contribution arising from the integral of I3-type.

The integral of I3-type contributes from the 1/λ2 order. This type of correction is

absent for the model made from simply the sum of the critical U(N) scalars and the

Gross-Neveu model. At the order, the integral can be written as6

I ′3 =
1

2λ2

∫ 8∏
n=3

d3xn〈J εs(x1)O(x3)O(x4)〉0〈J̃ εs(x2)Õ(x7)Õ(x8)〉0 (3.32)

× 〈σ(x3)σ(x5)〉0〈σ̃(x5)σ̃(x7)〉0〈σ(x4)σ(x6)〉0〈σ̃(x6)σ̃(x8)〉0 .

For ∆1 + ∆2 = 0, we have∫
d3x5〈σ(x3)σ(x5)〉0〈σ̃(x5)σ̃(x7)〉0 = −

(
8

N

)2

δ(3)(x37) , (3.33)

and similarly for the x6-integral. Using these delta functions, we can see that I ′3 reduces to

I3. The higher order corrections can be included by replacing 1 by 1/(1 + λ̃−2) as shown

above. Noticing

1

λ2

(
1

1 + λ̃−2

)2

=

(
N

8

)2
(

λ̃

1 + λ̃2

)2

, (3.34)

the contribution from this type of integral in (3.21) can be also reproduced.

4 Deformation with fermionic operators

The supersymmetric model admits another marginal deformation as in (1.2) along with

the one in (1.1), which was examined in the previous section. In this section, we compute

the anomalous dimensions of higher spin currents in the deformed theory by (1.2). We may

use both the deformations simultaneously such as the supersymmetric one with 2λ = κ.

In that case we just need to add each contribution to anomalous dimensions.

The deformation (1.2) consists of spinor operator K = φ̄iψi (K̄ = ψ̄iφi), whose two

point function is

〈K(x1)K̄(x2)〉0 = NC2
φ

/x12

(x2
12)2

= −
NC2

φ

2
/∂1

1

x2
12

(4.1)

6The shifts by ∆ for the integral I3 may be interpreted as the extra shifts introduced in section 3.3 of [2].
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at κ = 0. We compute the two point functions of higher spin currents in the presence of

marginal deformation. The modified correlators (2.12) to the first non-trivial orders both

in κ and 1/N are

〈J εs(x1)J εs(x2)〉κ = 〈J εs(x1)J εs(x2)〉0 + κ2(Ĩ1 + Ĩ2) +O(κ4) , (4.2)

〈J̃ εs(x1)J̃ εs(x2)〉κ = 〈J̃ εs(x1)J̃ εs(x2)〉0 + κ2(Ĩ3 + Ĩ4) +O(κ4) , (4.3)

〈J εs(x1)J̃ εs(x2)〉κ = κ2(Ĩ5 + Ĩ6) +O(κ4) . (4.4)

Here Ĩa (a = 1, . . . , 6) are integrals defined as

Ĩ1 = −
∫
d3x3d

3x4〈J εs(x1)J εs(x2)K(x3)K̄(x4)〉0〈K(x4)K̄(x3)〉0 , (4.5)

Ĩ2 = −
∫
d3x3d

3x4〈J εs(x1)K(x3)K̄(x4)〉0〈J εs(x2)K(x4)K̄(x3)〉0 , (4.6)

Ĩ3 = −
∫
d3x3d

3x4〈J̃ εs(x1)J̃ εs(x2)K(x3)K̄(x4)〉0〈K(x4)K̄(x3)〉0 , (4.7)

Ĩ4 = −
∫
d3x3d

3x4〈J̃ εs(x1)K(x3)K̄(x4)〉0〈J̃ εs(x2)K(x4)K̄(x3)〉0 , (4.8)

Ĩ5 = −
∫
d3x3d

3x4〈J εs(x1)J̃ εs(x2)K(x3)K̄(x4)〉0〈K(x4)K̄(x3)〉0 , (4.9)

Ĩ6 = −
∫
d3x3d

3x4〈J εs(x1)K(x3)K̄(x4)〉0〈J̃ εs(x2)K(x4)K̄(x3)〉0 . (4.10)

These integrals actually coincide with those evaluated in [2], so we can utilize the results

obtained there as summarized in appendix A.2. The anomalous dimensions of higher spin

currents can be computed as in the previous section, and the results happen to be the same

as (3.10) but λ replaced by κ.

Higher order corrections in κ can be included as in subsection 3.2. One type of correc-

tions can be incorporated by replacing 〈K(x4)K̄(x3)〉0 in Ĩ1, Ĩ3, Ĩ5 by 〈K(x4)K̄(x3)〉κ. In

the momentum representation, the two point function (4.1) becomes

F (p) ≡ 〈K(p)K̄(−p)〉0 = −N
16

i/p

|p|
. (4.11)

Thus the two point function receives corrections at finite κ as

〈K(p)K̄(−p)〉κ = F (p) + κF (p)2 + κ2F (p)3 + · · · = F (p, κ)o + F (p, κ)e . (4.12)

Here F (p, κ)o linearly depends on the gamma matrix but F (p, κ)e does not as

F (p, κ)o = F (p)
1

1 + κ̃2
, F (p, κ)e =

N

16

κ̃

1 + κ̃2
, κ̃ =

N

16
κ . (4.13)

Noticing that trace over the odd number of gamma matrix vanishes, corrections to the inte-

grals Ĩ1, Ĩ3, Ĩ5 can be included by replacing F (p) by F (p, κ)o. Therefore we should replace

κ̃2 by κ̃2/(1+ κ̃2). Similarly, for Ĩ2, Ĩ4, Ĩ6, we replace 1 in the momentum representation by

1 + κ2F (p)2 + κ4F (p)4 + · · · = 1

1 + κ̃2
. (4.14)

This means that we should replace κ̃2 by (κ̃/(1 + κ̃2))2.
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At the order of κ4, there are new types of correction appearing as

Ĩ7 = −
∫
d3x3d

3x4d
3x5d

3x6〈J εs(x1)K(x3)K̄(x4)〉0〈K(x4)K̄(x5)〉0 (4.15)

× 〈J εs(x2)K(x5)K̄(x6)〉0〈K(x6)K̄(x3)〉0 ,

Ĩ8 = −
∫
d3x3d

3x4d
3x5d

3x6〈J̃ εs(x1)K(x3)K̄(x4)〉0〈K(x4)K̄(x5)〉0 (4.16)

× 〈J̃ εs(x2)K(x5)K̄(x6)〉0〈K(x6)K̄(x3)〉0 ,

Ĩ9 = −
∫
d3x3d

3x4d
3x5d

3x6〈J εs(x1)K(x3)K̄(x4)〉0〈K(x4)K̄(x5)〉0 (4.17)

× 〈J̃ εs(x2)K(x5)K̄(x6)〉0〈K(x6)K̄(x3)〉0 .

Further higher order corrections in κ can be included by replacing κ̃4 with (κ̃2/(1 + κ̃2))2.

These integrals have not appeared in [2], so we have to analyze them in some way. There

are several methods to evaluate these integrals, for instance, as in [24]. In appendix B,

we do not directly compute these integrals but rather evaluate different ones which are

closely related. Using the relation between them, we deduce the log(x2
12) dependence of

the integrals as in (B.9), (B.10), and (B.11).

From the above arguments, we conclude that the two point functions of higher spin

current are corrected as

〈J ε,±s (x1)J ε,±s (x2)〉κ = 〈J ε,±s (x1)J ε,±s (x2)〉0 +

(
16

N

)2 κ̃2

1 + κ̃2

[
1

2Cs
Ĩ1 +

1

2C̃s
Ĩ3

]
(4.18)

+

(
16

N

)2( κ̃

1 + κ̃2

)2 [ 1

2Cs
Ĩ2 +

1

2C̃s
Ĩ4

]
±
(

16

N

)2
[

κ̃2

1 + κ̃2

s

2Cs
Ĩ5 +

(
κ̃

1 + κ̃2

)2 s

2Cs
Ĩ6

]

+

(
16

N

)4( κ̃2

1 + κ̃2

)2 [
1

2Cs
Ĩ7 +

1

2C̃s
Ĩ8 ±

s

2Cs
Ĩ9

]
.

Using the log(x2
12) dependence of integrals Ĩa (a = 1, . . . , 9) obtained in appendix A.2 and

appendix B, we can read off the anomalous dimensions as

γ±s =
16

3Nπ2

κ̃2

1 + κ̃2
− 16

Nπ2

(
κ̃

1 + κ̃2

)2 1

(2s− 1)(2s+ 1)

∓

[
(−1)s

κ̃2

1 + κ̃2
+

(
κ̃

1 + κ̃2

)2
]

16

Nπ2

s

(2s− 1)(2s+ 1)
(4.19)

−
(

κ̃2

1 + κ̃2

)2
16

π2N

s± 1

(2s− 1)(2s+ 1)
.

This is another main result of this paper along with (3.22). We can see γ−1 = 0 for any

κ̃ but γ+
1 6= 0. This means that only a diagonal global symmetry in U(1) ⊗ U(1) is left

unbroken. We can also show that γ+
2 = 0 for even finite κ̃, which is consistent with the

unbroken conformal symmetry.
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5 Bulk interpretations

In the previous sections, we have computed the anomalous dimensions of higher spin cur-

rents mainly in the conformal perturbation theory by following the previous works [1, 2, 21].

The main motivation to use the method is that the CFT computation is closely related to

the evaluation of bulk Witten diagram for one-loop corrections to the masses of dual higher

spin fields as in figure 1. A crucial point is to rewrite bulk-to-bulk propagators with modified

boundary conditions in terms of the product of bulk-to-boundary propagators and bound-

ary two point functions [19, 20]. Using this, the one-loop corrections can be computed by us-

ing only tree Witten diagrams as in figure 2. In the next subsection, we reproduce the result

in [21] by using the intrinsic coordinates instead of embedding ones as was done in [19, 20].

In subsection 5.2, we examine the bulk spinor propagators by applying the method.

5.1 Bulk scalar propagators

We work on d+ 1 dimensional Euclidean AdS space, and use the Poincaré coordinates as

ds2 =
1

z2
0

(dz2
0 + d~z2) . (5.1)

Here z0 is the radial coordinate and ~z are the coordinates parallel to the boundary, where

the boundary is located at z0 = 0. We consider two bulk scalar fields Φ(1), Φ(2) with the

same mass but with alternative boundary conditions. They are dual to boundary scalar

operators O∆ and Od−∆ with the scaling dimensions ∆ and d − ∆, respectively. In the

current case, d = 3 and ∆ = 1 or 2. The bulk-to-boundary propagators are given as [29, 30]

K∆(z, ~x) =
Γ(∆)

πd/2Γ(∆− d/2)

(
z0

z2
0 + (~z − ~x)2

)∆

. (5.2)

This leads to the normalization corresponding to the standard kinetic term of dual bulk

scalars as

B∆(~x, ~y) ≡ 〈O∆(~x)O∆(~y)〉 =
(2∆− d)Γ(∆)

πd/2Γ(∆− d/2)

1

|~x− ~y|2∆
. (5.3)

Compared with the two point functions in (3.1), the relations are

O1 =

√
8

N
O , O2 =

√
8

N
Õ . (5.4)

We denote G∆(z, w) as the bulk-to-bulk propagator, and we will need the following expres-

sion as (see, e.g., [19, 31])

G∆(z, w) =

∫
ddk

(2π)d
(z0w0)d/2ei

~k·(~z−~w) (5.5)

×
[
θ(z0−w0)K∆−d/2(kz0)I∆−d/2(kw0)+θ(w0−z0)I∆−d/2(kz0)K∆−d/2(kw0)

]
.

Here k = |~k| and Kν(z) and Iν(z) are the modified Bessel functions. We deform the dual

boundary CFT with

∆fS = f

∫
ddxO∆(x)Od−∆(x) , (5.6)
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where f can be identified with λ̃ in (3.14). As shown in [16], this deformation is dual to

mixing boundary conditions for Φ(1), Φ(2). Due to the changes of boundary condition, the

scalar propagators 〈Φ(a)(z)Φ(b)(w)〉f = Gabf (z, w) become [32, 33]

Gabf (z, w) =
1

1 + f̃2

(
G∆(z, w) + f̃2Gd−∆(z, w) f̃Gd−∆(z, w)− f̃G∆(z, w)

f̃Gd−∆(z, w)− f̃G∆(z, w) Gd−∆(z, w) + f̃2G∆(z, w)

)
(5.7)

with f̃ = (2∆ − d)f . At the limit f̃ → ∞, the propagators for Φ(1), Φ(2) are exchanged,

and this is consistent with the fact that the dual CFT reduces to the sum of the critical

U(N) scalars and the Gross-Neveu model.

Here we would like to examine the bulk Witten diagram in figure 1, where the bulk-to-

bulk scalar propagators with modified boundary conditions in (5.7) are used for the loop.

It is a quite difficult task to directly evaluate loop diagrams with higher spin gauge fields

generically. However, the AdS/CFT duality suggests that the modified scalar propagators

should be written in terms of scalar propagators with f = 0 but with the insertions of

boundary operators. More precisely speaking, we should have the following identities as

G11
f (z, w) = G∆(z, w) + f2

∫
ddx1d

dx2K∆(z, ~x1)Bd−∆(~x1, ~x2)K∆(w, ~x2)

+ f4

∫ 4∏
n=1

ddxnK∆(z, ~x1)Bd−∆(~x1, ~x2)B∆(~x2, ~x3)Bd−∆(~x3, ~x4)K∆(w, ~x4) + · · · , (5.8)

G12
f (z, w) = −f

∫
ddxK∆(z, ~x)Kd−∆(w, ~x)

− f3

∫ 3∏
n=1

ddxnK∆(z, ~x1)Bd−∆(~x1, ~x2)B∆(~x2, ~x3)Kd−∆(w, ~x3) + · · · . (5.9)

The same should be true for G22
f and G21

f by exchanging ∆ with d − ∆. With these

identities, the loop Witten diagram in figure 1 can be evaluated only from the product of

tree Witten diagrams as in figure 2.7 Moreover, we can see that the latter description is

dual to the boundary computation in conformal perturbation theory. Therefore, we can

obtain the map between the bulk computation with Witten diagrams and boundary one

in conformal perturbation theory, once we can confirm the identities (5.8) and (5.9). We

can check that the identities (5.8) and (5.9) follow the two basic ingredients∫
ddxK∆(z, ~x)Bd−∆(~x, ~y) = (d− 2∆)Kd−∆(z, ~x) , (5.10)∫
ddxK∆(z, ~x)Kd−∆(w, ~x) = (2∆− d) [G∆(z, w)−Gd−∆(z, w)] . (5.11)

In the rest of this subsection, we shall derive them. They were already shown as (B.21)

and (5.7) in [21] by adopting the embedding formulation. For the extension to bulk spinor

propagators in next subsection, we re-derive the results using the intrinsic coordinates

in (5.1). The derivation of (5.11) here is the same as the one in [19], see also [20].

7Here we have used the fact that there is no contribution to the two point function from the one-loop

diagram at f = 0.
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For our purpose, it is convenient to work in the momentum representation as

K∆(z0,~k) =

∫
ddz

(2π)d/2
K∆(z, 0)e−i

~k·~z =
21−∆z

d/2
0

πd/2Γ(∆− d/2)
k∆−d/2K∆−d/2(z0k) ,

B∆(~k) =

∫
ddx

(2π)d/2
B∆(~x, 0)e−i

~k·~x =
2d/2−2∆(2∆− d)Γ(d/2−∆)

πd/2Γ(∆− d/2)
k2∆−d . (5.12)

Using these expressions, we can show∫
ddxK∆(z, ~x)Bd−∆(~x, ~y) =

∫
ddx

ddk1

(2π)d/2
ddk2

(2π)d/2
K∆(z0, ~k1)ei

~k1·(~z−~x)Bd−∆(~k2)ei
~k2·(~x−~y)

=
21−3d/2+∆z

d/2
0 (d−2∆)

πdΓ(d/2−∆)

∫
ddkei

~k·(~z−~y)kd/2−∆Kd/2−∆(z0k)=(d−2∆)Kd−∆(z0, ~z, ~y) (5.13)

as in (5.10). Similarly, we have for (5.11)∫
ddxK∆(z, ~x)Kd−∆(w, ~x) (5.14)

=

∫
ddx

ddk1

(2π)d/2
ddk2

(2π)d/2
K∆(z0,~k1)ei

~k1·(~z−~x)Kd−∆(w0, ~k2)ei
~k2·(~w−~x)

=
22−d(z0w0)d/2

πdΓ(∆− d/2)Γ(d/2−∆)

∫
ddkK∆−d/2(z0k)K∆−d/2(w0k)ei

~k·(~z−~w) .

Applying the formula (ν = ∆− d/2)

Kν(z0k) =
ν

2
Γ(ν)Γ(−ν)[Iν(z0k)− I−ν(z0k)] , (5.15)

we find ∫
ddkKν(z0k)Kν(w0k) =

∫
ddkKν(z0k)Kν(w0k)[θ(z0 − w0) + θ(w0 − z0)]

=
ν

2
Γ(ν)Γ(−ν)θ(z0 − w0)

∫
ddkKν(z0k)(Iν(w0k)− I−ν(w0k)) (5.16)

+
ν

2
Γ(ν)Γ(−ν)θ(z0 − w0)

∫
ddkKν(w0k)(Iν(z0k)− I−ν(z0k)) .

With the expression of bulk-to-bulk propagators in (5.5), we arrive at (5.11).

5.2 Bulk spinor propagators

There is another type of marginal deformation as in (1.2), and they should be dual to

modifying boundary conditions for bulk spinor fields. Thus the anomalous dimensions of

higher spin currents can be computed from one-loop Witten diagram as in figure 1, but now

bulk spinor fields with modified boundary condition are running along the loop. In this

subsection, we show that the one-loop Witten diagram can be evaluated from the product

of tree Witten diagrams as in figure 2 just like for the bulk scalar propagators.

We examine d+1 dimensional Euclidean space with the coordinate system (5.1). More-

over, we consider two bulk Dirac fermions Ψ(1),Ψ(2) with the same mass m but alternative
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boundary conditions. The spinor operators dual to Ψ(1),Ψ(2) are given as K∆+ ,K∆− , whose

conformal dimensions are ∆± = d/2 ±m. For application to the current case, we should

set d = 3, m = 0, and consider only half of the fermions.

Spinor propagators in AdSd+1 have been investigated in [31, 34, 35], and we follow their

analysis. We introduce the Gamma matrices Γa (a = 0, 1, · · · , d) satisfying {Γa,Γb} = 2δab.

Defining

U(z, ~x) = z
1/2
0 Γ0 + z

−1/2
0

~Γ · (~z − ~x) , (5.17)

the bulk-to-boundary propagators are given as

Σ∆±(z, ~x) = U(z, ~x)K∆±+1/2(z, ~x)P∓ , Σ̄∆±(z, ~x) = ±P±K∆±+1/2(z, ~x)U(z, ~x) , (5.18)

where

P± =
1

2
(1± Γ0) . (5.19)

The boundary two point functions are

F∆±(~x, ~y) ≡ 〈K∆±(~x)K̄∆±(~y)〉 =
Γ(∆± + 1/2)

πd/2Γ(1/2±m)

~Γ · (~x− ~y)

|~x− ~y|2∆±+1
P∓ . (5.20)

Compared with (4.1), the normalization of spinor operators differs from K by the factor√
16/N .

As in [31], the bulk-to-bulk propagators should satisfy

( /D −m)Sm± (z, w) = Sm± (z, w)
(
−
←−
/D −m

)
=

1
√
g
δ(d+1)(z − w) , (5.21)

and furthermore regularity and boundary condition. Solutions were obtained as

Sm± (z, w) = ∓
∫

ddk

(2π)d
kei

~k·(~z−~w)

[
θ(z0 − w0)φ

(K)
±,m(z0, ~k)P∓φ̄(I)

∓,m(w0,−~k) (5.22)

− θ(w0 − z0)φ
(I)
±,m(z0, ~k)P∓φ̄(K)

∓,m(w0,−~k)

]
.

Here we have defined

φ
(K)
±,m(z0, ~k) = z

d+1
2

0

[
Km±1/2(kz0)± i

/k

k
Km∓1/2(kz0)

]
, (5.23)

φ
(I)
±,m(z0, ~k) = z

d+1
2

0

[
Im±1/2(kz0)∓ i

/k

k
Im∓1/2(kz0)

]
, (5.24)

and

φ̄
(K)
∓,m(z0, ~k) = z

d+1
2

0

[
Km∓1/2(kz0)± i

/k

k
Km±1/2(kz0)

]
= φ

(K)
∓,m(z0,−~k) , (5.25)

φ̄
(I)
∓,m(z0, ~k) = z

d+1
2

0

[
Im∓1/2(kz0)∓ i

/k

k
Im±1/2(kz0)

]
= φ

(I)
∓,m(z0,−~k) . (5.26)
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Since we have

( /D −m)Sm± (z, w) =

(
z0Γa∂a −

d

2
Γ0 −m

)
Sm± (z, w) , (5.27)

the solution with −m can be obtained from Sm± (z, w) by replacing Γ0 by −Γ0 and (z, w)

by (−z,−w). This implies that

S−m± (z, w) = −Sm∓ (−z,−w) , (5.28)

which will be used for later analysis.

We deform the dual boundary CFT by

∆hS = h

∫
ddx

[
K̄∆+(x)K∆−(x) + K̄∆−(x)K∆+(x)

]
. (5.29)

Here we have two terms since now we are working with two Dirac fermions. The deforma-

tion parameter h can be identified with κ̃ in (4.13). The deformation is dual to mixing the

boundary conditions for Ψ(1), Ψ(2), and the modified spinor propagators 〈Ψ(a)(z)Ψ̄(b)(w)〉 =

Sabf (z, w) are [33]

Sabh (z, w) =
1

1 + h2

(
Sm+ (z, w) + h2Sm− (z, w) hSm− (z, w)− hSm+ (z, w)

hSm− (z, w)− hSm+ (z, w) Sm− (z, w) + h2Sm+ (z, w)

)
. (5.30)

We can see that the propagators for Ψ(1), Ψ(2) are exchanged at the limit h → ∞. Below

we shall show that∫
ddxΣ∆±(z, ~x)F∆∓(~x, ~y) = ±Σ∆∓(z, ~y) , (5.31)∫
ddxF∆∓(~x, ~y)Σ̄∆±(z, ~y) = ±Σ̄∆∓(z, ~x) , (5.32)∫
ddxΣ∆±(z, ~x)Σ̄∆∓(w, ~x) = ±(Sm± (z, w)− Sm∓ (z, w)) . (5.33)

Using these identities, we can rewrite the modified spinor propagators (5.30) as those with

h = 0 but with the insertions of boundary operators precisely as for the bosonic case,

see (5.8) and (5.9).

In order to proof the identities (5.31), (5.32) and (5.33), it is convenient to express the

propagators (5.18) and (5.20) in the momentum representation as

Σ∆±(z0, ~k)=

∫
ddz

(2π)d/2
Σ∆±(z, 0)e−i

~k·~z=∓ 21/2−∆±

πd/2Γ(1/2±m)
k±m+1/2φ

(K)
±,m(z0,~k)P∓ , (5.34)

Σ̄∆±(z0, ~k)=

∫
ddz

(2π)d/2
Σ̄∆±(z, 0)e−i

~k·~z=P±
21/2−∆±

πd/2Γ(1/2±m)
k±m+1/2φ̄

(K)
±,m(z0, ~k) , (5.35)

and

F∆±(~k) =

∫
ddz

(2π)d/2
F∆±(~x, 0)e−i

~k·~x = − Γ(1/2∓m)

22∆±−d/2πd/2Γ(1/2±m)
i/kk2∆±−1−dP∓ . (5.36)
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Then we can show∫
ddxΣ∆±(z, ~x)F∆∓(~x, ~y) =

∫
ddkΣ∆±(z,~k)F∆∓(−~k)ei

~k·(~z−~y) = ±Σ∆∓(z, ~y) (5.37)

for (5.31) and similarly for (5.32). For (5.33) we rewrite∫
ddxΣ∆±(z, ~x)Σ̄∆∓(w, ~x) =

∫
ddkei

~k·(~z−~w)Σ∆±(z0, ~k)Σ̄∆∓(w0,−~k)

= ∓ 21−d

πdΓ(1/2±m)Γ(1/2∓m)

∫
ddkei

~k·(~z−~w)kφ
(K)
±,m(z0,~k)P∓φ̄(K)

∓,m(w0,−~k) . (5.38)

Using

φ
(K)
±,m(z0, ~k) = φ

(K)
∓,−m(z0,−~k) , (5.39)

and

φ
(K)
±,m(z0,~k) = ∓1

2
Γ(1/2±m)Γ(1/2∓m)

[
φ

(I)
±,m(z0, ~k)− φ(I)

∓,−m(z0,−~k)
]
, (5.40)

we find (5.33) with the help of (5.28).

6 Conclusion and discussions

In this paper, we have studied 3d supersymmetric U(N) model, which is supposed to be

dual to 4d supersymmetric Vasiliev theory [9, 10]. The model admits two types of marginal

deformation as in (1.1) and (1.2), and the deformations should be dual to modifying bound-

ary conditions for dual scalars and spinors, respectively [16]. There are two main results

of this paper. One of them is on the anomalous dimensions of higher spin currents in the

deformed models. Using basically conformal perturbation theory, we obtained them to the

leading order in 1/N but to all orders in deformation parameters as in (3.22) and (4.19).

For higher order corrections in κ in the deformed theory by (1.2), we utilized another

technique as used in [17]. The other is on the dual higher spin interpretation of the compu-

tations in conformal perturbation theory, which can be done by rewriting one-loop Witten

diagram as in figure 1 to the product of tree Witten diagrams as in figure 2. We have

derived the ingredients essential for the rewritening in (5.10), (5.11) for bulk scalars and

in (5.31), (5.32), (5.33) for bulk spinors. This was already done in [21] for bulk scalars

(see [19, 20] for (5.11)) but it was new for bulk spinors.

We examined the 3d supersymmetric model as a simple model which has marginal de-

formations and higher spin holographic dual. We would like to relate deforming the CFT

marginally and turning on the string tension. In order to reveal more precise relations, how-

ever, we need to extend the analysis to more complicated systems. For instance, a concrete

relation (named as ABJ triality) was proposed in [18] through 3d ABJ(M) theory in [36, 37].

For application to the ABJ triality, we have to work with coupling to Chern-Simons gauge

fields as in [12–14]. See [15] for a recent work. There are also lower dimensional proposals

with 2d CFTs which have N = 4 supersymmetry in [38, 39] and N = 3 supersymmetry

in [33, 40, 41]. Symmetry breaking for higher spin gauge theory on AdS3 has been studied

in [21, 23, 33, 42], but more detailed analysis would be required to say more concretely.
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There are other open problems as follows; we have evaluated the log(x2
12) dependence of

integrals Ĩ7, Ĩ8, Ĩ9 in appendix B with an indirect method. However, it is desired to evaluate

them explicitly, see also footnote 2. A drawback of our method is that we cannot identify

the Nambu-Goldstone modes arising due to symmetry breaking as mentioned in [1, 2]. A

direct way to evaluate the loop corrections to the bulk higher spin propagators explicitly,

but it looks a quite hard task. Along with the difficulty for evaluating loops, there is an

additional problem on our limited understanding of the dual Vasiliev theory, where only

classical equations of motion are available presently. An indirect way might be given by

group theoretic analysis as was done for the 4d Vasiliev theory dual to 3d critical O(N)

model in [43]. It would be also possible by writing the divergence of dual higher spin

current in terms of products of higher spin currents, see, e.g., [14, 15, 26, 27]. The 3d

supersymmetric U(N) model itself is also worth studying furthermore. The deformations

in (1.1) and (1.2) are exactly marginal to the 1/N order, but it is not clear what happens

at the next order. Even if we could find non-trivial fixed lines (or points), it is notorious

to be a hard problem to go beyond the leading order in 1/N . Hopefully, this issue would

be tractable along the line in, e.g., [28, 44–46]. It is also important to extend our analysis

to, say, the theory with both bosons and fermions in generic d 6= 3 as in [47, 48]. In the

case, the deformations (1.1) and (1.2) are not marginal anymore, so we may examine the

fixed points of RG flow induced by these deformations.
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A Evaluations of integral

In this appendix, we examine the integrals Ia (a = 1, . . . , 5) and Ĩa (a = 1, . . . , 6) defined

in the main context. We denote the log(x2
12) dependence of these integrals as I log

a and Ĩ log
a ,

and we shall obtain them explicitly by borrowing the results in [1, 2].

A.1 Deformation with bosonic operators

In the case with (1.1), the integrals are almost the identical to those evaluated in [1, 2], so

we can directly use the results there. The integral I1 in (3.5) is almost the same as the one

in section 3.2 of [2] with d = 3, once we replace the correlator

〈Õ(x1)Õ(x2)〉0 =
2NC2

φ

(x2
12)2

(A.1)

by the propagator of auxiliary field σ. Therefore, we may shift the exponent as (x2
12)−2 →

(x2
12)−2+∆. Then the reside at ∆ = 0 should be the factor in front of log(x2

12). Since we are

working with complex scalars, we need to multiply some factors as discussed in section 5.2

of [2]. Moreover, we have to replace the overall factor Cσ for the auxiliary field propagator

by 2NC2
φ. We then find

I log
1 = − N

12π2

(s− 1)(s+ 1)

(2s− 1)(2s+ 1)
Ds

0 log(x2
12) . (A.2)
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We can evaluate I2 in (3.6) as for I1. Replacing

〈O(x1)O(x2)〉0 =
NC2

φ

x2
12

(A.3)

by the propagator of auxiliary field σ̃, the computation of I2 is almost the same as that of

I1 in subsection 4.2 of [2]. Thus we shift as (x2
12)−1 → (x2

12)−1+∆ and pick up the 1/∆-pole

term. Replacing the overall factor Cσ̃ for the auxiliary field propagator by NC2
φ, we find

I log
2 = − N

12π2

(s− 1)(s+ 1)

(2s− 1)(2s+ 1)
D̃s

0 log(x2
12) . (A.4)

The integral I3 in (3.7) vanishes for s odd, so we set s even here. Using the three point

functions obtained in [2], the integral I3 can be written as

I3 = 8N2C6
φ

s∑
k,l=0

akalBk,l (A.5)

with

Bk,l =

∫
d3x3d

3x4
1

(x2
34)2

[
∂̂s−k1

1

(x2
41)1/2

] [
∂̂k1

1

(x2
31)1/2

] [
∂̂l2

1

(x2
42)1/2

] [
∂̂s−l2

1

(x2
32)1/2

]
.

(A.6)

The same integral arises from the O(N) scalars as I
(2)
1 in subsection 3.2.2 of [2], so we

use the regularization adopted there. We evaluate the integral with (x2
34)−2 replaced by

(x2
34)−2+∆. Borrowing the result in [2] as

s∑
k,l=0

akalBk,l =
1

2NC4
φ

1

(2s− 1)(2s+ 1)
Ds

0

1

∆
+O(∆0) , (A.7)

we find

I log
3 = Ps

N

4π2

1

(2s− 1)(2s+ 1)
Ds

0 log(x2
12) . (A.8)

For the integral I4 in (3.19), we adopt the regularization used for I1. Then the integral

is the same as the one computed in section 3.3 of [2]. Since we are working with U(N)

global symmetry, we need to multiply each three point function by 1/4. Moreover, we

should replace Cσ by 2NCφ. Thus we find

I log
4 = Ps

N3

29π2

s

(2s− 1)(2s+ 1)
Ds

0 log(x2
12) . (A.9)

For the other integral I5 in (3.20), we adopt the regularization used for I2. Then the integral

is the same as the one computed in subsection 4.3. Replacing Cσ̃ by NCφ, we obtain

I log
5 = Ps

N3

29π2

s

(2s− 1)(2s+ 1)
D̃s

0 log(x2
12) . (A.10)

Here we should remark that the contributions to the log(x2
12) terms are not the 1/∆-pole

terms but twice of them. See [24] for more details, for instance.
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A.2 Deformation with fermionic operators

We move to examine the integrals appeared in section 4, where we have deformed the

theory by (1.2). The integral Ĩ1 in (4.5) is computed as

Ĩ1 = 4N2C6
φ

∫
d3x3d

3x4

s∑
k,l=0

akal

[
∂̂k1

1

(x2
14)1/2

] [
∂̂s−k1 ∂̂l2

1

(x2
12)1/2

] [
∂̂s−l2

1

(x2
23)1/2

]
1

(x2
34)5/2

.

The integral is essentially the same as I
(1)
1 computed in subsection 3.2.1 of [2], so we

evaluate the integral in the same way. Namely, we replace (x2
34)−5/2 by (x2

34)−5/2+∆ and

pick up the 1/∆-pole term. The log(x2
12) dependence can be read off as

Ĩ log
1 = − N

3 · 24π2
Ds

0 log(x2
12) . (A.11)

The integral Ĩ2 in (4.6) can be written as

Ĩ2 = 2N2C6
φ

s∑
k,l=0

akalBk,l , (A.12)

where Bk,l was defined in (A.6). As for I3, we find

Ĩ log
2 =

N

24π2

1

(2s− 1)(2s+ 1)
Ds

0 log(x2
12) . (A.13)

The integral Ĩ3 in (4.7) becomes

Ĩ3 =
2

3
N2C6

φ

∫
d3x3d

3x4 (A.14)

×
s−1∑
k,l=0

ãkãltr

[
∂̂k1 /∂3

1

(x2
13)1/2

]
γ̂

[
∂̂s−k−1

1 ∂̂l2/∂1
1

(x2
12)1/2

] [
γ̂∂̂s−l−1

2
/∂2

1

(x2
24)1/2

] [
/∂3

1

(x2
34)3/2

]
.

The integral is almost the same as I
(1)
1 in subsection 4.2.1 of [2], so we shift (x2

34)−3/2 as

(x2
34)−3/2+∆. From the 1/∆-pole term, we find

Ĩ log
3 = − N

3 · 24π2
D̃s

0 log(x2
12) . (A.15)

Similarly, we obtain

Ĩ4 = −N2C6
φ

s−1∑
k,l=0

ãkãl

∫
d3x3d

3x4 (A.16)

× tr

{[
∂̂k1 /∂3

1

(x2
13)1/2

]
γ̂

[
∂̂s−1−k

1
/∂1

1

(x2
14)1/2

] [
∂̂l2/∂4

1

(x2
24)1/2

]
γ̂

[
∂̂s−1−l

2
/∂2

1

(x2
23)δ

]
1

x2
34

}
.

The integral is almost the same as I
(2)
1 in subsection 4.2.2 of [2], so we change (x2

34)−1 to

(x2
34)−1+∆. From the 1/∆-pole term, we have

Ĩ log
4 =

N

24π2

1

(2s− 1)(2s+ 1)
D̃s

0 log(x2
12) . (A.17)
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The integrals Ĩ5 in (4.9) and Ĩ6 in (4.10) are of the similar form as

Ĩ5 = (−1)sĨ6 =
1

2
N2C6

φ

s∑
k=0

s−1∑
l=0

akãl

∫
d3x3d

3x4 (A.18)

× tr

{[
∂̂k1

1

(x2
14)1/2

] [
∂̂s−k1

1

(x2
13)1/2

] [
∂̂l2/∂3

1

(x2
23)1/2

]
γ̂

[
∂̂s−l−1

2
/∂2

1

(x2
24)1/2

] [
/∂3

1

x2
34

]}
.

Using the relation (see (4.41) and (4.42) of [2])

s−1∑
l=0

ãltr

[
∂̂l2/∂2

1

(x2
24)1/2

]
γ̂

[
∂̂s−l−1

2
/∂2

1

(x2
23)1/2

] [
/∂3

1

x2
34

]

=
8

(x2
23)3/2

s∑
l=0

al

[
∂̂l2

1

(x2
24)1/2

] [
∂̂s−l2

1

(x2
23)1/2

]
,

we can rewrite as

Ĩ5 = (−1)sĨ6 = (−1)s4N2C6
φ

s∑
k,l=0

akalBk,l (A.19)

with Bk,l in (A.6). The integral Ĩ6 is twice of Ĩ2 evaluated as in (A.13), which leads to

Ĩ log
5 = (−1)sĨ log

6 = (−1)s
N

8π2

1

(2s− 1)(2s+ 1)
Ds

0 log(x2
12) . (A.20)

B Another method for anomalous dimensions

In the previous appendix, we have obtained the log(x2
12) dependence of integrals Ia (a =

1, . . . , 5) and Ĩa (a = 1, . . . , 6). Therefore, only the integrals Ĩ7, Ĩ8, Ĩ9 in (4.15), (4.16), (4.17)

are left. In principal, it is straightforward to evaluate the integrals as in [24], but it is quite

tedious. In this section, we compute the log(x2
12) dependence by developing more simple

but indirect method.

For explanation, let us focus on the case of the Gross-Neveu model. In case with

our main method, we compute 〈J̃ εs(p)J̃ εs(−p)〉 and read off the anomalous dimensions as

explained in section 2. The same information can be actually read off from the three point

function 〈J̃ εs(0)ψi(p)ψ̄j(−p)〉 by solving the RG flow equation as in [17], see also [15]. It

is obvious to identify which Feynman diagrams for the three point function correspond to

Ĩ7, Ĩ8, Ĩ9, thus we can successfully deduce the terms proportional to log(x2
12) in the integrals.

However, in this way, we loose direct connection to the bulk computation as explained in

section 5, which was actually the main purpose in previous works [1, 2], see also footnote 2.

Moreover, if we are interested in the overall normalization of two point function as in [24],

then we have to directly evaluate the complicated integrals.

We need to extend the method in [17] to the case of the supersymmetric model de-

formed by (1.2). As in subsection 3.3, we rewrite the action by introducing auxiliary spinor

fields η, η̄ as

S =

∫
d3x

[
∂µφ̄

i∂µφi + ψ̄i/∂ψi + η̄K + K̄η − 1

κ
η̄η

]
. (B.1)
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Figure 3. Feynman diagrams corresponding to Ĩa (a = 1, . . . , 9).

The effective propagator for η, η̄ is obtained as

Fκ(p) = 〈η(p)η̄(−p)〉0 =
(
−〈K(p)K̄(−p)〉0

)−1
= −16

N

i/p

|p|
. (B.2)

As in [17] we shift the exponent as

Fκ(p) = −16

N

i/p

(p2)1/2+∆
, (B.3)

which is the same as changing the scaling dimension of η, η̄ from 3/2 to 3/2 − ∆, see,

e.g., [24]. This also implies that interaction terms become

µ∆

∫
d3x[̄̄ηK + K̄η] (B.4)

at κ→∞ with the renormalization scale µ.

We read off the anomalous dimensions from the µ dependence of three point functions,

such as, 〈J̃ εs(0)ψi(p)ψ̄j(−p)〉. The vertex operators corresponding to J εs(0) and J̃ εs(0) are

V 0
1,s(0, p) = vs(p̂)

s , V 0
2,s(0, p) = ṽsγ̂(p̂)s−1 , p̂ ≡ ε · p . (B.5)

We may denote the logarithmic corrections to the vertices V 0
α,s(0, p) as

δV αβ
s (0, p) = −γαβs V 0

β,s(0, p) log µ . (B.6)

Here γαβs were given in (2.13), and they become anomalous dimensions after diagonaliza-

tion.8 There are three types of contributions as in figure 3. Two of them can be computed

by left two Feynman diagrams, which correspond to the integrals Ĩa (a = 1, . . . , 6). An-

other type of corrections come from the right most Feynman diagram. They correspond

to the integrals Ĩ7, Ĩ8, Ĩ9, so we shall focus on the case from now on.

In the rest of this appendix, we compute the log µ corrections δV αβ
s (0, p) corresponding

to Ĩ7, Ĩ8, Ĩ9. Let us expand the value of Feynman integral (denoted as X(∆)) by the shift

∆ introduced in (B.3) as

X(∆) = X(−1) 1

∆
+X(0) +O(∆) . (B.7)

8We should properly set the ratio vs/ṽs if we want to have γ12 = γ21.
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We will compute the Feynman integrals of the form in the right most diagram of figure 3,

which has µ4∆ factor from the interaction terms (B.4). Therefore, we can read off the log µ

dependence from the 1/∆-pole term X(−1) as

µ4∆X(∆) = X(−1) 1

∆
+ 4X(−1) log µ+X(0) +O(∆) . (B.8)

At κ→∞, the contributions to anomalous dimensions can be identified with some factors

in front of log(x2
12), see section 2. Carefully treating the (16/N)4 factor as in (4.18) and

the normalization of higher spin currents, we would obtain(
16

N

)4

Ĩ log
7 =

16

π2N

s

(2s+ 1)(2s− 1)
Ds

0 log(x2
12) , (B.9)(

16

N

)4

Ĩ log
8 =

16

π2N

s

(2s+ 1)(2s− 1)
D̃s

0 log(x2
12) , (B.10)(

16

N

)4

Ĩ log
9 =

16

π2N

1

(2s+ 1)(2s− 1)

2Ds
0

s
log(x2

12) . (B.11)

Here we have used the results in (B.27), (B.37), (B.40), and (B.41) below.

In order to evaluate integrals, we utilize several formulas; we introduce Feynman pa-

rameters as
1

Am1
1 Am2

2

=

∫ 1

0
dx

(1− x)m1−1xm2−1

((1− x)A1 + xA2)m1+m2

Γ(m1 +m2)

Γ(m1)Γ(m2)
. (B.12)

Moreover, we use the following integrals∫
d3l

(2π)3

1

(l2 + Λ)n
=

1

8π3/2

Γ(n− 3/2)

Γ(n)

(
1

Λ

)n−3/2

,∫
d3l

(2π)3

l2

(l2 + Λ)n
=

1

8π3/2

3

2

Γ(n− 5/2)

Γ(n)

(
1

Λ

)n−5/2

. (B.13)

B.1 Correction δV 11
s

Let us start from δV 11
s corresponding to the integral Ĩ7 in (4.15). The integral we need to

evaluate is

−N
∫

d3k

(2π)3
tr

[
Fκ(−k)A11

s (k)Fκ(−k)
−i(/p− /k)

|p− k|2

]
, (B.14)

where Fκ(k) is given in (B.3) and

A11
s (k) =

∫
d3l

(2π)3

i(/k − /l)
|k − l|2

vs(l̂)
s 1

|l|2
1

|l|2
= ivs

∫
d3l

(2π)3

(/k − /l)(l̂)s

|l|4|l − k|2
. (B.15)

Let us work on A11
s (k) first. Introducing the Feynman parameter as in (B.12), inte-

gration over l can be performed as

A11
s (k) = ivs

∫
d3l

(2π)3

∫ 1

0
dx

Γ(3)

Γ(1)Γ(2)

(1− x)(/k − /l)(l̂)s

((l − xk)2 + x(1− x)k2)3

= 2ivs

∫
d3l′

(2π)3

∫ 1

0
dx

(1− x)((1− x)/k − /l ′)(l̂′ + xk̂)s

((l′)2 + x(1− x)k2)3
. (B.16)
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Notice that the integral vanishes when the number of l′ in the numerator is odd and it is

proportional to the metric gµν when the number is even. In particular, the integral vanishes

when (l̂′)2 is in the numerator due to ε · ε = 0. Thus we keep (l′)0 and (l′)2 terms as

((1− x)/k − /l ′)(l̂′ + xk̂)s ∼ (1− x)/k(xk̂)s − /l ′ l̂′s(xk̂)s−1

∼ (1− x)/k(xk̂)s − 1

3
γ̂(l′)2s(xk̂)s−1 . (B.17)

Here we have replaced lµlν by l2gµν/3, which is possible in the numerator of the integrand.

Using (B.13), we find

A11
s (k) = i

1

8π3/2
vs

∫ 1

0
dx

[
Γ(3

2)
(1− x)2xs/k(k̂)s

(x(1− x)k2)3/2
− 3

2
Γ(1

2)
1
3(1− x)xs−1sγ̂(k̂)s−1

(x(1− x)k2)1/2

]

= i
1

16π
vs

Γ(3
2)Γ(s− 1

2)

Γ(s+ 1)

[
/k(k̂)s

|k|3
− s γ̂(k̂)s−1

|k|

]
. (B.18)

Putting (B.18) into (B.14), there are two terms in the integral over k. One of them is

proportional to∫
d3k

(2π)3
tr

[
/k

|k|1+2∆

/k(k̂)s

|k|3
/k

|k|1+2∆

(/p− /k)

|p− k|2

]
=

∫
d3k

(2π)3

(k̂)str[/k(/p− /k)]

|k|3+4∆|p− k|2

=

∫
d3k

(2π)3

∫ 1

0
dx

Γ(5
2 + 2∆)

Γ(3
2 + 2∆)

(1− x)1/2+2∆(k̂)str[/k(/p− /k)]

((k − xp)2 + x(1− x)p2)5/2+2∆
. (B.19)

We change k′ = k + xp and integrate over k′. The terms contributing to the 1/∆-pole are

(k̂′ + xp̂)str[(/k
′
+ x/p)((1− x)/p− /k′)] ∼ 2s(1− 2x)k̂′(xp̂)s−1k′ · p− 2(xp̂)s|k′|2

∼ 2

3
(sxs−1 − (2s+ 3)xs)(p̂)s|k′|2 . (B.20)

Thus the 1/∆-pole term is

1

2∆

1

4π2
(p̂)s

[
s

Γ(3
2)Γ(s)

Γ(s+ 3
2)
− (2s+ 3)

Γ(3
2)Γ(s+ 1)

Γ(s+ 5
2)

]
= − 1

2∆

1

4π2
s(p̂)s

Γ(3
2)Γ(s)

Γ(s+ 3
2)
. (B.21)

The other integral is∫
d3k

(2π)3
tr

[
/k

|k|1+2∆

γ̂(k̂)s−1

|k|
/k

|k|1+2∆

(/p− /k)

|p− k|2

]
=

∫
d3k

(2π)3

(k̂)s−1(−2|k|2(p̂+ k̂) + 4k̂k · p)
|k|3+4∆|p− k|2

(B.22)

up to overall factor. The first term becomes

− 2

∫
d3k

(2π)3

(k̂)s−1(p̂+ k̂)

|k|1+4∆|p− k|2

= −2

∫
d3k′

(2π)3

∫ 1

0
dx

Γ(3
2 + 2∆)

Γ(1
2 + 2∆)

(1− x)−1/2+2∆(k̂′ + xp̂)s−1((1 + x)p̂+ k̂′)

((k′)2 + x(1− x)p2)3/2+2∆
. (B.23)
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The 1/∆-pole term is then

− 1

2∆

1

4π2
(p̂)s

[
Γ(s)Γ(1

2)

Γ(s+ 1
2)

+
Γ(s+ 1)Γ(1

2)

Γ(s+ 3
2)

]
. (B.24)

The second term is

4

∫
d3k

(2π)3

(k̂)sk · p
|k|3+4∆|p− k|2

= 4

∫
d3k′

(2π)3

∫ 1

0
dx

Γ(5
2 + 2∆)

Γ(3
2 + 2∆)

(1− x)1/2+2∆(k̂′ + xp̂)s(k′ + xp) · p
((k′)2 + x(1− x)p2)5/2+2∆

. (B.25)

The singular term arises as

1

2∆

1

2π2
sp̂s

Γ(3
2)Γ(s)

Γ(s+ 3
2)
, (B.26)

which cancels with the second term in (B.24). Summing over all contributions, we find

δV 11
s (0, p) =

16

π2N

s

(2s+ 1)(2s− 1)
V 0

1,s(0, p) log µ . (B.27)

B.2 Correction δV 22
s

We move to δV 22
s corresponding to the integral Ĩ8 in (4.16). We need to compute the

Feynman integral

N

∫
d3k

(2π)3
Fκ(k)A22

s (k)Fκ(k)
1

|p− k|2
, (B.28)

where

A22
s (k) =

∫
d3l

(2π)3

i/l

|l|2
ṽsγ̂(l̂)s−1 i/l

|l|2
1

|k − l|2
= −ṽs

∫
d3l

(2π)3

/l γ̂/l(l̂)s−1

|l|4|l − k|2
. (B.29)

We first evaluate A22
s (k), which can be rewritten as

A22
s (k) = ṽs

∫
d3l

(2π)3

[
γ̂(l̂)s−1

|l|2|l − k|2
− 2

/l(l̂)s

|l|4|l − k|2

]
. (B.30)

The first term becomes

ṽs

∫
d3l′

(2π)3

∫ 1

0
dx

γ̂(l̂′ + xk̂)s−1

((l′)2 + x(1− x)k2)2
= ṽs

Γ(1
2)

8π3/2

∫ 1

0
dx

γ̂(xk̂)s−1

(x(1− x)k2)1/2

= ṽs
1

8π

Γ(s− 1
2)Γ(1

2)

Γ(s)

γ̂(k̂)s−1

|k|
, (B.31)
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and the second term is

− 2ṽs

∫
d3l′

(2π)3

∫ 1

0
dxΓ(3)

(1− x)(/l′ + x/k)(l̂′ + xk̂)s

((l′)2 + x(1− x)k2)3

∼ −4ṽs

∫
d3l′

(2π)3

∫ 1

0
dx

(1− x)(xs+1/k(k̂)s + 1
3sx

s−1γ̂(k̂)s−1(l′)2)

((l′)2 + x(1− x)k2)3
(B.32)

= −4ṽs
1

8π3/2

∫ 1

0
dx

[
(1− x)xs+1/k(k̂)s

(x(1− x)k2)3/2

Γ(3
2)

Γ(3)
+

1
3s(1− x)xs−1γ̂(k̂)s−1

(x(1− x)k2)1/2

3

2

Γ(1
2)

Γ(3)

]

= −ṽs
1

8π

[
/k(k̂)s

|k|3
Γ(1

2)Γ(s+ 1
2)

Γ(s+ 1)
+

1

2

γ̂(k̂)s−1

|k|
Γ(1

2)Γ(s− 1
2)

Γ(s)

]
.

Collecting the two contributions, we find

A22
s (k) = −ṽs

1

8π

[
/k(k̂)s

|k|3
Γ(1

2)Γ(s+ 1
2)

Γ(s+ 1)
− 1

2

γ̂(k̂)s−1

|k|
Γ(1

2)Γ(s− 1
2)

Γ(s)

]
. (B.33)

There are two terms in A22
s (k), and we start from the contribution to δV 22

s from the

first term. We compute∫
d3k

(2π)3

/k

|k|1+2∆

/k(k̂)s

|k|3
/k

|k|1+2∆

1

|p− k|2
=

∫
d3k

(2π)3

/k(k̂)s

|k|3+4∆|p− k|2

=
Γ(5

2 + 2∆)

Γ(3
2 + 2∆)

∫ 1

0
dx

∫
d3k′

(2π)3

(1− x)1/2+2∆(/k
′
+ x/p)(k̂′ + xp̂)s

((k′)2 + x(1− x)p2)5/2+2∆
(B.34)

∼
Γ(5

2 + 2∆)

Γ(3
2 + 2∆)

∫ 1

0
dx

∫
d3k′

(2π)3

(1− x)1/2+2∆/k
′
sk̂′(xp̂)s−1

((k′)2 + x(1− x)p2)5/2+2∆
=

1

2∆

1

8π2

Γ(3
2)Γ(s+ 1)

Γ(s+ 3
2)

γ̂(p̂)s−1 .

For the contribution from the second term, we find∫
d3k

(2π)3

/k

|k|1+2∆

γ̂(k̂)s−1

|k|
/k

|k|1+2∆

1

|p− k|2

= −
∫

d3k

(2π)3

[
γ̂(k̂)s−1

|k|1+4∆|p− k|2
− 2

/k(k̂)s

|k|3+4∆|p− k|2

]
. (B.35)

The second term is twice of (B.34) and the first term becomes

−
∫

d3k

(2π)3

γ̂(k̂)s−1

|k|1+4∆|p− k|2
= −γ̂

Γ(3
2 + 2∆)

Γ(1
2 + 2∆)

∫ 1

0
dx

∫
d3k′

(2π)3

(1− x)−1/2+2∆(k̂′ + xp̂)s−1

((k′)2 + x(1− x)p2)3/2+2∆

= − 1

2∆

1

8π2

Γ(1
2)Γ(s)

Γ(s+ 1
2)
γ̂(p̂)s−1 . (B.36)

Thus we find

δV 22
s (0, p) =

16

π2N

s

(2s+ 1)(2s− 1)
V 0

2,s(0, p) log µ . (B.37)
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B.3 Corrections δV 12
s and δV 21

s

Finally we evaluate δV 12
s and δV 21

s corresponding to the integral Ĩ9 in (4.17). The integrals

are

N

∫
d3k

(2π)3
Fκ(k)A11

s (k)Fκ(k)
1

|p− k|2
, (B.38)

−N
∫

d3k

(2π)3
tr

[
Fκ(−k)A22

s (k)Fκ(−k)
−i(/p− /k)

|p− k|2

]
, (B.39)

respectively. Here A11
s (k) and A22

s (k) were defined in (B.15) and (B.30). The 1/∆-pole

structures can be read off from the results in the previous subsections. The final expressions

are

δV 12
s (0, p) =

16

Nπ2

1

(2s− 1)(2s+ 1)
( i2vsγ̂(p̂)s−1) log µ , (B.40)

δV 21
s (0, p) =

16

Nπ2

1

(2s− 1)(2s+ 1)
(−2iṽs(p̂)

s) log µ . (B.41)

As mentioned in footnote 8, we need to change the relative normalization of vertices

V 0
1,s(0, p) and V 0

2,s(0, p) in (B.5) so as to obtain γ12 = γ21.
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