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1 Introduction

F-theory [1–3] is an extension of type IIB superstring theory, which provides a nonper-

turbative formulation. F-theory is compactified on genus-one fibered Calabi-Yau m-folds

(with or without a section) where the axio-dilaton, τ = C0 + ie−φ, is identified with the

modular parameter of a genus-one fiber, enabling the axio-dilaton to have SL2(Z) mon-

odromy. 7-branes are magnetic sources for the RR 0-form C0, and 7-branes are wrapped

on the components of a discriminant locus, i.e., the codimension 1 locus in the base over

which fibers degenerate.

Until recently, in most literature, elliptically fibered Calabi-Yau m-folds that admit

a global section were used as compactification geometries for F-theory. (For models with

a global section, see, for example, [4–21].) However, a Calabi-Yau m-fold with a torus

fibration does not typically admit a section. Therefore, it is possible to consider genus-one

fibered Calabi-Yau m-folds lacking a global section as compactification geometries for F-

theory. In recent years, such F-theory compactifications on genus-one fibrations without a

section have been considered in several studies, initiated in [22, 23].1 For recent progress

in F-theory compactifications on genus-one fibrations without a section, see also, for exam-

ple, [26–36]. In [23], Morrison and Taylor considered the Jacobian of a genus-one fibration

without a section to show that the F-theory geometry without a section fits into the moduli

of Weierstrass models. They observed that in the moduli of Weierstrass models, the geom-

etry of genus-one fibrations includes the geometry of elliptic fibrations with a section. They

argued that moving from an F-theory model with a global section to an F-theory model on

genus-one fibrations without a section in the moduli space can be viewed as a Higgsing pro-

cess, in which a U(1) gauge symmetry is broken and a discrete gauge symmetry2 remains.

The Calabi-Yau genus-one fibrations with an identical Jacobian fibration, J , form a

group referred to as the Tate-Shafarevich group, X(J). A genus-one fibration Y and the

Jacobian fibration J(Y ) have identical τ functions. Therefore, F-theory compactifications

on distinct genus-one fibrations in X(J) describe physically equivalent theories. As dis-

cussed in [23], the Tate-Shafarevich group X(J(Y )) (of the Jacobian J(Y )) is identified

with the discrete gauge group that forms in F-theory compactification on a Calabi-Yau

genus-one fibration Y [25]. Concretely, in F-theory compactified on a genus-one fibration

with an n-section, a discrete Zn symmetry arises as the remnant of a broken U(1)n−1. For

example, a discrete Z2 gauge symmetry arises in F-theory compactification on a genus-one

fibration with a bisection, and when a genus-one fibration has a 3-section, a discrete Z3

symmetry arises in F-theory compactification.

In this note, we determine the discrete gauge symmetries that arise in F-theory com-

pactifications on several constructions of genus-one fibered Calabi-Yau 4-folds without a

section, by specifying the degrees of multisections. We build genus-one fibered Calabi-Yau

manifolds that lack a global section using Fano manifolds. Fano manifolds are a gener-

alization of (products of) projective spaces. We consider the following constructions of

genus-one fibered Calabi-Yau 4-folds:

1F-theory models without a section were considered in [24, 25].
2For recent progress in discrete gauge symmetries, see, for example, [37–53].
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1. Intersection of two hyperplane classes in the product of two Fano 3-folds.

2. Cyclic 3-fold covers of P1 times Fano 3-folds.

3. Constructions involving Segre embeddings of P2 × P
2 and P

1 × P
1 × P

1.

4. Hypersurfaces in P
2 times Fano 3-folds.

5. Complete intersections in P
3 times Fano 3-folds.

6. Double covers of P1 times Fano 3-folds.

In the six constructions 1. ∼ 6., we particularly use Fano 3-folds of index 2, Vd

(d = 2, · · · , 8). These Fano 3-folds Vd were discussed in [54–56]. In this note, Fano 3-folds

Vd are referred to as del Pezzo 3-folds of degree d, following [55, 56]. We do not consider

the del Pezzo 3-fold of degree 1, V1, in this note.

We determine the discrete gauge symmetries that form in F-theory compactifications

on the above six constructions of genus-one fibered Calabi-Yau 4-folds. In this note, we

introduce a general method which is applicable to all of the above six constructions of

Calabi-Yau genus-one fibrations.

As stated above, a discrete Zn gauge symmetry forms in F-theory compactification on

a Calabi-Yau genus-one fibration with a multisection of degree n. We introduce a general

method to determine the degrees of multisections, as follows: in each of the six Calabi-

Yau constructions introduced above, genus-one fibers are embedded in a Fano manifold.

The pullback of a hyperplane class in this Fano manifold to a Calabi-Yau space gives a

multisection. The pullback of a point class in the base 3-fold, on the other hand, represents

the fiber class. The degree of a multisection represents the number of intersection points

with a fiber. (Therefore, a multisection of degree 1, which intersects with a fiber in a

single point, is a global section.) Said differently, the intersection number of a multisection

with the fiber class gives the degree of a multisection. Representing a multisection as the

pullback of a hyperplane class enables to compute the intersection number with the fiber

class. This method applies to all of the six Calabi-Yau constructions 1.∼ 6. . Using this

method, we deduce the discrete gauge groups that arise in F-theory compactified on the

six constructions of Calabi-Yau 4-folds.

This method is considerably general, and is also applicable to similar constructions

of genus-one fibered Calabi-Yau manifolds. This method might be useful in determining

discrete gauge symmetries in F-theory approach.

The constructions 1.,2. and 3. provide novel examples of F-theory compactifications

in which discrete symmetries form. In construction 1., discrete Z2, Z3, Z4 and Z5 gauge

symmetries arise in F-theory compactifications employing del Pezzo 3-folds V2, V3, V4 and

V5, respectively. In construction 2., a discrete Z3 symmetry arises in F-theory compactifica-

tions. In construction 3., a discrete Z3 gauge symmetry arises in F-theory compactifications

involving Segre embedding of P2 × P
2 into P

8. A discrete Z2 symmetry arises in F-theory

compactifications involving Segre embedding of P1 × P
1 × P

1 into P
7.

In construction 4., we consider hypersurfaces whose genus-one fibers are cubic hy-

persurfaces in P
2. F-theory compactifications on Calabi-Yau genus-one fibrations whose

– 3 –
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fibers are cubic hypersurfaces in P
2 were considered in [27, 31, 34, 36]. In such F-theory

compactifications, a discrete Z3 symmetry arises [27, 31].

In construction 5., we consider the complete intersections whose genus-one fibers are

the complete intersections of two quadrics in P
3. F-theory compactifications on Calabi-Yau

genus-one fibrations, whose fibers are complete intersections of two quadric hypersurfaces

in P
3 were studied in [35, 50]. In these F-theory compactifications, a discrete Z4 gauge

symmetry arises [50].

In construction 6., we consider Calabi-Yau spaces as double covers, whose genus-one

fibers are double covers of P1 ramified over 4 points. F-theory compactifications of this

kind were considered in [23, 35, 36]. In F-theory compactifications on these double covers,

a discrete Z2 symmetry arises [23].

This paper is structured as follows: in section 2, we introduce the six constructions of

genus-one fibered Calabi-Yau 4-folds that lack a global section. In section 3, we deduce

discrete symmetries that form in F-theory compactifications on the six Calabi-Yau con-

structions. We represent multisections as pullbacks of hyperplane classes, and we compute

the intersection numbers of these pullbacks of hyperplane classes with the fiber class to ob-

tain the discrete symmetries. Constructions 1., 2. and 3. give novel examples of F-theory

compactifications in which discrete symmetries form. In section 4, we state the concluding

remarks. The continuous gauge theories and matter spectra in F-theory compactification

on the special complete intersections whose K3 fibers are isomorphic to the Fermat quartic

will be discussed in appendix A.

2 Constructions of genus-one fibered Calabi-Yau 4-folds

In this section, we introduce constructions of genus-one fibrations without a section that

are Calabi-Yau 4-folds. In section 3, we determine the discrete gauge symmetries that arise

in F-theory compactifications on these genus-one fibrations.

2.1 Intersections of two hyperplane classes in product of del Pezzo 3-folds

In this section, we consider special Fano 3-folds, called the del Pezzo 3-folds of degree d,

Vd, d = 2, · · · , 8, to construct genus-one fibered Calabi-Yau 4-folds. Structures of the del

Pezzo 3-folds Vd, d = 2, · · · , 8 [54–56] are displayed in table 1 below.

We consider the product of two del Pezzo 3-folds VD × VE , and we consider the inter-

section of two hyperplane sections3 OVD×VE
(1, 1) in the product VD × VE . The resulting

4-fold Y4 has the trivial canonical bundle; therefore it is a Calabi-Yau 4-fold.

By construction, Calabi-Yau 4-fold Y4 has projection p onto VE , and projection q onto

VD. Fiber of projection p is the intersection of two hyperplane classes OVD
(1) in del Pezzo

3-fold VD, therefore it is a genus-one curve. Similarly, fiber of projection q is the intersection

of two hyperplane classes OVE
(1) in del Pezzo 3-fold VE , i.e. a genus-one curve. Therefore,

projections p, q are genus-one fibrations.

3Del Pezzo 3-fold V8 = P
3 is seen as a subvariety embedded in P

9 using the Veronese map of degree 2, v2:

V8 = P
3 −֒→ P

9. Hyperplane class OV8
(1) in del Pezzo 3-fold V8 is defined as the restriction of hyperplane

class OP9(1) in P
9 to V8: OV8

(1) := OP9(1)|V8
. Therefore, OV8

(1) = v
∗

2OP9(1) = OP3(2).

– 4 –
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Degree d of del Pezzo 3-fold Vd Structure

2 Double cover of P3

3 Cubic 3-fold in P
4

4 Complete intersection of two quadrics in P
5

5 Intersection of three hyperplane sections in Gr(2, 5) ⊂ P
9

6 P
1 × P

1 × P
1

7 Blow-up of P3 at a point

8 P
3

Table 1. List of del Pezzo 3-folds with degree d, d = 2, · · · , 8 [54–56]. Gr(2, 5) denotes the complex

Grassmannian of two-dimensional linear subspaces in C
5. Gr(2, 5) is embedded inside P

9 using the

Plücker embedding; the restriction of a hyperplane section in P
9 to Gr(2, 5) gives a hyperplane

section of Gr(2, 5). The del Pezzo 3-fold of degree 8 V8 is the image of P3 embedded in P
9 under

the Veronese embedding.

In this note, we focus on the case D = 2, 3, 4, 5 and E = 2, · · · , 8, and we choose VE

to be the base 3-fold. Genus-one fiber is the intersection of two hyperplanes OVD
(1) in del

Pezzo 3-fold VD, D = 2, 3, 4, 5.

In section 3.1, we deduce that the pullback of a hyperplane class in VD

q∗OVD
(1) (2.1)

gives a multisection of degreeD to the fibration. Therefore, we find that a discrete ZD gauge

symmetry (D = 2, 3, 4, 5) forms in F-theory compactification on Calabi-Yau 4-fold Y4.

We note that P
1 × P

2 may be used as the base 3-fold, in place of VE . For this

case, Calabi-Yau 4-fold is built as the complete intersection of OVD×P1×P2(1, 1, 2) and

OVD×P1×P2(1, 1, 1) hypersurfaces in VD × P
1 × P

2. Natural projection onto P
1 × P

2 gives a

genus-one fibration, and the pullback (2.1) gives a multisection of degree D, same as the

case stated above, in which the base 3-fold is VE .

We show that a generic member of genus-one fibered Calabi-Yau 4-folds Y4, constructed

as complete intersections of two OVD×VE
(1, 1) classes in VD × VE (D = 2, 3, · · · , 6, 8, E =

2, · · · , 8), does not have a global section. (The base 3-fold of genus-one fibration is VE .)

To show that Y4 lacks a global section, we prove that the Picard group Pic(Y4), which is

isomorphic to the group of divisor classes in Y4, is generated by the pullbacks of the divisors

in VD and the pullbacks of the divisors in VE . First, we assume that D 6= 6, 8, E 6= 6, 7.

The cases where D = 6, 8 or E = 6, 7 are merely special cases, and similar arguments as

that stated below apply to these special cases. Since

H1(VD) = 0, H1(VE) = 0, (2.2)

(these follow from the fact that VD and VE are Fano 3-folds), by Künneth formula, we find

that

H2(VD × VE ,Z) ∼= Z
2. (2.3)

– 5 –
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By Lefschetz theorem,

H2(Y4,Z) ∼= H2(VD × VE ,Z) ∼= Z
2. (2.4)

Since VD and VE are Fano 3-folds, H1(VD × VE ,Z) = 0, therefore by Lefschetz theorem

H1(Y4,Z) = 0. This shows that Pic0(Y4) = 0, and thus Pic(Y4) ∼= NS(Y4). By the

Lefschetz (1,1) theorem NS(Y4) ∼= H2(Y4,Z) ∩H1,1(Y4), therefore the rank of the Picard

group is bounded above by the rank of H2(Y4,Z), which is 2 by (2.4). The pullbacks

of O(1) classes in VD and VE give divisors of Y4, thus we conclude that these pullbacks

generate the Picard group Pic(Y4). The pullback p∗OVE
(1) is the pullback of a divisor

in the base VE ; therefore, the pullback p∗OVE
(1) is parallel to the fiber class F , namely

the pullback p∗OVE
(1) has an intersection number 0 with the fiber class F . On the other

hand, as we will see in section 3.1, the pullback q∗OVD
(1) of OVD

(1) class in VD gives a

D-section, when D = 2, 3, 4, 5. Therefore, a divisor in Y4, which is nq∗OVD
(1)+mp∗OVE

(1)

for some integers n,m, has an intersection number a multiple of D with the fiber class F .

((nq∗OVD
(1) +mp∗OVE

(1)) · F = nD.) This shows that Y4 has only multisections whose

degrees are multiples of D, thus we conclude that Y4 does not have a global section.

When D 6= 6, 8, E = 6, the second Betti number of the del Pezzo 3-fold of degree 6 V6

is b2(V6) = 3, therefore we have

H2(VD × VE ,Z) ∼= Z
4. (2.5)

By Lefschetz theorem, we obtain

H2(Y4,Z) ∼= Z
4. (2.6)

For this case, the pullback p∗OV6
(1) splits into three classes: p∗OP1×P1×P1(1, 0, 0),

p∗OP1×P1×P1(0, 1, 0) and p∗OP1×P1×P1(0, 0, 1). This comes from the fact that V6 is the

direct product of three projective lines. Therefore, Y4 has four divisors: these three pull-

backs, and the pullback q∗OVD
(1). From (2.6), we find that the rank of the Picard group

Pic(Y4) is bounded above by 4. Thus, we conclude that the four divisors that we found gen-

erate the Picard group Pic(Y4). Three pullbacks p∗OP1×P1×P1(1, 0, 0), p∗OP1×P1×P1(0, 1, 0)

and p∗OP1×P1×P1(0, 0, 1) are parallel to the fiber class F , and the pullback q∗OVD
(1) has an

intersection number D with the fiber class F . Thus, every divisor in Y4 has an intersection

number a multiple of D with the fiber class F . This shows that Y4 does not have a global

section.

When D 6= 6, 8, E = 7, the base 3-fold V7 is blow-up of P3 at a point; therefore, the

Picard group of V7 Pic(V7) is generated by OV7
(1) and the exceptional divisor E. Since

b2(V7) = 2,

H2(VD × V7,Z) ∼= Z
3, (2.7)

and by Lefschetz theorem

H2(Y4,Z) ∼= Z
3. (2.8)

Thus, the rank of the Picard group Pic(Y4) is bounded by 3. The pullbacks p∗OV7
(1), p∗E

and q∗OVD
(1) give divisors of Y4, therefore we conclude that these pullbacks generate the

Picard group Pic(Y4). p
∗OV7

(1) and p∗E are pullbacks of divisors in the base 3-fold V7, thus

– 6 –
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they are parallel to the fiber class F . It follows that any divisor in Y4 has an intersection

number a multiple of D with the fiber class F . This shows that Y4 does not have a section.

When D = 6, multisection q∗OV6
(1) splits into three bisections. (We discuss this case

from the perspective of Segre embeddings in section 2.3 and 3.3.2.) When D = 8, multi-

section q∗OV8
(1) represents a 4-section. Similar arguments as that stated above show that

for these cases Y4 does not have a global section. When D = 7, Y4 admits a global section.

2.2 Cyclic 3-fold covers of P1 times del Pezzo 3-folds

Cyclic 3-fold covers of P1×VE ramified along a OP1×VE
(3, 3) 3-fold are Calabi-Yau 4-folds.

As in section 2.1, VE denotes the del Pezzo 3-fold of degree E, with E = 2, · · · , 8.

By construction, a cyclic 3-fold cover, Y , has projection p onto VE , and projection

q onto P
1. Fiber of projection p onto VE is a cyclic 3-fold cover of a rational curve P

1

ramified over 3 points, which is a genus-one curve. Therefore, projection p gives a genus-

one fibration.

In section 3.2, we will find that the pullback of a hyperplane class in P
1

q∗OP1(1) (2.9)

gives a 3-section to the fibration. Thus, a discrete Z3 gauge symmetry arises in F-theory

compactification on cyclic 3-fold cover Y .

We remark that the possible non-Abelian gauge symmetries on the 7-branes in F-theory

compactifications on cyclic 3-fold covers of P1×VE are highly constrained by the symmetry.

Similar observations are made in [34, 36]. Genus-one fiber has the automorphism group

of order 3, therefore every smooth fiber is the Fermat curve. Indeed, a rational curve P
1

with 3 fixed points has the constant moduli, therefore the complex structure of its cyclic

3-fold cover is unique. It follows that fibers have the j-invariant 0 throughout the base; as

a result, singular fibers have the j-invariant 0. Thus, the possible fiber types4 are II, IV ,

I∗0 , IV
∗ and II∗; the possible non-Abelian gauge symmetries that can arise on the 7-branes

are: SU(3), SO(8), E6 and E8.

2.3 Constructions involving Segre embeddings of P2
× P

2 and P
1
× P

1
× P

1

We construct Calabi-Yau 4-folds using Segre embeddings of products of projective spaces.

We consider the following two Segre embeddings:

P
2 × P

2 −֒→ P
8 (2.10)

P
1 × P

1 × P
1 −֒→ P

7 (2.11)

We denote a quadric hypersurface in P
4 by Q3. We consider the direct product of Q3,

and P
2 × P

2 embedded in P
8 under the Segre embedding: Q3 × P

2 × P
2. This is a Fano

7-fold, and the intersection of three hyperplane sections OQ3×P2×P2(1, 1, 1) in Q3×P
2×P

2

has the trivial canonical bundle; therefore, the intersection of three hyperplane classes

OQ3×P2×P2(1, 1, 1) gives a Calabi-Yau 4-fold, Y2,2.

4We use Kodaira’s notation to denote fiber types. For the Kodaira-Néron classification of the singular

fibers of elliptic surfaces, see [57–59].
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By construction, Calabi-Yau 4-fold Y2,2 has projection p1 onto Q3. Fiber of this pro-

jection is the intersection of three hyperplane classes OP2×P2(1, 1) in P
2 × P

2, which is a

genus-one curve; therefore, projection p1 is a genus-one fibration. Calabi-Yau 4-fold Y2,2
also has projection q1 onto P

2 × P
2. We will find in section 3.3.1 that the pullbacks of

hyperplane classes OP2×P2(1, 0) and OP2×P2(0, 1) under projection q1 are 3-sections. Thus,

a discrete Z3 symmetry arises in F-theory compactification on Calabi-Yau 4-fold Y2,2.

Next, we consider the Segre embedding of V6 = P
1 × P

1 × P
1 into P

7. We consider the

direct product of two del Pezzo 3-folds, V6 and VE (E = 2, · · · , 8): V6 × VE . We take the

intersection of two hyperplane classes OV6×VE
(1, 1) in the product V6 × VE ; the canonical

bundle of this intersection has the trivial bundle, thus this construction gives a Calabi-Yau

4-fold, Y1,1,1.

By construction, Calabi-Yau 4-fold Y1,1,1 has natural projection p2 onto VE . Fiber of

projection p2 is the intersection of two hyperplane classes OV6
(1) in V6, which is a genus-one

curve. Therefore, projection p2 gives a genus-one fibration. Calabi-Yau 4-fold Y1,1,1 also

has projection q2 onto V6 = P
1×P

1×P
1. We will see in section 3.3.2 that the pullbacks of

hyperplane classesOP1×P1×P1(1, 0, 0), OP1×P1×P1(0, 1, 0) and OP1×P1×P1(0, 0, 1) under q2 are

bisections. Therefore, a discrete Z2 symmetry arises in F-theory compactification on Y1,1,1.

A similar proof as that given in section 2.1 shows that generic members of the con-

structed genus-one fibered Calabi-Yau 4-folds Y2,2 and Y1,1,1 do not have a global section.

2.4 Hypersurfaces in P
2 times Fano 3-folds

We construct Calabi-Yau 4-folds by considering hypersurfaces in P
2 times Fano 3-folds. For

Fano 3-folds, we use the following spaces: del Pezzo 3-folds VE (E = 2, · · · , 8), and P
1×P

2.

Hypersurface class OP2×VE
(3, 2) in the product P

2 × VE is a Calabi-Yau 4-fold, Y4.

Calabi-Yau 4-fold Y4 has natural projection p onto VE , and natural projection q onto P
2.

Fiber of projection p is a cubic hypersurface in P
2, which is a genus-one curve. Therefore,

projection p is a genus-one fibration. The particular case E = 6 is a (3,2,2,2) hypersurface

in P
2 × P

1 × P
1 × P

1 [36].

Similarly, (3,2,3) hypersurfaces in P
2×P

1×P
2 are genus-one fibered Calabi-Yau 4-folds.

Base 3-fold is P1 × P
2.

We will find in section 3.4 that the pullback of hyperplane classOP2(1) under projection

q gives a 3-section. Therefore, a discrete Z3 symmetry arises in F-theory compactifications

on these hypersurface constructions of Calabi-Yau 4-folds.

A similar proof as that given in section 2.1 shows that a generic member of the con-

structed genus-one fibered Calabi-Yau 4-folds Y4 does not have a global section.

2.5 Complete intersections in P
3 times Fano 3-folds

We build Calabi-Yau 4-folds as complete intersections in P
3 times Fano 3-folds. Same as

in section 2.4, we use del Pezzo 3-folds VE , E = 2, · · · , 8, and P
1 × P

2, for Fano 3-folds.

Complete intersections of two OP3×VE
(2, 1) classes in the product P3 × VE are Calabi-

Yau 4-folds. Fiber of natural projection p onto VE is a complete intersection of two quadrics

in P
3, which is a genus-one curve. Therefore, projection p gives a genus-one fibration. The

particular case E = 6 is a (2,1,1,1) and (2,1,1,1) complete intersection in P
3×P

1×P
1×P

1.
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A similar argument as that stated above shows that (2,1,2) and (2,1,1) complete in-

tersections in P
3 × P

1 × P
2 are genus-one fibered Calabi-Yau 4-folds.

Complete intersection in P
3 times Fano 3-folds has natural projection q onto P

3. We

will find in section 3.5 that the pullback of hyperplane class OP3(1) in P
3 under q gives

a 4-section. Therefore, we find that a discrete Z4 gauge symmetry arises in F-theory

compactifications on genetic members of complete intersections described above.

A similar proof as that given in section 2.1 shows that a generic member of the con-

structed genus-one fibered Calabi-Yau complete intersections does not have a global section.

We remark that, for special members of (2,1,1,1) and (2,1,1,1) complete intersections

in P
3 × P

1 × P
1 × P

1, and special members of (2,1,2) and (2,1,1) complete intersections in

P
3 × P

1 × P
2, given by:

x21 + x23 + 2t f x2x4 = 0 (2.12)

x22 + x24 + 2t g x1x3 = 0.

the discrete symmetry becomes Z2. ([x1 : x2 : x3 : x4] represents homogeneous coordinates

on P
3. t is the inhomogeneous coordinate on the first P

1 in P
3 × P

1 × P
1 × P

1, and is

the inhomogeneous coordinate on P
1 in P

3 × P
1 × P

2. For (2,1,1,1) and (2,1,1,1) complete

intersections in P
3 × P

1 × P
1 × P

1, f, g are bidegree (1,1) polynomials on P
1 × P

1, where

this P1×P
1 is the product of the last two P

1’s in P
3×P

1×P
1×P

1. For (2,1,2) and (2,1,1)

complete intersections in P
3×P

1×P
2, f, g are polynomials of degree 2 and degree 1 on P

2,

respectively. Simultaneous vanishing of the two equations in (2.12) gives a complete in-

tersection.) (2,1,1,1) and (2,1,1,1) complete intersections, and (2,1,2) and (2,1,1) complete

intersections have K3 fibrations, with base surface being P
1 × P

1, and P
2, respectively. K3

fibers of the complete intersections (2.12) are isomorphic to the Fermat quartic surface,

{x4 + y4 + z4 +w4 = 0} ⊂ P
3 [35]. As we will see in section 3.5, for special complete inter-

sections (2.12), 4-sections split into pairs of bisections. As a result, the discrete symmetry

that forms in F-theory compactifications becomes Z2.

We prove that the special (2,1,1,1) and (2,1,1,1) complete intersections in P
3 × P

1 ×

P
1 × P

1, and special (2,1,2) and (2,1,1) complete intersections in P
3 × P

1 × P
2, both given

by (2.12), do not have a rational section. The proof goes as follows: the natural projection

of (2,1,1,1) and (2,1,1,1) complete intersection (2.12) onto P
1 × P

1, where these P
1’s are

the last two P
1’s in the product P3×P

1×P
1×P

1, and the natural projection of (2,1,2) and

(2,1,1) complete intersection (2.12) onto P
2, have K3 fibers, described by the simultaneous

vanishing of the following two equations in P
3 × P

1:

x21 + x23 + 2t x2x4 = 0 (2.13)

x22 + x24 + 2t x1x3 = 0.

K3 fiber (2.13) is isomorphic to the Fermat quartic surface. K3 fiber (2.13) is a (2,1)

and (2,1) complete intersection in P
3 × P

1; therefore, it has natural projection onto P
1,

which gives a genus-one fibration of K3 surface (2.13). This genus-one fibration does not

have a global section [35]. Therefore, K3 fibers (2.13) are genus-one fibered, but they lack a

global section. If (2,1,1,1) and (2,1,1,1) complete intersection (2.12), and (2,1,2) and (2,1,1)
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complete intersection (2.12), have rational sections, these rational sections restrict to K3

fibers, giving global sections to K3 fibers (2.13). Therefore, the fact that K3 fibers (2.13)

lack a global section implies that (2,1,1,1) and (2,1,1,1) complete intersection Calabi-Yau

4-folds (2.12) and (2,1,2) and (2,1,1) complete intersection Calabi-Yau 4-folds (2.12) do

not admit a rational section.

2.6 Double covers of P1 times Fano 3-folds

The following double covers of the products P1 times Fano 3-folds are Calabi-Yau 4-folds:

• double covers of P1 × VE ramified over a OP1×VE
(4, 4) 3-fold

• double covers of P1 × P
1 × P

2 ramified over a (4,4,6) 3-fold

Each of these double covers has projection p onto the base 3-folds B3, where the base 3-fold

B3 is the del Pezzo 3-fold of degree E, VE for the first double cover construction, and the

base 3-fold B3 is P
1 × P

2 for the second double cover construction, respectively. Fiber of

projection p is a double cover of P1 ramified over 4 point, which is a genus-one curve. Thus,

projection p gives a genus-one fibration.

These double covers have natural projection q onto P
1. We will see in section 3.6 that

the pullback of point class OP1(1) in P
1 under q gives a bisection. Therefore, a discrete Z2

symmetry arises in F-theory compactifications on these double covers.

3 Discrete gauge symmetry

In this section, we represent multisections of the Calabi-Yau genus-one fibrations as the

pullbacks of hyperplane classes from the spaces in which genus-one fibers embed. By com-

puting the intersection numbers of these pullbacks with fiber classes F , we determine the

degrees of the multisections. Using this method, we deduce the discrete gauge symme-

tries that arise in F-theory compactifications on the six constructions of genus-one fibered

Calabi-Yau 4-folds without a section that we introduced in section 2.

3.1 Discrete Z2, Z3, Z4 and Z5 symmetries on intersections of two hyperplane

classes in product of del Pezzo 3-folds

In section 2.1, we constructed genus-one fibered Calabi-Yau 4-fold Y4 as the intersection

of two hyperplane sections OVD×VE
(1, 1) in the product of two del Pezzo 3-folds, VD × VE ,

D = 2, 3, 4, 5, E = 2, · · · , 8.

By construction, Calabi-Yau 4-fold Y4 has natural projection p onto VE , and natural

projection q onto VD. We use VE as the base 3-fold. Projection p gives a genus-one

fibration; genus-one fiber is the intersection of two hyperplane classes OVD
(1) in VD. The

pullback of a point class in the base 3-fold VE , p
∗{pt}, has self-intersection 0; therefore it

represents the fiber class F . The pullback of a hyperplane class OVD
(1) in VD, q

∗OVD
(1),

has an intersection number D with fiber class F = p∗{pt}, where D is the degree of the

del Pezzo 3-fold VD. Thus, pullback

q∗OVD
(1) (3.1)

represents a D-section, D = 2, 3, 4, 5.
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Therefore, we conclude that a discrete Z5 symmetry arises in F-theory compactifi-

cations on intersections of two hyperplane sections in V5 × VE . Discrete Z4, Z3 and Z2

symmetries arise in F-theory compactifications on intersections of two hyperplane sections

in V4 × VE , V3 × VE and V2 × VE , respectively.

Additionally, as stated in section 2.1, whenD = 8 multisection q∗OV8
(1) represents a 4-

section. Thus, a discrete Z4 symmetry forms in F-theory compactifications on intersections

of two hyperplane sections in V8 × VE .

As stated in section 2.1, the base 3-fold VE may be replaced by P
1 × P

2. The results

obtained above remain unchanged when the base 3-fold is replaced by P
1 × P

2.

3.2 Discrete Z3 symmetry on cyclic 3-fold covers of P1 times del Pezzo 3-folds

Cyclic 3-fold covers of P1×VE ramified over aOP1×VE
(3, 3) 3-fold are Calabi-Yau 4-folds. VE

denotes the del Pezzo 3-fold of degree E, with E = 2, · · · , 8. Such cyclic 3-fold covers have

projection p onto VE , and projection q onto P
1. Projection p gives a genus-one fibration;

genus-one fiber is a cyclic 3-fold cover of a rational curve P
1 ramified over 3 points.

The pullback of a point class in the base 3-fold VE , p
∗{pt}, has self-intersection 0;

therefore it gives the fiber class F . The pullback of a point class OP1(1) in P
1, q∗OP1(1),

has an intersection number 3 with fiber class F = p∗{pt}. Therefore, we conclude that the

multisection

q∗OP1(1) (3.2)

is a 3-section. Thus, a discrete Z3 gauge symmetry forms in F-theory compactifications on

cyclic 3-fold covers of P1 × VE ramified over a OP1×VE
(3, 3) 3-fold.

3.3 Discrete Z3 and Z2 symmetries on constructions involving Segre embed-

dings of P2
× P

2 and P
1
× P

1
× P

1

3.3.1 Z3 symmetry in constructions involving Segre embeddings of P
2
× P

2

into P
8

We consider the Segre embedding of P2 × P
2 into P

8: P
2 × P

2 −֒→ P
8. Q3 is a quadric

3-fold in P
4. We saw in section 2.3 that the intersection of three hyperplane sections

OQ3×P2×P2(1, 1, 1) in the product Q3×P
2×P

2 is a Calabi-Yau 4-fold, Y2,2. Y2,2 has projec-

tion p1 onto Q3, and projection q1 onto P
2 × P

2. Projection p1 gives a genus-one fibration;

genus-one fiber is the intersection of three hyperplane classes OP2×P2(1, 1) in P
2 × P

2.

The pullback of a point class in the base 3-fold Q3, p
∗
1{pt}, represents the fiber class F .

The pullback of hyperplane class OP2×P2(1, 0) in P
2×P

2, q∗1OP2×P2(1, 0), has an intersection

number 3 with fiber class F . Similarly, pullback q∗1OP2×P2(0, 1) has an intersection number

3 with fiber class F . Therefore, we find that pullbacks

q∗1OP2×P2(1, 0), q∗1OP2×P2(0, 1) (3.3)

represent 3-sections. A discrete Z3 gauge group arises in F-theory compactification on Y2,2.
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3.3.2 Z2 symmetry in constructions involving Segre embeddings of P1
×P

1
×P

1

into P
7

We consider the Segre embedding of V6 = P
1 × P

1 × P
1 into P

7: P
1 × P

1 × P
1 −֒→ P

7.

Intersection of two hyperplane sections OV6×VE
(1, 1) in the product of two del Pezzo 3-

folds, V6 × VE , E = 2, · · · , 8, is a Calabi-Yau 4-fold, Y1,1,1. Y1,1,1 has projection p2 onto

VE , and projection q2 onto V6. Projection p2 is a genus-one fibration, and genus-one fiber

is the intersection of two hyperplanes OV6
(1) in V6 = P

1 × P
1 × P

1.

The pullback of a point class in the base 3-fold VE , p
∗
2{pt}, gives the fiber class F . The

pullback of hyperplane class OP1×P1×P1(1, 0, 0) in V6 = P
1 × P

1 × P
1, q∗2OP1×P1×P1(1, 0, 0),

has an intersection number 2 with fiber class F . Similarly, Pullbacks q∗2OP1×P1×P1(0, 1, 0)

and q∗2OP1×P1×P1(0, 0, 1) have intersection number 2 with fiber class F . Therefore, pullbacks

q∗2OP1×P1×P1(1, 0, 0), q∗2OP1×P1×P1(0, 1, 0), q∗2OP1×P1×P1(0, 0, 1) (3.4)

are bisections. Thus, a discrete Z2 gauge group forms in F-theory compactification on Y1,1,1.

3.4 Discrete Z3 symmetry on hypersurfaces in P
2 times Fano 3-folds

In section 2.4, we considered the following two constructions of Calabi-Yau 4-fold as hy-

persurfaces in P
2 times Fano 3-folds:

• Hypersurfaces of class OP2×VE
(3, 2) in P

2 × VE

• (3,2,3) Hypersurfaces in P
2 × P

1 × P
2

These Calabi-Yau hypersurfaces have projection p onto B3, and projection q onto P
2.

For the first hypersurface, B3 is the del Pezzo 3-fold VE , and for the second hypersurface, B3

is P1×P
2. Projection p gives a genus-one fibration; a genus-one fiber is a cubic hypersurface

in P
2. The argument that follows to determine the degree of a multisection does not depend

on the structure of B3.

The pullback of a point class in the base 3-fold B3, p
∗{pt}, has self-intersection 0;

therefore, it gives the fiber class F . The pullback of a line class OP2(1) in P
2, q∗OP2(1),

has an intersection number 3 with fiber class F . Therefore, pullback

q∗OP2(1) (3.5)

represents a 3-section. A discrete Z3 symmetry arises in F-theory compactifications on

these Calabi-Yau hypersurfaces.

3.5 Discrete Z4, Z2 symmetries on complete intersections in P
3 times Fano

3-folds

In section 2.5, we considered the following complete intersections to construct Calabi-Yau

4-folds:

• Complete Intersections of two OP3×VE
(2, 1) hypersurfaces in P

3 × VE

• Complete Intersections of (2,1,2) and (2,1,1) hypersurfaces in P
3 × P

1 × P
2.
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By construction, these complete intersection Calabi-Yau 4-folds have projection p onto

B3, and projection q onto P
3. B3 is the del Pezzo 3-fold VE , E = 2, · · · , 8, for the first

complete intersection, and B3 is P1×P
2 for the second complete intersection. Projection p

gives a genus-one fibration; a genus-one fiber is a complete intersection of two quadrics in

P
3. The argument that follows to determine the degree of a multisection does not depend

on the structure of B3.

The pullback of a point class in the base 3-fold B3, p
∗{pt}, represents the fiber class

F . The pullback of a surface class OP3(1) in P
3, q∗OP3(1), has an intersection number 4

with fiber class F . Therefore, pullback

q∗OP3(1) (3.6)

represents a 4-section. A discrete Z4 gauge symmetry arises in F-theory compactifications

on generic members of these complete intersections.

We remark that for special members of complete intersections, 4-sections split into pairs

of bisections. We consider the special (2,1,1,1) and (2,1,1,1) complete intersections in P
3×

P
1×P

1×P
1, and special (2,1,2) and (2,1,1) complete intersections in P

3×P
1×P

2, given by

x21 + x23 + 2t f x2x4 = 0 (3.7)

x22 + x24 + 2t g x1x3 = 0.

We observe that for the special complete intersections (3.7), 4-sections split into pairs

of bisections. To observe this explicitly, we consider the following locus:

x1 = 0. (3.8)

Along the locus (3.8), the second equation in (3.7) becomes

x22 + x24 = 0, (3.9)

which is independent of t and f, g, i.e., independent of the coordinates on the base 3-fold

B3. Equation (3.9) splits into linear factors as follows:

x22 + x24 = (x2 + ix4)(x2 − ix4) = 0, (3.10)

from which we find that {x1 = 0, x2 + ix4 = 0} and {x1 = 0, x2 − ix4 = 0} give bisections

of a complete intersection (3.7). This implies that a 4-section splits into a pair of two

bisections, {x1 = 0, x2 + ix4 = 0} and {x1 = 0, x2 − ix4 = 0}, for a complete intersec-

tion (3.7). By applying a similar argument to three other loci, x2 = 0, x3 = 0, and x4 = 0,

we observe that a complete intersection (3.7) has eight bisections. (We do not know if a

complete intersection (3.7) has more bisections.)

In summary, we have shown that the special complete intersections (3.7) have bisections

to the fibration, and from this result we deduce that a discrete Z2 gauge group arises in

F-theory compactifications on the special complete intersections (3.7).
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3.6 Discrete Z2 symmetry on double covers of P1 times Fano 3-folds

In section 2.6, we considered the following constructions of Calabi-Yau 4-folds as double

covers of the products of P1 times Fano 3-folds:

• double covers of P1 × VE ramified over a OP1×VE
(4, 4) 3-fold

• double covers of P1 × P
1 × P

2 ramified over a (4,4,6) 3-fold.

By construction, these Calabi-Yau double covers have projection p onto B3, and pro-

jection q onto P
1. The base 3-fold B3 is the del Pezzo 3-fold of degree E, VE for the first

double cover construction, and B3 is P1×P
2 for the second construction. The projection p

gives a genus-one fibration; genus-one fiber is a double cover of P1 ramified over 4 points.

The argument that follows to determine the degree of a multisection does not depend on

the structure of B3.

The pullback of a point class in the base 3-fold B3, p
∗{pt}, has self-intersection 0;

therefore, it represents the fiber class F . The pullback of a point class in P
1, q∗OP1(1), has

an intersection number 2 with fiber class F . Therefore, pullback

q∗OP1(1) (3.11)

is a bisection. A discrete Z2 symmetry arises in F-theory compactifications on these Calabi-

Yau double covers.

4 Conclusion

In this note, we investigated the discrete gauge symmetries that arise in F-theory com-

pactifications on examples of genus-one fibered Calabi-Yau 4-folds without a section. We

constructed genus-one fibered Calabi-Yau 4-folds that do not have a global section, by

considering constructions using Fano manifolds, double covers, cyclic 3-fold covers and

Segre embeddings of products of projective spaces. For these constructions, we obtained

multisections as the pullbacks of hyperplanes classes in spaces in which fibers embed. We

determined the degrees of these multisections by computing the intersection numbers with

the fiber classes F , and we deduced the discrete gauge symmetries that form in F-theory

compactifications on the six constructions of Calabi-Yau genus-one fibrations.

In particular, the Calabi-Yau constructions that use the del Pezzo 3-folds (section 2.1),

cyclic 3-fold covers (section 2.2), and the Segre embeddings of products of projective spaces

(section 2.3) provide novel examples of F-theory compactifications in which discrete gauge

groups arise. Discrete Z5, Z4, Z3 and Z2 symmetries arise in the constructions that use

the product of del Pezzo 3-folds, VD × VE , depending on the degree of the del Pezzo 3-fold

VD. A discrete Z3 symmetry arises in F-theory compactifications on cyclic 3-fold covers

of P1 × VE ramified over a OP1×VE
(3, 3) 3-fold. A discrete Z3 symmetry arises in F-theory

compactifications on the Calabi-Yau constructions that use the Segre embedding of P2×P
2

into P
8. A discrete Z2 symmetry arises in F-theory compactifications on the Calabi-Yau

constructions that use the Segre embedding of P1 × P
1 × P

1 into P
7.
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For special complete intersection Calabi-Yau 4-folds in P
3 × P

1 × P
1 × P

1, and

special complete intersection Calabi-Yau 4-folds in P
3 × P

1 × P
2, whose K3 fibers are

isomorphic to the Fermat quartic, we observed that 4-sections split into pairs of bisections.

Consequently, the discrete symmetry that arises in F-theory compactifications becomes

Z2 for these special cases.

The method, introduced in section 3 to determine the discrete gauge symmetries that

arise in F-theory compactifications, is considerably general, and is applied to all six con-

structions of Calabi-Yau 4-folds. The same method applies to similar constructions of

Calabi-Yau genus-one fibrations.
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A Gauge theories and matter spectra on (2,1,1,1) and (2,1,1,1) complete

intersections in P
3
× P

1
× P

1
× P

1

We determine the forms of the discriminant components, and the non-Abelian gauge groups

arising on the 7-branes in F-theory compactifications on the special (2,1,1,1) and (2,1,1,1)

complete intersections (2.12) in P
3 × P

1 × P
1 × P

1. We derive the equations of the Ja-

cobian fibrations and determine the Mordell-Weil group of the Jacobians. We find that

the Mordell-Weil group has rank 0; therefore, F-theory models on the special (2,1,1,1) and

(2,1,1,1) complete intersection Calabi-Yau 4-folds (2.12) do not have a U(1) gauge symme-

try. The relationship between the gauge symmetry and the torsion part of the Mordell-Weil

group is discussed in [60, 61]. By computing the Euler characteristic of the complete in-

tersections (2.12), we derive a condition imposed on a 4-form flux5 to cancel the tadpole.

As discussed in [36], to determine whether a consistent flux [32, 71–74] exists, we need to

compute the self-intersections of intrinsic 2-cycles, which is technically considerably diffi-

cult. For this reason, in this study, we do not consider whether a consistent flux exists.

We compute the potential matter spectra and potential Yukawa couplings. As it is unde-

termined whether a consistent flux choice exists, the contents of the spectra are potential

matter and they could arise. Similar organization can be found in [36].

A.1 Forms of the discriminant components, non-Abelian gauge groups on 7-

branes and Jacobian fibration

In section 2.5 and 3.5, we discussed the special (2,1,1,1) and (2,1,1,1) complete intersections

in P
3 × P

1 × P
1 × P

1, given by

x21 + x23 + 2t f x2x4 = 0 (A.1)

x22 + x24 + 2t g x1x3 = 0.

5[62] studied 4-form flux. For recent studies of 4-form fluxes in F-theory, see, for example, [6, 63–70].
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The K3 fibers of the complete intersection Calabi-Yau 4-folds (A.1) are isomorphic to the

Fermat quartic. Using a method similar to that in [35], we derive the equation of the

Jacobian fibrations of the complete intersections (A.1).

We introduce a parameter λ, and subtract λ times the second equation from the first

equation in (A.1), as follows:

x21 + x23 + 2t f x2x4 − λ(x22 + x24 + 2t g x1x3). (A.2)

We arrange the coefficients of equation (A.2) into a symmetric 4 × 4 matrix, and compute

the determinant of the matrix to obtain the equation of the Jacobian fibrations of the

complete intersections (A.1) as follows:

τ2 = −t2g2λ4 + (t4f2g2 + 1)λ2 − t2f2. (A.3)

The Jacobian fibrations (A.3) describe double covers of P1 × P
1 × P

1 × P
1, where λ and

t are the inhomogeneous coordinates on the first and the second P
1’s, respectively, in

P
1×P

1×P
1×P

1, and f, g are (1,1) polynomials on P
1×P

1. (This P1×P
1 is the product of the

third and the fourth P
1’s in P

1×P
1×P

1×P
1.) The Jacobians (A.3) are Calabi-Yau 4-folds.

A complete intersection (A.1) and its Jacobian fibration (A.3) have the same discrim-

inant loci and fiber types. Therefore, we can determine the forms of the discriminant

components and the non-Abelian gauge groups in F-theory compactifications on the com-

plete intersections (A.1) by studying the Jacobian fibrations (A.3).

The discriminant of the Jacobian (A.3) is given by

∆ = 16f2g2t4(f2g2t4 − 1)4

= 16f2g2t4(fgt2 − 1)4(fgt2 + 1)4
(A.4)

We can deduce the discriminant components from the vanishing of discriminant ∆ (A.4)

as follows:

E1 := {t = 0} (A.5)

E2 := {t = ∞}

D1 := {f = 0}

D2 := {g = 0}

D3 := {u = ∞}

D4 := {v = ∞}

D5 := {fgt2 = 1}

D6 := {fgt2 = −1}.

In (A.5), we have used notations u and v to denote the inhomogeneous coordinates on the

second and third P
1’s, respectively, in the base 3-fold, P1 × P

1 × P
1. With these notations,

f, g are bidegree (1,1) polynomials in two variables, u and v.

We have

Ei
∼= P

1 × P
1 (i = 1, 2) (A.6)
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Component Topology

Ei (i = 1, 2) P
1 × P

1

Di (i = 1, 2, 3, 4) P
1 × P

1

Intersections

D1 ∩D2 parallel 2 P
1’s

D3 ∩D4 P
1

Ei ∩Dj (i = 1, 2, j = 1, 2, 3, 4) P
1

Table 2. Discriminant components of a complete intersection (A.1) of two (2,1,1,1) hypersurfaces

in P
3 × P

1 × P
1 × P

1, and their intersections. Components D5 and D6 are omitted.

and

Di
∼= P

1 × P
1 (i = 3, 4). (A.7)

E1 and E2 are parallel. D3 ∩D4 is P1. We have

Ei ∩Dj
∼= P

1 (i = 1, 2, j = 3, 4). (A.8)

A bidegree (1,1) curve in P
1 × P

1 is a rational curve Σ0
∼= P

1. Therefore,

Di
∼= P

1 × Σ0
∼= P

1 × P
1 (i = 1, 2), (A.9)

and

Ei ∩Dj
∼= Σ0

∼= P
1 (i, j = 1, 2). (A.10)

Two bidegree (1,1) curves in P
1 × P

1 intersect at 2 points; thus, D1 ∩D2 is a disjoint sum

of 2 P
1’s. We omit components D5,6. We display the forms of the irreducible components,

Ei (i = 1, 2) and Di (i = 1, 2, 3, 4), of the discriminant locus, and the forms of their

intersections in table 2.

We derive the non-Abelian gauge symmetries on the 7-branes. The Jacobian fibra-

tion (A.3) transforms into the extended Weierstrass form given by the equation

y2 =
1

4
x3 −

1

2
(f2g2t4 + 1)x2 +

1

4
(f2g2t4 − 1)2x. (A.11)

From the extended Weierstrass form, one can determine if a singular fiber is multiplicative

(which corresponds to In fibers) or additive (which corresponds to the other fiber types,

i.e. III, IV , II∗, III∗, IV ∗, I∗m), by studying the coefficient of x2.6 For example, when

a singular fiber is at t, under some appropriate translation in x, an extended Weierstrass

form transforms into another extended Weierstrass form y2 = x3+a2x
2+a4x+a6 in such a

way that t divides a4 and a6; when t does not divide a2, the fiber type at t is multiplicative,

and when t divides a2, the fiber type at t is additive.

6See, for example, [75].
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The discriminant ∆ (A.4) vanishes under the conditions

fgt2 = 0, fgt2 − 1 = 0, fgt2 + 1 = 0, (A.12)

and these conditions specify the locations of the singular fibers. The coefficient of x2 in

the extended Weierstrass form (A.11)

−
1

2
(f2g2t4 + 1) (A.13)

does not vanish under the conditions

fgt2 − 1 = 0, fgt2 + 1 = 0 (A.14)

in (A.12). Under the translation in x that replaces x with x+1, the extended Weierstrass

form (A.11) transforms into

y2 =
1

4
x3 +

(

1

4
−

1

2
f2g2t4

)

x2 +

(

1

4
f4g4t8 −

3

2
f2g2t4

)

x+
1

4
f4g4t8 − f2g2t4. (A.15)

The coefficient of x2 in the extended Weierstrass form (A.15)

1

4
−

1

2
f2g2t4 (A.16)

does not vanish under the condition

fgt2 = 0 (A.17)

in (A.12). Thus, we conclude that singular fibers are multiplicative. Therefore, the fiber

types are In for some n.7 The fiber types can be determined from the multiplicities of

the zeros of discriminant ∆ (A.4). The fiber type on components E1 and E2 is I4. We

consider the translation in y, ỹ = y+(t+ 1
2)x+fgt2, for extended Weierstrass form (A.15)

to see that I4 fibers on components E1 and E2 are of split type. The corresponding gauge

groups on the 7-branes wrapped on components E1 and E2 are SU(4). The fiber type on

components D1 and D2 is I2. Similarly, the fiber type on components D3 and D4 is I2. The

corresponding gauge groups on the 7-branes wrapped on D1, D2, D3, and D4 are SU(2).

The fiber type on components D5 and D6 is I4. We consider the translation in y, ỹ = y−x,

for extended Weierstrass form (A.11) to find that I4 fibers on components D5 and D6 are

of split type. The corresponding gauge groups on the 7-branes wrapped on D5 and D6 are

SU(4). We show the results in table 3.

A.2 Mordell-Weil group of the Jacobian fibration

In A.1, we deduced that the Jacobian fibration of a complete intersection Calabi-Yau 4-

fold (A.1) is given by the equation

τ2 = −t2g2λ4 + (t4f2g2 + 1)λ2 − t2f2. (A.18)

7One can also see this fact by completing the cube to transform the extended Weierstrass form (A.11)

into the Weierstrass form, and by studying the coefficients of the obtained Weierstrass form.

– 18 –



J
H
E
P
0
4
(
2
0
1
7
)
1
6
8

Component Fiber type non-Abel. Gauge Group

E1,2 I4 SU(4)

D1,2,3,4 I2 SU(2)

D5,6 I4 SU(4)

Table 3. Singular fiber types and the corresponding gauge groups on the discriminant components

of a complete intersection (A.1).

We compute the Mordell-Weil group of the Jacobian fibration (A.18).

The projection from the Jacobian (A.18) onto P
1 × P

1 (on which polynomials f, g are

defined) gives a K3 fibration, whose fiber is given by the following equation:

τ2 = −t2λ4 + (t4 + 1)λ2 − t2. (A.19)

The Mordell-Weil group of the K3 surface (A.19) was determined to be Z4×Z4 in [35]. We

consider a specialization from the Jacobian fibration (A.18) to its K3 fiber (A.19), which

is equivalent to selecting a point in the base surface, P1 × P
1, to deduce that the Mordell-

Weil group of the Jacobian fibration (A.18) is isomorphic to that of the K3 surface (A.19).

Therefore, we conclude that the Mordell-Weil group of the Jacobian fibration (A.18) is

Z4 × Z4. Thus, the global structure of the non-Abelian gauge group is

SU(4)4 × SU(2)4/Z4 × Z4. (A.20)

In particular, the Mordell-Weil group of the Jacobian (A.18) has rank 0. Thus, F-

theory compactifications on the complete intersection Calabi-Yau 4-folds (A.1) do not have

a U(1) gauge field.

A.3 Euler characteristic and condition on 4-form flux to cancel the tadpole

As stated earlier, we do not discuss whether a consistent flux exists. By computing the

Euler characteristic of (2,1,1,1) and (2,1,1,1) complete intersection Calabi-Yau 4-folds in

P
3 × P

1 × P
1 × P

1, we derive a condition imposed on the self-intersection of a 4-form flux

G4 to cancel the tadpole.

We compute the Euler characteristic χ(Y ) of a (2,1,1,1) and (2,1,1,1) complete inter-

section Calabi-Yau 4-fold Y . An exact sequence,

0 −−−−→ TY −−−−→ TP3×P1×P1×P1 |Y −−−−→ NY −−−−→ 0 (A.21)

gives the following equality:

c(TY ) =
c(TP3×P1×P1×P1)|Y

c(NY )
. (A.22)

In the sequence (A.21), TY is the tangent bundle of the (2,1,1,1) and (2,1,1,1) complete

intersection Calabi-Yau 4-fold Y , and |Y represents the restriction to Y . NY is the nor-

mal bundle resulting from natural embedding of tangent bundle TY into tangent bundle
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CY 4-fold Y Euler char. χ(Y ) χ(Y )
24

(2,1,1,1) and (2,1,1,1) complete intersection 864 36

Table 4. Euler characteristic of complete intersections of (2,1,1,1) and (2,1,1,1) hypersurfaces in

P
3 × P

1 × P
1 × P

1.

TP3×P1×P1×P1 of the ambient space, P3 × P
1 × P

1 × P
1.

NY
∼= O(2, 1, 1, 1)⊕2, (A.23)

thus,

c(NY ) = (1 + 2x+ y + z + w)2. (A.24)

We have

c(TP3×P1×P1×P1)|Y = (1 + 4x+ 6x2 + 4x3)(1 + 2y)(1 + 2z)(1 + 2w)|Y . (A.25)

From equation (A.22), we find that the Euler characteristic χ(Y ), which is equal to the

top Chern class of c(Y ), is

χ(Y ) = 864. (A.26)

This is divisible by 24, and we have

χ(Y )

24
=

864

24
= 36. (A.27)

Additionally, we find the second Chern class c2(Y ) from equation (A.22) as follows:

c2(Y ) = (2x2 + 4xy + 4xz + 4xw + 2yz + 2yw + 2zw)|Y . (A.28)

This is even; thus, the quantization condition for a 4-form flux G4 [73] reduces to

G4 ∈ H4(Y,Z). (A.29)

A bound on the self-intersection of a 4-form flux G4 to cancel the tadpole is

N3 =
χ(Y )

24
−

1

2
G4 ·G4 = 36−

1

2
G4 ·G4 ≥ 0 (A.30)

with N3 the number of 3-branes minus anti 3-branes.

A.4 Potential matter fields and Yukawa couplings

We deduce the potential matter fields on 7-branes and along matter curves, and Yukawa

couplings. As stated earlier, it is undetermined whether a consistent flux exists. Therefore,

we can only say that the matter spectra (and Yukawa couplings) we compute could arise.

A deformation of the singularity associated with a gauge group G generates matter

fields on 7-branes [76, 77]. As stated in [78], this corresponds to the breaking of the gauge

group G on 7-branes to a subgroup Γ, with maximal inclusion

Γ×H ⊂ G. (A.31)
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We focus on the case in which H is U(1).

We focus on the bulk component, E1, of the discriminant locus. (Component E1 is

discussed in A.1.) We abbreviate E1 to E. Let L be a supersymmetric line bundle on the

bulk E. As E ∼= P
1 × P

1 (see table 2), L ∼= O(a, b) for some integers a, b ∈ Z. As argued

in [78], integers a, b are required to satisfy the following inequality:

ab < 0 (A.32)

for the line bundle L ∼= O(a, b) to be supersymmetric.

Suppose Γ has a representation τ with U(1) charge n. Then, the line bundle associated

to a matter in the representation τ is Ln. The generation of matters in the representation

τ of Γ on the bulk E is given by the following equation [78]:

nτ − nτ∗ = −

∫

E
c1(E)c1(L

n) = −n

∫

E
c1(E)c1(L). (A.33)

When the gauge group SU(4) on the bulk E breaks to SU(3) under

SU(4) ⊃ SU(3)×U(1), (A.34)

adjoint 15 of SU(4) decomposes as [79]

15 = 80 + 3−4 + 34 + 10. (A.35)

Thus, chiral matters 3 (could) arise on the bulk E, and their generation is given by

n3 − n
3
= −

∫

E
c1(E)c1(L

−4) = 4(2x+ 2y)(ax+ by)

= 8(a+ b).

(A.36)

We compute the generation of matter fields localized along the matter curve E ∩Di,

i = 1, 2. We saw in A.1 that the matter curve E ∩Di, i = 1, 2, is isomorphic to a rational

curve Σ0, E ∩ Di
∼= Σ0, i = 1, 2. (See equation (A.10) in A.1.) Σ0 denotes a Riemann

surface of genus 0, namely, a rational curve P
1.

E ∩Di, i = 1, 2, is a bidegree (1,1) curve in P
1 ×P

1. Therefore, the restriction LΣ0
, of

the line bundle L ∼= O(a, b) to the matter curve E ∩Di = Σ0, i = 1, 2, is

LΣ0

∼= OΣ0
(a+ b). (A.37)

Matter field 6 localized along the matter curve E ∩Di
∼= Σ0, i = 1, 2, decomposes as

6 = 32 + 3−2. (A.38)

We apply the Riemann-Roch theorem to obtain

n3 = h0(K
1/2
Σ0

⊗ L2
Σ0
)

= h0(OΣ0
(2(a+ b)− 1))

=

{

2(a+ b) (a+ b ≥ 0)

0 (a+ b < 0)

(A.39)
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Gauge Group a+ b Matters on E # Gen. on E Matters on Σ0 # Gen. on Σ0 Yukawa

SU(4) > 0 3 8(a+ b) 3 2(a+ b) 3 · 3 · 3

< 0 3 −8(a+ b) 3 −2(a+ b) 3 · 3 · 3

Table 5. Potential matter spectra in F-theory compactification on (2,1,1,1) and (2,1,1,1) complete

intersection (A.1) in P
3 × P

1 × P
1 × P

1.

Similarly,

n
3
= h0(K

1/2
Σ0

⊗ L−2
Σ0

)

= h0(OΣ0
(−2(a+ b)− 1))

=

{

−2(a+ b) (a+ b ≤ 0)

0 (a+ b > 0)

(A.40)

Thus, when a+b > 0, 3 (could) localize along the matter curve E∩Di
∼= Σ0, i = 1, 2. When

a+ b < 0, matter fields 3 (could) localize along the matter curve E ∩Di
∼= Σ0, i = 1, 2.

As discussed in [78], Yukawa coupling arises from the interactions of the following three

cases: i)Two matter fields on a matter curve and a matter on a bulk, ii)Three fields on

a bulk, and iii)Matters along three matter curves intersecting at one point. E ∼= P
1 × P

1

is a Hirzebruch surface; thus, Yukawa coupling does not arise from the interaction of the

second case on the bulk E, as stated in [78]. We focus on Yukawa couplings arising from

the first case.

When a+ b > 0, matter field 3 on the bulk E and two matter fields 3 localized along

the matter curve Σ0 generate the following Yukawa coupling:

3 · 3 · 3. (A.41)

When a+ b < 0, matter field 3 on the bulk E and two matter fields 3 localized along the

matter curve Σ0 generate the following Yukawa coupling:

3 · 3 · 3. (A.42)

The results are displayed in table 5.

We saw in section 3.5 that F-theory model on the Calabi-Yau complete intersec-

tion (A.1) has a discrete Z2 symmetry; therefore massless matter fields are charged under a

discrete Z2 symmetry, and this has to be reflected in the structure of Yukawa couplings [28].

Yukawa couplings (A.41) and (A.42) are indeed invariant under the action of Z2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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