

Title	<recent activities="" research="">Use of biphenyl/polychlorinated biphenyl-degrading bacteria for the production of useful aromatic compounds</recent>
Author(s)	Watanabe, Takahito; Fujihara, Hidehiko; Hirose, Jun; Suenaga, Hikaru; Kimura, Nobutada
Citation	Sustainable humanosphere : bulletin of Research Institute for Sustainable Humanosphere Kyoto University (2016), 12: 5-5
Issue Date	2016-11-15
URL	http://hdl.handle.net/2433/225929
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

RECENT RESEARCH ACTIVITIES

Use of biphenyl/polychlorinated biphenyl-degrading bacteria for the production of useful aromatic compounds

(Laboratory of Biomass Conversion, RISH, Kyoto University)

Takahito Watanabe, Hidehiko Fujihara, Jun Hirose, Hikaru Suenaga, and Nobutada Kimura

Most of aromatic compounds sourced from nature are derived from plant lignin. Lignin is a recalcitrant aromatic heteropolymer; however, some species of basidiomycetes, collectively known as white-rot fungi, can degrade lignin in wood. When these fungi partially degrade lignin, many of its degradation products, containing lignin-derived aromatic compounds, are released into natural environments. Especially, in soil environments, there are a large number of bacteria grown on lignin-derived aromatic compounds.

On the other hand, so far we have isolated 14 biphenyl-utilizing/degrading bacteria, belonging to the genera *Pseudomonas* and *Rhodococcus*, from various environmental samples. Because these bacteria can also co-metabolically degrade polychlorinated biphenyls (PCBs), xenobiotic compounds known as one of the most serious environmental pollutants, we have extensively studied on biochemical and genetic bases of biphenyl/PCB degradation [1]. Furthermore, we have recently performed the whole genome sequencing of these biphenyl/PCB-degrading bacteria and compared their genomes with those of other xenobiotic compound-degrading bacteria [2-10]. Interestingly, the genome analyses revealed that these biphenyl/PCB-degrading bacteria possess various catabolic genes involved in the degradation of lignin-derived aromatic compounds, as well as xenobiotic aromatic compounds as the sole sources of carbon and energy. These findings show that many aromatic compound-catabolic genes may be functionally expressed in the presence of lignin-derived aromatic compounds.

In this study, we focus on the production of useful aromatic compounds from wood biomass, such as lignin-derived aromatic compounds, by molecular breeding of aromatic compound-catabolic genes from the biphenyl/PCB-degrading bacteria. We are now trying to screen and identify useful genes and proteins from these bacteria using genomics and proteomics technologies.

References

[1] Furukawa, K., and Fujihara, H., J. Biosci. Bioeng., 105, 433-449, 2008.

[2] Kimura, N., et al., Genome Announc., 3(2):e00059-15. doi:10.1128/genomeA.00059-15, 2015.

[3] Suenaga, H., et al., Genome Announc., 3(2):e00142-15. doi:10.1128/genomeA.00142-15, 2015.

[4] Suenaga, H., et al., Genome Announc., 3(2):e00143-15. doi:10.1128/genomeA.00143-15, 2015.

[5] Watanabe, T., et al., Genome Announc., 3(2):e00222-15. doi:10.1128/genomeA.00222-15, 2015.

[6] Watanabe, T., et al., Genome Announc., 3(2):e00223-15. doi:10.1128/genomeA.00223-15, 2015.

[7] Fujihara, H., et al., Genome Announc., 3(3):e00473-15. doi:10.1128/genomeA.00473-15, 2015.

[8] Fujihara, H., et al., Genome Announc., 3(3):e00517-15. doi:10.1128/genomeA.00517-15, 2015.

[9] Hirose, J., et al., Genome Announc., 3(5):e01214-15. doi:10.1128/genomeA.01214-15, 2015.

[10] Hirose, J., et al., Genome Announc., 3(5):e01215-15. doi:10.1128/genomeA.01215-15, 2015.