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Abstract

To estimate gene regulatory networks, it is important that we know the number of connec-

tions, or sparseness of the networks. It can be expected that the robustness to perturbations

is one of the factors determining the sparseness. We reconstruct a semi-quantitative model

of gene networks from gene expression data in embryonic development and detect the opti-

mal sparseness against perturbations. The dense networks are robust to connection-

removal perturbation, whereas the sparse networks are robust to misexpression perturba-

tion. We show that there is an optimal sparseness that serves as a trade-off between these

perturbations, in agreement with the optimal result of validation for testing data. These

results suggest that the robustness to the two types of perturbations determines the sparse-

ness of gene networks.

Introduction

The purpose of this work is to clarify the mechanism determining the number of connections

or sparseness of gene networks. Theoretically, even if each gene has full connections to all

other genes, the desired expressions can be realized by the gene networks. Biologically, how-

ever, the gene networks are known to be sparsely connected [1]. It has been shown that robust-

ness to expression noise is positively correlated with network modularity [2]. Since a high

modularity implies low connections between modules, the networks can be maintained to be

sparse in noisy environments. On the other hand, excessively sparse networks are obviously

disadvantageous because a single cis-element mutation can cause gene dysfunction. Therefore,

intermediate sparseness should be adopted by biological gene networks. In this work, we

hypothesize that such an optimal sparseness is determined by maintaining robustness of the

gene networks to perturbations. Undoubtedly, the biological function of the gene networks is

also the main factor to determine their structure. However, the robustness to perturbations

influences any gene in the gene networks, whereas a specific biological function may influence
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a subset of genes. Since the sparseness is a statistical quantity concerned with any gene, the

robustness should play a major role in determining the sparseness.

For the robustness of the gene networks, we can consider two types of perturbations, muta-

tional and environmental perturbations [3]. Mutational perturbation implies mutation of cis-
elements and changes interactions of gene networks. Several theoretical works have shown

that denser networks are more robust to mutational perturbations than sparser ones [4, 5]. On

the other hand, environmental perturbation triggers gene expression noise or gene dysfunc-

tion. In this case, the robustness implies that an effect of a gene dysfunction does not spread

into the other genes. In other studies such as epidemic spreading, in contrast to mutational

perturbation, it has been shown that sparser networks are more robust to a dysfunction of a

node than denser ones because an epidemic threshold is proportional to the inverse of the

average number of connections [6]. In the gene networks, it is expected that the similar effect

may be observed. In this work, we consider the connection-removal perturbation as muta-

tional perturbation, and the misexpression perturbation as environmental perturbation. There

should be an optimal sparseness of the networks that serves as a trade-off between these per-

turbations. We investigate whether this trade-off of the robustness to the two types of pertur-

bations can predict the actual sparseness of the gene networks.

To analyze the effect of perturbations, a quantitative model to reproduce dynamics of biologi-

cal gene networks is necessary. However, the expression data used in the network estimation are

often qualitative binary data. In addition, temporal resolution of the expression data is intrinsi-

cally low because cell destruction is necessary in the measurement. To fulfill these required con-

ditions, we adopt a semi-quantitative model on the basis of the Glass networks, which are

represented by hybrid dynamical systems with real-valued nodes and logical interactions [7, 8].

Since several variables are represented by binary in the semi-quantitative model, binary expres-

sion data can be directly applied to the model. The binary variables also facilitate introducing

time delay into the model. Since time-delay systems are infinite dimensional, their analysis is dif-

ficult in general. In our model, since the binary values are virtually transmitted through a delay,

the system is finite dimensional. As results, interaction parameters are estimated by input and

output values of the delay. Therefore, temporal resolution of the expression data is not necessar-

ily required to be high. It should be noted that our model is represented by differential equations

although binary variables and time delays are introduced into them. This implies that we can

measure the effect of perturbations by the simulation of the differential equations.

Developmental gene networks are most appropriate for our purpose because the network

dynamics directly influences the phenotype and is susceptible to the perturbations. In the land-

mark study of developmental gene networks, Peter et al. constructed a dynamic Boolean

computational model from the expression data in the embryonic development of the sea

urchin [9]. They showed that the model can predict the dynamics of the expressions. In this

work, however, we propose a new method to estimate the gene networks without using their

model, because of the following two reasons. One reason is the control of the number of con-

nections in the estimation. Since our purpose is to analyze the sparseness as mentioned above,

we require a method to control the number of connections, whereas that of their model is

fixed. Another reason is the external signals. In other studies including that by Peter et al. [9],

the external signals or the predefined expressions of genes are often assumed. Since our analy-

sis is based on perturbations of the network dynamics, we attempt to construct more autono-

mous networks with self-determining intercellular signals than those used in the other studies.

We adopt the machine-learning method as the estimation method of the gene networks. In

the machine learning, regularization is important for determining the sparseness of solutions.

The LASSO (least absolute shrinkage and selection operator) method uses 1-norm of parame-

ters as the regularization term [10]. It is known that sparse solutions can be obtained by the
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1-norm regularization [11]. On the other hand, the1-norm regularization gives dense solu-

tions similar to the 2-norm regularization used in support vector machine [12]. We combine

the 1-norm and1-norm regularization methods and construct an adjustable sparse learning

method that can control the sparseness.

Materials and methods

Semi-quantitative model of gene networks

The model is represented by differential equations possessing continuous variables of mRNA

and protein ((B) and (D) in Fig 1). However, to enable the network estimation by binary data,

we introduce two types of binary variables into the model ((A) and (C) in Fig 1). “Semi-quanti-

tative” is derived from these binary variables in the continuous differential equations. We

explain the model on the basis of the biological processes in (A), (B), (C), and (D) in Fig 1.

Transcription (A)!(B): mRNA dynamics of the i-th gene is represented as follows,

miðtÞ ¼
XN

j¼1

wijPjðtÞ þ wi; ð1Þ

where mi is the mRNA abundance in the nucleus, t is the continuous time, N is the number of

genes, wij is the interaction parameter from the j-th gene to the i-th gene, and wi is the basal

level of transcription. Although the mRNA dynamics should be defined by a differential equa-

tion, we ignore the differential term because we assume that the generation and degradation of

mRNAs proceed more rapidly than those of proteins. Pj is the binary variable of the protein

imported from the cytoplasm into the nucleus, as explained later.

mRNA export (B)!(C): mRNA mi is exported from the nucleus to the cytoplasm with an

export delay and transformed into a binary variable. Then, the binary variable of mRNA Mi in

the cytoplasm is determined by mi:

MiðtÞ ¼
y � � if miðt � diÞ < y

yþ � if miðt � diÞ � y

(

; ð2Þ

where � is the coefficient of the effect on translation, di is the export delay from the nucleus to

the cytoplasm, and θ is the threshold.

Translation (C)!(D): Protein dynamics of the i-th gene is represented by the following

differential equation,

t
dpiðtÞ
dt
¼ � piðtÞ þMiðtÞ; ð3Þ

where pi is the protein abundance, and τ is the time constant of the protein.

Protein import (D)!(A): As mentioned above, protein pi is imported from the cytoplasm

into the nucleus and transformed into a binary variable. The binary variable of protein Pi in

the nucleus is defined by,

PiðtÞ ¼
0 if piðtÞ < y

0

1 if piðtÞ � y
0

(

; ð4Þ

where θ0 is the threshold. For simplicity, we assume that θ0 = θ. We also assume that the import

delay of proteins is sufficiently smaller than the protein dynamics and can be ignored.

In our model, we assume that the export delays have a greater influence on transcriptional

regulation than various other delays [13]. Whereas the number of delay parameters is O(N2) in
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general models [14], our model has only N delay parameters and we can easily estimate the

delays on the basis of this assumption.

Interpretation of binary expression data into model dynamics

The binary variables are used to interpret the binary expression data into the model dynamics.

The binary mRNA variable Mi(t) is the function of the binary protein variables Pj(t − di) for all

j (see Eqs (1) and (2)). These properties enable us to determine the values of the interaction

Fig 1. Model structure. Boxes show variables: (A) binary protein, (B) mRNA, (C) binary mRNA, and (D) protein. Arrows imply biological processes:

(A)!(B) transcription, (B)!(C) mRNA export, (C)!(D) translation, and (D)!(A) protein import.

https://doi.org/10.1371/journal.pone.0176492.g001
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parameters from the binary expression data. However, we can obtain only the mRNA expres-

sion data, because it is difficult to detect protein abundance in general. Therefore, we express

the protein variable by the mRNA variable approximately.

To express Pj by Mj, we consider the delay d until which pj reaches the threshold θ when Mj

is inverted. Differential Eq (3) has two possible equilibria for each gene: p�j ¼ y� �. Here we

assume that Mj = θ − � for a sufficiently long period and hence the gene is in an equilibrium

pj(0) = θ − � at t = 0. When Mj is inverted into θ + � at t = 0, the delay d (i.e., pj(d) = θ) is deter-

mined by solving differential Eq (3):

pjðtÞ ¼ ðpjð0Þ � MjðtÞÞe
� t=t þMjðtÞ; ð5Þ

where we assume that Mj(t) does not change in 0< t� d. At t = d, substituting pj(d) = θ,

pj(0) = θ − � and Mj(d) = θ + � into Eq (5), and solving it for d, we obtain

d ¼ t log 2: ð6Þ

The delay d has the same value even if Mj is inverted from θ + � into θ − �. Consequently, by

using the quasi-steady-state approximation in which the time interval between adjacent inver-

sions of Mj is sufficiently long, Pj(t) is approximately determined by Mj(t − d).

To be more specific, we convert Mj into M0
j :

M0

jðtÞ ¼
0 if MjðtÞ ¼ y � �

1 if MjðtÞ ¼ yþ �

(

: ð7Þ

Then, Pj is approximately represented as follows,

PjðtÞ � M0

jðt � dÞ: ð8Þ

Therefore, from Eqs (1) and (2), the temporal relation of mRNAs is represented as follows,

M0

iðtÞ �
0 if

PN
j¼1
wijM0

jðt � di � dÞ þ wi < y

1 if
PN

j¼1
wijM0

jðt � di � dÞ þ wi � y

8
<

:
: ð9Þ

It is noted that Eq (9) has a form of linear classification in machine learning.

Let {s1(t), s2(t), . . ., sj(t), . . ., sN(t)} be the set of experimentally measured mRNA expres-

sion data: sj(t) 2 {0, 1}. We assume that time t is discrete. The time discreteness of expression

data does not hinder the estimation of parameter values in the continuous-time model. We

can sufficiently estimate the interaction parameters from multiple data points with time

interval di + d. Consequently, we can estimate the interaction parameters by applying

machine learning to Eq (9) with M0
j ¼ sj for all j.

Adjustable sparse learning

The gene networks are estimated by using the machine-learning method. The aim of our

learning method is to estimate the networks having specified sparseness. It is known that

sparse networks and dense networks can be obtained by the 1-norm regularization and the

1-norm regularization, respectively. Combining the 1-norm and1-norm regularizations, we

can control the sparseness of the estimated networks.

We construct the learning method as follows,

Minimize ziðdi; a;CÞ ¼ RðWi; aÞ þ C
XK

k¼1

xk; ð10Þ
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subject to

ð2siðkÞ � 1Þ
XN

j¼1

wijsjðk � di � dÞ þ wi � y

 !

� 1 � xk; ð11Þ

wi � 0; xk � 0; i ¼ 1; 2; . . . ;N; k ¼ 1; 2; . . . ;K;

where zi is the objective function, α is the sparseness parameter, R is the regularization term,

Wi is the set consisting of wij for all j and wi, C is the soft-margin parameter, K is the length of

time series, and ξk is the non-negative slack variable. R is defined as follows,

RðWi; aÞ ¼ max ajjWijj1;
jjWijj1
N þ 1

� �

ð12Þ

where || � ||1 and || � ||1 are1-norm and 1-norm, respectively:

jjWijj1 ¼ max ðjwi1j; jwi2j; . . . ; jwiN j;wiÞ; ð13Þ

and

jjWijj1 ¼
XN

j¼1

jwijj þ wi: ð14Þ

The temporal relation of mRNAs (Eq (9)) holds in the condition of Eq (11) if ξk = 0. The non-

zero value of the slack variable (ξk> 0) implies that there are some errors in the expression

data.

The sparseness parameter α in the regularization term R can control the sparseness of net-

works. If α = 0, R is equivalent to the 1-norm regularization:

RðWi; 0Þ ¼
jjWijj1
N þ 1

: ð15Þ

In this case, the method is equivalent to a standard sparse learning method and many interac-

tion parameters become zero in the solution. On the other hand, if α = 1, R is equivalent to the

1-norm regularization:

RðWi; 1Þ ¼ jjWijj1; ð16Þ

because the average (1-norm term) is less than or equal to the maximum (1-norm term). In

this case, all possible parameters have non-zero values. Therefore, we can obtain sparse net-

works when α is small, and dense networks when α is large.

Our learning method is similar to the elastic net regularization [15] which combines the

1-norm and 2-norm regularizations. The advantage of our method is that the learning method

of Eqs (10) and (11) can be solved by linear programming, whereas the elastic net regulariza-

tion requires quadratic programming. Therefore, the learning method can be applied to the

estimation of large-scale networks.

The learning method does not directly estimate export delay di. We explain the estimation

method of export delay in S1 Appendix. We also explain the identification method of multiple

optimal solutions in S1 Appendix.

Expression data

We use the time series of expression data in the embryonic development of the sea urchin

reported by Peter et al. [9]. The expression data include the activities of 40 genes which consist
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of 34 transcription factors, 5 signals, and 1 receptor. The gene expression is spatially and tem-

porally specified. The spatial conditions are given by four embryonic domains: skeletogenic

micromere, V2 mesoderm, V2 endoderm, and V1 endoderm. Each time series is measured at

1-h intervals until 30 h, except V2 mesoderm (until 16 h). All data are given by binary values.

In the simulation, we use the four equivalent networks corresponding to the four domains.

We assume that a gene in a domain can receive signals from only neighbouring domains. The

neighbourhood of domains varies with cell differentiation as shown in Fig 2. For example, since

macromere differentiates into V1 and V2 at 8 h, V1 endoderm cannot receive signals from ske-

letogenic micromere after that time (Fig 2). In the simulation, the signal difference due to the

cell differentiation produces the difference of the expression pattern in each domain.

We externally apply the reachability of signals between domains to the model. The reach-

ability of signals depends on the physical distance between domains and the change of the

physical distance is derived from cell proliferation. Since cell proliferation is not simulated in

the model, the external application of the reachability of signals is necessary. It should be

noted that the expressions of the signal genes themselves are autonomously determined by the

network dynamics, whereas they are often given from an external source in other studies.

Therefore, the intercellular signal exchange is autonomous except the effect of the reachability

of signals. Unfortunately, however, there is no signal that stimulates the differentiation

between micromere and macromere. To specify this differentiation, we externally apply the

expression of pmar1 gene to the gene networks as an exception. pmar1 is known to control the

specification of micromere [16].

Fig 2. Time course of cell differentiation in the model. A signal can be transferred between only neighbouring domains.

https://doi.org/10.1371/journal.pone.0176492.g002
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Peter et al. have also used the results of perturbation experiments [9, 17] in which the activ-

ity of each of the 23 regulatory genes is interrupted and the effects on 191 genes in total are

observed (data from http://sugp.caltech.edu/endomes/qpcr.html). We use this data set to eval-

uate the sparseness parameters α and the soft-margin parameter C.

Statistics

We use F-measure F to evaluate the estimated networks:

F ¼
2SN � PPV
SN þ PPV

; ð17Þ

where SN is the sensitivity:

SN ¼
TP

TPþ FN
; ð18Þ

and PPV is the positive predictive value:

PPV ¼
TP

TPþ FP
: ð19Þ

TP, FN, and FP are the numbers of true positives, false negatives, and false positives, respec-

tively. F-measure is a harmonic average of SN and PPV, and higher F-measure implies more

accurate estimation. True negative is not directly used in evaluation. This is because the num-

ber of positive examples is fewer than that of negative examples in our data set. In such a case,

F-measure gives a fair evaluation. Since the definitions of TP, FN, and FP are dependent on

each analysis, we explain them in each section.

Results and discussion

Estimation of developmental gene networks

We can obtain multiple optimal solutions by means of the learning method. However, each

optimal solution of a gene is independent of that of any other gene. This is because the varia-

tion of connections belonging to the gene has no effect on the other genes if the gene shows

the correct expression. In the simulation, we identify 1,000 optimal solutions of the whole sys-

tem. To construct each of the optimal solutions, we perform the following procedure: We ran-

domly and independently choose one from among the 100 optimal solutions of each gene

(with repetition). By concatenating the chosen solutions of all genes, we construct an optimal

solution of the whole system.

As shown in Fig 3, we can control the sparseness of the estimated networks by the sparse-

ness parameter α. Although the sparseness is also dependent on soft-margin parameter C, it is

saturated for large C (C = 1 and C = 10 in Fig 3). In general, whereas the optimal value of C
depends on the actual ratio of errors included in the experimental data, that of α depends on

the actual number of connections.

From the simulation of the estimated networks, we derive the estimated expression data.

We use the same initial state of Peter et al. [9]: Maternal mRNAs are expressed at an early stage

(ets1 until 10 h, mat-n_b-cat and otx-alpha until 6 h, and tbr and tel until 9 h) and the activities

of the other genes are repressed until 6 h. Since the system is defined in continuous time, we

measure Mi for all i in all domains at intervals of 1 h to compare them with the experimental

data. To evaluate accuracy of the estimated expression data, we use F-measure. In this analysis,

we define TP by the number that an expression time of the estimated data agrees with that of
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the experimental data in a same domain. FP and FN are the numbers of the estimated data and

the experimental data subtracted by TP, respectively.

As shown in Fig 4, the estimated networks have high F-measure for each parameter setting

at α less than 0.5. These results suggest that our method is effective for estimating gene net-

works. In the following results, we use the parameter range 0� α� 0.5.

Fig 5 shows an example of the estimated time series of Mi for all i. It should be noted that

the false expressions mainly occur around the times of true positives. Since our model is

defined in continuous time, temporal difference can occur due to discrete sampling. In addi-

tion, the actual time resolution is 3 h in the experimental data [9]. Therefore, we can ignore the

errors before and after consecutive expression. These results indicate that the estimated net-

works have the ability to reproduce the experimental data with high accuracy.

It should be also noted that the time series of the estimated networks is measured by simply

solving the differential equations. In such a case, an error of gene expression affects the net-

work dynamics after its occurrence and is accumulated in time. Nevertheless, the estimated

networks show temporally accurate dynamics. This implies that the gene networks are ade-

quately reconstructed.

In the following results, we use the set of the estimated networks calculated here. Although

we perform perturbation analysis in the following sections, it does not mean that we recalcu-

late the estimated networks for perturbed time series.

Fig 3. Number of estimated connections as a function of sparseness parameter α. We show the average number for each soft-margin parameter C

in 1,000 optimal solutions. The other parameters are fixed at d = 2 [h], dmin = 0 [h], dmax = 2 [h], and θ = 1.

https://doi.org/10.1371/journal.pone.0176492.g003
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Validation of optimal sparseness

To validate the optimal sparseness, we evaluate the sparseness parameter α and the soft-margin

parameter C by using the testing data that are independent of the time-series data used in

learning. As the testing data, we use the data of the gene perturbation experiments [9, 17]. In

the experiments, the effects on each gene are measured by whether the number of transcripts

is significantly increased or decreased by a perturbed gene at several time intervals. In other

words, the testing data are gene expression changes between the situations in which a gene per-

turbation is present or absent. Therefore, the type of the testing data are not similar to that of

the learning data that are gene expression itself. However, we can apply an emulated gene per-

turbation to the estimated networks and obtain gene expression changes without difficulty,

because the estimated networks are represented by dynamical systems.

In the gene perturbation experiments, the gene expression changes are measured in four

time intervals [12h − 16h], [17h − 22h], [23h − 25h], and [26h − 30h]. In the simulation, we

adopt expression changes that occur most frequently in each time interval. Unfortunately,

the spatial domains are not separated to measure gene expression in the experiments. Then,

we assume that the gene expression experimentally measured is averaged in all spatial

domains. In the simulation, therefore, we obtain the gene expression change as the average

in all domain. We define TP by the number that a gene expression change (including

Fig 4. Accuracy for time-series data as a function of sparseness parameter α. We show the average F-measure for each soft-margin parameter C in

1,000 optimal solutions. F-measure is calculated in the experimental data after 6 h. The other parameters are fixed at d = 2 [h], dmin = 0 [h], dmax = 2 [h], � =

0.5, and θ = 1.

https://doi.org/10.1371/journal.pone.0176492.g004
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Fig 5. Estimated time series of mRNA expressions. These time series are examples at α = 0.25 and

C = 0.1, and we use the first optimal solution. Compared with the experimental data, each expression is

classified into True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN). The other

parameters are fixed at d = 2 [h], dmin = 0 [h], dmax = 2 [h], � = 0.5, and θ = 1.

https://doi.org/10.1371/journal.pone.0176492.g005

Estimating optimal sparseness of developmental gene networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0176492 April 21, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0176492.g005
https://doi.org/10.1371/journal.pone.0176492


increase or decrease) of the estimated data agrees with that of the experimental data in each

time interval. FP and FN are the numbers of the estimated data and the experimental data

subtracted by TP, respectively.

In Fig 6, we show accuracy of the estimated data by F-measure. Unfortunately, the accuracy

is low in comparison with that of the learning data (Fig 4). However, this is due to the differ-

ence of the types of data. In the previous section, we could evaluate the learning data by a direct

comparison between the estimated and experimental data because the time series of expression

data was obtained in each spatial domain. In the testing data, however, such a direct compari-

son is hampered by the facts that the experimental data are changes of gene expression and are

not separated into the spatial domains. Since we cannot identify the spatial domain in which

the changes of gene expression occur, the reproduction of a time series resulted by a gene per-

turbation is not feasible and hence we cannot directly compare the time series of the estimated

data with that of the experimental data. On the other hand, we can show that the estimated

and experimental data are significantly consistent with each other by the test of independence

(Pearson’s χ2-test: χ2 = 333, p-value< 0.01 at (α, C) = (0.25, 0.1)). Therefore, we consider

that the estimated networks can sufficiently capture the feature of the gene perturbation

experiments.

Consequently, we estimate that the optimal sparseness is observed at (α, C) = (0.25, 0.1)

that corresponds to the best F-measure in Fig 6. In this case, the estimated networks have 429

Fig 6. Accuracy for gene perturbation data as a function of sparseness parameter α. We show the average F-measure for each soft-margin

parameter C in 1,000 optimal solutions. The optimal F-measure is observed at (α, C) = (0.25, 0.1) (indicated by an arrow). The other parameters are fixed

at d = 2 [h], dmin = 0 [h], dmax = 2 [h], � = 0.5, and θ = 1.

https://doi.org/10.1371/journal.pone.0176492.g006
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connections out of the 1,560 possible connections in average (Fig 3). This result indicates that

the best estimated network is not necessarily the sparsest one (e.g., 120 connections at α = 0

and C = 0.05). We discuss about the process to determine the sparseness of the gene networks

in the next section.

Two types of perturbations determine sparseness

To evaluate the robustness of the networks, we apply the connection-removal and misexpres-

sion perturbations to the estimated networks. We define that the estimated networks are

robust if the dynamics change by perturbations is small. Therefore, we define TP by the num-

ber that an expression time of the perturbed networks agrees with that of the unperturbed

networks in a same spatial domain. FP and FN are the numbers of gene expressions in the per-

turbed and unperturbed networks subtracted by TP, respectively. Then, higher F-measure

implies more robust networks.

The connection-removal perturbation corresponds to the mutation of cis-elements. We

assume that the nc cis-elements are simultaneously mutated and lose their function, i.e., the nc
non-zero weights wij are converted into wij = 0. Under the condition of the constant number

of connection removals, the robustness is positively correlated with the sparseness parameter α
(Fig 7(A)). These results suggest that the dense networks have high robustness to connection-

removal perturbation. This is expected because the effect of connection removals is small since

a gene in the dense networks has many cis-elements [4, 5].

The misexpression perturbation corresponds to the gene dysfunction and the open failure

of chromatin. The misexpression perturbation includes both under- and over-expression. To

emulate the misexpression perturbation, it is necessary that the noise maintains its effect on

expression changes for a certain period of time. We adopt the random walk noise because it

has a long time correlation. We apply the random walk noise to mi as follows,

miðtÞ ¼
XN

j¼1

wijPjðtÞ þ wi þ

Z t

0

X1

k¼1

mkdðt
0 � tkÞdt

0; ð20Þ

where μk is randomly chosen from ±μ, δ is the delta function, and the time interval (tk − tk−1) is

randomly determined by the exponential distribution:

Pðtk � tk� 1Þ ¼ le� lðtk � tk� 1Þ; ð21Þ

where λ is the intensity parameter of the noise. Since the average time interval of noise is 1/λ, a

high value of λ implies high density of noise. Under the condition of constant noise, the

robustness is negatively correlated with the sparseness parameter α (Fig 7(B)). These results

suggest that the sparse networks have high robustness to the misexpression perturbation. This

result is unexpected because dense networks are considered to be more robust to noise than

sparse ones in general. This discrepancy is derived from the random walk noise whose effect is

not instant but maintained for a certain period. This property of the misexpression perturba-

tion is responsible for the cascading failure that occurs in power transmission, computer

networking, and finance [18]. In the cascading failure, failure of a single node can trigger suc-

cessive failures at the system level. Since a gene affects many other genes in the dense networks

and the cascading failure is enhanced by that, dense networks have lower robustness than

sparse ones as a result.

The connection-removal perturbation occurs mutationally or evolutionarily, whereas the

misexpression perturbation is due to environmental noise. Thus, the time scales of the connec-

tion-removal and misexpression perturbations differ from each other. However, we assume
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that the gene networks are constantly exposed to the misexpression perturbation because it is

environmental noise. As results, the gene networks that have evolutionarily received the con-

nection-removal perturbation are also exposed to the misexpression perturbation in the same

way. In actual situations, therefore, it is expected that both connection-removal and misexpres-

sion perturbations occur for a certain (possibly evolutionary) period of time. We show the

results when we simultaneously apply both of the perturbations to the estimated networks in

Fig 7(C). The sparseness parameter α has a trade-off point because the profiles of the connec-

tion-removal and misexpression perturbations are contrary to each other. The optimal value

of the robustness is obtained at α = 0.25 and this value is equivalent to the optimal value of the

validation results (α = 0.25 in Fig 6). In Fig 8, we assess the robustness for various values of per-

turbation parameters in both connection-removal and misexpression perturbations. Although

the variation is relatively high at nc = 20, the optimal value of α is almost invariant.

It should be noted that this analysis (Fig 7) is independent of that of the previous section

(Fig 6). In the previous section, we estimated the optimal sparseness of actual gene networks

by using the experimental perturbation data. In this case, the estimated networks are optimal

if they have the same sparseness of the actual gene networks. In this section, we evaluate the

robustness to the perturbations without considering what is the actual sparseness. In this case,

the estimated networks are optimal if their behaviour does not change by the perturbations. It

Fig 7. Robustness of perturbed networks as a function of sparseness parameter α. As the robustness, we show the average F-measure in 1,000

optimal solutions. The types of perturbations are (A) connection-removal perturbation (nc = 10), (B) misexpression perturbation (λ = 10, μ = 0.01), and (C)

the addition of both perturbations. Optimal robustness in (C) is observed at α = 0.25 (indicated by an arrow). The other parameters are fixed at C = 0.1,

d = 2 [h], dmin = 0 [h], dmax = 2 [h], � = 0.5, and θ = 1.

https://doi.org/10.1371/journal.pone.0176492.g007
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Fig 8. Robustness of perturbed networks as a function of sparseness parameter α at various noise

intensities (A) λ = 10, (B) λ = 20, and (C) λ = 30. Both connection-removal and misexpression perturbations

are applied to the estimated networks. As the robustness, we show the average F-measure for each number

of connection removals nc in 1,000 optimal solutions. The filled mark indicates the maximum value in each

profile. The other parameters are fixed at μ = 0.01, C = 0.1, d = 2 [h], dmin = 0 [h], dmax = 2 [h], � = 0.5, and θ = 1.

https://doi.org/10.1371/journal.pone.0176492.g008
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is important that the optimal solutions of both results are consistent with each other. These

results suggest that the optimal sparseness is determined by maintaining the robustness of the

gene networks to the connection-removal and misexpression perturbations that have the con-

trastive characteristics to each other.

Conclusion

We have proposed a semi-quantitative model of gene networks and its adjustable sparse learn-

ing method. We have shown that the sparseness has the optimal value determined by main-

taining the robustness to the connection-removal and misexpression perturbations using the

estimated networks from the experimental expression data. In this work, since we investigated

only sparseness of specific developmental gene networks, the result is restrictive. Therefore,

further work is required to clarify the generality of optimal sparseness, theoretically and

biologically.
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