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Supercoset construction of Yang-Baxter deformed

AdS5×S5 backgrounds

Hideki Kyono

Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan

E-mail: h kyono@gauge.scphys.kyoto-u.ac.jp

Abstract. We consider Yang-Baxter deformations of the AdS5×S5 superstring theory. In
previous works, the metric and B-field of some well-known string backgrounds concerned
with the AdS/CFT correspondence have been obtained as deformations of AdS5×S5 based
on r-matrices satisfying the homogeneous Yang-Baxter equation. Recently, the remaining
fields including the Ramond-Ramond fields and the dilaton have been derived completely by
performing the supercoset construction for abelian r-matrices. We also discuss the deformation
with a non-abelian r-matrix and, in this case, the resulting background is not a solution of the
type IIB supergravity. This article is based on the original paper [1].

1. Introduction
The Yang-Baxter sigma model [2] provides a good approach to study integrable deformations
of two-dimensional non-linear sigma models. This deformed model was originally invented by
Klimcik for principal chiral models. The deformation is characterized by an r-matrix satisfying
the classical Yang-Baxter equation (CYBE). One can consider various deformations of the
original model by changing the classical r-matrix. It ensures the existence of an associated
Lax pair. In this sense, it is an integrable deformation.

Subsequently, this method has been generalized to symmetric (super)coset models, especially,
to the type IIB superstring theory on the AdS5×S5 background for the case of r-matrices
satisfying the modified classical Yang-Baxter equation (mCYBE) [3] or homogeneous CYBE
[4, 5]. In fact, the Green-Schwarz (GS) type action can be constructed with a supercoset [6].
The supercoset has the Z4-grading structure which ensures the kinematical integrability of this
system [7, 8]. Thus some integrable deformed string theories may be provided by Yang-Baxter
deformations with some classical r-matrices.

So far, some Yang-Baxter deformed AdS5×S5 backgrounds have been studied. The deformed
background with the Drinfel’d-Jimbo type r-matrix satisfying the mCYBE [9] was derived by
Arutyunov, Borsato and Frolov, which is often called the η-deformed background [10]. They
have obtained the deformed metric and Neveu-Schwarz-Neveu-Schwarz (NS-NS) two-form, and
recently succeeded in deriving the Ramond-Ramond (R-R) fields and the dilaton by calculation
including the fermionic components [11]. It was found that the resulting full background
cannot satisfy the equations of motion of the type IIB supergravity, but it is a solution of the
“generalized” type IIB supergravity [12]. On the “generalized” type IIB supergravity background
the worldsheet theory does not preserve the Weyl invariance but only the scale invariance.
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One can consider the deformations with r-matrices satisfying the homogeneous CYBE. The
metrics and NS-NS two forms of some well-known string backgrounds concerned with the
AdS/CFT correspondence [13] have been obtained as homogeneous Yang-Baxter deformations
of the AdS5×S5 background in the series of works [14–22]. Furthermore, we have succeeded
in deriving the remaining fields including the R-R fields and the dilaton by performing the
supercoset construction [1], for the cases including gravity duals of non-commutative gauge
theories [23, 24], γ-deformations of S5 [25, 26] and Schrödinger spacetimes [27]. These examples
of deformed backgrounds satisfy the equations of motion of the usual type IIB supergravity.

As long as considering abelian r-matrices, the resulting backgrounds seem to be solutions of
the usual type IIB supergravity. The backgrounds of our abelian examples can be also derived
from TsT-transformations, that is, the deformations with abelian r-matrices may be equivalent
to TsT-transformations. Recently, this correspondence has been proven generally in [28,29]. On
the other hand, the deformed backgrounds with non-abelian r-matrices seem not to be the usual
supergravity solutions. We will give one of these examples which is not a supergravity solution.
In [30] it was shown that this background satisfies the equations of motion of the “generalized”
supergravity. More generally, the Yang-Baxter deformed backgrounds satisfy the “generalized”
equations due to the kappa symmetry of the deformed action [31]. This fact is consistent with
the result of the previous work [12]. In the end of this article, we mention briefly recent progress.

This article is organized as follows. Section 2 is a brief review of the Yang-Baxter deformed
AdS5×S5 superstring. Section 3 is devoted the discussion of the supercoset construction by
following the procedure of [11]. Section 4 shows the concrete examples of classical r-matrices.
Section 5 concludes the results and mentions briefly recent progress.

2. A brief review of the Yang-Baxter deformation
Here we introduce the Yang-Baxter deformed AdS5×S5 superstring action. The discussion is
based on the previous works for the mCYBE [3] or for the homogeneous CYBE [4,5].

The Yang-Baxter deformed action of the AdS5×S5 superstring is given by

S = −
√
λc

4

∫ ∞
−∞

dτ

∫ 2π

0
dσ (γab − εab) STr

[
Aa d ◦

1

1− ηRg ◦ d
(Ab)

]
, (1)

where the left-invariant one-form Aa is defined as

Aa(τ, σ) ≡ −g−1∂ag , g = g(τ, σ) ∈ SU(2, 2|4) (2)

with the world-sheet index a = (τ, σ) and the deformation parameter η. When η = 0, this
deformed action goes back to the original undeformed AdS5×S5 GS action [6]. Here we have
supposed the conformal gauge γab = diag(−1,+1). Hence there is no coupling of the dilaton to
the world-sheet scalar curvature. The anti-symmetric tensor εab is normalized as ετσ = +1 and
the constant λc is the ’t Hooft coupling.

A key ingredient in Yang-Baxter deformations is the operator Rg defined as

Rg(X) ≡ g−1R(gXg−1)g , X ∈ su(2, 2|4) , (3)

where R is a linear map: su(2, 2|4)→ su(2, 2|4) defined as follows1

R(X) = STr2[r(1⊗X)] =
∑
i

(ai STr[biX]− bi STr[aiX]) . (4)

1 STr2 is defined as STr2[(W ⊗X)(Y ⊗ Z)] = WY STr[XZ] .

2
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Here r is a skew-symmetric classical r-matrix denoted as

r =
∑
i

ai ∧ bi ≡
∑
i

(ai ⊗ bi − bi ⊗ ai) with ai, bi ∈ su(2, 2|4) . (5)

These generators ai and bi characterize the directions of deformation. It is important for the
integrability that this R-operator satisfies the following equation,

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = c [X,Y ] for ∀X ,Y ∈ su(2, 2|4) . (6)

When c = 0 (6= 0), it is called the homogeneous (modified) CYBE. In the following, we
concentrate on r-matrices satisfying the homogeneous CYBE.

The projection operator d is defined as

d ≡ P1 + 2P2 − P3 , (7)

where P` (` = 0, 1, 2, 3) are projections to the Z4-graded components of su(2, 2|4). In particular,
P0(su(2, 2|4)) is a local symmetry of the classical action, so(1, 4) ⊕ so(5). The numerical
coefficients in the linear combination (7) are fixed by requiring the kappa symmetry [4, 6].

3. Supercoset construction
In this section, we introduce the detail of the supercoset construction of deformed models. The
strategy is based on [11]. Our purpose here is to read off the type IIB supergravity fields from
the deformed action (1) by comparing it with the canonical form of GS action [32]. Hence we
will investigate the deformed action at the quadratic level of fermions.

The canonical form of the Lagrangian at order θ2 [32] is given by2,

L(θ2) = −
√
λc
2

iΘ̄I(γ
abδIJ + εabσIJ3 ) ẽma ΓmD̃

JK
b ΘK ,

D̃IJ
a ≡ δIJ

(
∂a −

1

4
ω̃mna Γmn

)
+

1

8
σIJ3 ẽma HmnpΓ

np

−1

8
eΦ

[
εIJΓpFp +

1

3!
σIJ1 ΓpqrFpqr +

1

2 · 5!
εIJΓpqrstFpqrst

]
ẽma Γm . (8)

This Lagrangian contains the dilaton Φ, the three-form field strength H3 = dB2 (B2 : NS-NS
two-form), the one-form field strength F1 = dχ (χ : axion or R-R scalar), the three-form field
strength F3 = dC2 (C2 : R-R two-form), and the five-form field strength F5 = dC4 (C4 : R-R
four-form). In the following steps, we rewrite the deformed Lagrangian (1) in order to make it
easy to read off the type IIB supergravity fields by using the canonical form (8).

3.1. Left-invariant one-form
First of all, it is needed to determine the expression of the left-invariant one-form A . We
parametrize the group element g as g = gbgf where gb includes only bosonic generators and

gf includes only fermionic ones. Then the bosonic left-invariant one-form Ab ≡ g−1
b dgb can be

expressed as

Ab = emPm +
1

2
ωmn Jmn , (9)

2 For the notation, please see the original paper [1].

3

ISQS                                                                                                                                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 804 (2017) 012026         doi:10.1088/1742-6596/804/1/012026



where em is the vielbein for the AdS5×S5 spacetime and ωmn is the spin connection. When the
fermionic component gf is parametrized as gf = exp(QIθI), the full left-invariant one-form A
can be written as follows,

A = (em +
i

2
θ̄Iγ

mDIJθJ)Pm −QI DIJθJ +
1

2
ωmn Jmn

−1

4
εIJ θ̄I(γ

m̌ň Jm̌ň − γm̂n̂ Jm̂n̂)DJKθK . (10)

Here the covariant derivative for θ is defined as

DIJθJ = δIJ
(
dθJ −

1

4
ωmnγmnθJ

)
+
i

2
εIJ em γmθJ . (11)

The last term represents the contribution of the R-R five-form field strength.

For later convenience, it is helpful to rearrange the above expansion of A with respect to the
order of θ as follows,

A = A(0) +A(1) +A(2) .

Here A(p) is the p-th order of θ and the explicit expressions of A(p) are given by

A(0) = emPm +
1

2
ωmn Jmn ,

A(1) = −QI DIJ θJ ,

A(2) =
i

2
θ̄Iγ

mDIJθJ Pm −
1

4
εIJ θ̄I(γ

m̌ň Jm̌ň − γm̂n̂ Jm̂n̂)DJKθK . (12)

3.2. Deformation operator
Furthermore, it is necessary to expand the deformation operator in terms of θ . θ is contained
in the operator Rg through the group element g.

Let us define the deformation operator O and expand it in terms of θ as

O ≡ 1− ηRg ◦ d
= O(0) +O(1) +O(2) +O(θ3) . (13)

Similarly, for the inverse operator, Oinv
(i) is defined as

Oinv ≡ 1

1− ηRg ◦ d
= Oinv

(0) +Oinv
(1) +Oinv

(2) +O(θ3) . (14)

Here, due to the relation O◦Oinv = 1, each of the components Oinv
(p) (p = 0, 1, 2) can be expressed

as follows,

Oinv
(0) =

1

1− ηRgb ◦ d
,

Oinv
(1) = −Oinv

(0) ◦ O(1) ◦ Oinv
(0) ,

Oinv
(2) = −Oinv

(0) ◦ O(2) ◦ Oinv
(0) −O

inv
(1) ◦ O(1) ◦ Oinv

(0) . (15)
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In the following, we will concentrate only on the bosonic deformations, that is, the generators
ai and bi are included in su(2, 2) ⊕ su(4) . Then the action of Rgb ◦ d for the basis of su(2, 2|4)
can be evaluated as below,

Rgb ◦ d(Pm) = 2

(
λm

nPn +
1

2
λm

npJnp

)
,

Rgb ◦ d(Jmn) = 0 , Rgb ◦ d(QI) = 0 . (16)

Here λ n
m and λ np

m are defined as below from the relation in (4),

λm
n ≡ (agbi )n (bgbi )m − (bgbi )n (agbi )m ,

λm
np ≡ (agbi )np (bgbi )m − (bgbi )np (agbi )m , (17)

where (agbi )m, (agbi )mn, (bgbi )m and (bgbi )mn are defined as

agbi ≡ g−1
b ai gb = (agbi )mPm +

1

2
(agbi )mn Jmn ,

bgbi ≡ g−1
b bi gb = (agbi )mPm +

1

2
(bgbi )mn Jmn . (18)

Now the action of Oinv
(0) , Oinv

(1) and Oinv
(2) can be examined as follows.

The action of Oinv
(0) is given by

Oinv
(0) (Pm) ≡ km

nPn +
1

2
lm

np Jnp ,

Oinv
(0) (Jmn) = Jmn , Oinv

(0) (QI) = QI , (19)

where km
n is determined from λm

n by the following relation,

km
n = (δ − 2ηλ)−1

m
n . (20)

When η = 0, km
n is reduced to δm

n. Here we have not displayed the explicit form of lm
np because

it does not appear in the final expression due to the presence of the projection operators.

Then the action of Oinv
(1) is written as

Oinv
(1) (Pm) = iεIJkm

nηλn
pQJ γpθI +

1

2
δIJkm

nηλn
pqQJ γpqθI ,

Oinv
(1) (Jmn) = 0 ,

Oinv
(1) (QI) = iσIJ3 km

pηλnm θ̄JγnPp +
1

2
σIJ1 km

qηλm,np θ̄JγnpPq + terms with J . (21)

Here the terms proportional to Jmn are not explicitly written down because they do not
contribute to the final expression.

Finally, the action of Oinv
(2) is evaluated as

Oinv
(2) (Pm) = θ̄I

[
δIJ(MPδ

(2))m
n

+ εIJ(MPε
(2))m

n
+ σIJ1 (MPσ1

(2) )m
n

+ σIJ3 (MPσ3
(2) )m

n
]
θJ Pn

+ terms with J ,

Oinv
(2) (Jmn) = 0 , Oinv

(2) (QI) = irrelevant terms , (22)
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where MPδ
(2), M

Pε
(2), M

Pσ1
(2) , and MPσ3

(2) are defined as

(MPδ
(2))m

n ≡ − i
4

[
(kr

nγr)(km
sηλs

pqγpq)− (kr
nηλr, pqγpq)(km

sγs)
]
,

(MPε
(2))m

n ≡ −1

2

[
(kp

nγp)(km
sηλs

qγq)− (kp
nηλpqγq)(km

sγs)
]
,

(MPσ1
(2) )m

n ≡ (ks
nηλrsγr)(km

qηλq
pγp) +

1

4
(ks

nηλs ,rtγrt)(km
uηλu

pqγpq) ,

(MPσ3
(2) )m

n ≡ i

2

[
(ks

nηλrsγr)(km
tηλt

pqγpq) + (ks
nηλs ,rtγrt)(km

qηλq
pγp)

]
. (23)

Here the terms proportional to Jmn have not been written down on the same reasoning.
Furthermore, the explicit expression of Oinv

(2) (QI) is not necessary for our argument because

it always leads to higher-order contributions with O(θ4) in the resulting Lagrangian.

3.3. The deformed Lagrangian at quadratic level of θ
Now the Lagrangian in (1) can be rewritten as

L = −
√
λc
4

(
γab − εab

)
STr

[
d̃(Aa)Oinv(Ab)

]
, (24)

where d̃ is the transpose operator of d and it is defined as

d̃ ≡ −P1 + 2P2 + P3 . (25)

This Lagrangian can be expanded in terms of θ at quadratic level as

L = L(0) + L(2,0,0) + L(0,0,2) + L(1,1,0) + L(0,1,1) + L(0,2,0) + L(1,0,1) +O(θ4) . (26)

Here, L(0) does not include any θ. The second-order term L(l,m,n) contains two θs. The set of

subscripts (l,m, n) indicates the numbers of θ included in d̃(Aa), Oinv and Ab, respectively. For
example, in the case of L(2,0,0), the two θs are included in d̃(Aa), and there is no θ in Oinv and
Ab. That is, L(2,0,0) is given by

L(2,0,0) = −
√
λc
4

(
γab − εab

)
STr

[
d̃((A(2))a)Oinv

(0) ((A(0))b)
]
. (27)

In the following, let us see each term of the expansion (26). The first one can be rewritten
into the standard form as follows,

L(0) = −
√
λc
4

(γab − εab) STr
[
d̃((A(0))a)Oinv

(0) ((A(0))b)
]

= −
√
λc
2

(γab − εab) ema enb knm

= −
√
λc
2

[
γabemµ e

n
ν k(mn) ∂aX

µ∂bX
ν − εabemµ enν k[nm] ∂aX

µ∂bX
ν
]
. (28)

Here we have used the relation ema = emµ ∂aX
µ, and Xµ are the target-spacetime coordinates.

From the last expression of (28), one can obtain the deformed spacetime metric G̃ and NS-NS
two-form B ,

G̃MN ≡ emMe
n
N k(mn) = ẽmM ẽmN ,

BMN ≡ emMe
n
N k[nm] . (29)
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Here, for our later convenience, we have introduced the vielbein ẽmM for the deformed metric.

Note that the index M is raised and lowered by G̃MN and G̃MN , respectively.

Then let us evaluate the combination L(2,0,0) +L(0,0,2). From the point of view of symmetry,
this combination is convenient and can be evaluated as

L(2,0,0) + L(0,0,2)

= −
√
λc
4

(γab − εab) STr
[
iθ̄Iγ

mDIJ
a θJ Pm e

n
b kn

pPp + iema Pm θ̄Iγ
nDIJ

b θJ kn
pPp

]
= − i

√
λc

4
(γab − εab) θ̄I

(
enb knmγ

mDIJ
a + ema knmγ

nDIJ
b

)
θJ . (30)

By the same reasoning, it is helpful to evaluate the combination L(1,1,0) +L(0,1,1). The resulting
expression is given by

L(1,1,0) + L(0,1,1) (31)

= −
√
λc
4

(γab − εab) STr
[
σIJ3 QJDIK

a θKOinv
(1) (emb Pm) + 2ema PmOinv

(1) (−QIDIJ
b θJ)

]
= −

√
λc
2

(γab − εab) θ̄I
[
iηλn

pγpσ
IJ
3 −

1

2
ηλn

pqγpqσ
IJ
1

] (
emb km

nDJK
a + ema k

n
mD

JK
b

)
θK .

Finally, L(0,2,0) and L(1,0,1) are evaluated as, respectively,

L(0,2,0) = −
√
λc
4

(γab − εab) STr
[
2ema PmOinv

(2) (enbPn)
]

= −
√
λc
2

(γab − εab) ema enb θ̄I
[
εIJ(MPε

(2))nm + δIJ(MPδ
(2))nm

+σIJ1 (MPσ1
(2) )nm + σIJ3 (MPσ3

(2) )nm

]
θJ , (32)

L(1,0,1) = −
√
λc
4

(γab − εab) STr
[
σIJ3 QJDIK

a θK(−QLDLM
b )θM

]
= − i

√
λc

2
εabσIJ3 θ̄Ie

m
a γmD

JK
b θK . (33)

So far, we have derived the deformed Lagrangian at the quadratic level of θ. However,
coordinate transformations of XM and θI are still needed to recast the Lagrangian into the
canonical form. In the following, we perform a shift of XM and a rotation of θI .

3.4. Shift of X
Let us see the terms with γab∂bθ in L. The relevant parts are

(a) Lγ(2,0,0) + Lγ(0,0,2) and (b) Lγ(1,1,0) + Lγ(0,1,1) .

One can realize that the terms should appear with δIJ from the expression of the canonical form
(8). There is no obstacle for (a), however (b) involves terms like

√
λc
2

θ̄I γ
ab σIJ1 ema k(mn)η λ

n ,pqγpq∂bθJ . (34)

Such terms proportional to σIJ1 do not appear in the canonical form (8) and hence must be
removed somehow. A possible resolution is to shift X as [11]

Xµ −→ Xµ + θ̄IδX
µ IJθJ , δXµ IJ ≡ 1

4
σIJ1 enµ η λn

pqγpq . (35)
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While this shift removes the problematic terms, it generates additional ones,

−
√
λc
2

iθ̄I γ
abδIJ

[
− i

2
σJK1 ema e

n
N k(mn)∂b(e

nN η λn
pqγpq)

− i
4
σJK1 ∂P G̃MN∂aX

M ∂bX
N enP η λn

pqγpq

]
θK . (36)

Note here that these terms do not involve derivatives of θ.

At this stage, the quadratic Lagrangian including γab is written down as

Lγ = −i
√
λc
2

γabδIJ θ̄I

[
epa k(pn) (ηnm − (−1)J2ηλnm)γmD

JK
b

+
1

2
σJK3 ema k(mn)ηλ

n, pqγpq e
r
b γr −

1

4
δJK ema knm

(
ηnp − (−1)J 2η λnp

)
γp e

q
bkq

r η λr
st γst

+
1

4
δJK ema kmn η λ

n, pq γpq e
r
b krs

(
ηst − (−1)J 2η λst

)
γt

+
i

2
εJKema knm

(
ηnp − (−1)J 2η λnp

)
γp e

q
b kq

r η λr
s γs

− i
4
σJK1 ema k(mn) η λ

n, pq γpq ω
rs
b γrs −

i

2
εJK ema knm η λ

np γp e
q
b kq

r γr

− i
4
σJK1 ema knm η λ

n,pq γpq e
r
b kr

s η λs
tu γtu −

i

2
σJK1 ema e

n
M k(mn) ∂b

(
ep,M η λp

qr γqr
)

− i
4
σJK1 ∂P G̃MN∂aX

M ∂bX
N em,P η λm

np γnp

]
θK . (37)

The next step is to see the terms with εab∂bθ in L. This part has the terms involving σIJ1

as well. The sift of X in (35) can eliminate the problematic terms simultaneously, while some
additional terms including εab are again generated. Then the quadratic Lagrangian including
εab is written down as

Lε = −i
√
λc
2

εab θ̄I

[(
δIJ ema k[mn] γ

n + σIJ3

[
ema k[mn] 2 η λnp γp + ema γm)

])
DJK
b

+i σIJ1 ema k[mn] η λ
n ,pq γpq

(
−1

4
δJK ωrsb γrs +

i

2
εJKerb γr

)
+

1

4
δIKema knm

(
ηnp − (−1)I 2η λnp

)
γp e

q
bkq

r η λr
st γst

−1

4
δIK ema kmn η λ

n, pq γpq e
r
b krs

(
ηst − (−1)I 2η λst

)
γt

− i
2
εIKema knm

(
ηnp − (−1)I 2η λnp

)
γp e

q
b kq

r η λr
s γs

+
i

2
εIK ema knm η λ

np γp e
q
b kq

r γr +
i

4
σIK1 ema knm η λ

n,pq γpq e
r
b kr

s η λs
tu γtu

+
i

2
σIK1 BMN∂aX

M ∂b
(
enN η λn

pq
)
γpq

+
i

4
σIK1 ∂PBMN∂aX

M∂bX
NenP ηλn

pqγpq

]
θK . (38)

For the next step, it is convenient to switch from the 16×16 gamma matrices γ to the 32×32
ones Γ, and hence we will work in the 32 × 32 notation in the following. The lift-up rule is
summarized in [1], and it is straightforward to rewrite the Lagrangian.
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3.5. Rotation of θ
After shifting X, the resulting derivative terms of θ involving γab take the following form,

−
√
λc
2

iΘ̄I γ
abδIJ ẽ(I)

m
a Γm∂b ΘJ . (39)

Here, the vielbeins3 ẽ(I)
m
a (I = 1, 2) are defined as

ẽ(I)
m
a ≡ epa k(pn)

[
ηnm − (−1)I2ηλnm

]
(40)

and depend on the index I. Hence we need to perform a Lorentz transformation for the spinor
θ to remove the I dependence.

The first step is to determine the I-independent form of the vielbeins as a reference frame.
Hereafter, it is fixed by taking I = 1 in (40) as

ẽma = epa k(pn)

[
ηnm + 2ηλnm

]
. (41)

Then, by performing a Lorentz transformation for θ, this term can be rewritten as

Θ̄I ẽ(I)
m
a Ū(I)Γm U(I)∂bΘI + (the derivative term of U)

= Θ̄I ẽ(I)
m
a Λ(I)m

nΓn ∂bΘI + (the derivative term of U) . (42)

Note that the Lorentz transformation performed here depends on the index I.

In order to realize the I-independent form (41), the transformation Λ should be taken as

Λ(I)m
n =

[
δm

p + (−1)I2ηλm
p
]
(δ − 2ηλ)−1

p
n . (43)

Then the spinor transformation U(I) and its inverse Ū(I) have to be determined through the
following relation,

Ū(I)ΓmU(I) = Λ(I)m
nΓn . (44)

After all this, we have obtained the canonical form of the Lagrangian4. In the canonical form
of the Lagrangian (8), the dilaton and R-R field strength appear as the product of them. From
this reason, we use the following formula to decide the dilaton,

eΦ =
1

det10(δ n
m + 2 η λ n

m )
1
2

, (45)

where detD means the determinant of a D × D matrix. Note that this is similar to the
formula in [33] for λ-deformation. It works well for well-known examples, including the examples
discussed in Sec. 4.

In the actual calculation, we used a concrete expression of a classical r-matrix and
computation software like Mathematica or Maple to decide the R-R fields and the dilation.
The resulting backgrounds for some examples are presented in Sec. 45.

3 Note that ẽ(I)
m
a satisfy the relation

ẽ(I)
m
a ẽ(I)bm = ema e

n
b k(mn) = G̃MN∂aX

M∂bX
N (for I = 1 , 2) .

4 To read off the R-R fields, we still have to take the trace of gamma matrices in the quadratic Lagrangian.
5 The deformed R-R fields can also be determined by using the concrete form of the kappa symmetry of the
deformed action as another method to determine. The results are consistent with those from the supercoset
construction.
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4. Examples
In this section, we show the results for some r-matrices satisfying the homogeneous CYBE.
For the following argument, let us introduce the terms “abelian” and “non-abelian” classical
r-matrices. Suppose that a classical r-matrix is given by r = a ∧ b. It is called “abelian” when
a and b commute with each other. If not, it is “non-abelian”.

4.1. Gravity duals of noncommutative gauge theories
Let us discuss the following classical r-matrix,

r = P2 ∧ P3 . (46)

This is an abelian classical r-matrix and satisfies the homogeneous CYBE. The bosonic part of
the deformation with this r-matrix has already been studied in [16]. Here Pµ are the translation
operators of so(2, 2) ∈ so(2, 2|4) . By this r-matrix, the AdS5 part is deformed.

Through the general argument in Sec. 3, the following deformed background can be obtained,

ds2 =
−(dx0)2 + (dx1)2

z2
+
z2
[
(dx2)2 + (dx3)2

]
z4 + 4η2

+
dz2

z2
+ ds2

S5 ,

B2 =
2η

z4 + 4η2
dx2 ∧ dx3 ,

F3 =
8 η

z5
dx0 ∧ dx1 ∧ dz ,

F5 = 4
(
e2Φ ωAdS5 + ωS5

)
, Φ =

1

2
log

(
z4

z4 + 4η2

)
. (47)

This is nothing but the solution found in [23, 24] as a gravity dual of noncommutative gauge
theories.

4.2. γ-deformations of S 5

We shall discuss three-parameter γ-deformations of S5 with the following classical r-matrix,

r =
1

8
(ν3 h1 ∧ h2 + ν1 h2 ∧ h3 + ν2 h3 ∧ h1) . (48)

Here νi (i = 1, 2, 3) are real constant parameters, and ha (a = 1, 2, 3) are the Cartan generators
of su(4) . This is also an abelian classical r-matrix and satisfies the CYBE. The bosonic part
has already been studied in [15]. The remaining task is to perform supercoset construction in
order to determine the R-R sector and the dilaton.

Then, by following the general discussion, the full solution presented in [25, 26] can be
reproduced as

ds2 = ds2
AdS5

+

3∑
i=1

(dρ2
i +Gρ2

i dφ
2
i ) +Gρ2

1ρ
2
2ρ

2
3

(
3∑
i=1

γ̂i dφi

)2

, (49)

B2 = G
(
γ̂3 ρ

2
1ρ

2
2 dφ1 ∧ dφ2 + γ̂1 ρ

2
2ρ

2
3 dφ2 ∧ dφ3 + γ̂2 ρ

2
3ρ

2
1 dφ3 ∧ dφ1

)
,

F3 = −4 sin3 α cosα sin θ cos θ

(
3∑
i=1

γ̂i dφi

)
∧ dα ∧ dθ

F5 = 4 (ωAdS5 +GωS5) , Φ =
1

2
log G . (50)
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Here we have introduced a scalar function G and γ̂i (i = 1, 2, 3) defined as

G−1 ≡ 1 + γ̂2
3 ρ

2
1ρ

2
2 + γ̂2

1 ρ
2
2ρ

2
3 + γ̂2

2 ρ
2
3ρ

2
1 , γ̂i ≡ ηνi . (51)

Three coordinates ρi satisfying the constraint
∑3

i=1 ρ
2
i = 1 are parametrized by two angle

variables α and θ through the relation,

ρ1 ≡ sinα cos θ , ρ2 ≡ sinα sin θ , ρ3 ≡ cosα . (52)

It should be remarked that the resulting background is non-supersymmetric other than for
exceptional cases like ν1 = ν2 = ν3. But the supercoset construction still works well.

4.3. Schrödinger spacetimes
Let us consider Schrödinger spacetimes by employing the following classical r-matrix,

r =
i

4
P− ∧ (h1 + h2 + h3) . (53)

Here P− ≡ (P0 − P3)/
√

2 is a light-cone generator in su(2, 2), and h1, h2, h3 are the Cartan
generators in su(4) . This is also an abelian classical r-matrix and satisfies the CYBE. The
bosonic part has already been studied in [18].

After all, the full solution [27] has been reproduced as

ds2 =
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
− η2 (dx+)2

z4
+ ds2

S5 ,

B2 =
η

z2
dx+ ∧ (dχ+ ω) ,

F5 = 4 (ωAdS5 + ωS5) , Φ = const., (54)

and the other fields are zero. Here, the light-cone coordinates are defined as

x± ≡ 1√
2

(x0 ± x3) .

Note that the R-R sector has not been deformed and the dilaton remains constant, though the
expression of the fermionic sector is very complicated in the middle of the computation.

4.4. A non-abelian classical r-matrix
So far, we have considered abelian classical r-matrices, for which it seems likely that the
supercoset construction works well. Here we study a non-abelian classical r-matrix.

As for non-abelian classical r-matrices, there is no well-known example of the associated
background. A nice candidate for non-abelian classical r-matrices [17] is given by

r =
1√
2
E24 ∧ (c1E22 − c2E44)

[
(Eij)kl ≡ δik δjl

]
= −1

2
P− ∧

[
c1 + c2

2
(D − L03) + i

c1 − c2

2

(
L12 −

i

2
14

)]
. (55)

Note here that 14 is included in the expression and hence the image is extended from su(2, 2|4)
to gl(4|4). However, it can be ignored due to the presence of the projection operator in the
classical action as pointed out in [19].
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To ensure that the resulting metric and NS-NS two-form are real, it is necessary to impose
the reality condition [17]

c2 = c∗1 . (56)

It is now convenient to introduce a1 and a2 as follows,

a1 ≡
c1 + c2

2
= Re(c1) , a2 ≡ i

c1 − c2

2
= −Im(c1) . (57)

Note here that the classical r-matrix (55) is non-abelian in general. The case that c1 is pure
imaginary (i.e., a1 = 0) is exceptional and it becomes abelian.

The bosonic part has already been studied well [14,17,19], and the R-R sector and the dilaton
can be obtained by performing supercoset construction,

ds2 =
−2dx+dx− + dρ2 + ρ2dφ2 + dz2

z2
− η2

[
(a2

1 + a2
2)
ρ2

z6
+
a2

1

z4

]
(dx+)2 + ds2

S5 ,

B2 = η

[
a1x

1 + a2x
2

z4
dx+ ∧ dx1 +

a1x
2 − a2x

1

z4
dx+ ∧ dx2 + a1

1

z3
dx+ ∧ dz

]
,

F3 = 4η

[
a2x

1 − a1x
2

z5
dx+ ∧ dx1 ∧ dz +

a1x
1 + a2x

2

z5
dx+ ∧ dx2 ∧ dz +

a1

z4
dx+ ∧ dx1 ∧ dx2

]
,

F5 = 4 (ωAdS5 + ωS5) , Φ = const ., (58)

and the other components are zero. Here the light-cone coordinates are defined in the same
way as the previous example. Notice that the background (58) does not satisfy the equation of
motion of B2 because the Bianchi identity for F3 is broken. Thus the classical r-matrix (55)
does not lead to a solution of the usual type IIB supergravity.

It is worth noting that the pathology vanishes when a1 = 0. This is an exceptional case in
which the classical r-matrix becomes abelian and the background (58) is reduced to the Hubeny-
Rangamani-Ross solution [34]. This correspondence was originally argued in [17] and elaborated
in [19].

5. Conclusion and recent progress
In this article, we have discussed the supercoset construction in Yang-Baxter deformed
AdS5×S5 superstring theories based on the homogeneous CYBE. For abelian classical r-matrices,
perfect agreements have been shown for well-known examples including gravity duals of non-
commutative gauge theories, γ-deformations of S5 and Schrödinger spacetimes. For non-abelian
classical r-matrices, we have concentrated on a certain example. The resulting background
does not satisfy the equation of motion of the NS-NS two-form. Thus, at this stage, it seems
that there would be no problem for abelian classical r-matrices, while there are some potential
problems in the non-abelian cases.

Recently, some essential progress has been made. Firstly, it is found that the deformed
background (58) is a solution of the “generalized” supergravity [30,31] like as the η-deformation
[12]. In general, the GS action on a type II supergravity background has the kappa-symmetry
[35]. The converse, however, is not true. The presence of the kappa-symmetry ensures only that
the background field is a solution of the “generalized” supergravity and, in general, it is not a
usual solution [31]. Because the Yang-Baxter deformed action preserves the kappa-symmetry,
the Yang-Baxter deformed backgrounds are solutions of the “generalized” supergravity [36].
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In our result, the examples of abelian r-matrices lead supergravity solutions. It is known
that these backgrounds can also be derived from TsT-transformations. In general, it have been
shown that the Yang-Baxter deformation with an abelian r-matrix corresponds to a certain
TsT-transformation [28].

Recently, Borsato and Wulff have discovered the condition for r-matrices to lead solutions
of the usual supergravity and it is called the unimodularity condition [36]. Furthermore, they
have proven that in the case of the S5 deformations only abelian classical r-matrices lead the
usual supergravity solutions. They have also conjectured that in the case of the deformations of
the AdS5 part, the deforamations are equivalent to sequences of TsT-transformations. Recently,
Hoare and Tseytlin have conjectured the equivalence between the homogeneous Yang-Baxter
deformations and non-abelian T-duals [29]. They have pointed out that a TsT-transformation
can be interpreted as a special case of non-abelian duality and proven it for some examples.

By these works, a relation between the Yang-Baxter deformations with the homogeneous
CYBE and (non-abelian) T-dual transformations has been revealed. It is interesting to search
such a relation in the case of deformations based on the mCYBE. In [30], it is pointed out that
some “generalized” supergravity backgrounds form the the YB deformation can be returned the
original undeformed backgrounds by a formal T-duality. It seems also interesting to consider a
string interpretation of the “generalized” supergravity background.
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