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Abstract. URu2Si2 is a promising candidate for a chiral d-wave superconductor whose gap
is composed of a horizontal line node at equator and point nodes at the north and south poles.
However, previous measurements of the specific heat and the thermal conductivity did not
detect quasiparticle excitations from a horizontal line node in heavy-mass bands. Here, we have
provided strong evidence for the presence of a horizontal line node from field-angle-dependent
specific-heat measurements by using a high-quality single crystal of URu2Si2. We observed
the

√
H behavior of the specific heat at low fields which does not depend on inplane field

angle ϕ but shows a shoulder-like anomaly in the polar-angle θ dependence around θ ∼ 45◦.
This feature is more clearly seen at lower temperatures, suggesting the detection of low-energy
quasiparticle excitations reflecting the gap structure. From theoretical analyses based on
microscopic calculations, we have demonstrated that this anomaly can be explained by the
existence of a horizontal line node at kz = 0. Thus, the gap structure of URu2Si2 matches well
with the Eg chiral kz(kx + iky) symmetry.

1. Introduction
URu2Si2 exhibits unconventional superconductivity below Tc = 1.4 K in the mysterious “hidden
order” phase. Reflecting the likely exotic pairing mechanism, its superconducting gap appears
to be anisotropic; the presence of nodes has been indicated from power-law temperature
dependences of thermodynamic quantities such as the specific heat and the nuclear relaxation
rate [1, 2, 3]. In addition, invariance of the specific heat [4] as well as the thermal conductivity [5]
under a magnetic field rotated within the ab plane supports that the superconducting gap of
URu2Si2 is rotationally symmetric around the c axis. From these results, Eg chiral d-wave
superconductivity described by the gap symmetry of kz(kx + iky) has been expected to be
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realized in URu2Si2. Indeed, broken time reversal symmetry in the superconducting state has
been suggested from recent polar Kerr-effect measurements [6].

In the anticipated chiral d-wave state, the superconducting gap has point nodes at the north
and south poles and a horizontal line node at kz = 0. However, the results of specific-heat and
thermal-conductivity measurements reported previously [3, 4, 5] cannot detect a horizontal line
node in heavy-mass bands. At the time, it had been considered that heavy-mass Fermi surfaces
are absent at kz = 0 in the hidden order phase, resulting in disappearance of nodal quasiparticle
excitations from the horizontal line node. Nevertheless, it has recently been clarified that heavy-
mass bands similar to those in the antiferromagnetic phase [7, 8] exist at kz = 0 also in the hidden
order phase [9]. Therefore, the absence of quasiparticle excitations from the horizontal line node
is incompatible with the chiral d-wave state.

In order to settle this controversy on the gap structure of URu2Si2, we have performed field-
angle-dependent specific-heat measurements at low temperatures by using a high-quality single
crystal [10]. In this contribution, we report the field-angle ϕ and θ dependence of the

√
H

behavior in the specific heat, evidencing the presence of a horizontal line node in heavy-mass
bands at kz = 0. These results ensure that the gap symmetry of URu2Si2 is indeed of the
kz(kx + iky) type.

2. Experimental
Single crystals of URu2Si2 were grown by the Czochralski pulling method in a tetra-arc
furnace [11]. A high-quality single crystal (10.6 mg weight), the same sample in Ref. [10], was
used in the present study. The specific heat C was measured by the standard quasi-adiabatic
heat-pulse method or the relaxation method. The sample was cooled down to 0.1 K in a dilution
refrigerator. Magnetic field was generated by using a vector magnet, up to 5 T in the x direction
and 3 T in the z direction. The rotation of a refrigerator by using a stepper motor enables to
control the field orientation three dimensionally with a high accuracy of ∼ 0.01◦. The field
orientation is described by the azimuthal angle ϕ from the a axis and polar angle θ from the c
axis.

3. Results and Discussion
Solid circles in Fig. 1 represent temperature dependence of the specific heat divided by
temperature, C/T , of the present sample. For comparison, the C/T data taken from previous
reports [4, 11, 12] are also plotted in the same figure. It is evident that the present sample
is of the highest quality among them, as demonstrated by a sharp superconducting transition,
high Tc, and low value of the residual C/T at low temperatures. Below 0.2 K, C/T shows
anomalous increase on cooling. This upturn is too large to be attributed to a nuclear specific-
heat contribution. Because the upturn is more prominent in a lower-quality sample [11], it might
be caused by inclusion of some impurities.

Figure 2 plots the C/T data at 0.2 K as a function of
√
H for H ∥ a and H ∥ c. In

both field directions, C(H) is proportional to
√
H at low fields, as represented by dashed lines.

In the vortex state, energy spectra of quasiparticles are shifted due to the Doppler effect by
δE = mevF · vs, where me is quasiparticle mass, vF is the Fermi velocity, and vs is the velocity
of supercurrent flowing around vortices. Around nodes, even a small shift of the spectra causes
a finite zero-energy density of states (ZEDOS) which increases proportionally with

√
H [13], in

sharp contrast to the H-linear behavior expected Therefore, the observed
√
H behavior in the

low-temperature specific heat, which is a powerful probe to detect ZEDOS, demonstrates the
presence of nodes in the superconducting gap.

In general, the field-orientation dependence of this
√
H behavior reflects the location of gap

nodes. When a magnetic field is pointing to a nodal direction, quasiparticle excitations at this
node are strongly suppressed because of δE = 0, i.e., vF ⊥ vs. Therefore, the fact that the

√
H
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Figure 1. Temperature depen-
dence of the zero-field C/T of the
present sample (solid circles), com-
pared with those of other samples
in previous reports [4, 11, 12].
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Figure 2. C/T as a function of√
H measured at 0.2 K for H ∥ a

and H ∥ c. Solid lines are fitting
results for the low-field data by
using a function a

√
H + b. Inset

represents the azimuthal field-angle
ϕ dependence of C/T at 0.2 K in
a magnetic field of 0.5 T rotated
within the ab plane.

behavior of C(H) is observed in any field direction excludes a possibility of the gap structure
having point nodes at the north and south poles alone [4]. Under a rotating magnetic field across
nodal directions, this anisotropic Doppler effect causes an oscillation of the ZEDOS which shows
a local minimum for a nodal direction. The inset of Fig. 2 presents the C/T data measured
under a rotating field of 0.5 T within the ab plane at 0.2 K, where ϕ denotes the azimuthal field
angle measured from the a axis. Any oscillation has not been observed, suggesting that vertical
line nodes are not present in the gap.

The absence of vertical line nodes motivates us to search for a horizontal line node. In
order to examine its presence and location, we measured the field-angle θ dependence of the
specific heat, where θ is a polar angle between the magnetic field and the c axis. Figures 3
and 4 show C(θ)/T taken at 0.2 and 0.34 K, respectively. As shown in the inset of Fig. 4,
C(θ) measured in the normal state at 1.8 K and 0.2 T is invariant with changing θ. At a low
temperature of 0.2 K, a shoulder-like anomaly has been found around θ ∼ 45◦ in C(θ) measured
in a field of 0.2 T. This anomaly moves to a larger θ with increasing field and becomes obscure
by increasing temperature. The latter feature implies that this anomaly indeed comes from
low-energy quasiparticle excitations around nodes.

To clarify the origin of the shoulder-like anomaly in C(θ), we have performed microscopic
calculations on the basis of the quasiclassical Eilenberger theory assuming a chiral d-wave
gap of the kz(kx + iky) type and a spherical Fermi surface [14]. In these calculations, the
Pauli-paramagnetic effect and the anisotropy of the Fermi velocity have not been considered.
Figures 5(a) and 6(a) show the polar-angle θ dependence of the ZEDOS, N(E = 0), at B = 0.03
and 0.1, respectively. Here, B is scaled by the Eilenberger unit [15]. Note that Fig. 5(a)
reproduces the shoulder-like anomaly at θ ∼ 45◦. With increasing field, the shoulder-like
anomaly moves to higher θ and a clear dip appears at θ = 0◦ due to reversal of the C(θ)

anisotropy originating from the slight anisotropy ofHc2 (H
∥x
c2 & H

∥z
c2 ) reflecting the gap structure.

In the experiment, C(θ) of URu2Si2 does not show the dip at θ = 0◦ because the strong Pauli-
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paramagnetic effect yields a peak at θ = 0◦.
In Figs. 5(b) and 6(b), we show the k-resolved density of states, Nk(0), mapped on the

spherical Fermi surface at several θ for B = 0.03 and 0.1 rotated within the xz plane, respectively.
Here, the integration of Nk(0) over the Fermi surface corresponds to N(E = 0). Most of
quasiparticle excitations occur around a line node; contribution from point nodes to N(E = 0)
is relatively small. Although Nk(0) is enhanced in the overall Fermi surface by increasing
magnetic field, qualitatively similar features have been seen in both fields; Nk(0) is strongly
suppressed at the kx direction when θ becomes larger than 45◦, i.e., for θ = 75◦ and 90◦. This is
due to the suppression of the Doppler effect there and yields the shoulder-like anomaly in C(θ).
Because the low-temperature specific heat is dominated by heavy quasiparticles, the shoulder-
like anomaly in C(θ) evidences the presence of a horizontal line node at kz = 0 in heavy-mass
bands. This fact further supports that the gap symmetry of URu2Si2 belongs to the chiral Eg

symmetry of the kz(kx + iky) type [16].

4. Summary
We report the results of field-angle-dependent specific-heat measurements by using a high quality
single crystal of URu2Si2. It was found that the specific heat shows the

√
H behavior in any field

direction and the shoulder-like anomaly in its polar-angle θ dependence which is smeared out
with increasing temperature. From theoretical analyses based on the microscopic theory, we have
demonstrated that these features are strong evidence for the presence of a horizontal line node
in the heavy-mass bands. Thus, the present study settles the remaining controversy in URu2Si2
and helps establishing that URu2Si2 is a chiral d-wave superconductor of the kz(kx + iky) type.
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