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Synchrobetatron resonant coupling mechanism in a storage ring

Kouichi Jimbo*

Institute of Advanced Energy, Kyoto University, Uji, 611-0011 Kyoto, Japan
(Received 7 September 2015; published 22 January 2016)

A clear synchrobetatron resonant coupling of Mg ion beam was observed experimentally in the horizontal
laser beam cooling experiment in small laser equipped storage ring. Synchrotron and horizontal betatron
motions were intentionally coupled in a rf cavity. Using the Hamiltonian which is composed of coasting,
synchrotron and betatron motions, physical mechanism of the coupling is analyzed to explain the observed
horizontal betatron tune jump near the synchrobetatron resonant coupling point. There energy exchange
between the synchrotron oscillation and the horizontal betatron oscillation wasmediated by coasting particles
and the freedom of the horizontal direction is connected with the freedom of the longitudinal direction.

DOI: 10.1103/PhysRevAccelBeams.19.010102

I. INTRODUCTION

Laser cooling techniques have been applied to cool down
the longitudinal (orbital) direction of an ion beam. This
technique, however, cannot cool the transverse (horizontal
and vertical) direction. The synchrobetatron resonant cou-
pling method where the cooling force in the longitudinal
direction was extended to the horizontal direction, was
proposed to enable the horizontal cooling. At the synchro-
betatron resonant coupling, the difference between the
fractional part of the betatron tune and the synchrotron
tune is negligible (the difference integer resonance con-
dition) [1]. small laser equipped storage ring (S-LSR), as
shown in Fig. 1, is a synchrotron-type small storage ring at
Kyoto University [2]. The synchrobetatron resonant cou-
pling method was employed in S-LSR, in which the
horizontal laser cooling was already observed [3]. Near
the synchrobetatron resonant coupling point where the
difference integer resonance condition was satisfied, an
unexpected tune jump of the horizontal betatron tune was
observed. The tune jump had not been recognized in the
computer simulation [4]. In this manuscript, a synchrobe-
tatron resonant coupling mechanism is analyzed analyti-
cally from the Hamiltonian for an orbiting particle to clarify
the physics of the observed tune jump. Then we discuss the
horizontal cooling mechanism, which may help to achieve
a crystalline beam in future [5].

II. EXPERIMENTAL ARRANGEMENT
AND RESULTS

A 40 keV Mg ion beam was injected into S-LSR, which
was equipped with a frequency tunable laser system of

280 nm for beam cooling. S-LSR consists of 6 bending
magnets, and accordingly it has 6-fold symmetry. The
lattice of it was constructed so that magnet error was as
small as possible to minimize beam heating. A drift tube
(a rf cavity) was designed to bunch the ion beam at
harmonic number 100. The frequency of rf wave was
2.52 MHz. It was installed at the location of finite
dispersion function (1.1 m) to couple synchrotron and
horizontal betatron motions. The horizontal beam size was
observed by a CCD camera and a photomultiplier [3].
Table I shows the main parameters of S-LSR.
Betatron and synchrotron tunes were measured precisely

to reveal the resonance condition. Figure 2 shows the

FIG. 1. Layout of the S-LSR It consists of 6 bending magnets
BMi (the digit i indicates BM number) and 12 quadrupole
magnets QMij (focusing for digit j ¼ 1, defocusing for
digit j ¼ 2, and digit i indicate QM number). The horizontal
beam size was observed by CCD camera and PMT (photo
multiplier tube).
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conceptual diagram of tune measurements. The beam was
excited by parallel-plate electrodes RFKO connected to a
network analyzer (Agilent 4395A). Betatron tunes were
adjusted by currents of quadrupole magnets. Sideband
behaviors distinguished the horizontal and the vertical
betatron tunes. Synchrotron tune, which was varied by
the (rf) cavity voltage, was identified in the same way. Tune
signals were detected by pickup, amplified by a pre amp
(SA-220F5) and analyzed by the network analyzer, in
which we observed sidebands as variations of fractional
part of tunes [6].
In Fig. 3, the difference integer resonance condition of

integer 2 of the synchrobetatron resonant coupling is
observed near the resonant point (νβx ¼ 2.10, νs ¼ 0.10)
where νβx is the horizontal betatron tune and νs is the
synchrotron tune. At the resonant point ν̄ ¼ 0.10 and the
cavity voltage 65 [V] are satisfied (ν̄ is the fractional part of
tune). When the square root of the cavity voltage increases,
the fractional part of tune of νβx should stay at a constant
value: the fractional part of tune of νβx should be a constant
value. However, it changes discontinuously near the res-
onant point. There the fractional part of tune of νβx jumps
about 0.015. Apparently the value of νβx is shifted laterally.
When the cavity voltage increases, νs scales with the square
root of the cavity voltage (the synchrotron tune looks like a
straight line). Near the resonant point, however, disconti-
nuity is also observable but clear break from a straight line
is not recognized in the both sides of the resonant point.
For a comparison, the vertical betatron tune νβz

(νβz ¼ 1.10) is also shown in Fig. 3. Its fractional value
is intentionally reduced a little from ν̄ ¼ 0.10 for clear

view. The difference integer resonance condition of
integer 1 is satisfied between the horizontal and the vertical
betatron tunes but there is no coupling mechanism. The
vertical betatron tune is constant as it is expected.

III. PHENOMENOLOGICAL ANALYSIS

A. The Hamiltonian composed of coasting, betatron
and synchrotron motions

The Hamiltonian E for a particle under Lorentz force in a
storage ring becomes [7]

E¼c

�
m2c2þðps−qAsÞ2

ð1þ x
ρÞ2

þðpx − qAxÞ2þðpz−qAzÞ2
�1

2

;

ð1Þ

where ρ is the radius of curvature, q is the elementary
charge, c is the velocity of light, and m is the particle mass.
We neglect torsion and the scalar potential. In the right-
handed curvilinear coordinate system ðx; s; zÞ, Ax;s;z is the
vector potential and px;s;z is the canonical momentum. Here
s is orbit length. For a positive value of orbital momentum
ps, which is time independent, the particle is moving in a
counterclockwise direction. And x and px are horizontal
coordinate and momentum around the reference closed
orbit. We neglect vertical motion and put z ¼ 0 and pz ¼ 0.
We further assume Ax ¼ Az ¼ 0 for magnets. Then
νβ ¼ νβx: “betatron tune”means “horizontal betatron tune.”
The energy E and the momentum p of the particle satisfy

TABLE I. Main parameter of S-LSR.

Circumference 22.557 m
Average radius 3.59 m
Length of straight section 1.86 m
Radius of curvature 1.05 m
Revolution frequency 25.192 kHz
Super periodicity 6
Ion species 24Mgþ
Kinetic beam energy 40 keV

FIG. 2. Conceptual diagram of tune measurement.

FIG. 3. Synchrotron and horizontal betatron coupling near the
resonant point ν̄ ¼ 0.10 (νβx ¼ 2.10, νs ¼ 0.10, νβz ¼ 1.10)
and the cavity voltage 65 [V] where ν̄ is a fractional part of tune.
νβx (red) is the horizontal (betatron) tune, νβz (green) is the
vertical (betatron) tune, νs (blue) is the synchrotron tune. There
the fractional part of tune of νβx jumps about 0.015. Apparently
the value of νβx is shifted laterally. The fractional part of tune of
νβz is intentionally reduced a little from ν̄ ¼ 0.10 for clear view.
The fractional part of tune of νβz is constant.
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p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

c2
−m2c2

s
; ð2Þ

Where p2 ¼ px
2 þ ps

2. We obtain

−ps ¼ −
�
1þ x

ρ

��
E2

c2
−m2c2 − p2

x

�1
2 − qAs: ð3Þ

Now ðx; pxÞ and ðt;−EÞ become canonical variables.
Since px is much smaller than ps, we have

−ps ≈ −
�
1þ x

ρ

�
pþ 1

2p

�
1þ x

ρ

�
p2
x − qAs; ð4Þ

As ¼ −B0xþ
1

2
B1ðx2 − z2Þ − B0

2ρ
x2 þ � � � þ Arf ; ð5Þ

where Arf is the vector potential of the rf cavity, B0 ¼ p0

qρ is

the magnetic field of the main dipole, B1 ¼ ∂Bz∂x is the

quadrupole gradient function and Kx ¼ 1
ρ2
− B1

B0ρ
.

Equation (4) turns to be

−ps ≈ −
�
1þ x

ρ

�
pþ

�
1þ x

ρ

��
p2
x

2p

�
þ qB0x

− qB1

2
x2 þ qB0

2ρ
x2 þ � � � − qArf : ð6Þ

Weassume that a reference particle of themomentump0 is
circling the reference closed orbit of the average radius R
with velocity βc and energy E0. Synchronous particles
synchronize with the rf wave of angular frequency ωrf ¼
hω0 (h is the harmonic number) and are bunched by the rf
wave.Wehave the revolution frequencyω0 (ω0 ¼ dθ

dt) and the
orbit angle θ (θ ¼ s

R). Equation (6) is further simplified by
taking s or θ as an independent variable. Define E ¼ E0 þ
ΔE and p ¼ p0 þ Δp.Δp is the momentum deviation and
ΔE is the energy deviation from the reference particle.
We also have γ ¼ 1ffiffiffiffiffiffiffiffi

1−β2
p , ds

dt ¼ βc, E0 ¼ mγc2 and

p0 ¼ mγβc. We obtain

Δp
p0

≈
ΔE
β2E0

− 1

2γ2

�
ΔE
β2E0

�
2

; ð7Þ

Where Δp
p0

is the fractional (momentum) deviation and ΔE
β2E0

is

the rationalized fractional (energy) deviation. From Eq. (6),

− ps

p0

≈ −
�
1þ

�
Δp
p0

��
− x
ρ

�
Δp
p0

�
þ
�

p2
x

2p0
2

��
1þ x

ρ

�

þ 1

2
Kxx2 − qArf

p0

: ð8Þ

The energy gain for the synchronous particle in the rf
cavity is given by

dE0

ds
¼ ω0

βc
dE0

dt
¼ ω0

2πβc
qV sinψS ¼

sinψS

2πR
qV; ð9Þ

where V is the effective rf cavity voltage seen by particles
per passage [8]. ψS is the phase angle for the synchronous
particle with respect to the rf cavity voltage.
The rf vector potential, which faces h bunches, is

Arf ¼
V
ω0

cosðω0tþ ϕ0Þ
X
n

δ

�
s − s0 − 2πn

R
h

�

⇒
hV

2πRω0

cos

�
ω0t − s

R
þ
�
ϕ0 þ

s0
R

��
; ð10Þ

where δ is a delta function and ϕ0 is the initial phase at the
rf cavity located at s0. Since ϕ0 þ s0

R should be an integer
multiple of 2π, we can neglect these terms [9].
E0 has finite s-dependence of 1st order. Then

ΔE
β2E0

has s-

dependence of 2nd order, and we can neglect s-dependence
of it. From Eq. (7), s-dependence of Δpp0

is neglected. p0 is s-
independent but E0 is s-dependent since Arf is s-dependent.
Define a symbol of rationalized fractional deviation

δ ≡ ΔE
β2E0

. Keeping up to 2nd order in Eq. (8), the

Hamiltonian H, which is a constant of motion, is obtained

H ¼ − ps

p0

¼ −ð1þ δÞ þ 1

2γ2
δ2 − x

ρ
δþ

�
p2
x

2p0
2

�
þ 1

2
Kxx2 − qArf

p0

:

ð11Þ

We transform the coordinate system of −E onto −ΔE
then to −δ. That is

ðx; px; t;−EÞ → ðx̄; p̄x; t̄;−ΔEÞ →
�
x̄;
p̄x

p0

; ϕ;−δ
�
:

Let us define the generating function F2 for a canonical
transformation [9] as

F2

�
x;
p̄x

p0

; t;−δ
�

¼ ðx −DδÞ
�
p̄x

p0

�

−
�
E0

p0

þ βcδ

�
tþD0xδ − 1

2
DD0δ2

ð12Þ

The prime denotes differentiation with respect to s.
Around the off-momentum closed orbit, x̄ and p̄x are
horizontal coordinate and horizontal momentum. t̄ and ϕ
are time and the phase of off-momentum particle. We
obtain
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x ¼ x̄þDδ;
px

p0

¼ p̄x

p0

þD0δ;

t ¼ t̄ − D
βc

p̄x

p0

þD0

βc
x̄; ϕ ¼ ω0t̄ − s

R
;

and the dispersion function D satisfies

D00 þ KxD ¼ 1

ρ
: ð13Þ

Since

∂F2

∂s ¼ − 1

p0

∂E0

∂s t−D0δ
�
p̄x

p0

�
þD00δx− ðD0D0 þDD00Þδ2;

ð14Þ

we have a new Hamiltonian H̄, which is also a constant of
motion, as

H̄ ¼ H þ ∂F2

∂s
¼ −ð1þ δÞ − 1

2

�
D
ρ
− 1

γ2

�
δ2 − 1

p0

∂E0

∂s
�
t̄ − D

βc

�
p̄x

p0

�

þD0

βc
x̄

�
− qArf

p0

þ
�

1

2

�
p̄x

p0

�
2

þ 1

2
Kxx̄2

�
: ð15Þ

From Eqs. (9) and (10),

dE0

ds

�
t̄ − D

βc

�
p̄x

p0

�
þD0

βc
x̄

�

¼ p0

sinψShqV
2πβ2E0

�
ϕ − ω0

D
βc

�
p̄x

p0

�
þ ω0

D0

βc
x̄

�
; ð16Þ

qArf ¼
p0hqV
2πβ2E0

cos

�
ω0t − s

R

�

¼ p0

hqV
2πβ2E0

cos

�
ϕ − ω0

D
βc

�
p̄x

p0

�
þ ω0

D0

βc
x̄

�
:

ð17Þ

Averaging over one revolution around the ring of
circumference C ¼ 2πR [10]

D
ρ
− 1

γ2
→ η ¼ 1

C

Z
cir

�
D
ρ
− 1

γ2

�
ds; ð18Þ

where η is the phase slip factor. The Hamiltonian turns to be

H̄ ¼ −ð1þ δÞ þ 1

2
ð−ηÞδ2 − sinψShqV

2πβ2E0

ðϕþ ϕDÞ

− hqV
2πβ2E0

cosðϕþ ϕDÞ þ
1

2

�
p̄x

p0

�
2

þ 1

2
Kxx̄2; ð19Þ

where ϕD ¼ − D
R ðp̄x

p0
Þ þ D0

R x̄, which is very small.

Adding to H̄ the following arbitrary term for conven-
ience: ðψS sinψS þ cosψSÞ hqV

2πβ2E0
,

Putting ϕS ¼ ψS − ϕD, we have the Hamiltonian for an
orbiting particle

H̄ ¼ −ð1þ δÞ þ 1

2
ð−ηÞδ2 − hqV

2πβ2E0

fcosðϕþ ϕDÞ

− cosðϕs þ ϕDÞ þ ðϕ − ϕsÞ sinðϕs þ ϕDÞg

þ 1

2

�
p̄x

p0

�
2

þ 1

2
Kxx̄2: ð20Þ

The Hamiltonian H̄ is composed of coasting, synchro-
tron and betatron motions.

B. The fractional deviation divided into coasting
and synchrotron motions

The (rationalized) fractional deviation δ consists of
two components. The fractional deviation caused by
the coasting motion δC (DC component) and that caused
by the synchrotron motion δS (oscillating component):
δ ¼ δC þ δS. We will show that most of synchronous
particles oscillate in sinusoidal manner (the synchrotron
oscillation) since no oscillating particle leaves the storage
ring immediately. From Eq. (20),

H̄ ¼ −ð1þ δC þ δSÞ þ
1

2

�
p̄x

p0

�
2

þ 1

2
Kxx̄2

þ 1

2
ð−ηÞðδC þ δSÞ2 − hqV

2πβ2E0

fcosðϕþ ϕDÞ

− cosðϕs þ ϕDÞ þ ðϕ − ϕsÞ sinðϕs þ ϕDÞg: ð21Þ

We obtain Hamilton’s equations of motion for ðϕ; δSÞ
from H̄

dϕ
dθ

¼ ∂H̄
∂δS ¼ −1þ ð−ηÞðδC þ δSÞ: ð22Þ

Putting ϕ → ϕS, we can differentiate the following
equation as
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dδS
dθ

¼ −∂H̄
∂ϕ ¼ − hqV

2πβ2E0

fsinðϕþ ϕDÞ − sinðϕS þ ϕDÞg

≈ − hqV cosðϕs þ ϕDÞ
2πβ2E0

ðϕ − ϕSÞ: ð23Þ

From Eqs. (22) and (23),

d2δS
dθ2

¼−hqV cosðϕSþϕDÞ
2πβ2E0

dϕ
dθ

¼−hqV cosðϕSþϕDÞ
2πβ2E0

f−1þð−ηÞðδCþδSÞg: ð24Þ

Then

d2

dθ2
ðδS − δ0Þ ¼ −ν2sðδS − δ0Þ: ð25Þ

We obtain the following equations

δS − δ0 ¼ δ̂ cosfνsðθ − θ0Þg: ð26Þ

ν2s ¼
ω2
s

ω2
0

¼ hqVjη cosðϕS þ ϕDÞj
2πβ2E0

: ð27Þ

where δ̂ is the amplitude of synchrotron oscillation,
δ0 ¼ −δC − 1

η is a properly decided initial condition at
s0, θ0 is the initial orbit angle at s0, νs is the synchrotron
tune and ωs is the synchrotron frequency.

C. The betatron tune jump proportional to a
change of the fractional deviation

We also obtain Hamilton’s equations of motion for
ðx̄; p̄x

p0
Þ from H̄

dx̄
ds

¼ dH̄

dðp̄x
p0
Þ ¼

�
p̄x

p0

�
; ð28Þ

dðp̄x
p0
Þ

ds
¼ −dH̄

dx̄
¼ −Kxx̄: ð29Þ

We have

d2x̄
ds2

þ Kxx̄ ¼ 0: ð30Þ

This is the betatron oscillation around the off-momentum
closed orbit. We neglect p̄x and x̄ dependence in ϕD. We
have the following relation [11]

Δνx ¼
1

4π

Z
βxΔKxds ¼

�
− 1

4π

Z
βxKxds

�
ΔδC; ð31Þ

where βx is the horizontal component of betatron function.
The betatron tune jump (shift) Δνx is proportional to ΔδC,
which is the amount of change of the (DC component)
fractional deviation.

D. Resonance between synchrotron
and betatron motions

In the standard theory of the off- momentum betatron
oscillation [12], the horizontal coordinate around the off-
momentum closed orbit x̄ is defined as x ¼ x̄þDδC.
We rewrite it as x ¼ x0 þDδC. Now x0 is the horizontal

coordinate around the off-momentum closed orbit in the
standard theory, and x̄ is our horizontal coordinate around
the off-momentum closed orbit. Then x¼ x̄þDðδCþδSÞ¼
x0þDδC. We have

x0 ¼ x̄þD δS: ð32Þ

Now x̄ represents x0 plus the synchrotron oscillation
effect. Substituting Eq. (32) into (30), we have

d2x0

ds2
þ Kxx0 ¼

δS
ρ
: ð33Þ

Putting θ0 ¼ 0 and δ0 ¼ 0, we substitute Eq. (26) into
Eq. (33),

d2x0

ds2
þ Kxx0 ¼

δ̂

ρ
cosðνsθÞ: ð34Þ

We perform Floquet transformation to Eq. (34). The
closed orbit displacement x0co is given as follows [13]

x0coðsÞ ¼
νβ

ffiffiffiffiffi
βx

p
2 sinðπνβÞ

Z
θþ2π

θ
β

3
2
x
δ̂

ρ
cosfνsðφ − φ0Þg

× cosfνβðπ þ θ − φÞgdφ: ð35Þ

After integration

x0coðsÞ ¼
ffiffiffiffiffi
βx

p
2

X∞
l¼−∞

fðlÞeilϕ
�

νβðνβ þ νsÞ
ðνβ þ νsÞ2 − l2

þ νβðνβ − νsÞ
ðνβ − νsÞ2 − l2

�
; ð36Þ

where fðlÞ ¼ 1
2πρ

H
β

3
2
xδ̂e−ilθdθ and l ¼ integers.

We find the synchrobetatron resonant coupling at l ¼
νβ � νs in Eq. (36) (l ¼ integers). There are sum integer
resonance condition νβ þ νs and difference integer reso-
nance condition νβ − νs.
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IV. DISCUSSION

Near the resonant point of the synchrobetatron resonant
coupling, unexpected betatron tune jump was observed. We
propose a physical explanation on how it occurred.
In this coupling mechanism, no apparent resonant cou-

pling term exists in the Hamiltonian H̄. The synchrotron
oscillation in the longitudinal direction, however, induces an
oscillation in the horizontal direction [See Eq. (33)], which
resonate with the off-momentum betatron oscillation.
Let us discuss the tune jump with H̄ as a constant of

motion

H̄ ¼ H̄C þ H̄β þ H̄S; ð37Þ

where H̄C ¼ −ð1þ δC þ δSÞ, H̄β ¼ 1
2
ðp̄x
p0
Þ2 þ 1

2
Kxx̄2 and

H̄S ¼
1

2
ð−ηÞðδC þ δSÞ2 − qV

2πhβ2E0

fcosðϕþ ϕDÞ

− cosðϕs þ ϕDÞ þ ðϕ − ϕsÞ sinðϕs þ ϕDÞg:

H̄C corresponds to the energy of the off-momentum
coasting particle. H̄β corresponds to the energy of the off-
momentum betatron oscillation where x̄ ¼ x −D δ and
p̄x
p0

¼ px
p0
−D0δ ≈ px

p0
(D0 has both þ and − components

and totally their contribution is very small). H̄S corresponds
to the energy of synchrotron oscillation. As Eq. (31) shows,
δC is changed near the resonant point. Consider the case δC
is a small enough positive value. As δC decreases, both H̄C

and H̄β increase. Then H̄S has to decrease. As δC increases,
H̄C and H̄β decrease and H̄S increases.
The orbital momentum (−ps) of clockwise direction

decreases as δC decreases and the particle deflects inside
from the orbit (the momentum increases as δC increases and
the particle deflects outside from the orbit). Deflecting
insides is equivalent to prolongation of the amplitude of the
betatron oscillation and shortening of that of the synchro-
tron oscillation, which leads to an increase of the betatron
oscillation energy and a decrease of the synchrotron
oscillation energy when the synchrobetatron resonant
coupling condition is satisfied and vice versa.
Some amount of synchrotron oscillation energy is

exchanged with that of betatron oscillation energy near
the resonant point where a coasting particle mediates their
energy exchange. ΔδC stands for the strength of energy
exchange and brings about the observed betatron tune jump
near the resonant point. There the freedom of the horizontal
direction is connected with the freedom of the longitudinal

direction when ΔδC ≠ 0. In other words, an amount of ΔδC
unites these two freedoms.
Generally two freedoms are connected via collisions

(for an example, particles in magnetically confined
plasma). In a S-LSR experiment, collisions among particles
are neglected. The synchrobetatron resonant coupling takes
the role of collisions near the resonant point.
If the longitudinal (synchrotron) component of a beam is

cooled, the transverse (betatron) component of the beam is
also cooled since the longitudinal and the transverse
freedoms are connected near the resonant point. This result
is what we observed in our cooling experiment [3].
In the future we would like to find the way to control

the strength of energy exchange so that we can cool the
transverse direction of the beam more efficiently in the
experiment.
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