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Abstract. A notion of convergence of excursion measures is introduced.
It is proved that convergence of excursion measures implies convergence in
law of the processes pieced together from excursions. This result is applied
to obtain homogenization theorems of jumping-in extensions for positive self-
similar Markov processes, for Walsh diffusions and for the Brownian motion
on the Sierpiński gasket.

1. Introduction.

In the previous work [22], the author obtained homogenization results of jumping-in
extensions for diffusion processes on the half line. The proof was based on the con-
struction of a sample path from excursions using Itô’s excursion theory [11] and the
time-change method. The key to the proof was to prove convergence of time-changed
paths of the Brownian excursion based on the results of Fitzsimmons–Yano [8].

The aim of this paper is to establish a general limit theorem (Theorem 2.5) which
asserts, roughly speaking, that

nn → n∞ implies Xn
law−→ X∞, (1.1)

where nn’s are excursion measures and Xn’s are the processes pieced together from
excursions. For a given Hunt process for which the origin is regular for itself, the excursion
measure away from the origin characterizes the law of the Hunt process. Hence it may
be natural that (1.1) should hold. But in what sense is “nn → n∞”?

We introduce a notion of convergence of excursion measures as an analogue to Sko-
rokhod’s a.s.-convergence realization of weak convergence of probability measures. We
roughly say that nn → n∞ if all nn’s can be realized as the pullbacks of a common
σ-finite measure, say nn = ν ◦ Φ−1

n , where Φn’s are measurable mappings which take
values in the functional space of càdlàg paths equipped with the Skorokhod topology
and which satisfy Φn → Φ∞, ν-a.e. The key to the proof of (1.1) is to realize Xn’s from
a common Poisson point process and to construct random time-changes which establish
the convergence Φn → Φ∞ in the Skorokhod topology.
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We apply the general theorem to obtain homogenization theorems of jumping-in
extensions. Let S be a Borel subset of Rd containing 0 and H0 = {X, (P0

x)x∈S} be a
Hunt process stopped upon hitting 0. Let S′ be a measurable space and let {nv}v∈S′

be a kernel such that for each v ∈ S′ the measure nv is the excursion measure of
an extension of H0. A jumping-in extension is the process Xρ,j pieced together from
excursions corresponding to the excursion measure defined by

nρ,j =
∫

S′
ρ(dv)nv +

∫

S\{0}
j(dx)P0

x (1.2)

for some finite measure ρ on S′ and some σ-finite measure j on S \ {0}. (The excursion
measure of any extension of H0 may admit a representation of the form (1.2); see Itô [12,
Section 7].) Let c > 1 be a fixed constant. For γ > 0, we define the scaling transformation

(Ψγw)(t) = c−γw(ct). (1.3)

For certain constants α > 0 and γ > 0, we study the following scaled objects:

n
(n)
ρ,j = cγnnρ,j ◦ (Ψn

α)−1, X
(n)
ρ,j = Ψn

αXρ,j . (1.4)

We shall provide sufficient conditions for the following two types of convergences:

n
(n)
ρ,j →

{
nρ∗,0 in the jumping-in vanishing case,

n0,j∗ in the jumping-in dominant case
(1.5)

for some ρ∗ and j∗. Thanks to the general theorem (1.1), the convergence (1.5) leads to
the corresponding convergence in law of the scaled process X

(n)
ρ,j , which can be regarded as

a homogenization result. In particular, we take up positive self-similar Markov processes,
Walsh diffusions, and the Brownian motion on the Sierpiński gasket.

Let us give a remark on earlier works about jumping-in extensions. Jumping-in ex-
tensions of diffusion processes were discussed by Feller [6] in his study of determination
of all possible boundary conditions for the generator of a diffusion process with acces-
sible boundaries. Such processes appear in the study of population genetics; see, e.g.,
Hutzenthaler–Taylor [9]. The sample path construction of the jumping-in extensions was
first established by Itô–McKean [13] for Brownian motions using time-change method in-
volving an independent Poisson process. Itô [11] established his theory of Poisson point
process of excursions to construct a sample path by piecing together from excursions
produced by a Poisson point process. Yano utilized Itô’s method in [22] to obtain ho-
mogenization results of jumping-in extensions for diffusion processes on the half line and
in [23] to determine possible jumping-in extensions of diffusion processes on an interval.

Note also that Lambert–Simatos [15] proved (1.1) in a certain sense which is different
from ours. They gave a general condition for convergence of regenerative processes
assuming the convergence of excursions bigger than ε in some given functional, which
are called the ε-big excursions, for all ε > 0.
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This paper is organized as follows. In Section 2, we give basic facts about the piecing
procedure of excursions and state the general limit theorem. In Section 3, we state the
homogenization theorems for jumping-in extensions in a rather general framework. In
Section 4, we discuss three examples of the homogenization theorems: the positive self-
similar Markov processes, the Walsh diffusions and the Brownian motion on the Sierpiński
gasket. Section 5 and Section 6 are devoted to the proofs of the general limit theorem
and the homogenization theorems, respectively.

Acknowledgements. The author thanks Naotaka Kajino for his valuable sug-
gestions on Lemma 4.6. The author also thanks the referee for pointing out an error of
earlier versions.

2. General limit theorem.

2.1. Notations about excursions.
Let d ≥ 1 and let D = DRd denote the set of all functions w : [0,∞) → Rd which are

càdlàg, i.e., right continuous with left limits. We say wn → w uniformly on compacts, or
simply wn → w uc, if supt∈[0,t0] |wn(t) − w(t)| → 0 for all t0 > 0. We equip D with the
Skorokhod topology; we say wn → w in D if there exists a sequence of time-changes {In}
of [0,∞) such that each In : [0,∞) → [0,∞) is bijective, continuous and increasing and

In − I → 0 uc and wn − w ◦ In → 0 uc, (2.1)

where I(t) ≡ t denotes the identity time-change. It is well-known that D is a Polish space.
We write B(D) for the σ-field generated by all open subsets of D. Let X = (X(t))t≥0

denote the coordinate process on D, i.e.,

X(w)(t) = X(t)(w) = w(t). (2.2)

For x ∈ Rd, we denote the hitting time of x by

Tx(w) = inf{t > 0 : w(t) = x}, (2.3)

where we adopt the usual convention inf ∅ = ∞. We denote

‖w‖ = sup
t≥0

|w(t)| for w ∈ D. (2.4)

Paths stopped upon hitting 0 are called excursions away from 0. The set of all excursions
away from 0 will be denoted by

D0 = {w ∈ D : w(t) = w(t ∧ T0(w)) for all t ≥ 0}. (2.5)

We write o ∈ D0 for the path o(t) ≡ 0. Note that, for w ∈ D0, we have T0(w) = 0 if and
only if w = o.

For t ∈ [0,∞), we define the shift operator θt : D → D by
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(θtw)(s) = w(t + s), s ≥ 0. (2.6)

We denote F0
t = σ(X(s) : s ≤ t) and set Ft =

⋂
ε>0 F0

t+ε.

2.2. The process pieced together from excursions.
We denote ]{·} by the number of elements of the set {·}. For a σ-finite measure ν

on a measurable space E and a measurable functional f on E, we write ν[f ] for
∫

E
fdν

whenever the integral is well-defined.
We first recall the usual notion of a Poisson point process; see, e.g., [10, Section I.9]

for the basic facts about it. Let ν be a σ-finite measure on a measurable space E. We
call {(p(l))l∈D(p),P} a Poisson point process on E with characteristic measure ν if the
random measure Nl for l ≥ 0 defined by

Nl(A) = ]{s ∈ D(p) ∩ [0, l] : p(s) ∈ A}, A ∈ B(E) (2.7)

satisfies that for any non-negative measurable functional f on E the process (Nl[f ])l≥0

is a Poisson process with intensity ν[1− e−f ].
We second introduce an auxiliary notation modifying the usual notation of a Poisson

point process. Let n be a σ-finite measure on D such that n({o}) = 0. We call {p =
(p(l))l≥0,P} a Poisson point process on D outside o with characteristic measure n if
{(p(l))l∈D(p),P} for D(p) = {l ≥ 0 : p(l) 6= o} is a Poisson point process on D \ {o} with
characteristic measure n|D\{o}. Note that a Poisson point process (p(l))l∈D(p) on D \{o}
can always be extended to a Poisson point process on D outside o by putting p(l) = o

when l /∈ D(p).
Let (n, ς) be the pair consisting of a σ-finite measure n on D such that n({o}) = 0

and a non-negative constant ς. Let p = (p(l))l≥0 be a Poisson point process on D outside
o with characteristic measure n. Noting that p(l) ∈ D for all l ≥ 0, we have

T0(p(l)) = inf{t > 0 : p(l)(t) = 0}. (2.8)

Let ς ≥ 0 be a constant and for l ≥ 0 we define

η(l) = η(p, ς; l) = ςl +
∑

s≤l

T0(p(s)). (2.9)

We introduce the following conditions on the pair (n, ς):

(N0) X ∈ D0 and 0 < T0 < ∞, n-a.e.;
(N1) n[T0 ∧ 1] < ∞;
(N2) either ς > 0 or n(D) = ∞;
(N3) n(‖X‖ ≥ r) < ∞ for all r > 0.

If the conditions (N0) and (N1) are satisfied, we see that p(l) ∈ D0 for all l ≥ 0 and that
T0(p(l)) = 0 for all but countably many l.

Lemma 2.1. Suppose that the conditions (N0) and (N1) are satisfied. Then
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(η(l))l≥0 = (η(p, ς; l))l≥0 is an increasing Lévy process with Laplace transform

E[e−λη(l)] = exp
{− lςλ− ln

[
1− e−λT0

]}
, λ ≥ 0. (2.10)

If, moreover, the condition (N2) is satisfied, then it is strictly increasing.

Lemma 2.1 is well-known, and so we omit its proof.
The following proposition enables us to piece a process together from excursions.

Proposition 2.2. Suppose that the conditions (N0)–(N2) are satisfied. Define

L(t) = L(p, ς; t) = inf{l ≥ 0 : η(l) > t}, t ≥ 0 (2.11)

and

X(t) = X(p, ς; t) =

{
p(l)(t− η(l−)) if η(l−) ≤ t < η(l) for some l ≥ 0,

0 otherwise.
(2.12)

Then it holds that

∫ t

0

1{X(s)=0}ds = ςL(t). (2.13)

If, moreover, the condition (N3) is satisfied, then the process X(p, ς) = (X(p, ς; t))t≥0 is
D-valued. If n(D) = ∞, the converse is also true: if the process X(p, ς) is D-valued then
the condition (N3) is satisfied.

The proof of Proposition 2.2 will be given in Section 5.1.

2.3. General limit theorem.
For real-valued measurable functions f1, f2, . . . and f∞ defined on a measure space

(E, E , ν), we say that fn → f∞, ν-almost uniformly if for any ε > 0 there exists A ∈ E
such that ν(A) < ε and supAc |fn − f∞| → 0. Imitating the Skorokhod representation of
almost sure convergence, we introduce the following notion of convergence.

Definition 2.3. Let n1,n2, . . . and n∞ be σ-finite measures on D. We say that
nn → n∞ if there exist a Polish space E, a σ-finite measure ν on E and measurable
mappings Φ1,Φ2, . . . ,Φ∞ from E to D such that the following conditions hold:

(G1) nn = (ν ◦ Φ−1
n )|D\{o} for n = 1, 2, . . . and ∞;

(G2) Φn → Φ∞ in D, ν-a.e.;
(G3) ‖Φn‖ → ‖Φ∞‖, ν-almost uniformly;
(G4) T0(Φn) → T0(Φ∞), ν-a.e.;
(G5) there exists N ∈ N such that ν

[
1 ∧ supn≥N T0(Φn)

]
< ∞.

We shall see in Lemma 5.4 that Condition (G3) can be replaced by the following:

(G3)′ ν
( ⋃∞

n=1

{‖Φn‖ ≥ r
})

< ∞ for all r > 0.
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Remark 2.4. Condition (G2) does not imply Condition (G4). This is because
the functional T0 : D → [0,∞] is not continuous; for instance, the sequence of functions
wn ∈ DR defined by

wn(t) =





1 if 0 ≤ t < 1,

1/n if 1 ≤ t < 2,

0 if t ≥ 2,

(2.14)

satisfies that wn converges to w∞ in DR, while T0(wn) ≡ 2 6→ 1 = T0(w∞).

Theorem 2.5. Let n1,n2, . . . and n∞ be σ-finite measures on D. Let ς1, ς2, . . .

and ς∞ be non-negative constants. Suppose that the following conditions hold :

(A1) for each n ∈ N ∪ {∞}, the pair (nn, ςn) satisfies Conditions (N0)–(N3);
(A2) nn → n∞;
(A3) X(T0−) = 0, n∞-a.e.;
(A4) ςn → ς∞.

For n ∈ N ∪ {∞}, let pn be a Poisson point process on D outside o with characteristic
measure nn. Denote ηn(l) = η(pn, ςn; l) and Xn(t) = X(pn, ςn; t). Then it holds that

(Xn, Ln, ηn) law−→ (X∞, L∞, η∞) as n →∞, (2.15)

where the convergence is in the sense of law on D ×DR ×DR.

The proof of Theorem 2.5 will be given in Section 5.3.

3. Homogenization theorems.

3.1. Excursion measures.
Let S be a Borel subset of Rd containing 0 and let H0 = {X, (P0

x)x∈S} be a Hunt
process stopped upon hitting 0. A Hunt process H = {X, (Px)x∈S} is called an extension
of H0 if the law of the stopped process X(t ∧ T0) under Px coincides with P0

x for all
x ∈ S. We introduce the following set of conditions for an extension H of H0:

(B1) H is a conservative Hunt process with values in S;
(B2) the state 0 is regular for itself, i.e., P0(T0 = 0) = 1;
(B3) the state 0 is recurrent, i.e., Px(T0 < ∞) = 1 for all x ∈ S.

Let H be an extension of H0 satisfying Conditions (B1)–(B3). Then the following
assertions hold:

( i ) there exists a positive continuous additive functional L = (L(t))t≥0 such that∫∞
0

1{X(s) 6=0}dL(s) = 0 (the process L is called the local time of 0 for X);
(ii) if A = (A(t))t≥0 is a non-negative continuous additive functional such that∫∞

0
1{X(s) 6=0}dA(s) = 0, then A(t) ≡ kL(t) for some constant k.

For the proof of these facts, see, e.g., [4, Theorem V.3.13].
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We fix L for a choice of the local time of 0. We then see that there exists a constant
ς ≥ 0 such that

∫ t

0

1{X(s)=0}ds = ςL(t), t ≥ 0. (3.1)

The constant ς is called the stagnancy rate. Denote

η(l) = inf{t ≥ 0 : L(t) > l}, l ≥ 0. (3.2)

For l ≥ 0, we define p(l) = (p(l)(t))t≥0 ∈ D by

p(l)(t) =

{
X(η(l−) + t) if 0 ≤ t < η(l)− η(l−),

0 if t ≥ η(l)− η(l−).
(3.3)

The point process p = (p(l))l≥0 thus obtained will be called the point process of excursions
for {X,P0}. It is then known (see [12, Section 6]) that {p,P0} is a Poisson point process
on D outside o. Its characteristic measure will be denoted by n and called the excursion
measure. We now see that

L = L(p, ς), η = η(p, ς) and X = X(p, ς). (3.4)

Theorem 3.1 (Itô). Let (n, ς) be as above. Then the following assertions hold :

( i ) (n, ς) satisfies Conditions (N0)–(N3);
(ii) for any t ≥ 0, any A ∈ Ft and any A′ ∈ B(D), it holds that

n({T0 > t} ∩A ∩ θ−1
t A′) = n

[
P0

X(t)(A
′); {T0 > t} ∩A

]
, (3.5)

provided that n({T0 > t} ∩A) < ∞.

For the proof of Theorem 3.1, see Itô [12, Section 6] and also Salisbury [19].
We also have the strong Markov property for n stated as follows.

Theorem 3.2. For any stopping time T , any A ∈ FT and any A′ ∈ B(D), it holds
that

n({T0 > T} ∩A ∩ θ−1
T A′) = n

[
P0

X(T )(A
′); {T0 > T} ∩A

]
, (3.6)

provided that n({T0 > T} ∩A) < ∞.

From this theorem we obtain the following corollary.

Corollary 3.3. For any x 6= 0 and any A ∈ B(D), it holds that

n({Tx < T0} ∩ θ−1
Tx

A) = n(Tx < T0)P0
x(A). (3.7)
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Proof. By Condition (N3), we have

n({Tx < T0}) ≤ n(‖X‖ ≥ |x|) < ∞. (3.8)

Hence we may apply Theorem 3.2 for T = Tx. Since X(Tx) = x, we obtain (3.7). ¤

3.2. Scaling property.
Let H be an extension of H0 satisfying Conditions (B1)–(B3). Let c > 1 be a fixed

constant. For γ > 0, we define transformations Ψγ and Ψ̂γ of D by

(Ψγw)(t) = c−γw(ct), (Ψ̂γw)(t) = c−1w(cγt). (3.9)

We introduce the following set of conditions:

(S0) c > 1, α > 0, 0 < κ < 1/α and c−αS ⊂ S;
(S1) {ΨαX,Px} law= {X,Pc−αx} for all x ∈ S;
(S2) {ΨακL,P0} law= {L,P0}.

We need the following lemma.

Lemma 3.4. Suppose that Conditions (S0)–(S2) are satisfied. Then the stagnancy
rate of the process {X,P0} is necessarily equal to 0.

The proof of Lemma 3.4 will be given in Section 6.1.
Condition (S2) is equivalent to the scaling property of the excursion measure as

follows.

Proposition 3.5. Suppose that Conditions (S0)–(S1) are satisfied. Then Condi-
tion (S2) is equivalent to the following condition:

(S2)′ n ◦Ψ−1
α = c−ακn.

3.3. Homogenization theorem for jumping-in extensions.
In addition to Conditions (B1)–(B3), we introduce the following set of conditions:

(B4) excursions leave 0 continuously, i.e., X(0) = 0, n-a.e.;
(B5) excursions hit 0 continuously, i.e., X(T0−) = 0, n-a.e.

If Conditions (B1)–(B5) and (S0)–(S2) are satisfied, then we see, by Condition (S2)′,
that it also satisfies

σ(c−αx) = cακσ(x) for x ∈ S. (3.10)

Let H0 be a Hunt process stopped upon hitting 0 and let c > 1, α > 0 and 0 <

κ < 1/α be fixed. Let S′ be a measurable space and let {nv}v∈S′ be a kernel on D. We
introduce the following condition:

(B) for each v ∈ S′, the measure nv is the excursion measure of an extension Hv =
{X, (Pv

x)x∈S} of H0 satisfying Conditions (B1)–(B5) and (S0)–(S2).
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For a finite measure ρ on S′ and a σ-finite measure j on S \ {0}, we define

nρ,j(dw) =
∫

S′
ρ(dv)nv(dw) +

∫

S\{0}
j(dx)P0

x(dw). (3.11)

For a triplet (ρ, j, ς), we introduce the following condition:

(C1) the pair (nρ,j , ς) satisfies Conditions (N0)–(N3);
(C2) there exists a measurable map ψ : S \ {0} → S′ such that, for j-a.e. x ∈ S \ {0},

σψ(x)(x) > 0 and ψ(c−αnx) = ψ(x) for all n ∈ N ∪ {∞}.
For a triplet (ρ, j, ς) satisfying Condition (C), let {pρ,j ,P} be a Poisson point process on
D outside o with characteristic measure nρ,j . We write

Xρ,j,ς(t) = X(pρ,j , ς; t), Lρ,j,ς(t) = L(pρ,j , ς; t), ηρ,j,ς(l) = η(pρ,j , ς; l) (3.12)

and call {Xρ,j,ς ,P} a jumping-in extension of the minimal process H0.
For a scaling exponent γ > 0, we define

n
(n)
ρ,j = cγnnρ,j ◦ (Ψn

α)−1, ς(n) = c−(1−γ)nς (3.13)

and

X
(n)
ρ,j,ς = Ψn

αXρ,j,ς , L
(n)
ρ,j,ς = Ψn

γLρ,j,ς , η
(n)
ρ,j,ς = Ψ̂n

γηρ,j,ς . (3.14)

Let H0 be a Hunt process stopped upon hitting 0 and let c > 1, α > 0 and 0 < κ <

1/α be constants. Let {nv}v∈S′ be a kernel satisfying Condition (B). Denote

σv(x) = nv(Tx < T0) for v ∈ S′. (3.15)

Let (ρ, j, ς) satisfy Conditions (C1)–(C2). In order to handle various examples together,
we give the following two auxiliary theorems.

Theorem 3.6 (Jumping-in vanishing case). Suppose the following condition:

(C3) Tc−αnx → 0, nψ(x)-a.e. for j-a.e. x ∈ S \ {0};
(C4) (nρ∗,0, 0) satisfies Conditions (N0)–(N3), where ρ∗ is the finite measure on S′

defined by

ρ∗ = ρ +
∫

S\{0}

j(dx)
σψ(x)(x)

δψ(x), (3.16)

where δ denote the Dirac delta. Then, for the scaling exponent γ = ακ, it holds as n →∞
that

n
(n)
ρ,j → nρ∗,0, ς(n) → 0 (3.17)
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and
{(

X
(n)
ρ,j,ς , L

(n)
ρ,j,ς , η

(n)
ρ,j,ς

)
,P

}
law−→ {(

Xρ∗,0,0, Lρ∗,0,0, ηρ∗,0,0

)
,P

}
. (3.18)

Theorem 3.7 (Jumping-in dominant case). Suppose the following condition:

(C5) there exist a σ-finite measure µ on a measurable space S′′, measurable mappings
Jn : S′′ → S \ {0}, J∗ : S′′ → S \ {0}, and a constant β ∈ (0, κ) such that

cαβn

∫

S\{0}

j(dx)
σψ(x)(c−αnx)

f(ψ(x), c−αnx) =
∫

S′′
µ(dy)f(ψ(J∗y), Jny) (3.19)

for all n ∈ N and all non-negative measurable function f on S′ × S and

TJny → TJ∗y and X(TJ∗y−) = X(TJ∗y), nψ(J∗y)-a.e. for µ-a.e. y ∈ S′′; (3.20)

(C6) (n0,j∗ , 0) satisfies Conditions (N0)–(N3), where j∗ is the σ-finite measure on S\{0}
defined by

j∗ =
∫

S′′
µ(dy)σψ(J∗y)(J∗y)δJ∗y. (3.21)

Then, for the scaling exponent γ = αβ, it holds as n →∞ that

n
(n)
ρ,j → n0,j∗ , ς(n) → 0 (3.22)

and
{(

X
(n)
ρ,j,ς , L

(n)
ρ,j,ς , η

(n)
ρ,j,ς

)
,P

}
law−→ {(

X0,j∗,0, L0,j∗,0, η0,j∗,0

)
,P

}
. (3.23)

4. Examples.

4.1. Positive self-similar Markov processes.
Let α and κ be positive numbers such that 0 < κ < 1/α and let c > 1 be an

arbitrary number. Let {X, (Px)x≥0} be a Hunt process with values in S = [0,∞) such
that (B1)–(B5) and (S0)–(S2) hold and

{
Txn → 0, n-a.e. if xn → 0,

Txn
→ Tx, n-a.e. if xn → x > 0,

(4.1)

where n denotes the excursion measure away from 0 according to a particular choice of
the local time at 0. Let P0

x denote the law of X(t ∧ T0) under Px. Then Condition (B)
is satisfied for S′ = {0}, H0 = {X, (P0

x)x>0} and n0 = n.
Such a process can be obtained in the following manner. Let {Z, (Qz)z∈R} be a Lévy

process which satisfies the following conditions:
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(P1) Z drifts to −∞;
(P2) Z is spectrally negative;
(P3) every point is regular for itself;
(P4) every point is accessible.

By (P1) and (P2), it is known (see, e.g., [14, Section 8.1]) that there exists a unique
constant κ > 0 such that the following Cramér condition is satisfied:

Q0

[
exp(κZ(u))

]
= 1 for all u ≥ 0. (4.2)

We recall the Lamperti transformation following Lamperti [16] as follows. Let α be a
fixed constant such that 0 < α < 1/κ. Define

τ(u) =
∫ u

0

exp(Z(s)/α)ds (4.3)

and

Y (t) =

{
exp(Z(τ−1(t))) for 0 ≤ t < τ(∞),

0 for t ≥ τ(∞).
(4.4)

For x > 0, we write P0
x the law of Y under Qlog x and let H0 = {X, (P0

x)x>0}. By the
theorem obtained by Rivero [17], [18] and Fitzsimmons [7] independently, we see, thanks
to the Cramér condition (4.2), that there exists a unique α-self-similar recurrent extension
of H0 whose excursions leave 0 continuously, which we will denote by {X, (Px)x≥0}. Then
we see that (B1)–(B5) and (S0)–(S2) are satisfied. Since z 7→ Tz+(Z) is a subordinator
and has no fixed discontinuity, we see that P0

ε(D \ {Txn
→ Tx}) = 0 for any sequence

{xn} converging to x > ε > 0. Using Corollary 3.3, we see that Txn → Tx, n-a.e. for
any sequence {xn} converging to x > 0. Since {X, n} has càdlàg paths and has no
positive jumps, we further see that Txn

→ 0, n-a.e. for any sequence {xn} converging
to 0. Consequently we have verified that (4.1) is satisfied. We have thus obtained
{X, (Px)x≥0} as desired.

Since (3.10) holds for any c > 0, we see that

σ(x) := n(Tx < T0) = δx−κ (4.5)

for δ = n(T1 < T0). We need the following.

Lemma 4.1. There exist positive constants c1 and c2 such that

c1(xκ ∧ 1) ≤ P0
x[T0 ∧ 1] ≤ c2(xκ ∧ 1) for all x > 0. (4.6)

Proof. For x ≥ 1, we see by the scaling property that

0 < P0
1(T0 ≥ 1) ≤ P0

1(T0 ≥ x−1/α) = P0
x(T0 ≥ 1) ≤ P0

x[T0 ∧ 1] ≤ 1. (4.7)
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By Corollary 3.3 and by (4.5), we have

P0
x[T0 ∧ 1] = δ−1xκn

[
T0 ◦ θTx

∧ 1;Tx < T0

]
. (4.8)

For 0 < x < 1, we see by (P2) that {T1 < T0} ⊂ {Tx < T1 < T0}, n-a.e., and hence we
obtain

0 < n
[
T0 ◦ θT1 ∧ 1;T1 < T0

] ≤ n
[
T0 ◦ θTx

∧ 1;Tx < T0

] ≤ n[T0 ∧ 1] < ∞. (4.9)

The proof is now complete. ¤

We identify a measure ρ on S′ = {0} with a positive number ρ({0}). By Lemma
4.1, we see that, a pair (nρ,j , ς) satisfies (N0)–(N3) if and only if the following conditions
are satisfied:

(CP1) ρ is a non-negative constant;
(CP2) j satisfies

∫
(0,∞)

(xκ ∧ 1)j(dx) < ∞;
(CP3) any one of the following holds: ρ > 0, j((0,∞)) = ∞ and ς > 0.

Corollary 4.2 (Jumping-in vanishing case). Let (ρ, j, ς) satisfy (CP1)–(CP3).
Suppose, moreover, that

ρ∗ := ρ +
1
δ

∫

(0,∞)

xκj(dx) < ∞. (4.10)

Then the same assertions as Theorem 3.6 hold.

Corollary 4.2 is an immediate consequence of Theorem 3.6, and so we omit its proof.

Corollary 4.3 (Jumping-in dominant case). Let (ρ, j, ς) satisfy (CP1)–(CP3).
Let β ∈ (0, κ) and j0 > 0 be constants. Suppose, moreover, that

j((x,∞)) ∼ j0x
−β as x →∞. (4.11)

Define a σ-finite measure j∗ on (0,∞) by

j∗(dx) = j0βx−β−1dx. (4.12)

Then the same assertions as Theorem 3.7 hold.

Proof of Corollary 4.3. We define a function J : (0,∞) → (0,∞) by

J(y) = inf
{

x > 0 :
1
δ

∫

(0,x]

sκj(ds) > y

}
. (4.13)

In the same way as J we define J∗ with j being replaced by j∗. Set S′′ = (0,∞),
µ(dy) = dy and Jny = c−αnJ(cα(κ−β)ny). By (4.11), we see that
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1
δ

∫

(0,x]

sκj(ds) ∼ j0β

δ(κ− β)
xκ−β =

1
δ

∫

(0,x]

sκj∗(ds) as x →∞, (4.14)

which shows that (C5) and (C6) are satisfied. We can thus apply Theorem 3.7. ¤

4.2. Walsh diffusions.
Let us take up the Walsh diffusions, which have been first introduced in Walsh [20,

Epilogue] and developed in Barlow–Pitman–Yor [1]. A Walsh diffusion is a diffusion
process with values in R2 whose stopped process starting from x 6= 0 and stopped at 0
takes values in the ray R(x) := {rx : r ≥ 0}. In this paper we confine ourselves to the
case where the stopped processes are Bessel ones.

Let 0 < α < 1 and c > 1 be fixed. Let B = {X, (Qr)r≥0} denote the (d/dm)(d/dx)-
diffusion process for m(x) = x1/α−1 which takes values in [0,∞) and which has 0 as the
reflecting boundary. Let nB denote the excursion measure of B away from 0 according
to a particular choice of the local time at 0 which we will denote by LB . Then (S0)–(S2)
holds for S = [0,∞) and κ = 1 (see, e.g., [5]). Let Q0

r denote the law of X(t∧ T0) under
Qr. By the same argument as the proof of Lemma 4.1 (see also [11, Example 6.1]), we
see that

c1(r ∧ 1) ≤ Qr[T0 ∧ 1] ≤ c2(r ∧ 1) for all r > 0 (4.15)

holds for some positive constants c1 and c2.
Let S = R2 and let S′ = S1 = {v ∈ R2 : |v| = 1}. Define ψ : R2 \ {0} → S1 by

ψ(x) = x/|x|. We define (nv)v∈S1 and (P0
x)x∈R2\{0} by

nv =
∫

D[0,∞)

nB(dq)δqv and P0
x =

∫

D[0,∞)

Q0
|x|(dq)δqψ(x), (4.16)

where for q = (q(t))t≥0 ∈ D[0,∞) we write qv = (q(t)v)t≥0 ∈ DR2 . Since nB(Tr < T0) =
δr−1 for all r > 0 with δ = nB(T1 < T0), we see that

nψ(x)(Tx < T0) = δ|x|−1, x ∈ R2 \ {0}. (4.17)

For v ∈ S1 and for {xn} ⊂ R(v), we easily see that

{
Txn → 0, nv-a.e. if xn → 0,

Txn
→ Tx, nv-a.e. if xn → x 6= 0.

(4.18)

For v ∈ S1 and x ∈ R(v), we define Pv
x =

∫
D[0,∞)

Q|x|(dq)δqv. For v ∈ S1 and x /∈ R(v), we

define Pv
x as the law of the process which is obtained as X(t∧T0(X))+X̃((t−T0(X))∨0),

where {X,P0
x} and {X̃,P0} are independent processes defined on a common probability

space. Then Hv = {X, (Pv
x)x∈R2} is an extension of H0 = {X, (P0

x)x∈R2} and nv is the
excursion measure away from 0 of Hv. It is immediate that (B) holds for κ = 1.

For measures ρ on S1 and j on R2 \ {0}, we define nρ,j on DR2 by (1.2). By (4.15),
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we see that a pair (nρ,j , ς) satisfies (N0)–(N3) if and only if the following conditions are
satisfied:

(CW1) ρ is a finite measure on S1;
(CW2) j satisfies

∫
R2\{0}(|x| ∧ 1)j(dx) < ∞;

(CW3) any one of the following holds: ρ(S1) > 0, j(R2 \ {0}) = ∞ and ς > 0.

We identify S1 × (0,∞) with R2 \ {0} via the bicontinuous bijection (v, r) 7→ rv. A
σ-finite measure j(dvdr) on S1 × (0,∞) allows at least one disintegration of the form

j(dvdr) = ρj(dv)jv(dr) (4.19)

for a finite measure ρj on S1 and a kernel {jv}v∈S1 on (0,∞). We can obtain such
a disintegration, for example, as follows: Take a measurable function f(v, r) which is
positive j-a.e. and which satisfies j[f ] = 1. Then, by conditioning, the probability
measure j(dvdr) = f(v, r)j(dvdr) possesses a unique disintegration j = ρj(dv)jv(dr)
with a probability measure ρj and a probability kernel {jv}v∈S1 . We set ρj = ρj and
jv(dr) = f(v, r)−1jv(dr) and then we obtain the disintegration (4.19). The disinte-
gration (4.19) is not unique; in fact, for any bounded measurable function π on S1

with positive values, we obtain another disintegration j(dvdr) = ρ′j(dv)j′v(dr), where
ρ′j(dv) = π(v)ρj(dv) and j′v(dr) = π(v)−1jv(dr).

Corollary 4.4 (Jumping-in vanishing case). Let (ρ, j, ς) satisfy (CW1)–(CW3).
Let j(dvdr) = ρj(dv)jv(dr) be a disintegration of j and suppose that

∫

R2\{0}
|x|j(dx) =

∫

S1
π(v)ρj(dv) < ∞, (4.20)

where π(v) =
∫
(0,∞)

rjv(dr). Define the finite measure ρ∗ on S1 by

ρ∗(dv) = ρ(dv) +
1
δ
π(v)ρj(dv). (4.21)

Then the same assertions as Theorem 3.6 hold.

Corollary 4.4 is an immediate consequence of Theorem 3.6, and so we omit its proof.

Corollary 4.5 (Jumping-in dominant case). Let (ρ, j, ς) satisfy (CW1)–(CW3).
Let j(dvdr) = ρj(dv)jv(dr) be a disintegration of j and suppose that there exist a constant
0 < β < 1 and a non-negative measurable function π on S1 such that

∫

S1
π(v)ρj(dv) ∈ (0,∞) (4.22)

and, for any v ∈ S1,

rβjv((r,∞)) → π(v) as r →∞. (4.23)
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Define a σ-finite measure j∗ on R2 \ {0} ' S1 × (0,∞) by

j∗(dvdr) = π(v)ρj(dv)βr−β−1dr. (4.24)

Then the same assertions as Theorem 3.7 hold.

Proof of Corollary 4.5. Note that j∗ admits a disintegration j∗(dvdr) =
ρj∗(dv)j∗v (dr) where ρj∗(dv) = π(v)ρj(dv) and j∗v (dr) = βr−β−1dr.

Let S′′ = S1 × (0,∞) and let µ(dvdr) = dr. For v ∈ S1, we define a function
J0

v : (0,∞) → (0,∞) by

J0
v y = inf

{
r > 0 :

1
δ

∫

(0,r]

sjv(ds) > y

}
(4.25)

and define a function J : S1×(0,∞) → R2\{0} by J(v, y) = (J0
v y)v. In the same way as J

we define J∗ with jv being replaced by j∗v . For n ∈ N, set Jn(v, y) = c−αnJ(v, cα(1−β)ny).
By the assumption (4.23), we have

1
δ

∫

(0,r]

sjv(ds) ∼ π(v)β
δ(1− β)

r1−β =
1
δ

∫

(0,r]

sj∗v (ds) as r →∞, (4.26)

which shows that (C5) and (C6) are satisfied. We can thus apply Theorem 3.7. ¤

4.3. The Brownian motion on the Sierpiński gasket.
We take up the Brownian motion on the Sierpiński gasket. For its precise definition

and several facts which we will utilize later, see Barlow–Perkins [2].
Let S = G denote the Sierpiński gasket in R2 and let {X, (Px)x∈G} denote the

Brownian motion on G. Noting that every point of G is regular for itself, we let Lx
t

denote a jointly continuous version of the local time and denote L(t) = L0
t . Then (S0)–

(S2) hold for

c = 5, α =
log 2
log 5

, κ =
log 5− log 3

log 2
. (4.27)

Let n denote the excursion measure away from 0.
Let P0

x denote the law of X(t∧T0) under Px and let H0 = {X, (P0
x)x∈G}. We denote

x = (x1, x2) ∈ R2 and set G± = {x ∈ G : ±x1 ≥ 0}. We write P±x for the law of Y±
under Px and write H± = {X, (P±x )x∈G}, where

Y±(t) =

{
X(t) for 0 ≤ t ≤ T0,

(±|X1(t)|, X2(t)) for t > T0.
(4.28)

We then see that H± are extensions of H0 whose excursion measures away from 0 are

n± = n|{X(t)∈G± for all t ≥ 0}. (4.29)
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Note that n = n+ +n−. Letting S′ = {+,−}, we see that Condition (B) is satisfied. We
identify a measure ρ on S′ with the pair (ρ+, ρ−) := (ρ({+}), ρ({−})). A pair (nρ,j , ς)
satisfies (N0)–(N3) if and only if the following conditions are satisfied:

(CG1) ρ+ and ρ− are non-negative finite constants;
(CG2) j satisfies

∫
G\{0} j(dx)P0

x[T0 ∧ 1] < ∞;
(CG3) any one of the following holds: ρ+ > 0, ρ− > 0, j(G \ {0}) = ∞ and ς > 0.

To obtain the homogenization theorem, we need the following.

Lemma 4.6. For {xn} ⊂ G such that xn → x 6= 0, it holds that Txn
→ Tx, n-a.e.

Proof. Suppose that the following assertion is established:

Txn → Tx, Pa-a.e. for all a 6= 0. (4.30)

If Tx < T0, then Ly
T0

> 0 for all y in some neighborhood of x, so that we have Txn
∧

T0 = Txn → Tx = Tx ∧ T0 as n → ∞. If Tx > T0, then Ly
T0

= 0 for all y in some
neighborhood of x, so that we have Txn

∧ T0 = Tx ∧ T0 = T0 for large n. We thus see
that P0

a(D \ {Txn
→ Tx}) = 0 for all a 6= 0. By the Markov property of n, we obtain the

desired result.
Let us now prove (4.30)1.

1◦). Let us prove Tx ≤ lim inf Txn
. Suppose t0 := lim inf Txn

< ∞. Then there exists
a subsequence {n(k)} such that Tn(k) → t0, so that we have X(t0) = lim X(Txn(k)) =
limxn(k) = x. This shows Tx ≤ t0 = lim inf Txn

.
2◦). Let us prove Tx ≥ lim sup Txn . Suppose Tx < T0. For Tx < t0 < T0, we have
Ly

t0 > 0 for all y in some neighborhood of x, so that we have lim supTxn
≤ t0. This

shows lim sup Txn
≤ Tx.

The proof is now complete. ¤

For a σ-finite measure j on G \ {0}, set j+ = j|G+\{0} and j− = ǰ|G+\{0}, where ǰ is
the pullback of j under (x1, x2) 7→ (−x1, x2). We define mappings φ1 : G+ \ {0} → [0, 1]
and φ2 : G+ \ {0} → (0,∞) by

φ1(x1, x2) =
2x2√

3x1 + x2

, φ2(x1, x2) = x1 +
1√
3
x2, (x1, x2) ∈ G+. (4.31)

We then see that the mapping φ = (φ1, φ2) : G+ \ {0} → [0, 1]× (0,∞) is a measurable
injection. For v ∈ [0, 1], we write

R(v) = {φ2(x) : x ∈ G+ \ {0} and φ1(x) = v}. (4.32)

We then see that c−αR(v) = R(v). Since the pullbacks j± ◦ (φ1, φ2)−1 are σ-finite
measures on [0, 1]× (0,∞), we may obtain at least one disintegration of the form

1This proof is due to N. Kajino.
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(j± ◦ (φ1, φ2)−1)(dvdr) = ρ±j (dv)j±v (dr) (4.33)

for finite measures ρ±j on [0, 1] and kernels {j±v }v∈[0.1] on (0,∞) such that j±v ((0,∞) \
R(v)) = 0 for all v ∈ [0, 1].

Corollary 4.7 (Jumping-in dominant case). Let (ρ, j, ς) satisfy (CG1)–(CG3).
Let (j± ◦ (φ1, φ2)−1)(dvdr) = ρ±j (dv)j±v (dr) be disintegrations and suppose that there
exist a constant 0 < β < 1 and a σ-finite measure j∗ on G \ {0} with disintegrations
(j∗± ◦ (φ1, φ2)−1)(dvdr) = ρ±j∗(dv)j∗,±v (dr) such that j∗,±v ((0,∞) \ R(v)) = 0 for any
v ∈ [0, 1] and, for any v ∈ [0, 1] and any r ∈ R(v),

c−α(κ−β)n

∫

(0,cαnr]

j±v (ds)
σ(φ−1(s, v))

→
∫

(0,r]

j∗,±(ds)
σ(φ−1(s, v))

as n →∞. (4.34)

Suppose, moreover, that (0, j∗, 0) satisfies (N0)–(N3). Then the same assertions as The-
orem 3.7 hold.

Proof of Corollary 4.7. Let S′′ = {+,−} × [0, 1] × (0,∞) and let µ({±} ×
dvdr) = dr. For v ∈ [0, 1], we define a function J0,±

v : (0,∞) → (0,∞) by

J0,±
v y = inf

{
r > 0 :

∫

(0,r]

j±v (ds)
σ(φ−1(s, v))

> y

}
(4.35)

and define a function J : {+,−} × [0, 1] × (0,∞) → G \ {0} by J(±, v, y) = (J0,±
v y)v.

In the same way as J we define J∗ with j±v being replaced by j∗,±v . For n ∈ N, set
Jn(±, v, y) = c−αnJ(±, v, cα(κ−β)ny). By the assumption (4.34), we see that (C5) and
(C6) are satisfied. We can thus apply Theorem 3.7. ¤

We may expect the following.

Conjecture 4.8. For {xn} ⊂ G such that xn → 0, it holds that Txn → 0, n-a.e.

We do not know whether Conjecture 4.8 is true or not. If Conjecture 4.8 is true,
then we can easily obtain the following.

Conjecture 4.9 (Jumping-in vanishing case). Let (ρ, j, ς) satisfy (CG1)–(CG3).
Suppose, moreover, that

∫
G\{0}(j(dx)/σ(x)) < ∞. Set

ρ∗± := ρ± +
∫

G±\{0}

j(dx)
σ(x)

. (4.36)

Then the same assertions as Theorem 3.6 hold.
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5. Proof of the general limit theorem.

5.1. Piecing proposition.
Let us prove Proposition 2.2.

Proof of Proposition 2.2. Let us write η(l), L(t) and X(t) simply for η(p, ς; t),
L(p, ς; t) and X(p, ς; t).

We prove (2.13). For t ≥ 0, we have

∫ t

0

1{X(s)=0}ds = t−
∫ t

0

1{X(s) 6=0}ds (5.1)

= t−
∑

l<L(t)

∫ η(l)

η(l−)

1{X(s) 6=0}ds−
∫ t

η(L(t)−)

1{X(s) 6=0}ds (5.2)

= t−
∑

l<L(t)

T0(p(l))− {t− η(L(t)−)}, (5.3)

which is equal to ςL(t) by the definition (2.9). Thus we obtain (2.13).
Let us assume that the condition (N3) is satisfied. By (N3), we see that, for any

n ∈ N, there are at most finitely many l ≤ n such that ‖p(l)‖ ≥ 1/n. This shows
that, if there exists a sequence ln converging to l such that p(ln) 6= o, then it implies
that ‖p(ln)‖ → 0. We now let t0 ≥ 0 and we prove that X(t) is càdlàg at t = t0. Set
l0 = L(t0), t1 = η(l0−) and t2 = η(l0) so that t1 ≤ t0 ≤ t2. We divide the proof into
three cases.

( i ) Suppose that t1 ≤ t0 < t2. We then have X(t) = p(l0)(t − t1) for all t1 ≤ t < t2.
This shows that X(t) is right continuous at t = t0 and has left limit at t = t0
except when t1 = t0. If t1 = t0, we see, by the above remark, that X(t0−) = 0.

( ii ) Suppose that t1 < t0 = t2. We then have X(t) = p(l0)(t − t1) for all t1 ≤ t < t0.
This shows that X(t) has left limit at t = t0. Since η is strictly increasing, there
is no l such that η(l0) = η(l−), and hence X(t0) = 0 by definition of X. If there
exists a sequence ln decreasing to l0 such that p(ln) 6= o, we have ‖p(ln)‖ → 0 by the
above remark, and hence we obtain X(t0+) = 0. Otherwise, we have X(t0+) = 0
by definition of X.

(iii) Suppose that t1 = t0 = t2. We then easily see that X(t0−) = X(t0) = X(t0+) = 0.

Let us assume that n(D) = ∞ but that the condition (N3) is not satisfied. We then
have n{w ∈ D : ‖w‖ ≥ r0} = ∞ for some r0 > 0. Hence there exists a sequence ln
decreasing to 0 such that ‖p(ln)‖ ≥ r0 for all n. By (N1), we have T0(p(ln)) → 0, and
hence we obtain lim supt→0+ ‖X(t)‖ ≥ r0. Since we have X(0) = 0 by the definition of
X, we see that X is not right-continuous.

Therefore we conclude the proof. ¤

5.2. Useful lemmas.
For the proof of Theorem 2.5, we need two lemmas. The first one is the following.
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Lemma 5.1. Let w1, w2, . . . , w∞ ∈ D0. Suppose that wn → w∞ in D and that
T0(wn) → T0(w∞). Then one has ‖wn‖ → ‖w∞‖.

Proof. By the assumption that wn → w∞ in D, we may take transformations
I1, I2, . . . , I∞ of [0,∞) such that In → I uc and wn − w∞ ◦ In → 0 uc. Let ε > 0. Then
we may choose N ∈ N so that for any n ≥ N we have

sup
t≤T0(w∞)+1

|wn(t)− w∞(In(t))| < ε (5.4)

and we have

T0(wn) ≤ T0(w∞) + 1 and sup
t≤T0(w∞)+1

|In(t)− t| ≤ 1. (5.5)

For n ≥ N , we have

‖wn‖ = sup
t≤T0(wn)

|wn(t)| (5.6)

≤ sup
t≤T0(w∞)+1

|w∞(In(t))|+ sup
t≤T0(w∞)+1

|wn(t)− w∞(In(t))| (5.7)

≤ ‖w∞‖+ ε, (5.8)

and also we have

‖w∞‖ = sup
t≤T0(w∞)

|w∞(t)| (5.9)

= sup
t≤T0(w∞)+1

|w∞(In(t))| (5.10)

≤ sup
t≤T0(w∞)+1

|wn(t)|+ sup
t≤T0(w∞)+1

|wn(t)− w∞(In(t))| (5.11)

≤ ‖wn‖+ ε. (5.12)

Hence we obtain |‖wn‖ − ‖w∞‖| < ε. The proof is complete. ¤

Remark 5.2. We cannot remove the assumption T0(wn) → T0(w∞) from Lemma
5.1. In fact, if we set

wn(t) =





1 if 0 ≤ t < 1,

1/n if 1 ≤ t < n,

2 if n ≤ t < n + 1,

0 if t ≥ n + 1,

w∞(t) =

{
1 if 0 ≤ t < 1,

0 if t ≥ 1,
(5.13)

then we have wn → w∞ in D but ‖wn‖ = 2 and ‖w∞‖ = 1.

The following lemma is partly taken from Bartle [3].
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Lemma 5.3 (Bartle [3]). Let f1, f2, . . . , f∞ be real-valued functions defined on a
measure space (E, E , ν). Then the following statements are equivalent :

( i ) fn → f∞, ν-almost uniformly ;
( ii ) ν

( ⋃∞
n=N{|fn − f∞| ≥ r}) → 0 as N →∞ for all r > 0;

(iii) fn → f∞, ν-a.e. and for any r > 0 there exists N such that ν
( ⋃∞

n=N{|fn− f∞| ≥
r}) < ∞.

The proof can be found in Bartle [3, Theorem 1.7], and so we omit it.

Lemma 5.4. Let ν be a σ-finite measure on a Polish space E and let Φ1,Φ2, . . . ,Φ∞
be measurable mappings from E to D such that we have Φn → Φ∞ in D, ν-a.e. and
T0(Φn) → T0(Φ∞), ν-a.e. Suppose that ν

(‖Φn‖ ≥ r
)

< ∞ for all n = 1, 2, . . . ,∞ and
all r > 0. Then the following statements are equivalent :

( i ) ‖Φn‖ → ‖Φ∞‖, ν-almost uniformly ;
(ii) ν

( ⋃∞
n=1

{‖Φn‖ ≥ r
})

< ∞ for all r > 0.

Proof. For r > 0 and n ∈ N ∪ {∞}, we write

Ar
n =

{‖Φn‖ ≥ r
}

and Br
n =

{|‖Φn‖ − ‖Φ∞‖| ≥ r
}
. (5.14)

Suppose (i) is satisfied. Let r > 0 be fixed. We then see that ν
( ⋃∞

n=N B
r/2
n

)
< ∞

for some N by Lemma 5.3. Since we have ν
( ⋃N

n=1 B
r/2
n

)
< ∞ by the assumption, we

obtain ν
( ⋃∞

n=1 B
r/2
n

)
< ∞. Since we have

⋃∞
n=1 Ar

n ⊂
( ⋃∞

n=1 B
r/2
n

) ∪A
r/2
∞ , we see that

(ii) is satisfied.
Suppose (ii) is satisfied. Let r > 0 be fixed. We then see that ν

( ⋃∞
n=1 Br

n

) ≤
ν
( ⋃∞

n=1 A
r/2
n

)
+ ν

(
A

r/2
∞

)
< ∞. Note that, by Lemma 5.1, we have ‖Φn‖ → ‖Φ∞‖, ν-a.e.

Hence, by Lemma 5.3, we see that (i) is satisfied. ¤

5.3. General limit theorem.
We now proceed to the proof of Theorem 2.5.

Proof of Theorem 2.5. Let E, ν, Φ1,Φ2, . . . and Φ∞ be as in Definition 2.3.
Taking a subsequence if necessary, we may take N = 1 in Condition (G5) of Definition
2.3.

Let p = (p(l))l∈D(p) be a Poisson point process on E with characteristic measure ν.
For n ∈ N ∪ {∞}, we define

q(l)
n =

{
Φn(p(l)) if l ∈ D(p),

o otherwise.
(5.15)

We then see that qn = (q(l)
n )l≥0 is a Poisson point process on D outside o with character-

istic measure (ν ◦ Φ−1
n )|D\{o}, which is equal to nn by Assumption (A2) and Condition
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(G1). Hence qn is a realization of pn, so that we may assume without loss of generality
that pn = qn.

For m ∈ N, we set

Λm = {l ∈ [0,m] : ‖p(l)
n ‖ ≥ 1/m for some n ∈ N ∪ {∞}}. (5.16)

By Assumption (A2) and Condition (G3)′, we see that ]Λm < ∞ a.s. for all m ∈ N.
By this fact and by the assumptions (A1)–(A3), we see that there exists an event Ω∗ of
probability one such that for any sample point belonging to Ω∗ we have the following:

(L1) for any l ≥ 0, p
(l)
n → p

(l)
∞ in D;

(L2) for any l ≥ 0, T0(p
(l)
n ) → T0(p

(l)
∞ ) in [0,∞];

(L3) for any l ≥ 0, τ(l) := supn≥1 T0(p
(l)
n ) satisfies

∑
s≤l τ(s) < ∞;

(L4) p
(l)
∞ (T0(p

(l)
∞ )−) = 0;

(L5) for any m ∈ N, ]Λm < ∞.

In what follows we pick and fix a sample point belonging to Ω∗.
Since we have

ηn(l) = ςnl +
∑

s≤l

T0(p(l)
n ), (5.17)

we see that, for any l0 > 0,

Gn(l0) := sup
l≤l0

|ηn(l)− η∞(l)| (5.18)

≤ |ςn − ς∞|l0 +
∑

s≤l0

∣∣T0(p(l)
n )− T0(p(l)

∞ )
∣∣. (5.19)

By (L2)–(L3) and by (A4), we apply the dominated convergence theorem to see that

Gn(l0) → 0 as n →∞ for all l0 > 0. (5.20)

Hence we obtain ηn → η∞ in D. Moreover, since η∞ is strictly increasing, we use [21,
Theorem 7.2] to obtain

Hn(t0) := sup
t≤t0

|Ln(t)− L∞(t)| → 0 (5.21)

as n →∞ for all t0 > 0. Hence we obtain Ln → L∞ in D.
It remains to prove that Xn → X∞ in D. So we take an arbitrary subsequence and

denote it by the same symbol as the original sequence. It suffices to prove that we can
extract a further subsequence along which Xn → X∞ in D. We divide the proof into
several steps.

Step 1: For l ≥ 0, since p
(l)
n → p

(l)
∞ in D, we see that there exist transformations

I
(l)
1 , I

(l)
2 , . . . , I

(l)
∞ of [0,∞) such that each I

(l)
n is bijective, continuous and increasing and
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that we have

F (l)
n (t0) := sup

t≤t0

∣∣I(l)
n (t)− t

∣∣ + sup
t≤t0

∣∣p(l)
n (t)− p(l)

∞ (I(l)
n (t))

∣∣ −−−−→
n→∞

0 (5.22)

for all t0 > 0. For n ∈ N and m ∈ N, we set

Fn(l) = F (l)
n (T0(p(l)

∞ ) + 3) for l ≥ 0 (5.23)

and set

Mn,m = max
l∈Λm

{
Fn(l) + Gn(l) +

∣∣T0(p(l)
n )− T0(p(l)

∞ )
∣∣}. (5.24)

By (5.22), (5.20), (L2) and (L5), we see that Mn,m → 0 as n → ∞ for all fixed m ∈ N.
Thus we may take a subsequence {n1(n)}n∈N such that Mn1(n),n < 1/n for all n ∈ N.
Writing pn simply for pn1(n), we may assume without loss of generality that Mn :=
Mn,n < 1/n for all n ∈ N.

Step 2: We construct a transformation In of [0,∞).
We modify the transformation I

(l)
n around t = T0(p

(l)
n ). Note that

|T0(p(l)
n )− T0(p(l)

∞ )| ≤ Mn < 1/n (5.25)

and that

T0(p(l)
n ) + 2/n < T0(p(l)

∞ ) + 3/n ≤ T0(p(l)
∞ ) + 3. (5.26)

Since Fn(l) ≤ Mn < 1/n, we have

s(l)
n := I(l)

n (T0(p(l)
n )− 2/n) ≤ (T0(p(l)

n )− 2/n) + Mn < T0(p(l)
∞ ), (5.27)

t(l)n := I(l)
n (T0(p(l)

n ) + 2/n) ≥ (T0(p(l)
n ) + 2/n)−Mn > T0(p(l)

∞ ). (5.28)

We define

Ĩ(l)
n (t) =





0 if t = 0,

I
(l)
n (t) if |t− T0(p

(l)
n )| ≥ 2/n,

T0(p
(l)
∞ ) if t = T0(p

(l)
n ),

linear otherwise.

(5.29)

Since s
(l)
n < T0(p

(l)
∞ ) < t

(l)
n , we see that Ĩ

(l)
n is well-defined, bijective, increasing and

continuous and that

Ĩ(l)
n

(
T0(p(l)

n )
)

= T0(p(l)
∞ ). (5.30)
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We note that

sup
t≥0

∣∣Ĩ(l)
n (t)− I(l)

n (t)
∣∣ =

∣∣T0(p(l)
∞ )− I(l)

n (T0(p(l)
n ))

∣∣ (5.31)

≤
∣∣T0(p(l)

∞ )− T0(p(l)
n )

∣∣ + Mn < 2/n. (5.32)

Denote ln = max Λn if Λn 6= ∅ and ln = 0 if Λn = ∅. We now define

In(t) =





0 if t = 0,

η∞(l−) + Ĩ
(l)
n (t− ηn(l−)) if ηn(l−) ≤ t < ηn(l) for some l ∈ Λn,

t− ηn(ln) + η∞(ln) if t ≥ ηn(ln),

linear otherwise.

(5.33)

We then see that In is bijective, increasing and continuous.

Step 3: We prove that In → I uc. Let t0 > 0 be fixed. Since Ln(t0) → L∞(t0),
there exists N such that Ln(t0) ≤ L∞(t0) + 1 for all n ≥ N .

If t is such that ηn(l−) ≤ t ≤ ηn(l) for some l ∈ Λn, we have, for n ≥ N ,

|In(t)− t| ≤ |η∞(l−)− ηn(l−)|+ ∣∣Ĩ(l)
n (t− ηn(l−))− (t− ηn(l−))

∣∣ (5.34)

≤ sup
u≤Ln(t0)

|η∞(u)− ηn(u)|+ sup
s≤T0(p

(l)
n )

∣∣I(l)
n (s)− s

∣∣ + 2/n (5.35)

≤ Gn(L∞(t0) + 1) + sup
s≤T0(p

(l)
∞ )+1/n

∣∣I(l)
n (s)− s

∣∣ + 2/n (5.36)

≤ Gn(L∞(t0) + 1) + 3/n. (5.37)

Otherwise, we have, by linearity,

|In(t)− t| ≤ sup
u≤Ln(t0)

|η∞(u)− ηn(u)| ≤ Gn(L∞(t0) + 1). (5.38)

Thus we obtain

sup
t≤t0

|In(t)− t| ≤ Gn(L∞(t0) + 1) + 3/n −−−−→
n→∞

0. (5.39)

This shows that In → I uc.

Step 4: Let m ∈ N be fixed. For n ≥ m and for l ∈ Λm (⊂ Λn), we estimate the
supremum over t ≥ 0 of

K(l)
n (t) :=

∣∣p(l)
n (t)− p(l)

∞ (Ĩ(l)
n (t))

∣∣. (5.40)

If t ≤ T0(p
(l)
n )− 2/n, we have t ≤ T0(p

(l)
∞ ) + 3, and hence we have
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K(l)
n (t) =

∣∣p(l)
n (t)− p(l)

∞ (I(l)
n (t))

∣∣ ≤ Mn < 1/n. (5.41)

If T0(p
(l)
n )− 2/n < t < T0(p

(l)
n ), we have t < T0(p

(l)
∞ ) + 1/n and

Ĩ(l)
n (t) ≥ I(l)

n (t)− 2/n ≥ t− 3/n ≥ T0(p(l)
∞ )− 4/n, (5.42)

which yields

K(l)
n (t) ≤

∣∣p(l)
n (t)− p(l)

∞ (I(l)
n (t))

∣∣ +
∣∣p(l)
∞ (I(l)

n (t))
∣∣ +

∣∣p(l)
∞ (Ĩ(l)

n (t))
∣∣ (5.43)

≤ 1/n + 2 sup
s≥T0(p

(l)
∞ )−4/n

∣∣p(l)
∞ (s)

∣∣. (5.44)

If t ≥ T0(p
(l)
n ), we have p

(l)
n (t) = p

(l)
∞ (I(l)

n (t)) = 0, so that K
(l)
n (t) = 0.

Therefore we obtain

sup
t≥0

K(l)
n (t) ≤ 1/n + 2 sup

s≥T0(p
(l)
∞ )−4/n

∣∣p(l)
∞ (s)

∣∣, (5.45)

which converges to 0 by (L4).
We now set

F̃n(l) = sup
t≤T0(p

(l)
∞ )+3

K(l)
n (t) (5.46)

and

M̃n,m = max
l∈Λm

F̃n(l). (5.47)

We then have M̃n,m → 0 as n →∞ for all fixed m ∈ N. Hence we may take a subsequence
{n2(n)}n∈N such that M̃n2(n),n < 1/n for all n ∈ N. Writing pn simply for pn2(n), we
may assume without loss of generality that M̃n := M̃n,n < 1/n for all n ∈ N.

Step 5: Let t0 > 0. We estimate the supremum over 0 ≤ t ≤ t0 of

Kn(t) :=
∣∣Xn(t)−X∞(In(t))

∣∣. (5.48)

Taking a subsequence if necessary, we may assume without loss of generality that

sup
t≤t0

|In(t)− t| < 1/n for all n ∈ N. (5.49)

Let N be such that Ln(t0) ≤ L∞(t0) + 1 for n ≥ N . We take N large enough to satisfy
N > L∞(t0 + 1) + 1. Let n ≥ N .
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Case 1: ηn(l−) ≤ t < ηn(l) for some l ∈ Λn. Since η∞(l−) ≤ In(t) < η∞(l), we have

Kn(t) =
∣∣p(l)

n (t− ηn(l−))− p(l)
∞ (Ĩ(l)

n (t− ηn(l−)))
∣∣ ≤ M̃n < 1/n. (5.50)

Case 2: ηn(l−) ≤ t < ηn(l) for some l /∈ Λn. Since n > L∞(t0) + 1 ≥ Ln(t0), we have
ηn(n) > t0 ≥ t ≥ ηn(l−). Hence we have n > l. Since l /∈ Λn, we have ‖p(l)

n ‖ < 1/n. We
now obtain

Kn(t) =
∣∣p(l)

n (t− ηn(l−))− p(l)
∞ (Ĩ(l)

n (t− ηn(l−)))
∣∣ (5.51)

≤ ‖p(l)
n ‖+ ‖p(l)

∞‖ ≤ M̃n < 2/n. (5.52)

Case 3: there is no l ≥ 0 such that ηn(l−) ≤ t < ηn(l). In this case we have Xn(t) = 0.
We divide the proof into three subcases.

Case 3-1: there is no l ≥ 0 such that η∞(l−) ≤ In(t) < η∞(l). In this case we have
X∞(In(t)) = 0, so that Kn(t) = 0.

Case 3-2: η∞(l−) ≤ In(t) < η∞(l) for some l ≥ 0 with ‖p(l)
∞‖ < 1/n. In this case we have

|X∞(In(t))| < 1/n, so that Kn(t) < 1/n.

Case 3-3: η∞(l−) ≤ In(t) < η∞(l) for some l ≥ 0 with ‖p(l)
∞‖ ≥ 1/n. In this case, we

have

l ≤ L∞(In(t)) ≤ L∞(t0 + 1) < n, (5.53)

so that we have l ∈ Λn. Thus we obtain

sup
t≤t0

∣∣p(l)
n (t)− p(l)

∞ (I(l)
n (t))

∣∣ ≤ Mn < 1/n, (5.54)

so that

‖p(l)
n ‖ ≥ ‖p(l)

∞‖ − sup
t≤t0

∣∣p(l)
n (t)− p(l)

∞ (I(l)
n (t))

∣∣ > 1/n− 1/n = 0. (5.55)

From this we see that ηn(l−) < ηn(l) and by the definition (5.33) of In we see that
ηn(l−) ≤ s < ηn(l) implies η∞(l−) ≤ In(s) < η∞(l). Thus we obtain ηn(l−) ≤ t < ηn(l),
which is a contradiction.

From all the arguments above, we obtain

sup
t≤t0

Kn(t) ≤ 2/n. (5.56)

This shows that Xn −X∞ ◦ In → 0 uc.
The proof is therefore complete. ¤
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6. Proof of the homogenization theorem.

6.1. Scaling property for local time and excursion measure.
Let us prove Lemma 3.4.

Proof of Lemma 3.4. We deal with processes under P0. Using (S2) and (3.1),
we have

c−ακn

∫ cnt

0

1{X(s)=0}ds
law=

∫ t

0

1{X(s)=0}ds. (6.1)

Hence, using (S1) and then using (6.1), we obtain

∫ t

0

1{X(s)=0}ds
law=

∫ t

0

1{(Ψn
αX)(s)=0}ds (6.2)

= c−n

∫ cnt

0

1{X(s)=0}ds (6.3)

law= c−(1−ακ)n

∫ t

0

1{X(s)=0}ds. (6.4)

Since 0 < ακ < 1 by (S0), the last quantity converges in law to 0 as n →∞. ¤

To prove Proposition 3.5 and for the later use, we prove the following lemma.

Lemma 6.1. Let (n, ς) be the pair consisting of a σ-finite measure on D and a
non-negative constant ς and suppose that (n, ς) satisfies Conditions (N0)–(N3). Let c, α

and γ be positive constants. Let {p,P} be a Poisson point process on D outside o with
characteristic measure n and denote

p̃(l) = Ψαp(cγ l), ñ = cγn ◦Ψ−1
α , ς̃ = c−(1−γ)ς. (6.5)

Then it holds that the pair (ñ, ς̃ ) satisfies (N0)–(N3), that {p̃,P} is a Poisson point
process on D outside o with characteristic measure ñ and that

X(p̃, ς̃ ) = ΨαX(p, ς), L(p̃, ς̃ ) = ΨγL(p, ς), η(p̃, ς̃ ) = Ψ̂γη(p, ς). (6.6)

Proof. For l ≥ 0 and A ∈ B(D \ {o}), we have

]{s ≤ l : p̃ (s) ∈ A} = ]{s ≤ l : p(cγs) ∈ Ψ−1
α A} = Ncγ l(Ψ−1

α A), (6.7)

where we note that Ψ−1
α {o} = {o}. It is now obvious that p̃ is again a Poisson point

process on D outside o whose characteristic measure is equal to ñ = cγn ◦ Ψ−1
α . Hence

we obtain
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Ψ̂γη(p, ς; l) = c−1

{
ςcγ l +

∑

s≤cγ l

T0(p(s))
}

(6.8)

= ς̃ l +
∑

s≤l

T0(p(cγs))/c (6.9)

= ς̃ l +
∑

s≤l

T0(p̃ (s)), (6.10)

which yields η(p̃, ς̃ ) = Ψ̂γη(p, ς). The other identities of (6.6) are now obvious. ¤

We now prove Proposition 3.5.

Proof of Proposition 3.5. Suppose that (S2)′ is satisfied. Let p be a Poisson
point process on D outside o with characteristic measure n. Denote p̃ (l) = Ψαp(cακl).
By Lemma 6.1 and (S2)′, we see that p̃ is equal in law to p. On one hand, we see that

{X(p̃, 0), L(p̃, 0)} law= {X(p, 0), L(p, 0)}. (6.11)

On the other hand, we see that

L(p̃, 0; t) = inf
{

l ≥ 0 :
∑

s≤l

T0(Ψαp(cακs)) > t

}
(6.12)

= inf
{

l ≥ 0 :
∑

s≤l

T0(p(cακs)) > ct

}
(6.13)

= c−ακL(p, 0; ct). (6.14)

Since {X(p, 0), L(p, 0)} is identical in law to the pair {X, L} of the coordinate process X

and its local time of 0 under P0, we obtain (S2).
Conversely, suppose that (S2) is satisfied. Let us write X̃ = ΨαX and L̃ = ΨακL.

It is then obvious that for any t > 0

∫ t

0

1{ eX(s) 6=0}dL̃(s) = c−ακ

∫ ct

0

1{X(s) 6=0}dL(s) = 0. (6.15)

From this it follows that L̃ is a choice of the local time of 0 for X̃, and hence {X̃, L̃} law=
{X, kL} for some constant k. Since L̃

law= L, we obtain k = 1. We denote η̃ for the
right-continuous inverse of L̃ and define

p̃ (l)(t) =

{
X̃(η̃(l−) + t) if 0 ≤ t < η̃(l)− η̃(l−),

o if t ≥ η̃(l)− η̃(l−).
(6.16)

We then see that the point process p̃ = (p̃ (l))l≥0 is identical in law to the point process
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of excursions for X, which shows that the characteristic measure of p̃ is n. By Lemma
6.1, we see that the characteristic measure of p̃ is equal to cακn ◦Ψ−1

α . We thus obtain
(S2)′.

The proof is now complete. ¤

6.2. The jumping-in vanishing case.
We prove Theorem 3.6.

Proof of Theorem 3.6. Set

(
p
(n)
ρ,j

)(l) = Ψn
αp

(cακnl)
ρ,j . (6.17)

By Lemma 6.1, we see that the characteristic measure of p
(n)
ρ,j is n

(n)
ρ,j and that

X
(n)
ρ,j,ς = X

(
p
(n)
ρ,j , ς(n)

)
, L

(n)
ρ,j,ς = L

(
p
(n)
ρ,j , ς(n)

)
, η

(n)
ρ,j,ς = η

(
p
(n)
ρ,j , ς(n)

)
. (6.18)

Set

(nn, ςn) =
(
n

(n)
ρ,j , ς(n)

)
and (n∞, ς∞) = (nρ∗,0, 0) (6.19)

and we would like to verify that all the assumptions of Theorem 2.5 are satisfied. It
is obvious that (A1), (A3) and (A4) are satisfied. We have only to prove that (A2) is
satisfied.

By the definition (3.11), we have

n
(n)
ρ,j = cακnnρ,0 ◦ (Ψn

α)−1 + cακn

∫

S\{0}
j(dx)P0

x ◦ (Ψn
α)−1. (6.20)

Using (3.11), (S2)′ and (S1), we have

n
(n)
ρ,j = nρ,0 + cακn

∫

S\{0}
j(dx)P0

xn
, (6.21)

where we write xn = c−αnx. By (3.10) and (C2), we have

nψ(xn)(Txn < T0) = σψ(x)(xn) = cακnσψ(x)(x) > 0 (6.22)

for j-a.e. x ∈ S \ {0}. Using Corollary 3.3 and formula (3.10), we have, for A ∈ B(D),

n
(n)
ρ,j (A) = nρ,0(A) + cακn

∫

S\{0}

j(dx)
σψ(xn)(xn)

· nψ(xn)

({Txn
< T0} ∩ θ−1

Txn
A

)
(6.23)

= nρ,0(A) +
∫

S\{0}

j(dx)
σψ(x)(x)

nψ(x)

({Txn < T0} ∩ θ−1
Txn

A
)
. (6.24)



Functional limit theorems for processes pieced together from excursions 1887

Let E = S ×D. We define a measure ν on E by

ν(dxdw) = δ0(dx)nρ,0(dw) + 1S\{0}(x)
j(dx)

σψ(x)(x)
nψ(x)(dw). (6.25)

For n ∈ N, we define Φn : E → D by

Φn(x,w) =





w if x = 0,

θTxn
(w) if Txn

(w) < T0(w),

o otherwise.

(6.26)

For n = ∞, we define Φ∞ : E → D by Φ∞(x,w) = w. It is obvious by (C4) that (G1)
of Definition 2.3 is satisfied. By the definitions of Φn’s and Φ∞, we have T0(Φn(x,w)) ≤
T0(w), and hence we see that (G5) is satisfied. Since ‖Φn(x,w)‖ ≤ ‖w‖ in any case, we
see that (G3)′ is satisfied.

Let us verify that (G2) and (G4) are satisfied. We deal only with ν-a.e. (x,w) ∈ E.

( i ) For x = 0, we have, for all n ∈ N,

Φn(0, w) = w = Φ∞(0, w), (6.27)

so that we have

T0(Φn(0, w)) = T0(w) = T0(Φ∞(0, w)). (6.28)

(ii) For x 6= 0, we have

T0(Φn(x,w)) = T0(w)− Txn
(w) → T0(w) = T0(Φ∞(x,w)) nψ(x)-a.e. (6.29)

For n ∈ N, we define a transformation In : [0,∞) → [0,∞) by

In(t) =

{{1 + nTxn
(w)}t if 0 ≤ t < 1/n,

t + Txn
(w) if t ≥ 1/n.

(6.30)

Then we easily see that In → I uc. Since Φn(x,w)(t) = Φ∞(x,w)(In(t)) for t ≥ 1/n and
since w(0) = 0, we obtain

sup
t≥0

∣∣Φn(x,w)(t)− Φ∞(x,w)(In(t))
∣∣ ≤ 2 sup

0≤t≤1/n+Txn (w)

|w(t)| → 0. (6.31)

This shows that Φn(x,w) → Φ∞(x,w) in D. We therefore obtain that (G2) and (G4)
are satisfied.

The proof is now complete. ¤
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6.3. The jumping-in dominant case.
We prove Theorem 3.7.

Proof of Theorem 3.7. Set

(
p
(n)
ρ,j

)(l) = Ψn
αp

(cαβnl)
ρ,j . (6.32)

By Lemma 6.1, we see that the characteristic measure of p
(n)
ρ,j coincides with n

(n)
ρ,j and

that

X
(n)
ρ,j,ς = X

(
p
(n)
ρ,j , ς(n)

)
, L

(n)
ρ,j,ς = L

(
p
(n)
ρ,j , ς(n)

)
, η

(n)
ρ,j,ς = η

(
p
(n)
ρ,j , ς(n)

)
. (6.33)

Set

(nn, ςn) =
(
n

(n)
ρ,j , ς(n)

)
and (n∞, ς∞) = (n0,j∗ , 0) (6.34)

and we would like to verify that all the assumptions of Theorem 2.5 are satisfied. It
is obvious that (A1), (A3) and (A4) are satisfied. We have only to prove that (A2) is
satisfied.

Using (3.11), (S2)′ and (S1), we have

n
(n)
ρ,j = cαβnnρ,0 ◦ (Ψn

α)−1 + cαβn

∫

S\{0}
j(dx)P0

x ◦ (Ψn
α)−1 (6.35)

= c−α(κ−β)nnρ,0 + cαβn

∫

S\{0}
j(dx)P0

xn
, (6.36)

where we write xn = c−αnx. Using (3.10), (C2), Corollary 3.3, formula (3.10) and (C5),
we have, for A ∈ B(D),

n
(n)
ρ,j (A) = c−α(κ−β)nnρ,0(A) + cαβn

∫

S\{0}

j(dx)
σψ(x)(xn)

nψ(x)

({Txn
< T0} ∩ θ−1

Txn
A

)
(6.37)

= c−α(κ−β)nnρ,0(A) +
∫

S′′
µ(dy)nψ(J∗y)

({TJny < T0} ∩ θ−1
TJny

A
)
. (6.38)

Let E = ((0,∞) ∪ S′′)×D. We define a measure ν on E by

ν(dydw) = 1(0,∞)(y)dynρ,0(dw) + 1S′′(y)µ(dy)nψ(J∗y)(dw). (6.39)

For n ∈ N, we define Φn : E → D by

Φn(y, w) =





w if y ∈ (0, c−α(κ−β)n),

θTJny
(w) if y ∈ S′′ and TJny(w) < T0(w),

o otherwise.

(6.40)
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For n = ∞, we define Φ∞ : E → D by

Φ∞(y, w) =

{
θTJ∗y

(w) if y ∈ S′′ and TJ∗y(w) < T0(w),

o otherwise.
(6.41)

By the above argument and by (C6), we find that (G1) of Definition 2.3 is satisfied. By
the definitions of Φn’s and Φ∞, we have T0(Φn(y, w)) ≤ T0(w), and hence we see that
(G5) is satisfied. Since ‖Φn(y, w)‖ ≤ ‖w‖ in any case, we see that (G3)′ is satisfied.

Let us verify that (G2) and (G4) are satisfied. We deal only with ν-a.e. (y, w) ∈ E.

( i ) For y ∈ (0,∞), we have

Φn(y, w) =





w if n <
1

α(κ− β) log c
log

1
y
,

o otherwise,
(6.42)

since c > 1. This shows that Φn(y, w) = o = Φ∞(y, w) for large n.
(ii) For y ∈ S′′, we have TJny(w) → TJ∗y(w) by (C5). We define transformations

In : [0,∞) → [0,∞) for n ∈ N as follows. Let

τn(w) = TJny(w)− TJ∗y(w) and τ±n (w) = max{±τn(w), 0}. (6.43)

For n ∈ N, we define

In(t) =





1/n + τ+
n (w)

1/n + τ−n (w)
t if 0 ≤ t < 1/n + τ−n (w),

t + τn(w) if t ≥ 1/n + τ−n (w).
(6.44)

Then we easily see that In → I uc. Let us write

Tn
min(w) = min{TJny(w), TJ∗y(w)}, Tn

max(w) = max{TJny(w), TJ∗y(w)}. (6.45)

Since Φn(y, w)(t) = Φ∞(y, w)(In(t)) for t ≥ 1/n + τ−n (w), we obtain

sup
t≥0

∣∣Φn(y, w)(t)− Φ∞(y, w)(In(t))
∣∣ ≤ 2 sup

T n
min(w)≤t≤1/n+T n

min(w)

|w(t)|. (6.46)

The last quantity converges to 0 by (C5). This shows that Φn(y, w) → Φ∞(y, w) in D.
We therefore obtain that (G2) and (G4) are satisfied.

The proof is now complete. ¤
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