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Abstract

Motivation: Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM)

to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical

information retrieval and text mining. To reduce the time and financial cost of manual annotation,

NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annota-

tion, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of

information, such as prediction by MeSH classifiers (trained separately), can also be used for

automatic MeSH annotation. However, existing methods cannot effectively integrate multiple

evidence for MeSH annotation.

Methods: We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accur-

ate MeSH annotation by using ‘learning to rank’. Evidence includes numerous predictions from

MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms,

etc. Each MeSH classifier is trained independently, and thus prediction scores from different classi-

fiers are incomparable. To address this issue, we have developed an effective score normalization

procedure to improve the prediction accuracy.

Results: MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the

Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this

accuracy is around 9.15% higher than 0.5724, obtained by MTI.

Availability and implementation: The software is available upon request.

Contact: zhusf@fudan.edu.cn

1 Introduction

As a controlled vocabulary, Medical Subject Headings (MeSH)

(http://www.nlm.nih.gov/mesh/meshhome.html) is developed by

National Library of Medicine (NLM) for indexing almost all cit-

ations in the largest biomedical literature database, MEDLINE

(http://www.nlm.nih.gov/pubs/factsheets/medline.html), which cur-

rently covers more than 5600 journals world-wide (NCBI Resource

Coordinators, 2015; Nelson et al., 2004). The documents, books

and audiovisuals recorded in NLM are also cataloged by MeSH.

MeSH is organized hierarchically and updated annually with minor

changes. By 2014, there are 27,149 MeSH main headings (MHs)

(http://www.nlm.nih.gov/pubs/factsheets/mesh.html). On average

each citation in MEDLINE is annotated by 13 MHs to describe its

content. In addition to indexing, MeSH has been widely used to

facilitate many other tasks in biomedical information retrieval and

text mining, such as query expansion (Lu et al., 2010; Stokes et al.,

2010) and document clustering (Gu et al., 2013; Huang et al.,

2011b; Zhu et al., 2009a, b). Accurate MeSH annotation is thus

very important for biomedical researchers for knowledge discovery.

Currently indexing MEDLINE is mainly performed by a number

of highly qualified NLM staff and contractors, who review the

full text of each article and assign suitable MeSH headings.
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It is estimated that the average cost of annotating an article is

around $9.4 (Mork et al., 2013). In the last few years, the number

of citations indexed in MEDLINE has been dramatically increased,

reaching more than 21 million. In 2014, 765,850 citations have

been indexed, which is around 4% increase over 2013 (734,052)

(http://www.nlm.nih.gov/bsd/bsd_key.html). The high growth of

MEDLINE poses a great challenge to the NLM indexers to finish

the MeSH indexing task effectively and efficiently. A software tool,

Medical Text Indexer (MTI), has been developed in NLM to

support the indexers with MeSH recommendations (Aronson et al.,

2004; Mork et al., 2013, 2014). MTI uses only the titles and

abstracts of documents in MEDLINE as input, and outputs MeSH

as recommendation. There are two most important components in

MTI, MetaMap Indexing (MMI) and PubMed-Related Citations

(PRC). MMI uses MetaMap, a software tool for mapping the text to

biomedical concepts (Aronson and Lang, 2004), to find concepts

appearing in the titles and abstracts, which are then used to specify

MHs. PRC first finds neighbors (similar citations) in MEDLINE by

using PubMed-related articles (PRA) (Lin and Wilbur, 2007), a

modified k-nearest neighbor (KNN) algorithm, and then extracts

their MHs. These two sets of MHs are linearly combined and turned

into an ordered list of MHs. Finally, after several steps of post-

processing, like expanding CheckTags (some special MHs), a final

list of MHs is suggested to MeSH indexers.

Many studies have addressed the challenging problem of auto-

matic MeSH indexing. In this problem, each MH can be regarded as

a class label and each citation can have multiple MHs, and so the

MeSH indexing is a large-scale multi-label classification problem

(Zhang and Zhou, 2014). The difficulty of this problem can be

attributed to the following three factors: (i) The number of distinct

MHs is large and their distribution is biased. Table 1 shows six

MeSH, ranked as first, 100th, 1000th, 10,000th, 20,000th and

25,000th in terms of their frequencies in the all 12,504,999

MEDLINE citations with abstracts. The most frequent MH,

Humans, appears in 8,152,852 citations, while the 25,000th fre-

quent MH, Pandanaceae, appears in 31 citations only. This means

that most of all 27,149 MeSH have very few positively annotated

citations, resulting in a serious imbalance between the number of

positives and negatives; (ii) There are large variations in the number

of MeSH for each citation. One citation may have 30 MHs, while

another may have only five MHs; (iii) Usually full text is unavailable

for automatic MeSH indexing, and important MeSH concepts might

exist in the full text only.

To advance the design of effective algorithms for biomedical se-

mantic indexing and question answering, BioASQ challenge, a

European project, established an international competition in 2013

and 2014 with two tasks: (A) automatically annotating new

MEDLINE citations using MeSH and (B) answering questions set by

the European biomedical expert team of BioASQ (http://bioasq.org)

(Balikas et al., 2014; Partalas et al., 2013). Task A of 2014 BioASQ

challenge consists of three rounds, with each round having 5 weeks.

In each week, 3496–8840 new MEDLINE citations (titles and

abstracts) are provided to the challenge participants, and prediction

results must be submitted within 21 h. Our system won the first

place in the second and third rounds of this task (Balikas et al.,

2014). In thisarticle, we present MeSHLabeler, the underlying

algorithm of our system in detail, with thorough experiment and

comprehensive analysis of the experimental results.

MeSHLabeler integrates different types of evidence in the

framework of ‘learning to rank’ (Liu, 2011) for accurate MeSH

annotation in the following manner: First, for each citation, the

system generates a list of candidate MHs, and then each candidate

is represented by a number of features. Two models, named as

MeSHRanker and MeSHNumber, for predicting (ranking) MHs of

an arbitrary citation and predicting the number of MHs of the cit-

ation, respectively, are then trained by using a set of citations.

MeSHRanker provides prediction scores for the candidate MHs to

rank them, and finally the top of the ranked MHs are obtained as

prediction results by MeSHNumber. The most challenging prob-

lem in MeSH indexing is the imbalance between positives and

negatives. MeSHLabeler solves this by using a sufficiently large set

of features (evidence), classified into mainly five types: global evi-

dence, local evidence, MeSH dependency, pattern matching and

MTI: (i) The global evidence comes from MeSH classifiers, which

are trained by using the entire MEDLINE collection. Each classi-

fier is trained independently, and thus prediction scores from dif-

ferent classifiers are not comparable. MeSHLabeler has an original

score normalization method that can address this issue and

improve the performance significantly. (ii) The local evidence is

given by scores from the most similar citations (nearest neighbors).

(iii) MeSH dependency, which is a unique feature of

MeSHLabeler, explicitly considers the MeSH–MeSH pair correl-

ations in an efficient way. It improves the indexing performance,

particularly for predicting infrequent MHs. Due to the high com-

putational burden caused by the huge number of MeSH–MeSH

combinations, all previous studies have not considered the MeSH

dependency. (iv) Pattern matching directly finds MHs or their

synonyms in the titles and/or abstracts using string matching.

(v) MTI considers not only pattern matching and local evidence,

but also indexing rules with domain knowledge, like ‘An article

with subjects ranging from 25 to 44 in age would have the check

tag, ADULT, only’. This type of indexing rules is useful, so we in-

corporate the results of MTI into MeSHLabeler.

The performance advantage of MeSHLabeler was demonstrated

in the 2014 BioASQ challenge. In this article, we further examined

the performance of MeSHLabeler more thoroughly using

12,504,999 citations downloaded from MEDLINE and 51,724 cit-

ations from 2014 BioASQ challenge. From the series of experiments,

MeSHLabeler achieved the Micro F-measure of 0.6248, which was

around 9.15% higher than that of 0.5724 by MTI.

2 Related work

A number of studies have addressed the problem of indexing large-

scale biomedical documents by using different types of data and mod-

els (Jimeno-Yepes et al., 2012a). Researchers in NLM have also exam-

ined not only MTI but also other methods by using different machine

learning algorithms, such as naive Bayes classifiers, support vector

machines (SVMs) and AdaBoostM1 over a medium-sized dataset

with around 300,000 citations (Jimeno-Yepes et al., 2012b, 2013a).

Table 1. The first, 100th, 1000th, 10,000th, 20,000th and 25,000th

MeSH in terms of the number of appearances in 12,504,999

abstracts, which we used in our experiments

Rank Counts MeSH (ID)

1 8,152,852 Humans (6801)

100 129,816 Risk Assessment (18,570)

1000 23,178 Soil (12,987)

10,000 1532 Transplantation Tolerance (23,001)

20,000 199 Hypnosis, Anesthetic (6991)

25,000 31 Pandanaceae (31,673)
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They found that no single algorithm could perform the best and a

combination of various algorithms, such as simple voting, could im-

prove the performance of MTI. They also explored the effect of

using full text and summary, which results in better recall but

lower precision than using only abstracts (Jimeno-Yepes et al.,

2013b). In addition, Ruch (2006) proposed a method by combining

information retrieval and pattern matching for MeSH indexing.

Trieschnigg et al. (2009) found that KNN outperformed thesaurus-

oriented and concept-oriented classifiers. A serious concern on this

study is that their training and evaluation datasets were relatively

small.

The BioASQ challenge provides a benchmark for comparing

the performance of different algorithms on large-scale MeSH

indexing. The best system in the 2013 BioASQ challenge used the

algorithm of MetaLabeler (Tang et al., 2009) and outperformed

MTI slightly (Tsoumakas et al., 2013). The developers of this

system examined many multi-label classification algorithms and

found that a simple yet effective algorithm, MetaLabeler,

performed the best. They trained linear SVM as a binary classifier

for each MeSH, and trained a regression model for predicting the

number of MHs of each citation. In prediction, for a given cit-

ation, candidate MHs are ranked, according to the prediction

scores of each MH classifier, and then top K MHs are returned as

recommendation, where K is the predicted number of MHs. One

big problem of this method is that the prediction scores of different

MH classifiers cannot be compared directly in principle, causing

low quality of ranking MHs. For this problem, the second best

system in 2013 BioASQ challenge used ‘learning to rank’ (Huang

et al., 2011a; Mao and Lu, 2013), while the features of this system

were from KNN, MTI and information retrieval mainly. Note that

it did not use global evidence (classifier predictions), which must

be important for MeSH indexing. This system was improved for

the 2014 BioASQ challenge by incorporating multiple binary clas-

sifier results, while they are not directly comparable in principle

(Mao et al., 2014). In addition, a heuristic was used for predicting

the number of final MHs.

Overall no existing approach has simultaneously addressed the

following two important issues: (i) comparing the prediction scores

of different MHs classifiers; and (ii) incorporating the dependency

of different MHs. MeSHLabeler addresses these two crucial issues

efficiently and effectively and it outperforms the state-of-the-art ap-

proach, MTI, by nearly 10% improvement in micro F-measure.

3 Methods: MeSHLabeler

3.1 Overview: MeSHLabeler 5 MeSHRanker 1

MeSHNumber
The problem setting is as follows: given an arbitrary MEDLINE cit-

ation with title and abstract, we assign a certain number of MHs out

of all possible MHs (>27,000). Figure 1a shows the work flow of

MeSHLabeler, which has two components: MeSHRanker and

MeSHNumber. For each input citation, MeSHRanker returns an

ordered list of candidate MHs and MeSHNumber predicts the num-

ber of MHs as the output from the candidate list.

3.2 Preliminaries
Our problem is multi-label classification. It can be solved using

MetaLabeler, a simple method that we will use as a baseline. Before

going to MetaLabeler, we need to review a binary classification

problem, in which each MH is a binary class and each citation is

one instance. Logistic regression (LogReg) and KNN, are two well-

accepted classification methods, which will be used in MetaLabeler

and MeSHLabeler. Note that these two approaches are complemen-

tary from a machine learning perspective: LogReg uses the entire

database to train the model, attempting to capture global evidence,

while KNN focuses on similar instances, attempting to capture local

evidence. We start with the description of these two approaches and

then MetaLabeler.

3.2.1 Logistic regression

We use a general optimization method for estimating parameters of

LogReg. We use the entire set of MEDLINE records (see Section 4.1

for detail) to train parameters of LogReg to capture global evidence.

3.2.2 k-nearest neighbor

For KNN, we need similar citations and their similarity scores. For

this purpose, we use NCBI efetch (http://www.ncbi.nlm.nih.gov/

books/NBK25499/) to retrieve similar citations by PRA (Lin

and Wilbur, 2007), which is analogous to the KNN algorithm.

Target Doc

Preprocessing

MeSHNumber

MeSH 
Recommenda�on

MeSHRanker
Target Doc

Doc0

Doc1

Docn

MH0

MH1

MHm2

MH0

MH1

MHm1

Ranking Model
Step 2

MH0

MH1

MHkLambdaMart

Logis�c Regression

PRA

Similar documents

Ini�al list

Ranked list

Step 1 Step 3

(a) (b)

Fig. 1. The work flow of (a) MeSHLabeler and (b) MeSHRanker
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The MHs in the retrieved citations can be promising candidates for

annotating MHs. Thus given a target citation, we compute the score

of candidate MH as follows:

XKNN

i¼1
ðSi � BiÞXKNN

i¼1
Si

; (1)

where KNN is the number of most similar citations, Si is the similar-

ity score of the ith citation and Bi is a binary variable to indicate if

the candidate MH is annotated in the ith citation or not.

3.2.3 MetaLabeler

It is a straight-forward but powerful approach for solving the prob-

lem of multi-label classification (Tang et al., 2009), which is based

on two different types of classifiers.

1. Classifier A

We train a binary classifier (the default is SVM but replace-

able) for each label (MH in our problem), and repeat this train-

ing over all labels independently. Given an instance (citation in

our problem), we run all trained classifiers to obtain prediction

scores of all labels and rank all labels, according to the predic-

tion scores.

2. Classifier B

We train a classifier to predict the number of labels for each in-

stance. Given an instance, the number of labels is predicted by

this classifier.

3. Final prediction

Given an instance, we select a certain number of top labels

from the ranked list obtained by Classifier A, by using the number

(of labels) predicted by Classifier B.

Note again that any binary classifier can be used in Classifier

A, and LogReg is a good option in terms of efficiency. Hereafter,

we call MetaLabeler as MLogReg if LogReg is used for

Classifier A, and we further call MLogRegN if score normaliza-

tion (to be described later) is used for comparing multiple MHs in

MLogReg.

The main flow of MetaLabeler is incorporated into

MeSHLabeler, and so MetaLabeler can be a baseline to be com-

pared in performance with MeSHRanker. Furthermore,

MeSHLabeler has many other important features, such as prediction

score normalization over multiple labels, dependency between labels

and learning to rank. They will significantly improve the predictive

performance of the baseline method, MetaLabeler.

3.3 MeSHRanker
Figure 1b shows the procedure of MeSHRanker. We will explain

MeSHRanker accordingly.

3.3.1 Step 1: generate candidate MeSH

We have a very large number of classes (labels), i.e. more than

27,000 MeSH, for a multi-label classification problem. To reduce

irrelevant MHs as well as extra computational burden in the fol-

lowing steps, we first focus on a limited number of MHs by gener-

ating candidate MHs for each target citation in the following

manner: we obtain a list, LLogReg, of MHs predicted (and ranked)

by LogReg (global evidence), which was already trained by using

the entire MEDLINE, and also list, LKNN, by KNN (local evi-

dence), according to Equation (1). We then merge them together to

have the candidate MHs, which satisfy at least one of the following

two requirements:

• appearing in the top NLog Reg of LLog Reg

• appearing in the top NKNN of LKNN

3.3.2 Step 2: generate features for ranking MHs in Step 3

We generate the following seven different types of features.

1. MetaLabeler with LogReg (MLogReg)

The original MetaLabeler uses an SVM. Here, we choose

LogReg, keeping the other parts totally the same as MetaLabeler.

We note that MLogReg uses all citations, meaning global

evidence.

Practically, for each MH, we use one million latest citations for

training, by ordering all citations from the most recent to the oldest.

For infrequent MHs, we collect citations until the number of posi-

tives becomes the same as negatives or all citations are examined.

This data size setting is large enough to avoid any overfitting issues.

2. KNN

We use Equation (1) for KNN.

3. MLogReg with score normalization (MLogRegN)

We normalize the original prediction scores by MLogReg in the

following manner: Prediction scores for all citations are first

ranked in the descending order. Since each citation is positive or

negative, we can then compute the precision of the prediction of

each citation by dividing the number of positives that are more

highly ranked, by the number of all positives. This means that

any score (for some citation) can be transformed into precision,

which takes a range from zero to one. For each MH, the normal-

ized score via precision represents the probability of being a true

annotation, which is directly comparable. We perform this trans-

formation for each MH, and use precisions for all MHs, as nor-

malized scores.

Practically, due to the limitations of available computing

resources, we used one million latest citations for score

normalization.

4. MeSH dependency

For a candidate MH, denoted by dMH, the score of MeSH de-

pendency can be computed as follows:

XKMeSH depend

i¼1

fMLogRegNðMHiÞ � PðdMHjMHiÞ; (2)

where MHi is the top ith MH in the candidate list ranked by

MLogRegN, fMLogRegNðMHiÞ is the score of MHi predicted by

MLogRegN and PðdMHjMHiÞ is the conditional probability of
dMH given MHi. PðdMHjMHiÞ is obtained as follows:

PðdMHjMHiÞ ¼
jNðdMH;MHiÞj
jNðMHiÞj

;

where NðMHiÞ is the number of appearances of MHi in the entire

MEDLINE, and NðdMH;MHiÞ is the number of co-occurring ap-

pearances of dMH and MHi in the entire MEDLINE.

Intuitively, this feature indicates that dMH is more likely to be a

true annotation, if dMH is highly correlated with highly ranked

MHs.

5. Pattern matching

We can check if the content of the target citation (title and/or

abstract) has each MH directly. The procedure is as follows:

(i) for each MH, the entry term and synonyms can be retrieved

i342 K.Liu et al.



from the MeSH thesaurus, (ii) the title and abstract of one cit-

ation are scanned, and 1 is assigned if the corresponding MeSH

entry term or synonyms are found; otherwise 0. We can thus gen-

erate two binary features for the entry term and the synonyms.

This is computationally light, because the target citation is

checked only once by string matching without checking any other

citations. Also we note that pattern matching can be conducted in

the following three ways: titles only, abstracts only and both titles

and abstracts.

6. MeSH frequency

We can compute the probability of appearing dMH in the jour-

nal of a citation, as follows:

jNðdMHÞj
NJ

;

where NJ is the number of all citations in journal J and NðdMHÞ is

the occurrences of dMH in all citations of journal J.

7. MTI

We can use the MHs recommended by MTI, which integrates

KNN, pattern matching and indexing rules, as features. We use

two options of MTI: default (MTIDEF) and MTI FirstLine Index

(MTIFL). MTIDEF attempts to achieve a balance between preci-

sion and recall, while MTIFL recommends a smaller number of

MHs, which have high precision. We then generate two binary

features.

3.3.3 Step 3: rank MeSH by learning to rank

We rank the MHs by using ‘learning to rank’, which is widely used

in information retrieval for ranking documents with respect to a

query according to relevance (Liu, 2011). In MeSHRanker, each cit-

ation and MHs are a query and document, respectively, meaning

that candidate MeSH is ranked by the relevance to the citation that

needs to be annotated. A lot of methods have been proposed for

learning to rank. Here, we use Lambda MART (Burges, 2010),

which has been successfully applied to a number of real-world prob-

lems. We again emphasize that our idea is to integrate multiple, in-

dependent and different evidence in the framework of ‘learning to

rank’.

3.4 MeSHNumber
MeSHNumber predicts the number of MHs to be selected from the

top of the output of MeSHRanker. The key point of this part is to

use multiple, different and diverse features to achieve high predict-

ability on the number of MHs for each citation. We first generate

the following six different types of features, and for prediction,

we use support vector regression (SVR).

1. Citations in the same journal

We check the number of MHs annotated for citations which

are published in the same journal and the same year as those of

the target citation. We then compute the mean and standard devi-

ation over these citations, to be used as features. Similarly, we

check the numbers of MHs of five citations in the same journal

whose published dates are the closest to the published date of the

target citation. Their mean and standard deviation are also used

as features.

2. PubMed-related articles

We check the number of MHs of MPRA most similar citations

computed by PRA, and use their mean and standard deviation as

features.

3. LogReg

We choose the MLogReg highest scores for predicting MHs by

LogReg for the target citation and directly use these scores as fea-

tures. Note that these scores can be obtained in Step 1 of

MeSHRanker.

4. Learning to rank

We choose the top MLTR scores for predicting MHs by learning to

rank for the target citation and directly use these scores as features.

Note that these scores can be obtained in Step 3 of MeSHRanker.

5. MetaLabeler

We train MetaLabeler for predicting the number of MHs (the

option is SVR) and use the prediction result as a feature.

6. MTI

We use the number of MHs predicted by MTIDEF and MTIFL

as two features.

4 Experiments

4.1 Data
We downloaded 22,376,811 citations of MEDLINE/PubMed from

NLM before the BioASQ 2014 challenge. We filtered out the cit-

ations with no abstracts and obtained 12,504,999 citations, which

were stored locally as a training set. They were tokenized and

stemmed by BioTokenizer (Jiang and Zhai, 2007), resulting in a

dictionary of 3,712,632 tokens. As in the work (Tsoumakas et al.,

2013), we used unigram and bigram features to represent each

citation, and we only considered those which appear six or more

times in the entire data. This is because rare unigram/bigram fea-

tures are less informative and keeping them makes all computation

expensive. We obtained 111,034 unigram and 1,867,013 bigram

features, and each citation is represented by a very sparse vector

with only 1,978,047 elements. Also we used a TF-IDF scoring

scheme to assign a weight to each unigram/bigram feature. They

were used for training LogReg mainly.

We then further downloaded 51,724 citations of a benchmark data-

set from the BioASQ challenge, where we randomly chose 32,684 cit-

ations for training of Step 3 in MeSHRanker, 10,000 citations for

training MeSHNumber and 9040 citations for examining the perform-

ance of MeSHLabeler. For 51,724 citations, on average, each citation

has 10.3 sentences and 162.6 words. To make a fair comparison, the

performance of all methods was examined on these 9040 citations.

4.2 Implementation
We used an open-source tool, RankLib (http://sourceforge.net/p/

lemur/wiki/RankLib/), to implement Lambda MART (Burges,

2010). LogReg and SVM were implemented by using LIBLINEAR

(Fan et al., 2008). SVR was implemented by using LIBSVM (Chang

and Lin, 2011).

4.3 Performance evaluation measure
We use three different metrics, all based on F-measure, a measure

commonly used in information retrieval. F-measure is computed

using precision and recall, and so for each F-measure of the three

different metrics, two further measures, i.e. precision and recall, are

attached, resulting in totally nine evaluation measures.

4.3.1 Notation

Let K denote the size of all MeSH headings, and N be the number of

instances. Let yi and ŷi 2 f0;1g
K be the true and predicted label for

instance (citation) i, respectively.
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4.3.2 Three types of F-measures (with precision and recall)

� F-measure: EBF

EBF is the standard F-measure which can be computed as the

harmonic mean of standard precision (EBP) and recall (EBR), as

follows:

EBF ¼ 1

N

XN
i¼1

EBFi; (3)

where

EBFi ¼
2 � EBPi � EBRi

EBPi þ EBRi
;

where

EBPi ¼

XK

k¼1
yk

i � ŷk
iXK

k¼1
�ŷk

i

EBRi ¼

XK

k¼1
yk

i ŷk
iXK

k¼1
yk

i

:

We note that we can compute EBP and EBR by summing EBPi

and EBRi, respectively, over all instances.

� Macro F-measure: MaF

MaF is the harmonic mean of macro-average precision (MaP)

and macro-average recall (MaR) as follows:

MaF ¼ 2 �MaP �MaR

MaPþMaR
(4)

The MaP and MaR are obtained by first computing the precision

for each label (MH) separately and then averaging over all

labels, as follows:

MaP ¼ 1

K

XK

k¼1

Pk MaR ¼ 1

K

XK

k¼1

Rk;

where

Pk ¼

XN

i¼1
yk

i � ŷk
iXN

i¼1
ŷk

i

Rk ¼

XN

i¼1
yk

i � ŷk
iXN

i¼1
yk

i

:

� Micro F-measure: MiF

MiF is the harmonic mean of micro-average precision (MiP)

and micro-average recall (MiR), as follows:

MiF ¼ 2 �MiP �MiR

MiPþMiR
; (5)

where

MiP ¼

XK

k¼1

XN

i¼1
yk

i � ŷk
iXK

k¼1

XN

i¼1
ŷk

i

MiR ¼

XK

k¼1

XN

i¼1
yk

i � ŷk
iXK

k¼1

XN

i¼1
yk

i

:

According to these definitions, we can see that micro F-measure is

affected more by frequent labels, while macro F-measure treats all labels

(including rare ones) equally. In BioASQ challenge, the systems are eval-

uated by micro F-measure, MiF, which is also the focus of our system.

4.4 Parameter setting
For NLogReg and NKNN in Step 1 of MeSHRanker, we need to select

such values that the computation burden and noise should be

reduced to achieve good enough performance. From preliminary ex-

periments (not shown due to space limitations), we selected 40 and

50 for NLogReg and NKNN, respectively. In fact the performance was

almost saturated in the preliminary experiments, if these numbers

were set to 30 or more.

For KKNN we used 25, which was large enough for finding simi-

lar citations in preliminary experiments (also not shown due to

space limitations). KMeSHdepend was set at 80, which was also large

enough for capturing important (and less frequent) MHs.

We set up 10, 200 and 20 for MPRA, MLogReg and MLTR, respect-

ively, to capture enough information (resulting in totally 229

(¼4þ2þ200þ20þ1þ2) features) for MeSHNumber.

4.5 Performance results
We first examined the effect of score normalization by using

MetaLabeler, compared with existing methods for indexing, such as

KNN, pattern matching and MTI. Second, we checked the perform-

ance of MeSHRanker, examining the effect of integrating different

types of features by adding each feature shown in Section 3.3.2, in-

crementally. In the first and second experiments, the number of

MHs was predicted by MetaLabeler. Finally, we explored the per-

formance of MeSHLabeler by combining MeSHNumber with

MeSHRanker.

4.5.1 Score normalization effect

The number of appearances of MHs varies heavily, leading to the

large difference in predictive performance of classifiers. Figure 2

shows four precision-recall curves for predicting four MHs:

Humans (the most frequent MH), cell survival, prosthesis failure

and follicular fluid, all being obtained by LogReg. This figure shows

that when we compare the area under the precision-recall curves

(AUPR), the most frequent MHs, Humans, achieved the highest

AUPR clearly. For the same four MHs, Figure 3 shows the values of

precision by changing the cut-off values for the original prediction

scores. This figure also clearly shows the bias among the four MHs,

and at the same time, a large difference in precision for the same ori-

ginal value. For example, for the original value of 0.6, the classifier

for ‘Humans’ achieved a high precision of >0.9, while the classifier

of ‘Prosthesis Failure’ had a precision of only around 0.6. This result

implies that if we use the original prediction scores directly,

infrequent MHs might be more likely to be selected than frequent

MHs. That is, score normalization focuses more on frequent MHs,

implying that normalization will be effective for improving micro

F-measure, MiF (and MiP and MiR) more. In fact this was the main

evaluation metric in BioASQ challenge.

We started checking the effect of score normalization by using

MetaLabeler, meaning that the performance of MLogRegN was

compared with other typical, existing methods. Table 2 shows the

Fig. 2. Precision/recall curves of LogReg for four MeSH: Humans, Cell

Survival, Prosthesis Failure and Follicular Fluid
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performance of MLogRegN (and MLogReg) as well as those of sev-

eral existing methods, including pattern matching, KNN and MTI.

This table shows that in terms of MiF, MLogRegN achieved the

highest value of 0.5754, which is followed by MTIDEF (0.5724),

MTIFL (0.5624), MLogReg (0.5595), KNN (0.5213) and pattern

matching. Specifically, MLogRegN outperformed MLogReg in all

MiP, MiR and MiF, while this is reversed in all MaP, MaR and

MaF, which validates our expectation. For example, MLogRegN

achieved MiF of 0.5754 and EBF of 0.5628, while MLogReg

achieved MiF of 0.5595 and EBF of 0.5502. On the other hand,

MLogReg achieved MaF of 0.4612, while MLogRegN achieved

MaF of 0.4335. Interestingly, MTIDEF and MTIFL achieved the

best MaFs of 0.5247 and 0.5038, respectively, which means that

they might be able to work well for infrequent MHs. We can also

see that MTIFL is rather focused on improving precision, while

MTIDEF achieved a better F-measure than MTIFL by balancing

between precision and recall. For example, MTIFL achieved the

highest EBP of 0.6192, while MTIDEF achieved the highest EBF of

0.5645. KNN achieved rather average performance among all meth-

ods tested in this experiment, like MiF of 0.5213, EBF of 0.5095

and MaF of 0.3927. Among the three pattern matching methods,

the highest precision was obtained by using titles only, and using

abstracts only achieved higher recall than using titles only, resulting

in that using both titles and abstracts achieved the highest values in

all three types of F-measures.

Overall, MLogRegN achieved the highest MiF, which demon-

strates the effectiveness of incorporating score normalization.

Another important finding from this result is that each of all these

methods shows its own unique advantage, depending on different

types of evaluations, indicating that these methods can complement

each other in performance. This analysis provides a good basis and

reason for integrating the ideas and/or features behind these meth-

ods together.

4.5.2 Performance of MeSHRanker

We examined the performance of MeSHRanker, step-by-step, by

adding different types of evidence (features) incrementally, compar-

ing it with that of MLogRegN, which achieved the best performance

in the last experiment and can be a baseline. Here, the number of

MHs was predicted by MetaLabeler (Classifier B) for all compared

methods. We started with checking the performance of

MeSHRanker with only two types of features, i.e. MLogReg and

KNN. We then added the other types of features in the order of

MLogRegN, MeSH dependency, pattern matching, MeSH fre-

quency and finally MTI, to MeSHRanker with MLogReg and KNN,

checking the performance of MeSHRanker at each additional step.

Table 3 shows the performance results of MLogRegN and

MeSHRanker with these different types of features. This table shows

that MeSHRanker with MLogReg and KNN achieved MiF of

0.5743, which is slightly lower than the baseline, which achieved a

MiF of 0.5754. By incorporating MLogRegN into the features, the

performance of MeSHRanker was greatly improved at MiF of

0.5899, which outperformed the baseline method, MLogRegN, al-

ready. The effect of adding MeSH dependency was also significant

where the performance increase was from 0.5899 to 0.5957 for

MiF, from 0.5802 to 0.5861 for EBF and from 0.4602 to 0.4938 for

MaF. The large improvement in MaF indicates that incorporating

MeSH dependency might have assisted finding infrequent MHs,

which must have co-occurred with frequent MHs. Adding pattern

matching to the features was also very helpful, which implies that

pattern matching might have brought complementary information

to the other features. In particular, the improvement was from

0.5957 to 0.6056 for MiF, from 0.5861 to 0.5955 for EBF and from

0.4938 to 0.5205 for MaF, also revealing the strength of pattern

matching in finding infrequent MHs. Interestingly, the performance

change by adding MeSH frequency was very small. This might be

because the information on MeSH frequency had been already cap-

tured in the other types of features, such as KNN and MeSH

dependencies. Finally, adding MTI to the features of MeSHRanker

provided huge increases, resulting in the highest performance in all

measures, for example, MiF of 0.6166, EBF of 0.6082 and MaF of

0.5389. Overall, we can see that the performance of MeSHRanker

was highly improved by integrating multiple, different type of

evidence.

4.5.3 Performance of MeSHLabeler

In the last experiment, the number of MHs for each target citation

was predicted by MetaLabeler. Instead, in this experiment we used

MeSHNumber for the ranked list of MHs, predicted by

MeSHRanker with all features, and we call this combination

Fig. 3. Precision of LogReg by changing threshold, for four MeSH, which

were used in Figure 2

Table 2. Performance comparison of MLogRegN with typical existing methods

Methods MiP MiR MiF EBP EBR EBF MaP MaR MaF

MLogReg:MetaLabeler with LogReg 0.5576 0.5614 0.5595 0.5555 0.5772 0.5502 0.4600 0.4623 0.4612

MLogRegN:MLogReg with score normalization 0.5734 0.5774 0.5754 0.5702 0.5884 0.5628 0.4508 0.4175 0.4335

KNN 0.5196 0.5231 0.5213 0.5176 0.5314 0.5095 0.4142 0.3733 0.3927

Pattern matching using titles only 0.5151 0.1273 0.2041 0.5112 0.1426 0.2101 0.3444 0.1997 0.2528

Pattern matching using abstracts only 0.2315 0.2990 0.2609 0.2445 0.3117 0.2582 0.3607 0.3956 0.3773

Pattern matching using both titles and abstracts 0.2363 0.3139 0.2696 0.2498 0.3291 0.2681 0.3739 0.4153 0.3935

MTIFL 0.6142 0.5217 0.5642 0.6192 0.5386 0.5549 0.5159 0.4923 0.5038

MTIDEF 0.5740 0.5707 0.5724 0.5785 0.5909 0.5645 0.5128 0.5372 0.5247
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MeSHLabeler. Also we name the final result of the last experiment,

MeSHRanker (shown in the last line of Table 3). Table 4 shows the

performance of MeSHLabeler and MeSHRanker, comparing

it with that of MTIDEF. We note that MTIDEF is the current up-to-

date indexing tool provided by NLM and the performance was al-

ready evaluated on our dataset and shown in the last line of Table 2.

From Table 4, in all three types of metrics, MeSHLabeler achieved

better precision while MeSHRanker achieved better recall. The only

difference between MeSHRanker and MeSHLabeler was the num-

ber of predicted MHs. Thus higher precision implies that

MeSHLabeler returned a smaller number of MHs with higher accur-

acy (precision). In terms of F-measure, MeSHLabeler achieved

higher performance in both MiF and EBF, while MeSHRanker

achieved higher performance in MaF, implying that infrequent MHs

might be ignored by MeSHLabeler, which results in lower MaF.

Most importantly, there are two essential findings from this re-

sult: (i) MeSHRanker outperformed MTIDEF in all nine evaluation

measures, and (ii) in MiF, compared with 0.5724 by MTIDEF,

MeSHLabeler achieved 0.6248, which was an improvement of

around 9.15% (nearly 10%).

4.6 Computational efficiency
We implemented MeSHLabeler on a server with four Intel XEON

E5-4650 2.7 GHz CPU and 128 GB RAM. Most computation

was spent on training the LogReg classifiers of more than

27,000 MHs, which took around 5 days. All other training parts

took 1 day. However, given a new citation, annotating MeSH took

only <1 s.

5 Discussion

The fundamental idea of MeSHLabeler is to integrate multiple types

of diverse evidence for boosting the performance of indexing MeSH.

MeSHLabeler is highly effective, showing nearly 10% improvement

in both MiF and EBF over MTI, the current cutting-edge tool pro-

vided by NLM. The high performance of MeSHLabeler is derived

from the diversity and accuracy of the evidence, which complement

each other. MeSHLabeler uses five types of evidence: global evi-

dence, local evidence, pattern matching, MeSH dependency and

indexing rules (from MTI). The first two types of evidence are ob-

tained by machine learning, meaning that they can be captured from

the training data. The global evidence is from prediction models

trained by using all instances, while the local evidence uses only

similar instances to the given test instance. Pattern matching is a

string matching technique that only uses the test instance. In con-

trast, the last two types of evidence are very different from the other

evidence types. MeSH dependency is obtained from the correlation

between MeSH, which requires scanning over the whole MEDLINE

database. The number of combinations by different MHs is huge,

which makes directly incorporating the information on different

MeSH combinations very hard, and no existing methods have con-

sidered MeSH dependency. We emphasize that our strategy of cap-

turing MeSH dependency is very efficient, resulting in high

performance improvements, as shown in our experiments. We fur-

ther stress that MeSHLabeler is the first method to incorporate

MeSH pair correlations directly. Indexing rules from MTI are also

very different from the other evidence, because they are human do-

main knowledge and parts of them would be very difficult to learn

from data. MeSHLabeler integrates all these different types of di-

verse evidence, enabling MeSHLabeler to achieve high performance

for MeSH recommendation.

We showed three groups of evaluation metrics, i.e. EBF, MaF

and MiF. Both MiF and EBF can be higher by focusing on frequent

MHs more, while MaF can be higher by considering all MHs

more equally. MeSHLabeler has been developed to improve the per-

formance of MiF, since MiF was a major metric in BioASQ chal-

lenge. For example, prediction scores of different MeSH classifiers

have different accuracies (even if their values are the same, as

shown in our experiments), and other methods, like MetaLabeler,

have to select infrequent MHs (because of high prediction scores)

more than frequent MHs. To overcome this problem, we thus

incorporate the idea of score normalization in MeSHLabeler, result-

ing in high improvement of MiF. Also the trade-off between MiF

and MaF is an issue in evaluation. For example, MeSHNumber

focused on a small number of MeSH terms with high precision, and

achieved a significant increase in MiF, suffering from a slight de-

crease in MaF.

6 Conclusion

We have presented MeSHLabeler, which achieved the best perform-

ance in the 2014 BioASQ challenge, a competition of large-scale bio-

medical semantic indexing. Our experiments have shown that

MeSHLabeler achieved >9% increase in MiF over MTI, the current

Table 3. Performance comparison of MLogRegN and MeSHRanker with different types of evidence which were incrementally added

Step MiP MiR MiF EBP EBR EBF MaP MaR MaF

MLogRegN 0.5734 0.5774 0.5754 0.5702 0.5884 0.5628 0.4508 0.4175 0.4335

MeSHRanker (MLogRegþKNN) 0.5724 0.5763 0.5743 0.5708 0.5900 0.5637 0.4597 0.4396 0.4495

þMLogRegN 0.5878 0.5919 0.5899 0.5878 0.6072 0.5802 0.4741 0.4472 0.4602

þMeSH dependency 0.5937 0.5978 0.5957 0.5935 0.6134 0.5861 0.4889 0.4988 0.4938

þPattern Matching 0.6036 0.6077 0.6056 0.6043 0.6242 0.5966 0.5162 0.5248 0.5205

þMeSH frequency 0.6038 0.6079 0.6059 0.6043 0.6243 0.5967 0.5166 0.5205 0.5187

þMTI 0.6145 0.6187 0.6166 0.6159 0.6363 0.6082 0.5364 0.5413 0.5389

Table 4. Performance of MeSHRanker and MeSHLabeler, comparing with MTIDEF, a current cutting-edge indexing tool provided by NLM

Step MiP MiR MiF EBP EBR EBF MaP MaR MaF

MTIDEF 0.5740 0.5707 0.5724 0.5785 0.5909 0.5645 0.5128 0.5372 0.5247

MeSHRanker 0.6145 0.6187 0.6166 0.6159 0.6363 0.6082 0.5364 0.5413 0.5389

MeSHLabeler 0.6566 0.5959 0.6248 0.6618 0.6108 0.6160 0.5450 0.5172 0.5054
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leading-edge solution provided by NLM. The most important idea

of MeSHLabeler is to integrate five types of diverse evidence: global

evidence, local evidence, pattern matching, MeSH dependency and

indexing rules. In addition, MeSHLabeler has numerous features,

such as MeSH score normalization and MeSH dependency, which

have not been implemented in any other methods and greatly con-

tributed to the better performance of MeSHLabeler. These new fea-

tures might shed light on developing efficient algorithms for other

multi-label classification problems with a large amount of training

instances, such as ontology annotation. In the future, it would be

interesting to further explore the limitations of MeSHLabeler and

improve the indexing performance by combining other different

types of information or evidence with the current framework, such

as the prediction results of SVM.
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