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Abstract: A Monte Carlo study of the mean-square radius of gyration R 2
g and scattering function

P(k) with k the magnitude of the scattering vector for semiflexible ring polymers of the trefoil knot
was conducted by the use of the discrete version of the Kratky–Porod (KP) wormlike ring model.
The behavior of R 2

g and P(k) as functions of the reduced contour length λL, defined as the total
contour length L divided by the stiffness parameter λ−1, is clarified. A comparison is made of the
results for the KP ring of the trefoil knot with those for the KP ring of the trivial knot and for the
phantom KP ring without the topological constraints.

Keywords: semiflexible polymer; ring polymers; trefoil knot; mean-square radius of gyration;
scattering function; Monte Carlo simulation

1. Introduction

A vast amount of experimental, theoretical, and computational results have been reported for the
dilute solution properties of flexible ring polymers, where a comparison was made of experimental
and/or computational results with conventional Gaussian chain theories [1–3]. On the other hand,
only a few studies have been made for semiflexible rings [4,5], where experimental data obtained for
circular DNA in a limited range of molecular weight M were analyzed by the theory on the basis of
the Kratky–Porod (KP) wormlike [5,6] ring model.

In order to obtain a deeper understanding of the effects of chain stiffness on the dilute solution
behavior of ring polymers, we conducted Monte Carlo (MC) studies of the dilute solution properties,
such as the second virial coefficient A2 at the Θ state [7], scattering function P(k) with k the magnitude
of the scattering vector [8], and intrinsic viscosity [η] [9], of semiflexible ring polymers by the use
of a discrete version [5,10,11] of the KP ring. There, the behavior of these quantities as functions
of the reduced contour length λL [5] has been clarified, λL being proportional to M and defined
as the total contour length L measured in units of the stiffness parameter λ−1 [5], in the range of
the crossover from the rigid-ring limit λL → 0 to the random-coil one λL → ∞. We note that
λ−1 is equal to twice the persistence length (or to the Kuhn statistical segment length) as far as the
(continuous) KP model is concerned [5]. It has been pointed out that even for ring atactic polystyrene
(a-PS), a typical flexible ring with large M (∼ 105) or λL (∼ 103), the effects of chain stiffness are still
remarkable. Further, Terao et al. [12] has recently shown that the experimental data of A2 at Θ for cyclic
tris(n-butylcarbamate)—which is a novel and typical example of semiflexible ring polymers—agree
fairly with our MC results.

Equilibrium conformational properties of ring polymers may be affected not only by the effects of
chain stiffness but also by those of the intramolecular topological constraints, which work to preserve
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the type of knot for a given ring polymer. We have also examined the effects of constraints on A2 [7],
P(k) [8], and [η] [9], along with the mean-square radius of gyration R 2

g [7]. Specifically, a comparison
has been made of these quantities evaluated for the KP ring of the trivial knot (unknotted KP ring)
with those evaluated for the KP ring without the topological constraints (phantom KP ring). It has
been shown that the difference in the quantities between the two kinds of KP ring becomes more
and more remarkable with increasing λL in the range of λL & 10, while for λL . 10 the difference is
negligibly small.

Considering the fact that for (semiflexible) circular DNA, the configurations not only of the
trivial knot but also of non-trivial knots are visualized by electron microscopy [4,13], and that liquid
chromatography at critical condition makes it possible to separate the (flexible) ring a-PS of non-trivial
knots from those of the trivial knot [14], it is necessary to investigate the dilute solution behavior of
both semiflexible and flexible ring polymers of non-trivial knots for the fine characterization of ring
polymers. Such examination has been made theoretically and/or computationally only for flexible
rings by the use of the Gaussian ring model or the corresponding models [15–21], as mentioned
generally above. In this paper, we examine the effects of chain stiffness on the dilute solution behavior
of ring polymers of non-trivial knots. For simplicity, we focus on the unperturbed rings (without
excluded volume) of the trefoil knot (or 31 knot in the Alexander and Briggs notation [22,23]), which
is the simplest non-trivial knot and may be considered as the majority in the above-mentioned ring
a-PS samples of non-trivial knots, because their M is not very large [O(105)]. The most fundamental
quantities R 2

g and P(k)—reflecting the repeat-unit distribution around the center of mass of a single
polymer in solution, determined by light scattering or small-angle X-ray or neutron scattering
measurements—in the field of polymer solution science are evaluated by the MC method using
the ideal discrete KP ring of the trefoil knot, and their behavior is examined as functions of λL with
comparison between the present results and the previous ones for the KP ring of the trivial knot and
for the phantom KP ring.

2. Model and Method

The present MC model and method are the same as those in the previous studies [7–9]—i.e.,
a discrete version of the KP ring proposed by Frank-Kamenetskii et al. [5,10,11], except for the
construction of the statistical ensemble of configurations of the trefoil knot. The discrete KP ring is
composed of N junction points connected by N bonds of length b. Let bi (i = 1, 2, · · · , N − 1)
be the ith bond vector from the ith point to the (i + 1)th. The Nth bond vector bN completes
the ring; that is, ∑N

i=1 bi = 0. The configuration of the ring may then be specified by the set
{bN} = [b1, b2, · · · , bN−1(, bN)] apart from its position and orientation in an external Cartesian
coordinate system. Note that bN is a dependent variable for the ring. The configurational energy U of
the ring has been given in terms of the angle θi (i = 2, 3, · · · , N) between bi−1 and bi, and θ1 between
bN and b1, as follows [5,10,11],

U({bN}) =
α

2

N

∑
i=1

θ 2
i (1)

where βα is the bending force constant with β the reciprocal of the product of the Boltzmann constant
kB and the absolute temperature T [24]. This model may be regarded as the freely rotating ring with
bond angle supplement θ̂ = arccos〈cos θ〉, where 〈cos θ〉 is defined by

〈cos θ〉 =
∫ π

0
e−βαθ2/2 cos θ sin θ dθ

/∫ π

0
e−βαθ2/2 sin θ dθ (2)

We note that the MC model reduces to the freely jointed ring in the limit of α→ 0.
Although the pesistence length Lp as a discrete model for this ring may be given by

Lp = b/(1− 〈cos θ〉), we introduce another measure of chain stiffness in order to maintain consistency
between the MC data analysis in this study and the analyses of experimental and/or computational
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data on the basis of the contiunuous polymer chain model, as done in the field of polymer solution
science [5]. We consider the (continuous) linear KP chain of contour length L and of persistence length
q as a continuous model or stiffness parameter λ−1 = 2q [5], which reproduces the behavior of the
mean-square end-to-end distance R 2

ee (or R 2
g ) of the linear freely rotating chain of number of bonds

N, bond length b (total backbone length Nb), and bond angle supplement θ̂ (= arccos〈cos θ〉) under
the restricition L = Nb. Considering the fact that limL→∞ R 2

ee/L = 2q = λ−1 for the former chain, and
limL→∞ R 2

ee/L = b(1 + 〈cos θ〉)/(1− 〈cos θ〉) for the latter, it is then necessary to equalize λ−1 with
b(1 + 〈cos θ〉)/(1− 〈cos θ〉),

λ−1 = 2q = b
1 + 〈cos θ〉
1− 〈cos θ〉 (3)

It is seen from Equation (3) that λ−1 as a continuous model so defined is equal to the product
of b and the characteristic ratio C∞ = (1 + 〈cos θ〉)/(1− 〈cos θ〉) as a discrete model, and becomes
identical with 2Lp in the limit of 〈cos θ〉 → 1 (α→ ∞). In this study, with regard to the discrete KP ring
(the freely rotating ring of bond angle supplement θ̂) as the continuous KP ring of stiffness parameter
λ−1 calculated from Equation (3), we make an analysis of the MC data on the basis of λ−1 (or q) instead
of Lp.

For the initial configuration {bN}, we adopt an N-sided regular polygon of side length b—which
is the most stable configuration—and sequentially deform it by the virtual motion introduced by
Deutsch [25]. Let v be the unit vector along the vector distance between a pair of joints randomly
chosen under the condition that they not be next to each other. If the ith and jth joints (i < j) are chosen,
v is along the vector sum ∑

j−1
k=i bk. A trial configuration {b′N} is generated by rotating the shorter part

of the ring around v by an angle φ randomly chosen in the range of [−π, π). The bond vectors bi,
bi+1, · · · , bj−1 are rotated if j− i ≤ N/2, and the rest otherwise. If the bond vector bk undergoes the
rotation, b′k may be given by

b′k = vv · bk + (cos φ)(I− vv) · bk + (sin φ)v× bk ≡ R(v; φ) · bk (4)

where I is the unit matrix and the rotation matrix R(v; φ) is given by

R(v; φ) = (cos φ)I + (1− cos φ)

 v 2
x vxvy vxvz

vyvx v 2
y vyvz

vzvx vzvy v 2
z

+ sin φ

 0 −vz vy

vz 0 −vx

−vy vx 0

 (5)

with vx, vy, vz are the Cartesian components of v in the external system. With this rotation, b′k is
renormalized to b′k(corr) so that |b′k(corr)| = 1. i.e.,

b′k(corr) = b′k/|b′k| ' [1− 1
2 (|b′k|

2 − 1)]b′k . (6)

This is done to suppress roundoff errors characteristic of computer work (Note that |b′k − b′k(corr)| � 1).
If the bond vector bk does not undergo the rotation, on the other hand, we have b′k = bk.

Then, the adoption of the next trial configuration {b′N} is determined by the Metropolis method
of importance sampling [26] on the basis of the total potential energies given by Equation (1) for
{b′N} and {bN}. That is, {b′N} is adopted as the next configuration with the (transition) probability
τ({b′N}|{bN}) defined as

τ({b′N}|{bN}) = min(1, e−β∆U) (7)

with ∆U given by

∆U = U({b′N})−U({bN}) =
α

2
(θ′ 2

i + θ′ 2
j − θ 2

i − θ 2
j ) (8)

where θ′i (i = 2, 3, · · · , N) is the angle between b′i−1 and b′i, and θ′1 the angle between b′N and
b′1. If {b′N} is discarded, {bN} was again adopted as the next configuration. Through this MC



Polymers 2016, 8, 271 4 of 11

algorithm, we sample one configuration at every Mnom (nominal) steps and Ns configurations in total
after an equilibration of 104 × Mnom steps. Mnom is properly chosen to keep the mean number of
(real) configurational changes at every Mnom (nominal) steps nearly equal to N. An ensemble of Ns

configurations so obtained is a mixture of configurations of all kinds of knots with the Boltzmann
weight of U, which we call the mixed ensemble.

Following the procedure of Vologodskii et al. [27] and of ten Brinke and Hadziioannou [15] to
distinguish the trefoil knot from the others by the use of the Alexander polynomial [23,28], we extract
configurations of the trefoil knot (without distinguishing between the left- and right-handed knots)
from the mixed ensemble and evaluate the ratio ftref. of the number of the configurations of the trefoil
knot to Ns. We note that the procedure on the basis of the Alexander polynomial cannot distinguish
between the trefoil knot and, for the simplest example, the 819 knot, as pointed out by ten Brinke and
Hadziioannou [15]. However, effects of such complex knots may be regarded as negligibly small if any,
as also pointed out by ten Brinke and Hadziioannou [15]. Further, we extract Ns configurations of the
trefoil knot from many mixed ensembles and construct a trefoil-knot ensemble.

Now, by the use of the trefoil-knot ensemble, the mean-square radius of gyration R 2
g and scattering

function P(k) as a function of the magnitude k of the scattering vector are evaluated. The quantity R 2
g

may be calculated from

R 2
g =

〈
1
N

N

∑
i=1
|Si|2

〉
, (9)

where 〈· · · 〉means the ensemble average and Si is the vector distance from the center of mass of the
ring to the ith junction point, given by

Si =
i

∑
j=1

bj −
1
N

N

∑
j=1

j

∑
k=1

bk (10)

with S0 = SN . Assuming that the KP ring has N identical isotropic point scatterers at each junction,
P(k) may be calculated from

P(k) = N−1 + 2N−2
N−1

∑
i=1

N

∑
j=i+1

〈
sin(krij)

krij

〉
, (11)

where rij = |Sj − Si| is the distance between the ith and jth junction points.
In practice, MC simulations have been carried out for the discrete KP rings of βα = 0 (freely

jointed), 0.3, 1, 3, and 10, with various values of N: N = 10, 20, 50, 100, 200, 500, and 1000 for
βα = 0; N = 10, 20, 50, 100, and 200 for βα = 0.3 and 1; N = 20, 50, 100, and 200 for βα = 3; and
N = 50, 100, and 200 for βα = 10. The values of λ−1/b for each βα are calculated from Equation (3)
with Equation (2) as follows: λ−1/b = 1, 1.408, 2.575, 6.421, and 20.36 for βα = 0, 0.3, 1, 3, and 10,
respectively. Five independent trefoil-knot ensembles are constructed for each βα and N with Ns = 105,
except for the case of βα and N = 1000. For that case, Ns is set equal to 104. All numerical work has
been done by the use of a personal computer with an Intel Core i7-3770 CPU. A source program coded
in C has been compiled by the GNU C compiler version 4.8.5 with real variables of double precision.
For a generation of pseudorandom numbers, the subroutine package MT19937 supplied by Matsumoto
and Nishimura [29] has been used instead of the subroutine RAND included in the standard C library.

3. Results and Discussion

3.1. Fraction of the Trefoil Knot

The ratio ftref. of the number of configurations of the trefoil knot in a given mixed ensemble to the
total number Ns of configurations in the ensemble is evaluated. The values of ftref. and its statistical
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error are given in the second column of Table 1 as the mean and standard deviation, respectively, of
five independent MC results for given values of βα and N.

Table 1. Values of ftref. and R 2
g /Nb2.

N 102 ftref. (Error %) R 2
g /Nb2 (Error %)

βα = 0 (λ−1/b = 1)

10 1.76 (0.3) 0.07088 (0.1)
20 4.29 (0.4) 0.06982 (0.1)
50 10.31 (0.3) 0.07280 (0.1)

100 17.27 (0.3) 0.07788 (0.1)
200 22.85 (0.3) 0.08411 (0.1)
500 16.40 (0.1) 0.09360 (0.1)
1000 4.31 (0.1) 0.1020 (0.1)

βα = 0.3 (λ−1/b = 1.408)

10 0.74 (0.3) 0.08527 (0.1)
20 2.48 (0.3) 0.08845 (0.1)
50 7.29 (0.2) 0.09573 (0.2)

100 13.68 (0.2) 0.1040 (0.1)
200 20.84 (0.1) 0.1132 (0.1)

βα = 1 (λ−1/b = 2.575)

10 0.07 (0.3) 0.1199 (0.1)
20 0.62 (0.2) 0.1304 (0.2)
50 3.24 (0.2) 0.1520 (0.1)

100 7.75 (0.2) 0.1716 (0.1)
200 14.77 (0.2) 0.1900 (0.0)

βα = 3 (λ−1/b = 6.421)

20 0.02 (0.2) 0.2858 (0.0)
50 0.45 (0.2) 0.2831 (0.1)

100 2.10 (0.2) 0.3437 (0.1)
200 5.93 (0.2) 0.4049 (0.1)

βα = 10 (λ−1/b = 20.36)

50 0.02 (0.3) 0.9142 (0.0)
100 0.09 (0.4) 0.8302 (0.2)
200 0.76 (0.3) 0.9147 (0.1)

Figure 1 shows plots of ftref. against the logarithm of the reduced contour length λL, defined as
the total contour length L = Nb measured in units of λ−1. The large open circles represent the MC
values of the discrete KP ring for βα = 0 (pip up), 0.3 (pip right-up), 1 (pip right), 3 (pip right-down),
and 10 (pip down). The MC values of the Gaussian ring obtained by Tsurusaki and Deguchi [16] are
also plotted (with the number of bonds of the Gaussian ring converted properly to λL) by small open
circles. We note that Tsurusaki and Deguchi adopted the procedure for extracting configurations of
the trefoil knot proposed by themselves [16,17] using not only the Alexander polynomial, but also the
Vassiliev invariants [30] of degree 2 and 3. Although the values of the discrete KP ring are slightly
larger than those for the Gaussian ring for λL & 200 due to the difference in the model, the data points
of ftref. for the discrete KP rings with various values of βα (or λ−1), along with those for the Gaussian
ring, may be regarded as forming a single composite curve. This indicates that ftref. is a function only
of λL. With increasing λL, ftref. first increases from zero in the range of λL & 10, and then decreases to
zero after passing through a maximum at λL ' 200.
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Figure 1. Plots of ftref. and ft.k. against log λL. The large open circles represent the Monte Carlo (MC)
values of ftref. for the discrete Kratky–Porod (KP) ring with βα = 0 (pip up); 0.3 (pip right-up); 1 (pip
right); 3 (pip right-down); and 10 (pip down). The small open circles represent the MC values of
ftref. for the Gaussian ring obtained by Tsurusaki and Deguchi [16]. The large and small closed circles
represent the MC values of ft.k. for the discrete KP ring obtained in the previous study [7] and those for
the freely jointed ring obtained by Moore et al. [20], respectively. The lower and upper curves represent
the theoretical values for ftref. and ft.k., respectively, calculated on the assumption that the mixed
ensemble includes only the most-probable configurations of the trefoil and trivial knots (see text).

For comparison, the ratio ft.k. of the number of configurations of the trivial knot in a given mixed
ensemble to N are also plotted against log λL in Figure 1. The large and small closed circles represent
the MC values of the discrete KP ring (with various values of βα) reproduced from Figure 2 of Ref. [7]
and those for the freely jointed ring obtained by Moore et al. [20], respectively. The ratio ft.k. is also a
function only of λL is almost equal to unity for λL . 10, and decreases monotonically to zero with
increasing λL for λL & 10, as pointed out in the previous study [7]. The important point is that with
increasing λL, both the increase of ftref. from zero and decrease of ft.k. from unity begin at λL ' 10.

3210−1

0

−1

−2

−3

log λL

lo
g
 (

λ
R

g2
/
L

)

Figure 2. Double-logarithmic plots of λR 2
g /L against λL. The open circles represent the MC values

for the discrete KP ring of the trefoil knot, various directions of the pip having the same meaning as
those in Figure 1. The half-filled circles represent the MC values for the freely jointed ring obtained
by Dobay et al. [19] (left-half filled) and by Moore et al. [20] (right-half filled). The dashed straight
line represents the theoretical values of the double circle. The closed circles represent the MC values
for the discrete KP ring (with various values of βα) obtained in the previous study [7], and the
solid curve represents the KP theoretical values (without considering the effects of the topological
constraints) [5,11,31].
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For small λL, ring polymers become stiff and short and then configurations of complex knots
may be rarely (or never) realized. A given mixed ensemble for λL . 10 may therefore be regarded
asymptotically as including only the most-probable configurations of the trivial and trefoil knots.
In such a situation, there may hold the relation,

ft.k. + ftref. = 1 (12)

The most-probable configuration of the KP ring of the trivial knot with reduced contour length λL
(and without chain sickness) is, of course, the circle of radius λL/2π, and its configurational energy
U0,t.k. may be given by U0,t.k. = π2/βλL [32]. Additionally, the most-probable configuration of the
KP ring of the trefoil knot with reduced contour length λL is the double circle of radius λL/4π (two
circles of radius of λL/4π completely overlapping each other), and then its configurational energy
U0,tref. may be given by U0,tref. = 4π2/βλL. In the above-mentioned situation, ftref. may be expressed
by the use of U0,t.k. and U0,tref. as follows:

ftref. =
e−βU0,tref.

e−βU0,t.k. + e−βU0,tref.
=

e−4π2/λL

e−π2/λL + e−4π2/λL
(13)

In Figure 1, the theoretical values of ftref. calculated from Equation (13), and those of ftref.
calculated from Equation (12) with Equation (13) are plotted by the lower and upper curves,
respectively. It is seen that the theoretical results may qualitatively explain both the increase of
ftref. and the decrease of ft.k. in the range of λL . 10.

3.2. Mean-Square Radius of Gyration

The mean-square radius of gyration R 2
g is calculated from Equation (9) with Equation (10).

The values of R 2
g /Nb2 and its statistical error are given in the third column of Table 1 as the mean and

standard deviation, respectively, of five independent MC results for given values of βα and N.
Figure 2 shows double-logarithmic plots of λR 2

g /L against λL. The open circles represent the
MC values for the discrete KP ring of the trefoil knot, various directions of pips having the same
meaning as those in Figure 1. The half-filled circles represent the MC values for the freely jointed rings
of the trefoil knot obtained by Dobay et al. [19] (left-half filled) and by Moore et al. [20] (right-half
filled). We note that for the extraction of the configurations of the trefoil knot, Moore et al. adopted the
above-mentioned procedure by Deguchi and Tsurusaki [16,17], and Dobay et al. did the procedure
on the basis of the HOMFLY polynomials [23]. The dashed straight line represents the theoretical
values of the double circle (most-probable configuration of the KP ring of the trefoil knot in the limit of
λL→ 0), calculated from R 2

g = L2/16π. For comparison, the MC data for the discrete KP ring of the
trivial knot are also plotted, reproduced from Figure 3 of Ref. [7] (represented by the closed circles).
Additionally, the theoretical values for the (continuous) KP ring without the topological constraints
(phantom KP ring), corresponding to the values for the mixed ensemble, calculated from [5,11,31]

λR 2
g

L
=

λL
4π2 [1− 0.1140λL− 0.0055258(λL)2

+ 0.0022471(λL)3 − 0.00013155(λL)4] for λL ≤ 6

=
1

12

{
1− 7

6λL
− 0.025 exp[−0.01(λL)2]

}
for λL > 6 (14)

is represented by the solid curve. We note that the MC values for the mixed ensemble were obtained
in the previous study [7], which agree almost completely with the theoretical values calculated from
Equation (14).
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Figure 3. Double-logarithmic plots of rtref. and rt.k. against λL. The large open circles represent the
MC values of rtref. for the discrete KP ring, various directions of the pip having the same meaning as
those in Figure 1. The small open circles represent the MC values of rtref. for the freely jointed ring
obtained by Moore et al. [20]. The large and small closed circles represent the MC data of rt.k. for the
discrete KP ring obtained in the previous study [7] and those for the freely jointed ring obtained by
Moore et al. [20], respectively.

The data points for the discrete KP ring of the trefoil knot in the range of N ≥ 100 for each βα,
along with those for the Gaussian ring of the trefoil knot, seem to form a single composite curve,
although the data points for the discrete KP ring in the range of N ≤ 50 are scattered because of chain
discreteness. This indicates that λR 2

g /L for the KP ring of the trefoil knot is also a function only of
λL, as in the case of the KP ring of the trivial knot [7]. The single composite curve seems to increase
along the dashed straight line and then deviate downward from the line for λL & 10 with increasing
λL. Furthermore, it is seen that the single composite curve for the trefoil knot increases monotonically
with increasing λL for λL & 10 and crosses over the KP theory curve (solid curve) at λL ' 200, while
the data points for the trivial knot only deviate upward from the KP theory curve with increasing λL
for λL & 10 without crossing over the KP theory curve.

Such a situation may be realized more clearly from a comparison between the behavior of the
ratios rtref. and rt.k. of R 2

g for the trefoil and trivial knots, respectively, to R 2
g without the topological

constraints. Figure 3 shows double-logarithmic plots of rtref. and rt.k. against λL. The large open circles
represent the MC values of rtref. for the discrete KP ring with N ≥ 100 for each βα, calculated from the
MC values of R 2

g /Nb2 for the trefoil knot given in Table 1, and those for the phantom KP ring given in
Table 2 of Ref. [7], various pip directions having the same meaning as in Figure 1. We note that the
data for N ≤ 50 are omitted because of the effects of chain discreteness mentioned above. The small
open circles represent the MC values of rtref. for the freely jointed ring obtained by Moore et al. [20].
The large and small closed circles represent the MC data of rt.k. for the discrete KP ring reproduced
from Figure 4 of Ref. [7] and those for the freely jointed ring obtained by Moore et al. [20], respectively.

The asymptotic value of rtref. in the limit of λL → 0 is 1/4 (calculated from the relations
R 2

g = L2/16π for the trefoil knot and R 2
g = L2/4π for the trivial knot in this limit). The ratio

rtref. may be considered to increase monotonically from the asymptotic value 1/4 and become larger
than unity with increasing λL, while rt.k. increases monotonically from unity with increasing λL. In
the limit of λL→ ∞, the R 2

g of both the trefoil and trivial knot may be considered to be proportional
to (λL)1.2 [18]. Considering the fact that R 2

g without the topological constraints is proportional
to λL in this limit [1,33,34], there hold relations rtref. ∝ (λL)0.2 and rt.k. ∝ (λL)0.2 in the same
limit. Unfortunately, however, the present data as well as the data by Moore et al.—both up to
O[(λL)3]—seem to be far from the limit of λL→ ∞, and thus the validity of the predicted asymptotic
behavior cannot be confirmed.
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Figure 4. Plots of RgF(k) against Rgk for the discrete KP rings of the trefoil knot (solid); of the trivial
knot (dashed) [8]; and without the topological constraints (dotted) [8], with the indicated values of λL.

3.3. Scattering Function

Finally, we give the results for the scattering function P(k) as a function of the magnitude k of
the scattering vector. The function P(k) is calculated from Equation (11) for the discrete KP ring, with
n = 200 for each βα, the corresponding values of λL being 200, 142.0, 77.67, 31.15, and 9.823 for βα = 0,
0.3, 1, 3, and 10, respectively.

Figure 4 shows plots of RgF(k) against Rgk (the reduced Kratky plot) for the discrete KP rings,
where F(k) is the Kratky function defined by F(k) = Lk2P(k) [5]. The solid, dashed, and dotted curves
represent the MC values for the trefoil knot, for the trivial knot, and without the topological constraints,
respectively, with the indicated values of λL, the latter two kinds of curves being reproduced from
Figure 1 of Ref. [8]. The plots for the trefoil knot have a peak in the range of Rgk . 3, as in the cases
of the discrete KP ring of the trivial knot and that without the topological constraints. The values of
RgF(k) for the trefoil knot are always larger than those for the trivial knot in the range of Rgk . 6,
irrespective of λL. On the other hand, in the same range of Rgk, RgF(k) for the trefoil knot is larger
than RgF(k) without the topological constraints for λL ≤ 77.67, while it is nearly equal to or smaller
than RgF(k) without the topological constraints for λL ≥ 142.0. Such behavior of RgF(k) for the trefoil
knot with λL = 200 is consistent with the behavior of the Gaussian ring [21].

4. Concluding Remarks

The mean-square radius of gyration R 2
g and scattering function P(k) with k being the magnitude

of the scattering vector have been evaluated for the KP ring of the trefoil knot by MC simulations. The
behavior of R 2

g and P(k) as functions of the reduced contour length λL—defined as the total contour
length L measured in units of the stiffness parameter λ−1—has been clarified herein. A comparison
has been made of the present results with the previous results for the KP ring of the trivial knot and
for the phantom KP ring without topological constraints.

The double-logarithmic plots of λR 2
g /L against λL have been shown to increase along the straight

line of slope unity, representing the values of the double circle (most-probable configuration of the KP
ring of the trefoil knot in the limit of λL→ 0) and then to deviate downward from the line, crossing
over the theoretical values of the phantom KP ring. The reduced Kratky plots for the KP ring of the
trefoil knot have been shown to have a characteristic peak, as in the cases of the KP ring of the trivial
knot and the phantom KP ring. It has also been found that the height of the peak for the trefoil knot
is larger than that for the trivial knot, irrespective of λL and for the phantom KP ring with small λL,
while it is smaller than the height of the peak for the phantom KP ring with large λL.

Finally, we make brief comments on the following two points related to the present work. The
first concerns (intramolecular) excluded-volume effects on semiflexible ring polymers. Even for
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semiflexible polymers, the excluded volume effects become remarkable if M (or λL) is very large. The
effects must be treated in the quasi-two-parameter (or Yamakawa–Shimada–Stockmayer) scheme [5].
In this scheme, we should first clarify the behavior of the unperturbed chain dimension (R 2

g at Θ) as a
function of M (or λL), and then examine the behavior of the perturbed chain dimension (R 2

g in good
solvents) or the corresponding expansion factor (gyration-radius expansion factor) as a function of M
(or λL) and the excluded-volume strength (or the binary cluster integral between segments). This is
also the case with semiflexible ring polymers. The present and previous [7–9] studies may be regarded
as preliminary. In future work, we hope to examine the excluded volume effects on ring polymers on
the basis of the present results. Next, we will discuss the some applications that may arise from the
present work. Recently, the manipulation of a single biological polymer by an external field seems
to have become important in the field of biology. It has been shown that the stretching behavior of
semiflexible (linear) polymers by an external field is largely affected by the chain stiffness [35]. The
stretching behavior of semiflexible rings (e.g., circular DNA) may also be considered to be affected
by their knot types and chain stiffness, due to the difference in the repeat-unit distribution around
the center of mass (or in R 2

g and P(k), as shown in Figures 2 and 4, respectively) between the rings of
different knot types. Future study investigating the effects of intramolecular topological constraints on
the stretching behavior of semiflexible rings is also of interest.
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