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Abstract We study the effects of a class of features of
the inflaton potential, corresponding to discontinuities in
its derivatives. We perform fully numerical calculations and
derive analytical approximations for the curvature perturba-
tions spectrum and the bispectrum which are in good agree-
ment with the numerical results. The spectrum of primor-
dial perturbations has oscillations around the scale k0 which
leaves the horizon at the time τ0 when the feature occurs, with
the amplitude and phase of the oscillations determined by the
size and the order of the discontinuity. The large scale bispec-
trum in the squeezed and equilateral limits have a very similar
form and are linearly suppressed. Both in the squeezed and
the equilateral small scale limit the bispectrum has an oscilla-
tory behavior whose phase depends on the parameters deter-
mining the discontinuity, and whose amplitude is inversely
proportional to the scale. Given the generality of this class of
features they could be used to model or classify phenomeno-
logically different types of non-Gaussian features encoun-
tered in observational data such as the cosmic microwave
background radiation or large scale structure.

1 Introduction

In the last few decades the outstanding advances in observa-
tional cosmology have allowed for the first time to test theo-
retical cosmological models [1–4]. Among the most impor-
tant sources of cosmological observational data we can men-
tion the Sloan Digital Sky Survey (SDSS), the Wilkinson
Microwave Anisotropy Probe (WMAP), and the Planck mis-
sion, and other ground-based and sub-orbital experiments
[5,6]. According to the standard cosmological model the
cosmic microwave background (CMB) radiation consists of
photons which decoupled from the primordial plasma at the
time when protons and electrons combined to form neutral
light atoms. Although this radiation is extremely isotropic
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there are small fluctuations in the temperature of the order
of �T/T ∼ 10−5. Since the CMB radiation was emitted at
a redshift of about 1100 it provides a unique window on the
early universe [7–9].

Inflation theory [10] explains the anisotropies of the CMB
temperature as the consequence of primordial curvature per-
turbations whose statistical properties can be described by the
n-points correlation functions. If the perturbations followed
a perfectly Gaussian distribution the two points correlation
function would be enough, but even the most recent observa-
tions are compatible with some non-Gaussianity correspond-
ing to f local

NL = 2.5 ± 5.7 and f equil
NL = −16 ± 70 [8,11],

motivating the theoretical study of the conditions which
could have generated it. Some recent developments in the
study of models which could generate non-Gaussianity and
in the detection can be found for example in [12–15].

The theoretical study of the effects of features of the infla-
ton potential was started in the seminal works of Starobinsky
[16], and once CMB observational data became available it
was shown that features can be used to model the glitches of
the power spectrum [17,18]. Some other interesting studies
and reviews in this area can be found for example in [19–
22]. In this paper we focus on the effects of features of the
inflaton potential on the primordial curvature perturbations,
considering a class corresponding to a discontinuity in the
derivatives of the potential. Our model is a generalization of
other features which have been studied earlier such as the
Starobinsky model or the mass step [23]. These kinds of fea-
tures could have arisen through different mechanisms such
as for example particle production [24], or phase transitions
[25], but in this paper we study their effects from a purely
phenomenological point of view, without investigating their
fundamental origin.

There is also an important observational motivation for
studying this kind of potentials: recent analyses of CMB
observations based on cubic Hermite interpolating polynomi-
als (PCHIP) for the primordial curvature perturbations spec-
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trum [26] have in fact shown some evidence for a feature
around the wave number k = 0.002 Mpc−1, which is in good
qualitative agreement with the results of our calculations for
some of the potentials we consider.

The paper is organized as follows: first we define the fea-
tures, then we give both a numerical and analytical solution
for the background, and finally we provide both numerical
and analytical calculations of the spectrum and the bispec-
trum, giving details of the squeeze and equilateral limit and
showing the effects of varying the different parameters defin-
ing the feature, i.e., its amplitude and the order n of the dis-
continuous derivatives.

2 Inflation

We consider inflationary models with a single scalar field and
a standard kinetic term according to the action [27,28]

S =
∫

d4x
√−g

[
1

2
M2

Pl R − 1

2
gμν∂μφ∂νφ − V (φ)

]
, (1)

where MPl = (8πG)−1/2 is the reduced Planck mass. Vary-
ing the action with respect to the metric tensor and the scalar
field we get Friedmann equation and the equation of motion
of the inflaton,

H2 ≡
(
ȧ

a

)2

= 1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
, (2)

φ̈ + 3H φ̇ + ∂φV = 0, (3)

where dots and ∂φ indicate derivatives with respect to time
and scalar field, respectively, and H is the Hubble parameter.
We adopt the following definitions of the slow-roll parame-
ters:

ε ≡ − Ḣ

H2 , η ≡ ε̇

εH
. (4)

3 The model

We consider a single scalar field φ with potential

V (φ) =
{
Vb + 1

2m
2φ2, φ > φ0,

Va + 1
2m

2φ2 + λ�φ, φ < φ0,
(5)

where

�φ ≡ φn, (6)

whereVa andVb are different in order to ensure the continuity
of the potential at φ0.

The value of φ0 determines the scale at which the effects
of the feature appear in the power spectrum and the bis-
pectrum of curvature perturbations, and as such it is a free
parameter, which can be fixed phenomenologically based on
experimental data. It in fact determines the value of confor-
mal time when φ(τ0) = φ0, and, as will be shown in the
following sections, the features in the spectrum and bispec-
trum appear around the scale k0 = −1/τ0 which is leaving
the horizon at that time.

The potential has a discontinuity in the derivatives at φ0,
which is the cause of the temporary slow-roll regime viola-
tion which produce the non-Gaussian features. The continu-
ity condition for the potential at τ0 gives

Va = Vb − λφn
0 . (7)

In this paper we study potentials dominated by the vacuum
energies Vb and Va before and after the feature. The potential
in Eq. (5) is similar to the one studied in [29,30], but it only
coincides with it in the special case (φ0 = 0, p = 2). Another
important difference is that inflation in our model is driven
by the dominating vacuum energy term Va .

4 Analytic solution of the background equations

The Friedmann equation and the equation of motion for the
inflaton in terms of conformal time τ take the form

H2 ≡
(
a′

a2

)2

= 1

3M2
Pl

(
1

2

φ′2

a2 + V (φ)

)
, (8)

φ′′ + 2
a′

a
φ′ + a2∂φV = 0, (9)

where primes indicate derivatives with respect to conformal
time.

Since V (φ) is dominated by the vacuum energy we can
use the de Sitter approximation, in which H is a constant and
the scale factor is given by

a(τ ) = −1

Hτ
. (10)

Before the feature the equation of motion of the inflaton is

φ′′ + 2
a′

a
φ′ + a2m2φ = 0, (11)

which has the solution

φb(τ ) = φ+
b a(τ )λ

+ + φ−
b a(τ )λ

−
, (12)

where
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λ± = 3

2

⎛
⎝−1 ±

√
1 −

(
2m

3H

)2
⎞
⎠ . (13)

The slow-roll regime corresponds to φ−
b = 0. After the fea-

ture the equation of motion of the inflaton becomes

φ′′ + 2
a′

a
φ′ + a2(m2φ + λnφn−1) = 0, (14)

In order to find an analytical solution we can expand the last
term in Eq. (14) to second order in conformal time around τ0

φ′′ + 2
a′

a
φ′ + a2

{
m2φ + nλφ0

n−1
[

1 + (n − 1)
φ′(τ0)

φ0
(τ − τ0)

+ (n − 1)

2

(
(n − 2)

φ′(τ0)
2

φ2
0

+ φ′′(τ0)

φ0

)
(τ − τ0)

2

]}
= 0.

(15)

From now on quantities evaluated at τ0 are denoted by the
subscript 0. From Eq. (12) we have an analytical expression
for the first and second derivative of the field at τ0,

φ′
0 = λ+φ+

b a
λ+−1
0 a′

0 = λ+ a′
0

a0
φ0 = λ+a0Hφ0, (16)

φ′′
0 = λ+H(a0φ

′
0 + a′

0φ0) = λ+H(λ+a2
0 Hφ0 + a2

0 Hφ0)

≈ λ+a2
0 H

2φ0, (17)

where we have only kept terms linear in λ+ because during
the slow regime higher order terms can be safely neglected
according to

|λ+| ≈ 1

3

m2

H2 � 1. (18)

Assuming the same slow-roll regime condition we can
expand Eq. (15) to linear order in λ+ and get

φ′′ + 2
a′

a
φ′ + a2 {

m2φ + nλφ0
n−2

×
[
φ0 + (n − 1)φ′

0(τ − τ0) + 1

2
(n − 1)φ′′

0 (τ − τ0)
2
]}

= 0,

(19)

which admits an analytical solution of the form

φa(τ ) = φ
(0)
a + φ

(1)
a (τ − τ0) + φ

(2)
a (τ − τ0)

2 + φ+
a a(τ )λ

+

+φ−
a a(τ )λ

−
, (20)

where

φ
(0)
a = −nλφn−2

0

m2(m2 − 2H2)
[(m2 − 2H2)φ0

+2(n − 1)H2φ′
0τ0 − (n − 1)H2φ′′

0 τ0
2], (21)

φ
(1)
a = −n(n − 1)λφ0

n−2

(m2 − 2H2)
φ′

0, (22)

φ
(2)
a = −n(n − 1)λφ0

n−2

2(m2 − 2H2)
φ′′

0 . (23)

The constants of integration φ±
a are determined by imposing

the continuity conditions for φ and φ′ at τ0, which give

φ±
a = ±1

a(τ0)λ
±
(λ− − λ+)

{
λ∓φ0 + φ′

0τ0 + nλφ0
n−2

m2

×
[
λ∓φ0 + (n − 1)

(m2 − 2H2)
((m2 + 2H2λ∓)φ′

0τ0

−λ∓H2φ′′
0 τ 2

0 )

]}
. (24)

We can also find an analytical approximation for the slow-
roll parameters after the feature by substituting Eq. (20) in
Eq. (4),

εa(τ ) ≈ 1

2
[λ+φ+

a a(τ )λ
+ + λ−φ−

a a(τ )λ
−]2,

ηa(τ ) ≈ 2
(λ+)2φ+

a a(τ )λ
+ + (λ−)2φ−

a a(τ )λ
−

λ+φ+
a a(τ )λ

+ + λ−φ−
a a(τ )λ

− . (25)

5 Numerical solution of the background equations

The background evolution can be obtained by solving the
system of coupled differential equations for a(τ ) and φ(τ),
or alternatively H(τ ) and φ(τ). In the numerical integration
we chose the following value for the different parameters
defining the model:

m ≈ 6×10−9MPl , H = 3.3×10−7MPl , φ+
b = 10MPl .

(26)

This choice of the parameters is made in order to satisfy the
Planck normalization on small scales. If the term λ�φ is of
the order of the vacuum energy Vb, then from Eq. (2) we have

H2 ≈ 1

3M2
Pl

V (φ) ≈ 1

3M2
Pl

(Vb + λφn), (27)

implying that in this case the de Sitter approximation used
to obtain an analytical solution in the previous section is not
valid, as shown in Fig. 1, and the numerical integration is
necessary to obtain reliable results. As stated previously, we
will focus on vacuum energy dominated models for which
the de Sitter approximation is valid, so Fig. 1 is given only
to show the limits of its validity, but in all the cases we con-
sider it turns out to be quite accurate as shown in the figures
comparing analytical results, based on the de Sitter approxi-
mation, and to numerical results, which take into account the
small variation of the Hubble parameter. We adopt a system
of units in which MPl = 1.
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Fig. 1 Numerical (blue) and analytical (dashed black) evolution of the
scale factor as a function of conformal time is plotted for n = 3. On
the left we choose λ = 7.2 × 10−16 and on the right λ = 2.4 × 10−18.
As can be seen in the left plot the de Sitter approximation is not valid

at late times when λφn > V0, so that a full numerical integration of the
background equations is required, while from the right plot we can see
that when λφn < V0 the de Sitter approximation is quite accurate

Fig. 2 On the left the potential V is plotted as a function of the field φ

for λ = 3.9×10−19 and n = 2/3 (blue), n = 3 (red), and n = 4 (green),
and for λ = −7 × 10−20 and n = 3 (orange) and n = 4 (cyan). On the
right the potential V is plotted as a function of the field φ for n = 3

and λ = 6.0 × 10−19 (blue), λ = 1.2 × 10−18 (red), λ = 2.4 × 10−18

(green), λ = −4 × 10−19 (orange), and λ = −7 × 10−19 (cyan). The
dashed brown lines correspond to the potential with no feature

The potential as a function of the field is shown in Fig. 2
for different types of features. The effects of the features on
the scalar field φ and on the slow-roll parameters are shown
in Figs. 3, 4, 5 and 6. When |λ| is kept constant, larger values
of n tend to produce larger variations of both ε and η, while
when n is kept constant, larger values of |λ| tend to produce
larger variations of both ε and η. As can be seen in Figs. 3
and 4 the numerical and analytical solution for the scalar field
are in good agreement. The analytical approximation is also
good for the slow-roll parameters as shown in Figs. 5 and
6. We can conclude that Eq. (20) is a good approximation
for the background solution within the limits of validity of
the assumptions used to derive it, and we will use it in the
following sections to calculate curvature perturbations. The
analytical solution we derived around the time τ0, when the
feature occurs, should be accurate as long as the de Sitter
approximation is valid and |λ+| � 1.

6 Spectrum of curvature perturbations

In order to study curvature perturbations we need to expand
perturbatively the action respect to the background FRLW
solution [31,32]. We adopt the comoving gauge, in which
there is no fluctuation in the scalar field, δφ = 0. The second
and third order actions are, respectively,

S2 =
∫

dtd3x [a3εζ̇ 2 − aε(∂ζ )2], (28)

S3 =
∫

dtd3x
[
a3ε2ζ ζ̇ 2 + aε2ζ(∂ζ )2 − 2aεζ̇ (∂ζ )(∂χ)

+a3ε

2
η̇ζ 2ζ̇ + ε

2a
(∂ζ )(∂χ)∂2χ + ε

4a
(∂2ζ )(∂χ)2

+ f (ζ )
δL

δζ

∣∣∣∣
1

]
, (29)
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Fig. 3 On the left the numerically computed φ is plotted as a function
of conformal time for λ = 3.9 × 10−19 and n = 2/3 (blue), n = 3
(red), and n = 4 (green), and for λ = −7 × 10−20 and n = 3 (orange)
and n = 4 (cyan). On the right the numerically computed φ is plotted

as a function of conformal time for n = 3 and λ = 6.0 × 10−19 (blue),
λ = 1.2 × 10−18 (red), λ = 2.4 × 10−18 (green), λ = −4 × 10−19

(orange), and λ = −7 × 10−19 (cyan). The dashed black lines corre-
spond to the analytical approximation

Fig. 4 On the left φ is plotted in terms of conformal time for n = 4 and
λ = 3.9×10−19. The blue and dashed black lines are the numerical and
analytical results, respectively.On the right the relative percentage error

� = 100 (φnum−φan)
φnum between the numerical and analytical solutions for

φ is plotted for the same values of n and λ

Fig. 5 On the left the numerically computed ε is plotted for λ =
3.9 × 10−19 and n = 2/3 (blue), n = 3 (red), and n = 4 (green),
and for λ = −7 × 10−20 and n = 3 (orange) and n = 4 (cyan).
On the right the numerically computed ε is plotted for n = 3 and

λ = 6.0 × 10−19 (blue), λ = 1.2 × 10−18 (red), λ = 2.4 × 10−18

(green), λ = −4 × 10−19 (orange), and λ = −7 × 10−19 (cyan). The
dashed black lines correspond to the analytical approximation
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Fig. 6 On the left the numerically computed η is plotted for λ =
3.9 × 10−19 and n = 2/3 (blue), n = 3 (red), and n = 4 (green),
and for λ = −7 × 10−20 and n = 3 (orange) and n = 4 (cyan).
On the right the numerically computed η is plotted for n = 3 and

λ = 6.0 × 10−19 (blue), λ = 1.2 × 10−18 (red), λ = 2.4 × 10−18

(green), λ = −4 × 10−19 (orange), and λ = −7 × 10−19 (cyan). The
dashed black lines correspond to the analytical approximation

Fig. 7 The numerically computed |ζk | is plotted as a function of the
number of e-folds N after the time of the feature. The plots on the left
are for λ = 3.9 × 10−19 and n = 2/3 (blue), n = 3 (red), and n = 4
(green), and for λ = −7 × 10−20 and n = 3 (orange) and n = 4

(cyan). The plots on the right are for n = 3 and λ = 6.0×10−19 (blue),
λ = 1.2 × 10−18 (red), λ = 2.4 × 10−18 (green), λ = −4 × 10−19

(orange), and λ = −7 × 10−19 (cyan). All plots are for short scale
modes with k = 100k0, which is sub-horizon when the feature occurs

where

δL

δζ

∣∣∣∣
1

= 2a

(
d∂2χ

dt
+ H∂2χ − ε∂2ζ

)
, (30)

f (ζ ) = η

4
ζ + terms with derivatives on ζ, (31)

and δL/δζ |1 is the variation of the quadratic action with
respect to ζ [31]. The Lagrange equations for the second
order action give the equation for the curvature perturbations
ζ

∂

∂t

(
a3ε

∂ζ

∂t

)
− aεδi j

∂2ζ

∂xi∂x j
= 0. (32)

The Fourier transform of the above equation, using conformal
time, gives

ζ ′′
k + 2

z′

z
ζ ′
k + k2ζk = 0, (33)

where z ≡ a
√

2ε and k is the comoving wave number. It is
convenient to define the variable [23]

uk(τ ) ≡ z(τ )ζ(τ, k), (34)

in terms of which Eq. (33) takes the form

u′′
k +

(
k2 − z′′

z

)
uk = 0. (35)

As can be seen in Fig. 7, small scale modes, which are
sub-horizon at time τ0, are affected by the feature. Modes
that had left the horizon at that time are unaffected, since
they were already frozen. In Fig. 8 the power spectrum of
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Fig. 8 The power spectrum of primordial curvature perturbations Pζ

is plotted for different types of features. The plots on the left are for
λ = 8 × 10−20 and n = 2/3 (blue), n = 3 (red), and n = 4 (green),
and for λ = −5 × 10−20 and n = 3 (orange) and n = 4 (cyan).

For right plots n is constant, n = 3, and λ = 1.0 × 10−19 (blue),
λ = 5 × 10−19 (red), λ = 8 × 10−19 (green), λ = −8 × 10−20

(orange), and λ = −6 × 10−20 (cyan). The dashed lines are the analyt-
ical approximations

Fig. 9 Numerically (blue) and analytically (black lines) computed small scale modes evaluated at 10e-folds after the feature are plotted as functions
of the scale. On the left it is plotted the real part, on the right the imaginary part. The parameters used for the feature are n = 4 and λ = 3.9×10−19

primordial curvature perturbations Pζ is plotted for different
types of features.

7 Analytical approximation for curvature perturbations

At the time of the feature there is a discontinuity in φ′′ which
implies that z′′ contains a Dirac delta function [24]. We can
evaluate the discontinuity in z′′/z by integrating the Dirac
delta function around the feature time,

D0 ≡ lim
δ→0

∫ τ0+δ

τ0−δ

z′′

z
dτ = 1

φ′
0
[φ′′

a0 − φ′′
b0]

= −nλa(τ0)
2 φn−1

0

φ′
0

. (36)

Before the feature we assume the Bunch–Davies vacuum,
[33]

v(τ, k) = e−ikτ

√
2k

(
1 − i

kτ

)
. (37)

The curvature perturbations modes after the feature are
approximated as a linear combination of the positive and neg-
ative frequency modes before the feature [16,19] according
to

ζ(τ, k) = 1

a(τ )
√

2ε(τ )
[α(k)v(τ, k) + β(k)v∗(τ, k)], (38)

where

α(k) = 1+ iD0|v(τ0, k)|2 and β(k) = −iD0v(τ0, k)
2 (39)

are the Bogoliubov coefficients, and τk = −1/k is the hori-
zon crossing time for the mode k. The coefficients α, β are
determined by imposing the continuity of the modes and
their derivative at the feature time [24]. In Figs. 9 and 10 we
show the comparison between the numerical results for the
mode function and the analytical approximation for small
scales. The parameters used for the feature are n = 4 and
λ = 3.9 × 10−19. In Fig. 9 we show the real and imaginary
part of the dependence of the mode functions on the scale

123



589 Page 8 of 16 Eur. Phys. J. C (2015) 75 :589

Fig. 10 Comparison of the evolution of the real (left) and imaginary (right) parts of the mode function for k = 100k0. The result of numerical
calculations is plotted inblue, while the analytical approximation is plotted inblack. The parameters used for the feature aren = 4 andλ = 3.9×10−19

and for a particular time, namely, after ten e-folds after the
feature. In Fig. 10 we show the evolution of the real and
imaginary parts of the mode function at a particular scale
100k0.

8 Analytical approximation for the spectrum

The two-point function is

〈ζ(�k1, t)ζ(�k2, t)〉 ≡ (2π)3 2π2

k3 Pζ (k)δ
(3)(�k1 + �k2), (40)

where the power spectrum of curvature perturbations is
defined as

Pζ (k) ≡ k3

2π2 |ζk(τe)|2, (41)

where τe is the time at which inflation ends. After substi-
tuting in the above definition the analytical approximations
obtained in the previous sections we get

Pζ (k) = H2

8π2ε(τe)

{
1 + D0

k

×
[(

k2
0

k2 − 1

)
sin

(
2k

k0

)
− 2k0

k
cos

(
2k

k0

)]

+ D2
0

2k2

[
1 + 2k2

0

k2 + k4
0

k4 +
(

1 − k4
0

k4

)
cos

(
2k

k0

)

−2k0

k

(
1 + k2

0

k2

)
sin

(
2k

k0

)]}
. (42)

This generalizes the result obtained in [16] for a potential
with a discontinuous first derivative to the more general case
considered in this paper, corresponding to Eq. (36). In Fig. 8
we compare the analytical expression for the power spec-
trum given by Eq. (42) with the numerical results obtained by
integrating numerically both the background and the pertur-
bation equations. The analytical result is quite accurate and

it improves the results obtained in [23] because we use the
analytical approximation for the perturbations modes also for
modes which were superhorizon slightly before τ0, improv-
ing substantially the agreement with numerical results. This
is due to the well-known fact that modes are not completely
frozen at τk = −1/k but keep evolving for a few e-folds
thereafter, so that also scales slightly greater than k0 are
mildly affected by the features.

It should be noted that Eq. (42) we obtained is not depend-
ing on the slow-roll approximation, since it is derived directly
from the definition of the power spectrum in Eq. (41), and this
explains why it is in so well in agreement with fully numeri-
cal calculations despite the temporary violation of slow-roll
regime produced by the features. The ε in the denominator
of Eq. (42) comes in fact from the analytical solution for
the perturbation modes, which is not based on any slow-roll
expansion because it comes from z ≡ a

√
2ε in Eqs. (33) and

(35) which are valid at any order in slow roll.
As can be seen in Fig. 8 negative values of λ correspond

to a suppression of the spectrum on large and intermediate
scales, while positive values produce a suppression on small
scales. While the analysis of observational data goes beyond
the scope of this paper, we can see in Fig. 8 that an appro-
priate choice of parameters gives spectra in good qualitative
agreement with the features recently found when parameter-
izing the free primordial power spectrum with a piecewise
cubic Hermite interpolating polynomial [26].

9 Calculation of the bispectrum

The Fourier transform of the three-point correlation function
[8,11], also known as the bispectrum Bζ , is given by

〈ζ(�k1, t)ζ(�k2, t)ζ(�k3, t)〉
= (2π)3Bζ (k1, k2, k3)δ

(3)(�k1 + �k2, �k3), (43)

and it should vanish if the curvature perturbations are Gaus-
sian [9,34]. Therefore, deviations from non-Gaussianity can
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be determined by measuring the implications of a non-
vanishing Bζ on the CMB radiation. Following the procedure
in Ref. [23], after a field redefinition, the third order action
can be written

S3 =
∫

dtd3x

[
−a3εηζ ζ̇ 2 − 1

2
aεηζ∂2ζ

]
. (44)

From this action the interaction Hamiltonian can be written
in terms of conformal time as

Hint(τ ) =
∫

d3x εηa

[
ζ ζ ′2 + 1

2
ζ 2∂2ζ

]
. (45)

The three-point correlation function is given by [9,31]

〈�|ζ(τe, �k1)ζ(τe, �k2)ζ(τe, �k3)|�〉
= −i

∫ τe

−∞
〈0|[ζ(τe, �k1)ζ(τe, �k2)ζ(τe, �k3), Hint]|0〉, (46)

and after substitution the expression for the bispectrum Bζ

[9,35] is

Bζ (k1, k2, k3) = 2�
[
ζ(τe, k1)ζ(τe, k2)ζ(τe, k3)

×
∫ τe

τ0

dτηεa2(2ζ ∗(τ, k1)ζ
′∗(τ, k2)ζ

′∗(τ, k3)

− k2
1ζ ∗(τ, k1)ζ

∗(τ, k2)ζ
∗(τ, k3))

+ two permutations of k1, k2, and k3

]
, (47)

where � is the imaginary part and we evaluate the integral
from τ0 to τe, where τe is some time sufficiently long after
the Hubble crossing horizon, when the modes are frozen [14,
15,34,36,37].

It is common to study non-Gaussianity using the parame-
ter fNL defined by

6

5
fNL(k1, k2, k3)

≡ Bζ

Pζ (k1)Pζ (k2) + Pζ (k1)Pζ (k3) + Pζ (k2)Pζ (k3)
, (48)

where

Pζ ≡ 2π2

k3 Pζ . (49)

Replacing Pζ in Eq. (48) we obtain fNL in terms of our
dimensionless definition of the spectrum Pζ (k),

fNL(k1, k2, k3) = 10

3

(k1k2k3)
3

(2π)4

× Bζ

Pζ (k1)Pζ (k2)k3
3 + Pζ (k1)Pζ (k3)k3

2 + Pζ (k2)Pζ (k3)k3
1

.

(50)

In this paper we will study non-Gaussianity using a different
quantity defined as

FNL(k1, k2, k3; k∗) ≡ 10

3(2π)4

(k1k2k3)
3

k3
1 + k3

2 + k3
3

Bζ (k1, k2, k3)

P2
ζ (k∗)

,

(51)

where k∗ is a pivot scale at which the power spectrum is
evaluated which corresponds approximately to the scale of
normalization of the spectrum, i.e. Pζ (k∗) ≈ 2.2×10−9. Our
definition of FNL reduces to fNL in the equilateral limit if
the spectrum is approximately scale invariant, but in general
fNL and FNL are different, and for example in the squeezed
limit they are not the same. For this reason they cannot be
compared directly but FNL still provides useful information
as regards the non-Gaussian behavior of Bζ .

In Figs. 11 and 12 the large scale squeezed and equilateral
limits of the bispectrum are plotted for different values of the
parameters n and λ. The small scale squeezed and equilateral
limits are shown in Figs. 13 and 14, respectively. As shown
in Figs. 13 and 14 the bispectrum has an oscillatory behavior
with an amplitude inversely proportional to the scale (Fig.
15).

10 Analytical approximation for the bispectrum

In order to obtain an analytical approximation for the bis-
pectrum we use Eq. (38) for curvature perturbations and
Eq. (25) for slow-roll parameters. This implies that also
the different approximations are used in different cases as
explained in more detail in the following sections. All the
results presented in this section should be considered taking
into account the existence of a cut-off scale beyond which
the Heaviside approximation of a smooth transition is not
valid as discussed in more detail in [23,24]. We provide ana-
lytical expressions for the bispectrum for different types of
features, i.e., different values of n and λ, in the squeezed and
equilateral limit for both large and small scales. The analyti-
cal results are shown in dashed black lines in Figs. 11, 12, 13
and 14, where it can be seen that the approximations for the
bispectrum are in good agreement with the numerical results.

10.1 Large scales

In the large scale limit when ki < k0, i = 1, 2, 3, the cur-
vature perturbations modes are frozen in the time interval of
interest, since there is no time evolution for τ > τ0 > τki .
Thus in Eq. (47) all the modes functions can be evaluated at
τ0 and pulled out of the integrals while the terms ζ ′∗(τ, ki )
can be set to zero. Following this approximation we get
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Fig. 11 The squeezed limit of the numerically computed bispectrum
FNL(k0/500, k, k) in plotted for a large scale k0/500. On the left we
keep λ constant, λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red),
and n = 4 (green). On the right we keep n constant, n = 3, while

λ = 6.0 × 10−19 (blue), λ = 1.2 × 10−18 (red), and λ = 2.4 × 10−18

(green). The dashed black lines correspond to the analytical approxi-
mation

Fig. 12 The equilateral limit of the numerically computed bispectrum
FNL(k, k, k) in plotted for large scales. On the left we keep λ constant,
λ = 3.9×10−19, while n = 2/3 (blue), n = 3 (red), and n = 4 (green).

On the right we keep n constant, n = 3, while λ = 6.0 × 10−19 (blue),
λ = 1.2 ×10−18 (red), and λ = 2.4×10−18 (green). The dashed black
lines correspond to the analytical approximation

Fig. 13 The squeezed limit of the numerically computed bispectrum
FNL(k, 1000k0, 1000k0) is plotted for a small scale 1000k0. On the left
λ is constant, λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red), and

n = 4 (green). On the right n is constant, n = 3, while λ = 6.0×10−19

(blue), λ = 1.2×10−18 (red), and λ = 2.4×10−18 (green). The dashed
black lines correspond to the analytical approximation
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Fig. 14 The equilateral limit of the numerically computed bispec-
trum FNL(k, k, k) is plotted for small scales. On the left λ is constant,
λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red), and n = 4

(green). On the right n is constant, n = 3, while λ = 6.0 × 10−19

(blue), λ = 1.2 × 10−18 (red), and λ = 2.4 × 10−18 (green). The
dashed black lines correspond to the analytical approximation

Fig. 15 On the top the large scales equilateral limit FNL(k, k, k) and
squeezed limit FNL(k0/500, k, k) are plotted respectively on the right
and left. On the bottom the small scales equilateral limit FNL(k, k, k)
and squeezed limit FNL(k, 1000k0, 1000k0) are plotted respectively on

the right and left.The dashed lines are the analytical approximations. All
the plots are for n = 3, λ = −8× 10−20 (orange) and λ = −6× 10−20

(cyan). This choice of parameters is the same used in Fig. 16, for models
able to account for the observed large scale suppression
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F<
NL(k1, k2, k3) ≈ −20(

∏3
i=1 k

3
i )

3(2π)4P2
ζ (k∗)

∑3
i=1 k

2
i∑3

i=1 k
3
i

�

×
[

3∏
i=1

ζ(τe, ki )ζ
∗(τ0, ki )

] ∫ τe

τ0

dτηεa2

≈ −20(
∏3

i=1 k
3
i )

3(2π)4P2
ζ (k∗)

∑3
i=1 k

2
i∑3

i=1 k
3
i

φ+2
a (λ+)3a(τe)

H
�

×
[

3∏
i=1

ζ(τe, ki )ζ
∗(τ0, ki )

]
, (52)

where we have used the approximations for the slow-roll
parameters in Eq. (25) in the integration. Now we use the
analytical approximations for the perturbation to obtain at
large scales

F<
NL(k1, k2, k3) ≈ −5

6

H5

(2π)4P2
ζ (k∗)

φ+2
a a(τe)

(λ+)3(φ+
b )6

∑3
i=1 k

2
i∑3

i=1 k
3
i

�

×
[

3∏
i=1

(τeki − i)(kiτ0 + i)ei(k1+k2+k3)τ0

]
. (53)

In the squeezed limit with k1 � k2 = k3 ≡ k and k < k0

this expression reduces to the following analytical formula:

F<SL
NL (k1, k) ≈ −5

6

H5

(2π)4P2
ζ (k∗)

φ+2
a a(τe)

(λ+)3(φ+
b )6

1

k

×
[

2k + k1

k0
cos

(
2k + k1

k0

)

+
(
k

k0

2k1 + k

k0
− 1

)
sin

(
2k + k1

k0

)]
. (54)

As shown in Fig. 11 the analytical approximation is in good
agreement with the numerical results. Here and in any other
approximation for the FNL as defined in Eq. (51) we use
Eq. (42) for the spectrum Pζ .

In the large scale equilateral limit, when k1 = k2 = k3 ≡
k � k0, Eq. (53) becomes

F<EL
NL (k) ≈ −5

6

H5

(2π)4P2
ζ (k∗)

φ+2
a a(τe)

(λ+)3(φ+
b )6

1

k

×
[

3k

k0
cos

(
3k

k0

)
+

(
3k2

k2
0

− 1

)
sin

(
3k

k0

)]
.

(55)

The numerical result and Eq. (55) are in good agreement,
as shown in Fig. 12. In Figs. 11 and 12 we have evaluated
both the numerical and the analytical expressions at time τe
corresponding approximately to 10 e-folds after the feature
[14,15,34,36]. As can be seen in Figs. 11 and 12 the large
scale bispectrum in the squeezed and equilateral limits have
a very similar form and are linearly suppressed.

10.2 Small scales

In the small scale limit, when ki > k0, it is convenient to
re-write the expression for FNL as

F>
NL(k1, k2, k3)

≈ 20

3(2π)4

(k1k2k3)
3

k3
1 + k3

2 + k3
3

1

P2
ζ (k∗)

�

× [ζ(τe, k1)ζ(τe, k2)ζ(τe, k3)(2I1(k1, k2, k3)

−k2
1 I2(k1, k2, k3))

+ two permutations of k1, k2, and k3], (56)

where

I1(k1, k2, k3)

≡
∫ τe

τ0

dτ η(τ)ε(τ )a(τ )2ζ ∗(τ, k1)ζ
′∗(τ, k2)ζ

′∗(τ, k3) (57)

≈
∫ τe

τ0

dτ [λ+(λ−)2φ+
a φ−

a a(τ )2+λ−

+(λ−)3(φ−
a )2a(τ )2+2λ−]ζ ∗(τ, k1)ζ

′∗(τ, k2)ζ
′∗(τ, k3),

I2(k1, k2, k3)

≡
∫ τe

τ0

dτ η(τ)ε(τ )a(τ )2ζ ∗(τ, k1)ζ
∗(τ, k2)ζ

∗(τ, k3) (58)

=
∫ τe

τ0

dτ [λ+(λ−)2φ+
a φ−

a a(τ )2+λ−

+(λ−)3(φ−
a )2a(τ )2+2λ−]ζ ∗(τ, k1)ζ

∗(τ, k2)ζ
∗(τ, k3).

In the above expressions we have used Eq. (25) to derive an
approximation for ηεa2 as

ηεa2 = [(λ+)2φ+
a a

λ+ + (λ−)2φ−
a a

λ−]
×[λ+φ+

a a
λ+ + λ−φ−

a a
λ−]a2

= [(λ+)3(φ+
a )2a2λ+ + (λ+ + λ−)λ+λ−φ+

a φ−
a a

λ++λ−

+(λ−)3(φ−
a )2a2λ−]a2

≈ λ+(λ−)2φ+
a φ−

a a
2+λ− + (λ−)3(φ−

a )2a2+2λ−
. (59)

All the integrals we need to compute have a similar form,
so it is useful to re-write Eqs. (57) and (58) as

Ii (k1, k2, k3)

≡ [λ+(λ−)2φ+
a φ−

a Ai (τ, k1, k2, k3, q1)

+(λ−)3(φ−
a )2Ai (τ, k1, k2, k3, q2)]

∣∣∣∣
τe

τ0

≈ λ+(λ−)2φ+
a φ−

a Ai (τ0, k1, k2, k3, q1)

+(λ−)3(φ−
a )2Ai (τ0, k1, k2, k3, q2), (60)
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Fig. 16 The power spectrum of primordial curvature perturbations Pζ

is plotted for n = 3, λ = −8 × 10−20 (orange) and λ = −6 × 10−20

(cyan). The dashed lines are the analytical approximations. These mod-
els are able to account for the observed large scale suppression

where we have defined

A1(τ, k1, k2, k3, q)

≡
∫

dτ a(τ )qζ ∗(τ, k1)ζ
′∗(τ, k2)ζ

′∗(τ, k3), (61)

A2(τ, k1, k2, k3, q)

≡
∫

dτ a(τ )qζ ∗(τ, k1)ζ
∗(τ, k2)ζ

∗(τ, k3), (62)

q1 = 2 + λ−, q2 = 2 + 2λ−. (63)

The above integrals can be computed analytically in terms
of � functions and are given in detail in “Appendix”.

It is now possible to obtain a fully analytical template in
the squeeze limit, when k2 = k3, and k2 � k1 > k0,

F>
NL(k1, k2)

≈ 20

3(2π)4

(k1k2)
3

P2
ζ (k∗)

�[ζ(τe, k1)ζ(τe, k2)
2(I1(k1, k2, k2)

+2I1(k2, k1, k2) − k2 I2(k1, k2, k2))]. (64)

In the equilateral limit, when k ≡ k1 = k2 = k3 and k > k0,
instead we have

F>
NL(k1) ≈ 20

3(2π)4

k6

P2
ζ (k∗)

�[ζ(τe, k)
3(3I1(k) − k2 I2(k))].

(65)

Numerical results and the analytical templates are in good
agreement both in the squeezed and equilateral limits as
shown in Figs. 13 and 14. In the squeezed and equilateral
small scale limits the bispectrum has an oscillatory behavior
whose phase and amplitude depend on the value of the param-
eters n and λ as can be seen in Figs. 13 and 14. The amplitude
is inversely proportional to the scale as shown in Figs. 13
and 14. As previously observed, all the results derived can
be trusted only up to cut-off scales beyond which the Heavi-
side approximation is not valid, as discussed in more detail in
[23,24]. The same applies to other similar models previously
studied, such as the well-known Starobinsky model [16].

10.3 Behavior of the small scale bispectrum

As seen in Figs. 13 and 14 both the equilateral and the
squeezed limit small scale bispectrum do not behave in the
same way as the spectrum and the slow parameters respect to
the variation of n. To clarify this we can write the bispectrum
Bζ in Eq. (47) as

Bζ ∝ �(B1B2) = �(B1)�(B2) + �(B1)�(B2), (66)

where

B1 = ζ(τe, k1)ζ(τe, k2)ζ(τe, k3), (67)

B2 = 2I1(k1, k2, k3) − k2
1 I2(k1, k2, k3)

+ two permutations of k1, k2, and k3. (68)

First of all we can see from Figs. 17 and 20 that the dom-
inant contribution to the bispectrum comes from the term
�(B1)�(B2), which in fact behaves in the same way as the
bispectrum with respect to the variation of n (Figs. 18, 19, 21,

Fig. 17 The real part of B1 is plotted on the left, and the imaginary part on the right, for the small scale squeezed limit. The parameter λ is constant,
λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red), and n = 4 (green)
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Fig. 18 The real part of B2 is plotted on the left, and the imaginary part on the right, for the small scale squeezed limit. The parameter λ is constant,
λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red), and n = 4 (green)

Fig. 19 The products �(B1)�(B2) and �(B1)�(B2) are plotted for the small scale squeezed limit. The parameter λ is constant, λ = 3.9 × 10−19,
while n = 2/3 (blue), n = 3 (red), and n = 4 (green)

Fig. 20 The real part of B1 is plotted on the left, and the imaginary part on the right, for the small scale equilateral limit. The parameter λ is
constant, λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red), and n = 4 (green)

22). The two terms �(B2) and �(B1) behave like the spec-
trum, i.e., are larger for larger values of n, but, since �(B1)

is negative, their product �(B1)�(B2), and consequently the
bispectrum which is dominated by it, behaves in the opposite
way, i.e. it is decreasing when n in increasing. The effect is
not noticeable in the case of n = 2/3, because in this case
�(B2) is very close to zero, while it is clear for n = 3 and
n = 4.

11 Conclusions

We have studied the effects of a general type of features
produced by discontinuities of the derivatives of the poten-
tial. We found that each different type of feature has distinc-
tive effects on the spectrum and bispectrum of the curvature
perturbations which depend both on the order n and on the
amplitude λ of the discontinuity. The spectrum of primordial
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Fig. 21 The real part of B2 is plotted on the left, and the imaginary part on the right, for the small scale equilateral limit. The parameter λ is
constant, λ = 3.9 × 10−19, while n = 2/3 (blue), n = 3 (red), and n = 4 (green)

Fig. 22 The products �(B1)�(B2) and �(B1)�(B2) are plotted for the small scale squeezed limit. The parameter λ is constant, λ = 3.9 × 10−19,
while n = 2/3 (blue), n = 3 (red), and n = 4 (green)

curvature perturbations shows oscillations around the scale
k0, which leaves the horizon at the time τ0 when the feature
occurs, with amplitude and phase determined by the param-
eters n and λ.

Both in the squeezed and equilateral small scale limit the
bispectrum has an oscillatory behavior whose phase depends
on the parameters determining the discontinuity, and whose
amplitude is inversely proportional to the scale. The large
scale bispectrum in the squeezed and equilateral limits have
a very similar form and are linearly suppressed.

The analytical approximation for the spectrum is in good
agreement with the numerical results, and improves substan-
tially the accuracy for large scales respect to previous stud-
ies. The analytical approximations for the bispectrum are in
good agreement with numerical calculations at large scales
in both the squeeze and the equilateral limit. At small scales
we found an analytical template which is in very good agree-
ment with the numerical calculations both in the squeezed
and the equilateral limit, and it is able to account for both the
oscillations and the amplitude of the bispectrum.

The type of feature we have studied generalizes previ-
ous models such as the Starobinsky model or the mass step
[23], providing a general framework to classify and model
phenomenologically non-Gaussian features in CMB obser-

vations or in large scale structure survey data. In the future
it would be interesting to find the parameters which better
fit different non-Gaussian features in observational data and
to investigate what more fundamental physical mechanism,
such as phase transitions for example, could actually produce
these features.
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Appendix

In this appendix we obtain analytical approximations for the
integrals which are necessary for the calculation of small
scale limit bispectrum,
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A1(τ, k1, k2, k3, q)

≡
∫

dτ a(τ )qζ ∗(τ, k1)ζ
′∗(τ, k2)ζ

′∗(τ, k3) , (A.1)

A2(τ, k1, k2, k3, q)

≡
∫

dτ a(τ )qζ ∗(τ, k1)ζ
∗(τ, k2)ζ

∗(τ, k3). (A.2)

In order to simplify the calculation we fix ε(τ ) = ε(τ0)

only in the analytical approximation for perturbations modes
in Eq. (39), while we keep ε(τ ), η(τ ) as functions of confor-
mal time when they appear explicitly in the integrand.

After some rather cumbersome calculations the final result
can be written in this general form

Ai (τ, k1, k2, k3, q)

= (−1)i (k2k3)
2(2−i)H3−q

0

(4ε0k1k2k3)
3/2 (A.3)

×{α∗
k1

[α∗
k2

(Bi (τ, k1, k2, k3, q)α∗
k3

−Bi (τ, k1, k2,−k3, q)β∗
k3

)

+β∗
k2

(−Bi (τ, k1,−k2, k3, q)α∗
k3

+Bi (τ, k1,−k2,−k3, q)β∗
k3

)]
+β∗

k1
[β∗

k2
(B∗

i (τ, k1, k2, k3, q)β∗
k3

−B∗
i (τ, k1, k2,−k3, q)α∗

k3
)

+α∗
k2

(−B∗
i (τ, k1,−k2, k3, q)β∗

k3

+B∗
i (τ, k1,−k2,−k3, q)α∗

k3
)]},

where

B1 = (ikT )q−4(kT�(3 − q,−iτkT )

+ k1�(4 − q,−iτkT )), (A.4)

B2 = (ikT )q−4[k3
T (�(1 − q,−iτkT )+�(2 − q,−iτkT ))

+ kT

3∑
i �= j

ki k j�(3 − q,−iτkT )+k1�(4 − q,−iτkT )],

(A.5)

kT = k1 + k2 + k3,

and the � denotes the incomplete gamma functions defined
by

�(r, x) =
∫ ∞

x
tr−1e−tdt. (A.6)
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