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Establishment of Imaging 
Spectroscopy of Nuclear Gamma-
Rays based on Geometrical Optics
Toru Tanimori1,2, Yoshitaka Mizumura1,2, Atsushi Takada1, Shohei Miyamoto1, 
Taito Takemura1, Tetsuro Kishimoto1, Shotaro Komura1, Hidetoshi Kubo1, 
Shunsuke Kurosawa3, Yoshihiro Matsuoka1, Kentaro Miuchi4, Tetsuya Mizumoto1, 
Yuma Nakamasu1, Kiseki Nakamura1, Joseph D. Parker1, Tatsuya Sawano5, Shinya Sonoda1, 
Dai Tomono1 & Kei Yoshikawa1

Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as 
Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, 
or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright 
objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which 
would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. 
Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined 
Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF 
and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement 
with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, 
and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress 
the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full 
reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results 
mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

Nuclear gamma-rays were discovered in 1890s, and since then many scientists have made a great effort to invent a 
fine imaging method of nuclear gammas with little success. For nuclear gammas, imaging methods have been still 
limited to pseudo imaging, such as collimators and coded masks, which are capable of no more than qualitative 
imaging of bright and point-like objects. Compton Camera (CC), of which the basic concept was proposed in 
1974, is an advanced gamma imager1 based on partially-geometrical optics and has a potential of a breakthrough. 
Nevertheless even the basic requirement of quantitative evaluation of the gamma intensity in an image has not 
been achieved with the CC so far despite the fact that many improvements have been made2–6 over decades.

Proper imaging is defined as a mapping of rays with different incident angles defined by two angles (polar 
angle ζ  and azimuthal one η  in Fig. 1a) to separate unique points on a plane at infinity (“imaging plane” or “plane 
of hemisphere” in astronomy), as is trivially the case for optical telescopes. Commonly, a photon from radio to 
X-rays is mapped to a single unique point, corresponding to the incident angle, on the imaging plane by reflectors 
or lenses. In gamma-rays the situation is very different; an incident photon is usually split to multiple rays and/
or particles in a detector. Therefore, proper imaging of gamma-rays is far from trivial. A MeV gamma interacts 
with a matter via the Compton process and transforms into a recoil electron and a Compton-scattered gamma. 
In handling the kinematics of Compton scattering, the de facto standard coordinate system is defined event by 
event along a plane made by the two directions of incident and scattered gammas (hereafter dubbed the Compton 
coordinates; see Fig. 1b). Its relative position varies event by event with respect to the absolute coordinate system 
of the imaging plane which is fixed to the detector (hereafter, the laboratory coordinates). Since the two direc-
tional angles (ζ  and η ) of the incident gamma are defined on the imaging plane (Fig. 1a), they must be calculated 
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from the measured parameters of Compton-scattering polar angle θ  and electron-azimuthal angle φ  defined on 
the Compton coordinates event by event according to the equation explained in Section Method. This complex 
interaction of a gamma with a matter makes proper imaging of MeV gammas very challenging. In principle, it 
can be achieved by resolving the equation of the Compton process event by event, where both the directions and 
energies for a pair of a recoil electron and Compton-scattered gamma for each incoming gamma are required 
to be measured. However, tracks of electrons are hardly measured with existing instruments. Even cutting-edge 
Compton Cameras (CCs) measure only ζ  corresponding to the Compton-scattering angle (θ ) in the Compton 
process, as illustrated in Fig. 1a,b and c. It is in stark contrast to imaging of GeV gammas. Proper imaging has 
been long achieved for GeV gammas by measuring the two angles of incident gammas, tracking both the electron 
and position after pair-creation. Then, GeV gammas are electrically focused on the imaging plane by reconstruct-
ing the pair-creation process. The method has been used in high-energy gamma-ray astronomy; indeed the latest 
astronomical GeV-gamma space observatory “Fermi”7 is equipped with large multi-layer silicon strip detectors 
(SSD) for tracking electrons and positrons, which provide the PSF with the size of < 1°, and Fermi has successfully 
detected several thousand objects.

The first major application of the CC was for MeV gamma-ray astronomical observations by COMPTEL 
onboard Compton Gamma-ray Observatory satellite launched in 19918. In the early phase of the project, optimi-
zation algorithms, such as Maximum Entropy method (MEM), were adopted in order to compensate the lack of 
information of the azimuthal angle (η  in Fig. 1a and c) of the incident gammas. They successfully detected three 
sources in a pre-launch laboratory experiment, where the background was ~3 times as intense as the sources, by 

Figure 1. Schematic explanations of gamma-ray reconstruction, the PSF and coordinates systems. (a) 
Schematic diagram of the PSFs of the CC and ETCC on the imaging plane (laboratory coordinates). An image 
of a point source is displayed with event circles reconstructed in CC. Here ζ  and η  denote two angles of an 
incident gamma. (b) Schematic explanation of the Compton scattering kinematics. The parameters θ  and φ  
denote the Compton-scattering angle and electron-azimuthal angles of the incident gamma, respectively, on 
the Compton coordinates. (c) Coordinate diagram for explanation of the angles of ζ , η , and θ  in the laboratory 
coordinates x-y-z. (d) Schematic explanation of PSF(Θ ) of the CC and ETCC. See text for the definition of Θ .
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adopting the MEM. However, the use of the MEM turned out to be limited and be only for obtaining the qual-
itative image at best during their observation programme9–12. Eventually they came to use only the likelihood 
method for any quantitative results, which took count of the effects of the spread of Compton scattering angle θ  
and extended backgrounds.

In celestial MeV gamma-ray observations, the background is usually stronger by two orders of magnitude 
or more than actual sources, and in these circumstances no optimization algorithms, including the MEM and 
maximum likelihood expectation maximization (MLEM), work well, as discussed in detail in Section Results. On 
the other hand, the simple likelihood method, which optimizes the probabilities of the signal and the background 
within the allowable statistical limit, seems to be most reasonable and reliable although the detail of how they 
applied it in the astronomical observations of COMPTEL has not been published. After COMPTEL, hardly any 
sound results have been published about applications of MLEM to CCs, except for some qualitative and visual 
improvement on images. Despite the lack of any quantitative proofs, the unfound expectation seems to be popular 
among the scientists in the field that an optimization algorithm, such as MLEM, would eventually enable us to 
achieve the PSF of CCs with the angular resolution of the polar angle ζ , which is the same as the resolution of the 
Compton Scattering angle θ  (generally called Angular Resolution Measure: ARM)8. Indeed, the recent proposal 
for a satellite of MeV gamma-ray astronomy with CCs seems to treat the ARM in the same way as the PSF in the 
geometrical optics.

Figure 2. Measured and simulated correlations of δ and θ in CC and ETCC analyses, and their PSFs. (a,b) 
Measured scatter plots of the angular distance between the reconstruction direction and the real direction δ  
versus the Compton-scattering angle θ  derived with the ETCC and CC analyses, respectively. Panel (a) is a 
scatter plot of δ  determined by θ  and φ  in the ETCC analysis, whereas panel (b) is that of the event-density 
distribution obtained in the CC analysis. Red dashed-lines indicate the half power radius Θ  of these PSFs.  
(c) Measured event-density distributions per unit solid angle as a function of δ  for the ETCC analysis (red) and 
CC analysis (blue). In this figure, the total number of events with both the ETCC and CC analyses are the same, 
each of which is calculated by integrating the event density at δ  multiplied by 2π δ  for the range of δ  up to 2π .  
(d) Measured variation of Θ  with the (blue squares) CC and (red circles) ETCC analyses as a function of 
gamma-ray energy. Red solid and dotted lines show the simulation results with the present and improved 
(ARM =  2° and SPD =  15° at 662 keV) ETCCs, respectively, where the energy dependences of ARM and SPD are 
taken into account. Blue solid and dotted lines are the same simulation results of the CC analysis with ARM =  5° 
(present) and 2° (improved), respectively.
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In X-ray astronomy, imaging spectroscopy was realized, using reflectors, which focuses X-ray photons onto 
the focal point. The use of reflectors improves the sensitivity by an order of two or more, compared with those 
of multi pin-hole and coded-mask detectors. A pin-hole camera is intrinsically capable of imaging spectroscopy, 
keeping the directional information of each incoming photon on the imaging plane. The tradeoff is, however, 
a seriously small effective area and hence low sensitivity. In coded mask detectors, on the other hand, different 
directional photons passing through different holes can be projected onto the same point on the imaging plane. 
This breaks the conservation of the intensity and hence makes imaging spectroscopy difficult. In CCs, many 
different directional circles overlap at the same point on the imaging plane, and hence it does not conserve the 
intensity (Figs 1a,d and 4b). As such, present nuclear imaging methods except pin-hole cameras mix up the infor-
mation of different directional gammas at a point on the imaging plane, and thus, the spectroscopic features can 
be measured only for the whole field of view.

In order to attain proper imaging of nuclear gammas based on genuine geometrical optics, we have developed 
Electron-Tracking Compton Camera (ETCC) (Tanimori, T. et al.13, hereafter referred to as TT), which outputs 
the two angles of an incident gamma, ζ  and η , by measuring the direction of a recoil electron, and accordingly 
provides the brightness distribution of gammas with a resolution of the PSF. The most distinctive feature of the 
ETCC is to resolve the Compton process fully by measuring a 3-D recoil electron track in the gas. Here we report 
our successful nuclear gamma-ray spectroscopy with the ETCC in the way similar to that with optical or X-ray 
telescopes.

Instrument
Measurement of the azimuthal angle η  (Fig. 1a) is crucial to obtain a fine and quantitative image in the nuclear 
gamma-ray band. It can be derived from the momentum vector of a recoil electron (φ  in Fig. 1b) and the Compton 
scattering point (see the section Method for detail). Also, the reduction of the background is required with a rel-
evant effective area of a few tens of cm2 similar to that of a crystal or Ge detector. The ambiguity of φ  is generally 
called the Scatter Plane Deviation (SPD), which extends along the circle of the Compton annulus (Fig. 1b).

In 1990s the TIGRE group discussed the advantage of the measurement of a recoil electron to reduce the 
background, based on the simulation study14, while developing an advanced CC consisting of multi-layer silicon 
strip detectors (SSD). Then, the MEGA group measured the tracks of recoil electrons with the energy higher 
than 2 MeV, using a similar CC consisting of multi-layer SSD and CsI(Tl) calorimeter until 200315. They found 
that a few sampling points of the track caused serious confusions in resolving a correct permutation of those hit 
points along the track16. These confusions then increase the number of possible permutations of the track and the 
scattering points in each event, and make the ARM resolution deteriorate due to the uncertainty in the scattering 
point. Thus, a tracking detector which can measure a very fine tracking even for very low energy recoil electrons 
of ~10 keV, such as a cloud chamber, is needed to attain a perfect electron tracking and then to reconstruct almost 
all the incoming nuclear gammas in the sub-MeV and MeV energy regions.

The ETCC is a unique instrument to satisfy these requirements. Here we describe its principle and structure 
briefly. The ETCC has similar components to CCs, namely a forward detector as a scatterer of nuclear gammas 
and a backward detector, which works as a calorimeter to measure the energy and hit position of each scattered 
gamma. Our ETCC comprises, as a forward detector, a gaseous Time Projection Chamber (TPC), which is based 
on micro- pattern gas detectors (MPGD), in order to measure 3-D tracks of recoil electrons, and as a backward 
detector, pixel scintillator arrays (PSAs) with heavy crystal (at present we use Gd2SiO5:Ce, GSO). Until now we 
have used Ar based gas for TPCs used in all ETCCs mentioned later, and its energy resolution is ~30% at 5.9 keV. 
The energy resolution of the ETCC with GSO scintillators13 is 11% in full-width half maximum (FWHM) at 
662 keV.

In 2004 we reported the first successful full electron-tracking in the laboratory experiment with a prototype 
10-cm-cubic ETCC. We then carried out “Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment” with 
the improved 10-cm-cubic ETCC (SMILE-I system) to measure the diffuse cosmic MeV gamma-rays with a 
balloon- borne experiment in 200617, and demonstrated its excellent ability of particle identification, based on 
dE/dx of an electron track in the gas, where the background level was dramatically reduced by an order of ~3 
without an active shield. Although its detection efficiency in the sub-MeV band was lower than 10−4 due to the 
low detection efficiency of an electron track in the TPC of SMILE-I, different types of gas could in principle give 
a higher efficiency (larger effective area); for example, the effective areas of 110 cm2 and 65 cm2 are expected at 
1 MeV for a 50-cm-cubic ETCC with 3-atm CF4 and Ar gases, respectively. CF4 has a 2.3 times larger cross section 
of Compton scattering than Ar gas.

We then developed a 30-cm-cubic ETCC (Fig. 1 in TT) to achieve an effective area of a few cm2 at 300 keV, 
aiming to detect celestial MeV-gamma-ray objects such as the Crab, with a balloon experiment (SMILE-II)13,18. 
All the data presented in this paper are based on this 30-cm-cubic ETCC. In this ETCC, tracking efficiency in 
the TPC is improved drastically to 100% from 10% in SMILE-I, owing to the improved readout electronics and 
algorithm13,18, and accordingly the ETCC provides a better noise reduction of dE/dx and good angular resolutions 
of ARM of 5.3° (FWHM) at 662 keV, which is broadly consistent with that calculated from the detector energy 
resolution.

The next step is to improve the SPD, because a better SPD is more critical than a better ARM to attain a better 
PSF (see TT). In the MPGD of the TPC, orthogonal strips of the X and Y coordinates are used in order to reduce 
the number of readout channels in the MPGD. A problem is that this readout method causes a well-known uncer-
tainty in tracking due to multi-hits on the same timing, which increased the SPD considerably to 200° (FWHM) 
with SMILE-I. In the new readout electronics of SMILE-II, a pulse width of each electrode in the MPGD is 
recorded as a timing width over the threshold (TOT), which provides a coarse charge deposit at each hit point. 
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Using TOT, we have reduced the coincidence timing width between the X and Y strips from 10 ns to ~1 ns, and 
have improved the SPD to ~100° (FWHM)13, and accordingly have reduced the uncertainty in tracking.

Consequently, we have obtained an effective area of ~1 cm2 at 300 keV and the half-power radius of 15° for the 
PSF. With this sensitivity, gamma-rays from the Crab is estimated to be detected at a significance of ~5σ  with a 
several-hours-long balloon observation13. This unprecedentedly high-level performance of the ETCC lead us to 
our “discovery” of the PSF in the same sense as in optical telescopes, which no one had ever seriously thought of 
in MeV-gamma cameras. It is a significant leap in technological development in the field of nuclear gamma-ray 
spectroscopy, and is the focal point discussed in detail in the following sections.

Results
Since CCs measure only a polar angle ζ  from the measured Compton-scattering angle θ , the other direction of a 
gamma (η ) is obtained by accumulating the Compton annuli as a cross point of those circles, of which the radius 
and the width are θ  and its angular resolution ARM, respectively. Thus, CC attains only partial imaging of the 
projection of the gamma direction to a circle, rather than a point. Then we have to use the annulus as a probability 
distribution function to conserve the number of events, which means that any event distribution on the imaging 
plane measured by CCs is highly smeared by the wide angle of θ . This is a reason why images measured by CCs 
appear to be much smoother than the statistical fluctuation determined by the number of events. On the other 
hand, ETCCs obtain the direction of a gamma as a point on the imaging plane with ζ  and η . In TT, we used a 
probability distribution of the arc shape since its arc was extended over 200° along the azimuthal direction (SPD) 
in the early phase of development of the 30-cm-cubic ETCC. However, the ETCC with the much improved SPD 
with the FWHM of < 100° provides a good deal of concentration of gamma events at the focal point on the 
imaging plane, as shown in Fig. 2a and c, even when a point direction for the ETCC is used instead of a proba-
bility distribution function. Generally, when the probability distribution function on the imaging plane is used 
to accumulate gammas, the resultant image ends up being spatially smeared doubly with the resolution of the 
PSF, namely once by the PSF (intrinsic resolution) and once again when the image is smoothed to compensate 
the poor statistics. In our analysis we create images by simply accumulating directional points of gammas on the 
imaging plane for the ETCC, and hence avoid over-smearing of images. For CC, we use a line of circle, instead 
of an annulus, for the direction of a gamma, and remove the smearing effect by the ARM resolution. Then, the 
difference of the performances between the ETCC and CC is attributed to only the smearing effects for the direc-
tion of θ .

With this image accumulation, the PSF(Θ ) of the ETCC can be defined clearly; we define it as the angular 
region that encompasses a half of the gamma events emitted from a distant point source, which is conceptually 
the same as those in X-ray and GeV gamma telescopes. Therefore, the same concept of imaging spectroscopy as 
with X-ray telescopes is applied to the nuclear-gamma imaging spectroscopy of the ETCC. For the sake of com-
parison, we also define the PSF(Θ ) of the CC: a circular area that would encompass 50% in probability of gammas 
emitted from a point source within the angular radius Θ , as illustrated in Fig. 1a and d.

PSF(Θ ) of the ETCC and CC are measured as follows. Let us define δ  as the angular distance between the 
reconstruction direction and the real direction (Fig. 1b). Figure 2a and b are the scatter plots of δ  versus the 
Compton-scattering angle θ  for gammas from 137Cs (662 keV), measured by a 30-cm-cubic ETCC with ARM of 5° 
(FWHM), SPD of 100° (FWHM), and Θ  ~ 15° at 662 keV13. We define the imaging analysis using two angles (θ , φ )  
of the gamma direction as “ETCC analysis” and that using only one angle θ  as “CC analysis”. The difference 
between the two analyses will highlight the power of use of electron-tracking information. The measured δ  in the 
CC analysis is found to spread over the Field of View (FoV), while that in the ETCC analysis concentrates at the 
centre (Fig. 2c). The mean of δ  corresponds to the half-power radius Θ  of the PSF. The correlation δ  =  2θ  is appar-
ent in the CC for any angles of θ , and therefore the PSF of the CC depends on the Compton-scattering angle θ . 

Figure 3. Comparisons of simulated PSFs between CC and ETCC analyses. (a) Simulated distributions of the 
event density per unit solid angle as a function of the angular distance δ  for a point source in a signal-dominated 
case with the CC and ETCC analyses with the improved 30-cm-cubic ETCC (ARM =  2° or 5°, and SPD =  10° at 
662 keV) (b) Same as (a) but in background-dominated cases with the background-to-signal ratios of 102  
and 103.
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In contrast, the parameter δ  in the ETCC stays within the size of the PSF independently of θ . Thus, the PSF of the 
ETCC is uniquely determined from the ARM and SPD (Fig. 2a). Figure 2d shows the measured variations of Θ  for 
the CC and ETCC as a function of gamma energy with the simulation results derived with hypothetically improved 
ETCC (2° of ARM and 15° of SPD at 662 keV). The simulation program that we used is based on GEANT419, 
and was developed for the SMILE-I and II projects. Its performance has been verified in Takada, A. et al.17,  
Mizumoto, T. et al.20, and TT. No significant improvement is found in the PSF in the CC analysis over those 
obtained with conventional CCs, presumably because the PSF of the CC depends on the Compton-scattering 
angle θ , and always spreads up to ~30°, even though conventional CCs usually have a better ARM than the ETCC.

In CCs, many event circles overlap, and that makes the PSF extended. Therefore, it is difficult to estimate the 
sensitivity from its effective area and the ARM. Some teams have applied optimization algorithms like MEM and 
MLEM to solve the complicated overlaps8,21, but have found that no algorithms intrinsically improve the statistics. 
For the detector with an effective area of Aeff and PSF(Θ ), the significance of signal is proportional to ⋅F Ag eff
/√ (Fg +  Bg · Θ 2). where Fg is the signal flux and Bg is the background intensity. For signal-dominated and 
background-dominated cases, this term is approximated to √ (Aeff · Fg), and ⋅ Θ ⋅( )F A B/g eff g , respectively. In 
the former case, the significance does not depend on Θ , and the simulation (Fig. 3a) suggests that the optimiza-
tion algorithms seem to be functional. In the latter case, the significance explicitly depends on Θ . In fact, back-
ground events can pile up anywhere in the CC (see the next paragraph and Fig. 4a and b). Therefore, when we 
simply count the number of gammas of which the circle has passed through the source region with the radius of 
ARM, the number of background events should also increase roughly by a factor of πθ π× ( )ARM(2 )/ ARM

2

2
 ~ 100 

(Compton-scattering angle θ  =  40°, ARM =  2°) for a background-dominated observation. Thus, the increase of 
the background very strongly affects the sensitivity and significance of detection (roughly by a factor of 10). We 
note that the traditional approach for this is to integrate the probability that gammas cover the region (see the 
previous section), which has been adopted also in recent proposals of advanced CCs. Figure 3b is the same as 
Fig. 3a but with the increased background levels of 102 and 103 of the source with a simulation, in which the sig-
nificances with the CC analysis are found to deteriorate dramatically.

Figure 4. Comparison of measured images and event leakages in CC and ETCC analyses. (a) Measured 
images of 662 keV point source (137Cs: 0.86 MBq) placed at a distance of 2 m with the ETCC analysis (left 
panel) and CC analysis (right). The colour-bars in both the panels indicate the ratio of the event density to 
the maximum value in the ETCC analysis. The red circles (labelled the numbers of 1, 2 and 3) are 15°-radius 
regions for the spectra indicated in panels (c) and (d). (b) A schematic drawing to illustrate the difference of the 
outward leakage of events in the PSF between the ETCC and CC analyses. (c and d) Energy spectra calculated 
with the (c) ETCC and (d) CC analyses, after the gammas for each spectrum are accumulated from a circular 
region with a radius of 15°, located at the angular distances of 0° (red, labelled 1), 30° (green, labelled 2), and 60° 
(blue, labelled 3) from the centre of each region to the source position. In each spectrum, the measured events 
are normalized to the maximum number of events at 662 keV at the centre of FoV.
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This difference of the signal significance between the CC and ETCC is explained well with respect to the differ-
ence in their spectroscopic responses, as follows. The ETCC is an electrically-focusing telescope of gammas into 
the PSF, whereas gammas observed by a CC spread far beyond the source. Figure 4a shows a gamma-ray image 
of 137Cs (662 keV) placed at a distance of 2 m. We derived the energy spectra each within a 15°-radius circle with 
the centre at various angular distances from 0° (source position) to 60°. Figure 4c and d show the obtained spectra 
for three angular distances, derived with the ETCC and CC analyses, respectively. A peak at 662 keV was found 
to diminish sharply in the ETCC analysis as the angular distance of the region increases, but was found not to 
change much in the CC analysis. Furthermore, low energy gammas, which are scattered gammas in the air, do not 
decrease in any angular distances in the CC analysis in spite of the low background level in our experiment. When 
the same energy density of the background as that of the source at the centre in Fig. 4a is distributed uniformly 
up to 80°, the fake peak in the spectrum made by the background at the centre (source position) becomes 3 times 
larger than the true peak made by the source in the CC, whereas that in the ETCC with Θ  =  15° increases by only 
~15%. Whereas a better ARM hardly improves it for the CC, the smaller PSF radius of Θ  =  5° would dramatically 
reduce it down to ~2%. Note that the signal-to-noise ratio is unity only at the source position in these cases.

These results confirm our interpretation of the CC and ETCC, the latter of which benefits from the superior 
PSF. Usually backgrounds include gammas with similar energies to those of source gammas, and then some 
amount of the background spreading over the FoV certainly contaminates the spectrum of the source region. 
At large angular distances, the energy spectra by the CC are interfered greatly by background gammas, includ-
ing those coming from the outside of the FoV, and also the accuracy in the measurement of the source inten-
sity deteriorates considerably. It is especially a serious problem in background-dominated cases like gamma-ray 
astronomy. In contrast, imaging spectroscopy with the ETCC provides the correct energy-spectrum at a region of 
interest, coupled with efficient background rejection similar to optical and X-ray telescopes. It is an advantage of 
true geometrical optics for gammas.

Figure 5a and b show an image of a 137Cs source and its energy spectra for regions at 4 different angular radii, 
respectively, both extracted with the ETCC. At the radius similar to the PSF (15°), most air-scattered gammas 
are not contaminated, and a half of 662 keV gammas remains without Compton edges and other lines, which in 
general appear in conventional gamma spectroscopy. Even the remaining air-scattered gammas can be removed 
by subtracting events accumulated from the region symmetrical about the centre of the FoV from the source 
(see Fig. 5c and d). Thus, the ETCC is a proper-imaging gamma telescope. Compton edges are often observed 
in the energy spectra taken with CCs. Both the CC and ETCC must capture Compton-scattered gammas in the 
backward detector, and hence Compton edges should not appear in any of the obtained energy spectra. Compton 
edges appear only when recoil electrons, instead of Compton-scattered gammas, are measured at the backward 
detector.

Finally, we discuss the comparison of the ETCC with typical non-imaging spectrometers, which are widely 
used in the medical field and environmental monitoring of radio-isotopes. In general, imaging spectroscopy 
reduces backgrounds by a factor proportional to the ratio of the PSF to 4π  (10−2 to 10−4) for distant gamma 
sources, such as astronomical objects. For nearby sources with the size A and distance R from the detector, an 
ETCC projects its image by back-projection method on a plane at the distance of R from the detector, where the 
background is also reduced to A/(4π R2) ~ 10−3 of the spectrum taken with a non-imaging spectrometer, for a typi-
cal case of A of a few cm2 and R ~ 15 cm, while a large portion (a few ten per cent) of the gammas emitted from the 
source is maintained. Figure 6a demonstrates the power of imaging spectroscopy, presenting the energy spectra, 
which contain only several emission lines and without Compton edges, of 152Eu (0.72 MBq) placed at a distance of 
2.4 m from the ETCC, before and after the imaging-selection filter is applied. The filter reduces the background by 
~2 orders of magnitude, and faint lines above 500 keV are clearly detected. Their line-peak intensities are typically 
~10−2 of the natural radiation in our laboratory in Kyoto, Japan. Figure 6b shows a spectrum, from which the 
background has been subtracted, following the same method as in Fig. 5d. Further reduction of noise is presented 
in Fig. 7 in TT with a super-faint point source (27 kBq 22Na), of which the radiation intensity at the ETCC was  
< 10−3 of the typical natural radiation.

Energy resolutions of Ge-semiconductor and high-quality scintillators are a few keV and a few 10 keV, respec-
tively, for MeV gammas. The effective area of a 30-cm-cubic ETCC with 3-atm CF4 is estimated to be ~8 cm2 
at around 1 MeV, which is larger than that of a typical non-imaging Ge semiconductor with 2″ (diameter) ×  2″ 
(depth) (Fig. 7b). Taking into account the effective background rejection via imaging, the ETCC can achieve ~102 
times better sensitivity for line gammas than Ge detectors.

Discussion
Our success in gamma imaging-spectroscopy marks the establishment of proper gamma imaging similar to the 
normal optics, which enables us to measure the spectrum at any place, keeping information of the intensity or 
brightness. At present in 2016, technology of quantitative gamma imaging is highly coveted for effective decon-
tamination in the area in and around Fukushima, Japan after the major accident of the nuclear power plant in 
2011. Although many CCs have been developed and deployed there for the task, none has detected any more than 
some hot spots, and certainly none has reported a quantitative radiation map. Our interpretation of CCs explains 
the underlying reasons of those poor performances. In contrast, we have successfully obtained the first spectro-
scopic images in contamination areas, using an ETCC, which is reported in a separate paper22.

The core technology for the ETCC has been tested in operations under intense radiation13 and is now estab-
lished. Our present model of the ETCC13 has proved its superior characteristics. Its potential is very promising 
with the characteristics including a compatible effective area to Ge detectors, a wide FoV of several sr, a wide 
energy band from 50 to 10,000 keV, and a sharp PSF with the size of a few degrees. Another advantage of the 
ETCCs in practical uses is no need of expensive crystal or semiconductor, because a better SPD is more crucial 
than the better ARM to obtain a sharp PSF. The key technology for a sharp PSF (a few degree) is the way to 
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Figure 5. Results of imaging spectroscopy using a 137Cs radioisotope. (a,b) An image for the whole energy 
band and energy spectra of gammas from 137Cs (0.86 MBq) source placed at a distance of 2 m from the ETCC 
with angular radii of 15° (blue), 30° (green), 60° (red), and 180° (black) between the extracted region and the 
source. A simulated energy spectrum is, for comparison, given in the inset in Panel (b) for events with recoil 
electrons hitting the backward detector. (c) A image of 137Cs (2.9 MBq) source at the off-axis with a polar 
angle of 20°. Red and black circles, each of which is 15° in radius, indicate source and background regions, 
respectively. (d) The spectrum after air-scattered gammas within the PSF(Θ  ~ 15°) are removed, using the region 
symmetrical about the centre of the FoV (black circle in c) as the background region.

Figure 6. Demonstration of background rejection by imaging spectroscopy using a 152Eu radioisotope. (a) 
Energy spectra of gammas of 152Eu (0.72 MBq) placed off-axis at a polar angle of 30° with a distance of 2.4 m. 
Black, purple, and red crosses are the energy spectra for all the events, reconstructed gamma-ray events (see text 
for the filtering criteria), and the events after the imaging selection (δ  <  10°), respectively. (b) Energy spectra 
with the remaining background subtracted, which is accumulated from a symmetrical region indicated in 
Fig. 5d. Vertical blue dashed lines are major gamma-line energies of 152Eu between 100 and 1200 keV.
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measure the direction of recoil electrons in gas (see Fig. 5 in TT). Although a SPD to achieve it requires very fine 
3D-tracking of electrons at the scale of sub-μ m in semiconductors, tracking with that precision has been already 
realized with a mm-size pixel readout of micro pattern gas devices.

While nuclear gammas have been actively studied and utilized in the human society since the early 20thC, the 
difficulty in proper imaging of gammas has been a major cause of stagnation in the field for decades. Now we 
expect that this advent of a method of clear visualization of nuclear gammas can, and likely will, open a new era to 
advance useful applications of radiation, as well as to promote the perceived safety of the radiation-related affairs.

Methods
Reconstruction of the gamma-ray direction on the laboratory coordinates. The ETCC enables us 
to reconstruct the direction of incident gamma-rays, based on the energies and directions of a Compton-scattered 
gamma and a recoil electron. Figure 1b and c shows the diagram of Compton scattering in the laboratory coordi-
nates. Let s , ��g , e  and � ��eobs be the unit vectors of the direction of an incident gamma-ray, the direction of the scat-
tered gamma-ray, the real direction of recoil electron and the observed direction of recoil electron, respectively. 
Let Ke and Eγ be the energy of recoil electron and scattered gamma-ray, respectively. In the laboratory coordinates, 
an incident gamma-ray has two angles: an angle ζ  between z axis and s , and the other η  between X-axis and the 
direction of projected s  to the X-Y plane. These angles are invariable, and satisfy the following equations:

ζ = − ⋅
� ��s ecos (1)z

η =
× ×
× ×

�� �� �
�� �� �
e e s
e e s

cos ( )
( ) (2)

z z

z z

We define another two angles θ  and φ  to reconstruct the incident gamma-ray as shown in Fig. 1b; they are the 
Compton-scattering angle and electron-azimuthal angle (between vectors projected e  and � ��eobs to a plane perpen-
dicular to ��g), respectively, on the Compton coordinates. They are variable event by event, and are given as
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In this formulation, the ARM and SPD are the uncertainties of θ  and φ , respectively.
The direction of the reconstructed incident gamma-ray r  is described on the laboratory coordinates as 

follows:

Figure 7. Schematic view and effective areas of future-planed ETCC. (a) Schematic view of the inside of 
the TPC vessel of the revised ETCC. (b) Energy dependence of the effective areas. The filled-circles are the 
measured effective area of the present 30-cm-cubic ETCC with Ar 1-atm gas (SMILE-II ETCC), and the black 
dotted line is its simulated results. The red-solid and blue-dashed lines indicate the simulated effective areas 
for 30-cm-cubic ETCCs with 2-atm Ar gas and with 3-atm CF4 gas, respectively, with the PSA installed inside. 
Green dashed line is the effective area for the line gammas of 2″  (diameter) ×  2″  (depth) Ge detectors.
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When the reconstruction is done correctly for the incident gammas from a source, the vector r  corresponds to s .

Back projection imaging for nearby sources. If we measure gammas from a source placed near the 
ETCC, the distribution of travelling direction of incident gammas detected by the ETCC are widely spread. In 
this case, back-projection imaging is more convenient than the image of the angular distribution of reconstructed 
travelling direction of gammas used in astronomy. We define a back-projection plane as illustrated in Fig. 8, 
which includes the point of the source position. The intersection points of the infinite straight lines on recon-
structed vectors calculated with the ETCC analysis with the back-projection plane are concentrated near the 
source position. The signal-to-noise ratio is improved by selecting events whose intersection points are around 
the source position like the area inside the dotted black line in Fig. 8. On the other hand, some circles of back-
ground gammas by the CC analysis fall on the source region. We can suppress the contamination of background 
events from the other region by the ETCC analysis.

Further improvements of the ETCC. The PSF and effective area achieved by the current ETCC are still 
insufficient for most of practical applications of nuclear gammas. In particular, a sharp drop of the effective area 
above 500 keV with the present ETCC (Fig. 7b) is highly undesirable. The major cause is escape of the high-energy 
recoil electrons from the TPC; then, if side PSAs are installed inside the gas vessel, as opposed to outside as in 
the current ETCC (SMILE-II), they will catch these high-energy recoil electrons, and the performance should be 
greatly improved. Figure 7a illustrates the concept. Figure 7b shows the simulated result of the energy dependence 
of the effective areas for a 30-cm-cubic ETCC with 3 atm CF4 gas or 2 atm Ar and GSO PSAs with thicker layers 
(26 mm for bottom PSAs and 19 mm for side ones). Their effective areas are calculated to be 8 cm2 and 3 cm2 at 
1 MeV for 3-atm CF4 and 2-atm Ar gases, respectively, which correspond to about 0.8% and 0.3% in gamma-ray 
detection efficiency, respectively. Since the ETCC fully reconstructs the Compton scattering process, its effective 
area (or detection efficiency) corresponds to the so-called photo-peak effective area (or efficiency) for general 
spectrometers, and those effective areas are roughly equivalent to 2-inch (diameter) ×  2-inch (depth) Ge detectors 
(Fig. 7b). A system with this design concept is now under construction, and will be completed in 2017.

We note that Gros, P. et al.23 has recently reported an elegant method to resolve the above-mentioned uncertainty 
in tracking in the X and Y strips readout system; they used a pulse height on each strip, searching for the correlation 
in the variation of pulse heights along the X and Y strips. Their method is applicable to our ETCC system by using 
the TOT information. We are trying to implement their analysis method, and are expecting that a good PSF of a 
few degrees will be achieved in near future with the ETCC without the use of complex pixel readout in the MPGD.

Figure 8. Schematic explanation of back projection imaging. Schematic view of back-projection imaging. 
The red and green arrows show the vectors of actual incident gammas and reconstructed directions with the 
ETCC analysis, respectively. The back-projection plane encompasses the point of the source position (the yellow 
star). The red and green points show the Compton scattering points and intersection points, respectively, of 
reconstructed gamma-ray tracks on the back-projection plane.
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