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α-cluster excited states in 32S are investigated with an extended 28Si + α cluster model, in which
the 28Si core deformation and rotation and the α-cluster breaking are incorporated. In the genera-
tor coordinate method calculation with the extended 28Si + α cluster model, the α-cluster excited
states are obtained near the 28Si + α threshold energy. The 28Si core deformation and rotation
effects, and also the α-clusters breaking in the 28Si + α system, are discussed. It is found that
the rotation of the oblately deformed 28Si core has a significant effect on the α-cluster excited
states whereas the α-cluster breaking has only a minor effect.
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1. Introduction

Cluster structure is one of the important aspects in nuclear systems, in particular in light nuclei.
α-cluster excited states with a spatially developed α cluster around a core nucleus have been
known in Z = N nuclei [1–8], and also in unstable nuclei [9–27]. Typical examples of α-cluster
excited states in Z = N nuclei are the 16O + α cluster states in 20Ne and 12C + α cluster states in
16O [28–35]. α-cluster excited states are also suggested in the heavier mass nuclei such as 44Ti and
40Ca [36–51].

Candidates for α-cluster excited states in 32S were reported in the 28Si(6Li, d)32S (α transfer) reac-
tion by Tanabe et al. [52] in the 1980s. A couple of states observed in the 10–15 MeV region may
correspond to α-cluster excited states. Recently, in experiments on the 28Si + α elastic-scattering
reaction, Lönnroth et al. observed many resonances above the 28Si + α threshold energy, and inter-
preted them as fragmentation of an α-cluster excited band starting from the bandhead energy
Ex = 10.9 ± 0.5 MeV, a few MeV higher than the 28Si + α threshold [53]. Another experiment to
investigate α-cluster excited states in 32S is the inelastic scatterings on 32S by Itoh et al. [54]. They
observed excited states near the 28Si + α threshold energy that are considered to be candidates for
α-cluster excited bands with bandhead energies Ex = 6.6 and 7.9 MeV. To understand the α-cluster
excited states in 32S, theoretical studies are now required.

In the history of theoretical studies of cluster structures in the p-shell and sd-shell regions, multi-α
models using the Brink–Bloch α-cluster wave functions [55] have been applied to Z = N = even
nuclei. With the multi-α models, systematic calculations of three-dimensional α-cluster configura-
tions were performed from 16O to 44Ti [56]. For 28Si, the 7α-cluster model was used to discuss
the shape coexistence of the oblate and prolate states [57]. The multi-α model was also used for
20Ne to take into account the 16O core structure change in 16O+α cluster states in 20Ne [58].
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5

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on D

ecem
ber 21, 2016

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2016, 043D01 Y. Yoshida et al.

However, in these studies with the multi-α models, the constituent α clusters are assumed to be
the ideal 0s-closed configuration, and therefore the contribution of the spin–orbit interaction is
completely omitted even though it is significant in mid-shell nuclei. In other words, α clusters in
nuclei should be more or less broken from the ideal configuration to gain the spin–orbit interac-
tion. To take into account the α-cluster breaking and the contribution of the spin–orbit interaction,
an extension of cluster models has been done in the study of the 16O+α cluster states in 20Ne [59].
Cluster structures in sd-shell nuclei were also investigated by antisymmetrized molecular dynamics
(AMD) [5–7], in which the existence of clusters is not assumed but the formation and breaking of
cluster structures are automatically described in the model. In the AMD calculation for 28Si, the
oblately deformed state with a 7α-like configuration was obtained for the 28Si ground state consis-
tently with the 7α-cluster model calculation [57]; however, it was shown that the oblate ground state
is different from the ideal 7α configuration but it contains significant cluster breaking because of
the spin–orbit interaction [60]. In the systematic studies with AMD by Taniguchi et al., α-cluster
excited states were suggested in various sd-shell nuclei [61,62]. In these studies, the existence of
clusters is not assumed a priori, but core deformation and α-cluster breaking are taken into account
in the AMD framework. However, rotation of the core in the α-cluster excited states is not sufficiently
considered.

Our aim in this paper is to theoretically investigate the α-cluster excited states in 32S. The question
to be answered is whether the α-cluster band appears near the 28Si + α threshold energy. If this is
the case, we are going to predict its properties such as the bandhead energy, the level spacing (the
rotational constant), and the α-decay width. We also intend to clarify the core deformation and rota-
tion effects as well as the α-cluster breaking effect in the α-cluster excited states. In α-cluster excited
states in the sd-shell region, core deformation may occur, and the rotation of the deformed core could
play an important role. Moreover, an α cluster at the nuclear surface can be dissociated because of
the spin–orbit potential. To incorporate core deformation and rotation as well as α-cluster breaking,
we construct a new extended cluster model for the 28Si + α system by extending the conventional
cluster model, which relies on the inert cluster assumption. We apply the method and investigate the
properties of α-cluster excited states in 32S.

The contents of this paper are as follows. In Sect. 2, we explain the formulation of the extended
28Si + α-cluster model. We show the calculated results in Sect. 3, and discuss the 28Si core structure
and the α-cluster breaking effect in the α-cluster excited states in 32S in Sect. 4. Finally, a summary
and an outlook are given in Sect. 5.

2. Framework

To investigate α-cluster excited states in 32S, we construct the extended cluster model for the 28Si + α

system to take into account the 28Si core deformation and rotation, and α-cluster breaking. In this
section, we first explain the Brink–Bloch α-cluster model (a conventional cluster model), and then
we describe the formulation of the extended 28Si + α-cluster model.

2.1. Brink–Bloch α-cluster model

In the Brink–Bloch α-cluster model [63], a Z = N = 2n nucleus is composed of nα clusters. Each α

cluster is described by the (0s)4 harmonic oscillator (h.o.) configuration localized around a certain
position. The total nα-cluster wave function �nα of the A = 4n-body system is written by the
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following antisymmetrized single-particle wave functions:

�nα(R1, . . . , Rn) = A[�α(R1) · · ·�α(Rn)], (1)

�α(Ri ) = ϕ↑p(Ri )ϕ↓p(Ri )ϕ↑n(Ri )ϕ↓n(Ri ), (2)

ϕσ (Ri ) =
(

2ν

π

) 3
4

exp
[
−ν(r − Ri )

2
]
χσ τσ , (3)

where A is the antisymmetrizing operator for all nucleons, Ri is the center of the i th α-cluster
(i = 1, . . . , n), χσ and τσ are the spin and isospin parts of the single-particle wave function,
respectively, and ν is the width parameter.

2.2. Extended cluster model for α-cluster breaking

To describe α-cluster breaking due to the spin–orbit potential from a core, we apply the method
proposed by Itagaki et al. [59]. In this method, α-cluster breaking is incorporated by adding a spin-
dependent imaginary part to the Gaussian centers of the single-particle wave functions so as to gain
the spin–orbit potential:

�α′(R, λα) = A [
ϕ↑p(Z1)ϕ↓p(Z2)ϕ↑n(Z3)ϕ↓n(Z4)

]
, (4)

Z j = R + iλα

(espin, j ) × (R̂)√
ν

, (5)

where the parameter λα represents the degree of the α-cluster breaking, and espin, j is the unit vector
oriented to the intrinsic spin direction of the j th nucleon ( j = 1, . . . , 4). If λα is zero, this model
becomes the conventional (Brink–Bloch) cluster model and describes the intrinsic spin-saturated
state, where the expectation value of the spin–orbit potential vanishes. When λα is positive, spin-up
and spin-down nucleons in the α cluster obtain finite momenta with opposite directions so as to gain
the spin–orbit potential.

2.3. Extended cluster model for 28Si core

To describe the 28Si core structure, we adopt an extended 7α-cluster model where the parameter �c

for the cluster breaking is incorporated to take into account the spin–orbit interaction effect. The
present extended 7α-cluster model is based on the study of 28Si with the Brink–Bloch 7α-cluster
model [57] and that with the AMD method [60]. Bauhoff et al. used the 7α-cluster model with a
pentagon configuration [57], and succeeded in describing the oblate ground state and the K π = 5−

rotational band with the D5h symmetry of a pentagon configuration. The 7α-cluster model wave
function �7α forms a pentagon configuration as shown in Fig. 1(a), and is described as

�7α(d1, d2) = A
[
�α

(
1

2
d1ez

)
�α

(
−1

2
d1ez

) 5∏
k=1

R̂z

(
2π

5
k

)
�α(d2ex )

]
, (6)

where R̂z is the rotation operator around the z-axis, and d1 and d2 are the distance parameters for 7α

cluster positions.
The pentagon configuration of the 7α-cluster structure of 28Si has also been supported by the AMD

calculation where α clusters are not assumed a priori [60]. Differently from the Bauhoff’s 7α-cluster
model, the 28Si wave function obtained by AMD for the ground state is not the ideal 7α-cluster wave
function without the cluster breaking, but is a 28-body wave function with a pentagon configuration
of 7α clusters with cluster breaking.
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(a) (b)

Fig. 1. Schematic figures for spatial configurations of Gaussian centers. (a) The 7α-cluster configuration with
a pentagon shape for the 28Si core. (b) The configuration for the present 28Si + α cluster model.

Based on the AMD result for 28Si, we construct an extended 7α-cluster model for the 28Si core by
respecting the symmetry for the 2π/5 rotation as follows:

�28Si(d1, d2, �c) = A
[
�α

(
1

2
d1ez

)
�α

(
−1

2
d1ez

) 5∑
k=1

R̂z

(
2π

5
k

)
�α′ (d2ex , �c)

]
, (7)

�α′(d2ex , �c) = A[
ϕ↑y p(d2ex + id2�cez)ϕ↓y p(d2ex − id2�cez)

× ϕ↑yn(d2ex + id2�cez)ϕ↓yn(d2ex − id2�cez)
]
. (8)

Here, �α′(d2ex , �c) represents the wave function for a broken α cluster, where ↑y and ↓y are the
intrinsic spin of the y direction, and nucleon momenta take the z direction. �c is the parameter for
the cluster breaking in the 7α-cluster model for the 28Si core, and is called the 7α-cluster breaking
parameter in this paper. In the case of the d1 → 0 and d2 → 0 limit, this extended 7α-cluster model
wave function �28Si (d1 → 0, d2 → 0, �c) describes the 0d5/2 sub-shell closed configuration of the
j j-coupling shell model at �c = 1 and the oblately deformed state at �c = 0. Note that 5α clusters
in the 28Si core are broken α clusters written by the previously mentioned method for the α-cluster
breaking proposed by Itagaki et al. The concept of the present model for the 28Si core is similar to
that of an extended 3α cluster model for 12C proposed by Suhara et al. [64].

In the present calculation, the parameters, d1 and d2 for the positions of 7α-clusters are fixed to
be the optimized values (d1 = 0.20 fm, d2 = 0.27 fm) that give the minimum energy of 28Si in the
7α-cluster model without cluster breaking (�c = 0). Hereafter, we define the 28Si wave function
with fixed d1 and d2 values as �28Si(�c) ≡ �28Si(d1 = 0.20 fm, d2 = 0.27 fm, �c), parameterized
by �c.

2.4. Extended cluster model for the 28Si + α system

We construct the extended 28Si+α-cluster model to take into account the 28Si core deformation
and rotation, and the α-cluster breaking. We set the 28Si core and the α cluster at the inter-cluster
distance R, and perform the generator coordinate method (GCM) [65,66] by treating R as the gener-
ator coordinate. The α cluster is parameterized by the α-cluster breaking parameter λα , whereas the
28Si core is specified by the 7α-cluster breaking parameter �c, which changes the 28Si core defor-
mation from the oblate state to the spherical one. In addition to these parameters, R, λα , and �c, we
consider the angle parameter θ to specify the orientation of the oblately deformed 28Si core. We set
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the α cluster on the z-axis and define θ for the rotation of the 28Si core as shown in Fig. 1(b). When
θ = 0◦, the symmetric axis of the 28Si core corresponds to the z axis.

Then, the 28Si+α wave function of the extended 28Si+α-cluster model is written as

�28Si+α(R, θ, λα, �c) = A [
�α′

(7
8 Rez, λα

)
�28Si

(−1
8 Rez, θ, �c

)]
, (9)

�28Si(R, θ, �c) = T̂ (R)R̂y(θ)�28Si(�c), (10)

where T̂ (R) is the translation operator and R̂y(θ) is the rotation operator around the y-axis.
�28Si(R, θ, �c) expresses the extended 7α-cluster model �28Si(�c) rotated by the angle θ and shifted
by R. In the extended 28Si+α-cluster model, the width parameter is chosen to be ν = 0.16 fm−2 so
as to reproduce the 28Si radius with the sub-shell closed configuration.

2.5. Parity and total angular momentum projection

We project the 28Si+α wave function �28Si+α(R, θ, λα, �c) to the parity and total angular momentum
eigenstate,

�J±
28Si+α

(R, θ, λα, �c) = P̂ J
M K P̂±�28Si+α(R, θ, λα, �c), (11)

where P̂± and P̂ J
M K are the parity and the total angular momentum projection operators, respectively.

In the present paper, we only take the K = 0 component and omit K -mixing for simplicity.

2.6. Generator coordinate method (GCM)

To calculate the energy levels of α-cluster states in 32S, we perform the GCM calculation by
superposing the 28Si + α wave function,


J±

n
28Si+α

=
∑

i

c(n)
i �J±

28Si+α
(Ri , θi , λα = 0, �ci ), (12)

where the coefficients c(n)
i are determined by diagonalizing the norm and Hamiltonian matrices.

For the inter-cluster distance R, we superpose the wave functions with R = 1, 2, . . . , 10 fm. For the
7α-cluster breaking parameter �c of the 28Si core, we take two points, �c = 0.38 and 0.80, which
correspond to oblate and spherical local minimum states of the intrinsic energy of the 28Si core, as
described later. For the rotation angle θ of the 28Si core, we take θ = 0◦, 30◦, 60◦, 90◦ for the oblate
core (�c = 0.38) and take θ = 0◦ for the spherical core (�c = 0.80).

In the present GCM calculation, we omit the α-cluster breaking and fix λα = 0. More details of the
choice of the parameters are described later. We call the calculation with the full diagonalization of
the norm and Hamiltonian matrices in the above-mentioned basis wave functions with the parameters
(Ri , θi , �ci ) the “full-GCM” calculation.

2.7. Frozen core GCM

In the asymptotic region at a large inter-cluster distance R, the 28Si core in the lowest 28Si + α

channel should be the ground state of an isolate 28Si: 28Si(0+
g.s.). We also perform the GCM calcu-

lation for the 28Si(0+
g.s.) + α within the frozen core approximation and compare the result with the

previously explained full GCM calculation. We call this calculation the “frozen core GCM.” In the
present work, we express the frozen core wave function by a linear combination of the projected
28Si(0+

g.s.) + α wave functions as follows.
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Let us first consider the adiabatic picture where the 28Si configuration is optimized at each state of
a given inter-cluster distance R. We define the R-fixed 28Si + α wave function as

�J±
28Si′+α

(R) = P̂ J
M K P̂±A

[
�α

(
7

8
R, λα

) ∑
k

ak(R)�28Si

(
−1

8
R, θk, �ck

)]
, (13)

where parameters (θk, �ck) = (0◦, 0.38), (30◦, 0.38), (60◦, 0.38), (90◦, 0.38), and (0◦, 0.80) are
taken. Here, the coefficients ak(R) are determined by diagonalizing the norm and Hamiltonian
matrices for each inter-cluster distance R. By taking a large enough inter-cluster distance Rmax,
we determine the coefficients ak(Rmax) in the asymptotic region, which approximately express the
ground state configuration of the 28Si core. We take Rmax = 10 fm in this paper.

Next, using the coefficients ak(Rmax) determined at Rmax, we define the R-fixed 28Si(0+
g.s.)+α wave

function with the frozen core (the R-fixed frozen core wave function):

�J±
28Si(0+

g.s.)+α
(R) = P̂ J

M K P̂±A
[
�α

(
7

8
R, λα

)∑
k

ak(Rmax)�28Si

(
−1

8
R, θk, �ck

)]
. (14)

Then, we perform the frozen core GCM calculation, that is, the GCM calculation of the
28Si(0+

g.s.) + α cluster model, by superposing the 28Si(0+
g.s.)+α wave functions with different dis-

tances:


J±

n
28Si(0+

g.s.)+α
=

∑
i

b(n)
i �J±

28Si(0+
g.s.)+α

(Ri ), (15)

where the coefficients b(n)
k are determined by diagonalizing the norm and Hamiltonian matrices.

2.8. 28Si(0+
g.s.) + α amplitudes in 32S wave functions

In order to analyze the α-cluster motion in 32S states obtained by the full-GCM and the frozen
core GCM calculations, we calculate the overlap between the 32S wave functions with the R-fixed
28Si(0+

g.s.)+α wave function to evaluate the α-cluster component at R:

f
J±

n
28Si+α

(R) =
∣∣∣〈�J±

28Si(0+
g.s.)+α

(R)| J±
n

28Si+α

〉∣∣∣, (16)

f
J±

n
28Si(0+

g.s.)+α
(R) =

∣∣∣∣
〈
�J±

28Si(0+
g.s.)+α

(R)| J±
n

28Si(0+
g.s.)+α

〉∣∣∣∣. (17)

2.9. Hamiltonian

The Hamiltonian operator (Ĥ ) is

Ĥ = T̂ + V̂nuclear + V̂coulomb − T̂G, (18)

V̂nuclear = V̂c + V̂L S, (19)

where T̂ is the kinetic energy and T̂G is the energy of the center-of-mass motion. As for the effective
nuclear force V̂nuclear, Volkov No.2 [67] is adopted as the central force V̂c and the two-range Gaussian
form of the spin–orbit term in the G3SR force [68] is used as the spin–orbit force V̂L S .

The form of Volkov No.2 is given as

V̂c =
A∑

i< j

2∑
k=1

vk exp

[
−

(
r̂i j

ak

)2
]

(W − M Pστ ), (20)

where v1 = −60.65 MeV, v2 = 61.14 MeV, a1 = 1.80 fm, and a2 = 1.01 fm. M is the Majorana
parameter, which is adjustable. In the present paper, we use M = 0.67. With the Volkov force,
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reproductions of the binding energy of 32S and the α-separation energy (28Si + α threshold) are not
satisfactory. We also use other M values of the Volkov force to discuss the interaction dependence
of the calculated results.

The spin–orbit force is given as

V̂L S =
A∑

i< j

2∑
k=1

uk exp

[
−

(
r̂i j

bk

)2
]

P(3O) L̂ · Ŝ, (21)

(3O) = 1 + Pσ

2

1 + Pτ

2
, (22)

where b1 = 0.477 fm, b2 = 0.600 fm, and P(3O) is the triplet-odd projection operator. We use the
strength parameters u1 = 2000 MeV and u2 = −2000 MeV, which are the same as those used in
Ref. [59] for the 16O + α system. The two-body Coulomb force in V̂coulomb is approximated by seven
Gaussians.

3. Results

3.1. 28Si core structure in 28Si+α system

To discuss the effects of the 7α-cluster breaking in the 28Si core because of the spin–orbit interaction,
we show, in Fig. 2, the �c dependence of the energy of an isolate 28Si state before and after the parity
and total angular momentum projection,

E28Si(�c) =
〈
�28Si(�c)|Ĥ |�28Si(�c)

〉
〈
�28Si(�c)|�28Si(�c)

〉 , (23)

E0+
28Si(�c) =

〈
�0+

28Si
(�c)|Ĥ |�0+

28Si
(�c)

〉
〈
�0+

28Si
(�c)|�0+

28Si
(�c)

〉 , (24)

�0+
28Si(�c) = P̂ J=0

M K=0 P̂+�28Si(�c). (25)

In the �c = 0.3–1.0 region, the 28Si system gains much of the spin–orbit interaction energy from
the 7α-cluster breaking. In the energy curve of E28Si before the parity and total angular momentum
projection, there exist two energy minima at �c = 0.38 and �c = 0.80, though the energy almost
degenerates in this region. We call these two minima of 28Si the “oblate-type (�c = 0.38)” and
“spherical-type (�c = 0.80)” states. Here, the oblate-type state is different from the �c = 0 state
that is the ideal state with the (200)4(110)4(020)4 configuration in terms of the (nx , ny, nz) notation
of the h.o. shell-model basis in the sd shell. The energy of the oblate-type state at �c = 0.38 is about
18 MeV lower due to the 7α-cluster breaking than that of the �c = 0 state having no contribution
of the spin–orbit interaction. This result supports the AMD calculation of 28Si [60] and indicates
that the present method of the extended 7α-cluster model is suitable to incorporate the significant
energy gain of 28Si with the 7α-cluster breaking in the oblately deformed 28Si. In the 0+ projected
28Si energy, it is found that the oblate-type (�c = 0.38) state gains further energy because of the
restoration of the rotational symmetry. The present result for the 28Si core indicates that the rotation
of the oblately deformed state can be an important degree of freedom of the 28Si core structure in
the 28Si + α system as well as the 7α-cluster breaking due to the spin–orbit interaction.

Next, we discuss how the 28Si core structure in the 28Si + α system is affected by the existence of
an α cluster. The α cluster at the surface of the 28Si core may affect the feature of the 28Si core because
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Fig. 3. Energy expectation value of 28Si + α system (E+
28Si+α

(R, θ = 0◦, λα = 0,�c)) as a function of the
inter-cluster distance R. The parameter �c for the 28Si core structure is fixed to be �c = 0.38 (oblate type:
solid) and �c = 0.80 (spherical type: dashed).

of the nuclear and Coulomb interactions and also the Pauli blocking effect. To discuss features of
the 28Si core with an α cluster at a certain distance R from the core, we fix the parameter λα = 0
to assume an α cluster without the breaking, and consider the 7α-breaking in the 28Si core and also
the orientation of the oblate-type 28Si core in the 28Si + α system. Namely, we analyze the energy
expectation value of the parity-projected state before the total angular momentum projection,

E+
28Si+α

(R, θ, λα, �c) =
〈
�+

28Si+α
(R, θ, λα, �c)|Ĥ |�+

28Si+α
(R, θ, λα, �c)

〉
〈
�+

28Si+α
(R, θ, λα, �c)|�+

28Si+α
(R, θ, λα, �c)

〉 , (26)

�+
28Si+α

(R, θ, λα, �c) = P̂+�28Si+α(R, θ, λα, �c), (27)

with λα = 0.
Figure 3 shows the 28Si + α energies for the oblate-type 28Si core (�c = 0.38) and the spherical-

type 28Si core (�c = 0.80) set at the orientation θ = 0◦. The energies are plotted as functions of

8/22

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on D

ecem
ber 21, 2016

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2016, 043D01 Y. Yoshida et al.

–195

–190

–185

–180

–175

–170

 1  2  3  4  5  6  7  8  9  10

E
ne

rg
y 

ex
pe

ct
at

io
n 

va
lu

e 
(M

eV
)

R (fm)

θ  = 0°
θ  = 90°

Fig. 4. Energy expectation value of 28Si + α system (E+
28Si+α

(R, θ, λα = 0,�c = 0.38)) as a function of the
inter-cluster distance R. The rotation angle θ of the oblate core is fixed to be θ = 0◦ (solid) and θ = 90◦

(dashed).

the inter-cluster distance R. It is found that, in the R = 8 fm region, the energies of the two cases
(�c = 0.38 and 0.80) almost degenerate as expected from the energy degeneracy in the isolate 28Si.
In the 2 < R < 5 fm region, the energy for the oblate core is lower than that for the spherical core,
indicating that, when an α cluster exists at the surface, the oblate-type 28Si core is energetically
favored over the spherical type because of the smaller overlap, i.e., the weaker Pauli blocking of
nucleons between the α cluster and the core for the oblate core at θ = 0◦, than in the spherical core
case.

To see the θ dependence of the 28Si + α energy, we plot the energy expectation value
E+

28Si+α
(R, θ, λα = 0, �c = 0.38) of the oblate-type 28Si core oriented at θ = 0◦ and 90◦ in Fig. 4.

In the small-R region (R < 5 fm), the θ = 0◦-oriented core is favored because of the weaker Pauli
blocking than the θ = 90◦-oriented core. On the other hand, the energy does not depend on the core
orientation in the large-R region, in which the rotational symmetry of the 28Si core is restored. In
the 6 < R < 8 fm region around the barrier, the θ = 90◦-oriented core gains slightly larger potential
energy than the θ = 0◦ core, but the energy difference is minor.

3.2. α-cluster breaking

We analyze the λα dependence of the energy expectation value of the 28Si + α system to see
the α-cluster breaking effect on the 28Si + α system. Figure 5 shows the energy E28Si+α(R,

θ = 0◦, λα, �c = 0.38) with the α-cluster breaking, namely, λα , optimized at each distance R, com-
pared with the energy for λα = 0 without the α-cluster breaking. The energy gain by the α-cluster
breaking is very small, except for the R < 3 fm region. This result indicates that the α-cluster break-
ing in the 28Si + α system is minor in the α-cluster excited states having large amplitudes of the α

cluster at the surface region (4 < R < 6 fm). Therefore, we ignore the α-cluster breaking effect in
the GCM calculation discussed in the next subsection for simplicity.

In the R < 2 fm region, the finite λα gives some energy gain to the 28Si + α system, but it is not
appropriate to regard it as the α-cluster breaking because the α-cluster gets into in the inner region of
the core and the 28Si + α picture breaks down in this region. More details of the α-cluster breaking
in the 28Si + α system are discussed later.
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Fig. 5. Energy expectation value of 28Si + α system (E+
28Si+α

(R, θ = 0◦, λα,�c = 0.38)) for the optimized
λα as a function of the inter-cluster distance R (dashed). The energy for λα = 0 is also shown for comparison
(solid).
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Fig. 6. The energy levels of 32S obtained by the full-GCM calculation. The energies are measured from the
28Si + α threshold. The dashed line indicates the members of the α-cluster band.

3.3. GCM calculation

We superpose 28Si + α wave functions and obtain the ground and excited states of 32S with the
full-GCM calculation described in Sect. 2.6.

The calculated value of the 32S binding energy is 205.71 MeV, which underestimates the experi-
mental binding energy (271.78 MeV), whereas that of the α-separation energy is 13.8 MeV, which
overestimates the experimental value (6.95 MeV). We can adjust the interaction parameter M of the
Volkov force to reproduce either the binding energy or the α-separation energy, but it is difficult to
reproduce both data within the present two-body effective interaction. At the end of this section,
we show energy levels calculated by using modified interaction parameters to see the interaction
dependence of the result.

Figure 6 shows the energy levels 32S obtained by the full-GCM calculation with the default inter-
action parameters. Energies measured from the 28Si + α threshold energy are plotted as functions
of J (J + 1). In the energy region near the 28Si + α threshold, we obtain J± = 0+, 2+, 4+, and 6+

states having a remarkably developed α-cluster structure. We assign these states as α-cluster excited
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Fig. 7. The overlap f
J+

n
28Si+α

(R) for the α-cluster excited states with J± = 0+, 2+, 4+, and 6+ (filled circles).
The overlap for the ground state is also shown by filled squares in the upper left panel.

states belonging to an α-cluster band. In Fig. 6, the corresponding α-cluster excited states are shown
by circles connected by dashed lines. The bandhead 0+ state starts from Er = 1.58 MeV above the
28Si + α threshold, and the rotational energy approximately follows the expression of the rigid rotor
model:

Erot = �
2

2J J (J + 1), (28)

with the rotational constant k = �
2/2J = 145 keV up to the 6+ state. We do not obtain an α-cluster

excited state with J± = 8+. We also obtain other excited states lower than the α-cluster excited states,
but their energies change with the increase in the number of bases and we cannot obtain converged
energies. This means that the present model space of the extended 28Si + α cluster model is not
sufficient to describe non-cluster states of 32S in the low-energy region. On the other hand, we obtain
good convergence for the energies of the ground state and the α-cluster excited states with respect
to the increase of the number of bases.

We show the overlap f
J±

n
28Si+α

(R) defined in Eq. (16) between the full-GCM wave function


J±

n
28Si+α

and the R-fixed frozen core wave function �J±
28Si(0+

g.s.)+α
(R) for the α-cluster excited states

(J± = 0+, 2+, 4+, 6+) in Fig. 7. We also show the overlap for the ground state. The overlap

f
J±

n
28Si+α

(R) indicates the α-cluster amplitude at R in the L = J orbit around the 28Si ground state.
It is found that the ground state has no developed α cluster in the large-R region. In contrast to the
ground state, the α-cluster excited states show the developed α-cluster in the large-R region: the 0+,
2+, and 4+ states have large amplitudes in the R ∼ 5 fm region, whereas the 6+ state has a peak at
R = 4 fm with a long tail in the large-R region.
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Table 1. The reduced α-decay widths θ2
α(a) at the channel radii a = 6 and a = 7 fm and the partial α-decay

widths �α for the 28Si(0+
g.s.) + α channel in the L = J -wave. The results calculated with M = 0.67 are shown.

The α-decay energies used in the calculation of �α are the calculated values starting from Er = 1.6 MeV, and
those shifted by 2.3 MeV to adjust the bandhead energy to the experimental value Er = 3.9 MeV reported in
Ref. [53].

Calculate (M = 0.67) Shifted

�α(a) (MeV) θ2
α(a) �α(a) (MeV)

State Er (MeV) Er (MeV)
J± Cal. a = 6 a = 7 a = 6 a = 7 Shifted a = 6 a = 7

0+ 1.6 9.9×10−8 2.3×10−7 0.32 0.16 3.9 0.033 0.039
2+ 2.4 2.3×10−5 5.3×10−5 0.30 0.16 4.7 0.060 0.068
4+ 4.6 0.0062 0.014 0.29 0.17 6.9 0.17 0.19
6+ 7.6 0.039 0.098 0.26 0.20 9.9 0.23 0.34

We estimate the α-decay widths of the α-cluster excited states using the overlap f
J±

n
28Si+α

(R) defined
in Eq. (16) with the approximation method in Ref. [69]. Following the method in Ref. [69], the
(dimensionless) reduced α width θ2

α(a) at the channel radius a is approximately evaluated by the
overlap as

θ2
α(a) ≈ a

3

√
γ

2π

(
f

J±
n

28Si+α
(a)

)2
, (29)

γ = A1 A2

A
ν, (30)

where A, A1, and A2 are the mass numbers of 32S, 28Si, and the α cluster, respectively. Using θ2
α(a),

we calculated the partial α-decay width �α of the 28Si(0+
g.s.) + α channel in the L-wave (L = J ) as

�α = 2PL(a)θ2
α(a)γ 2

w(a), (31)

PL(a) = ka

F2
L(ka) + G2

L(ka)
, (32)

where FL and GL are the regular and irregular Coulomb functions, respectively, γ 2
w is the Wigner

limit of the reduced α-width γ 2
w = 3�

2/2μa2, μ is the reduced mass, and k = √
2μEr/�. The

calculated θ2
α(a) and �α of the α-cluster band in 32S are shown in Table 1. At a = 6 fm, the reduced

α widths are significant as θ2
α(a) = 0.26 ∼ 0.32 reflecting the spatially developed cluster structure

in this band. For the α-decay widths, we calculate �α in two cases of the bandhead energy consid-
ering the ambiguity of the predicted bandhead energy because the α-decay width is quite sensitive
to the α-decay energy. In the first case, we use the energies obtained in the present calculation, in
which the bandhead energy is Er = 1.6 MeV. In the second case, we shift the energies by 2.3 MeV by
hand to adjust the bandhead energy to the experimental value Er = 3.9 MeV reported by Lönnroth
et al. [53].

Let us discuss the comparison with the experimental reports of the α-cluster excited states. In the
experiment of elastic 28Si + α scattering, Lönnroth et al. reported the α-cluster excited band starting
from the bandhead energy Er = 3.9 ± 0.5 MeV measured from the 28Si + α threshold [53]. They
evaluated the rotational constant k = 122 ∼ 152 keV from the averaged energies of the fragmented
states. In the experiment of α inelastic scattering on 32S, Itoh et al. suggested candidates for two
α-cluster excited bands at bandhead energies Er = −0.4 MeV and Er = 0.9 MeV with the rota-
tional constants k = 125 keV and k = 234 keV, respectively [54]. The calculated bandhead energy

12/22

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on D

ecem
ber 21, 2016

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2016, 043D01 Y. Yoshida et al.

–5

 0

 5

 10

 15

 0  10  20  30  40  50

E
ne

rg
y 

(M
eV

)

J (J + 1)

M = 0.69
M = 0.67
M = 0.65

Fig. 8. The energy levels of the α-cluster band in 32S obtained by the full-GCM calculation using M = 0.69,
0.67, and 0.65. The energies measured from the 28Si + α threshold are plotted.

Er = 1.58 MeV obtained with M = 0.67 is an intermediate value between those experimental
reports. The rotational constant k = 145 keV in the present result is within the range of the data
reported by Lönnroth et al. [53], whereas it is slightly larger than the value k = 125 keV for the band
at Er = −0.4 MeV reported by Itoh et al. Although the α-cluster excited states observed by Lön-
nroth et al. are fragmented, the fragmentation of the α-cluster band is not found in the present result,
because the present model space may be insufficient to describe the fragmentation.

As mentioned previously, it is difficult to reproduce experimental data of both the binding energy
(271.8 MeV) and the α-separation energy (6.95 MeV) of 32S with the present effective interaction,
and therefore we cannot quantitatively predict the energy positions of excited states. We discuss here
the interaction parameter dependence of the energy position of the α-cluster excited band. We modify
the Majorana parameter M in the Volkov No.2 force from M = 0.67 to M = 0.69, which reproduces
the α-separation energy (6.41 MeV) but underestimates the binding energy of 32S (172.2 MeV).
We also use M = 0.65, which gives the binding energy of 239.8 MeV and α-separation energy of
21.74 MeV. In Fig. 8, we show energy levels of the α-cluster excited band obtained with M = 0.69,
0.67, and 0.65. The bandhead energy Er = 4.25 MeV and the rotational constant k = 149 keV are
obtained with M = 0.69, and Er = −2.68 MeV and k = 146 keV are obtained with M = 0.65.
The bandhead energy depends on the interaction parameter and ranges from Er = −2.68 MeV
to Er = 4.25 MeV with these M values. In contrast to the strong interaction dependence of the
bandhead energy, the rotational constant is not sensitive to the interaction parameter in the present
calculation. Although it is difficult to quantitatively predict the bandhead energy in the present cal-
culation, we can say that the α-cluster excited states appear near the 28Si+α threshold and construct
the rotational band up to the Jπ = 6+ state with the rotational constant k = 140–150 keV.

4. Discussion

4.1. Core rotation and shape-mixing effects

In the full-GCM calculation, we take into account the core rotation and the oblate-spherical mixing
as well as the inter-cluster motion by superposing the parity and total angular momentum projected
28Si+α wave functions with R, θ , and �c. For the inter-cluster distance, R = 1, 2, . . . , 10 fm are
used. For the rotation angle of the 28Si core, θ = 0◦, 30◦, 60◦, 90◦ are used for the oblate core
(�c = 0.38), and θ is fixed to be θ = 0◦ for the spherical core (�c = 0.80). Here, we perform
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Fig. 9. The energy levels of 32S obtained by the �c = 0.38 and θ = 0◦ fixed GCM calculation (filled trian-
gle) and the �c = 0.38 fixed GCM calculation (open triangle). The energies are measured from the 28Si + α

threshold (solid line), and the 28Si(�c = 0.38) + α threshold is plotted by the dotted line. The α-cluster bands
are connected by dashed lines.

GCM calculations with reduced basis wave functions to discuss how the core rotation and the
oblate-spherical mixing affect the α-cluster excited states.

We discuss the core rotation effect on the energy spectra. In Fig. 9, we compare the energy spectra
obtained by the GCM calculations of the oblate core with and without the core rotation. The for-
mer is calculated by superposing 28Si+α wave functions with R = 1, . . . , 10 fm for the �c = 0.38
core at θ = (0◦, 30◦, 60◦, 90◦), and the latter is calculated by those with R = 1, . . . , 10 fm for the
�c = 0.38 core at the fixed angle θ = 0◦. The mixing of the spherical core (�c = 0.80) is omitted
in this analysis for simplicity. As the result, the energy reduction by the core rotation is remarkable
for the α-cluster excited states. The band energy is reduced by about 5 MeV, which is almost consis-
tent with the 4.4 MeV reduction of the 28Si(�c = 0.38) + α threshold caused by the 0+ projection
of 28Si. This indicates that, in the α-cluster excited states, the α cluster spatially develops and does
not disturb the oblate core rotation.

In Fig. 10, we show the energy spectra obtained by the GCM calculation with full base wave
functions and that without the spherical core (�c = 0.80) wave functions to see the effect of the
oblate-spherical mixing. The result shows that the spherical core mixing effect is minor.

4.2. Analysis in the weak coupling picture: frozen core GCM calculation

In the asymptotic region at a large inter-cluster distance R, the 28Si core should be the ground state
of the isolate 28Si(0+

g.s.). As discussed previously, the α-cluster excited states contain dominantly
the 28Si(0+

g.s.)+α component. Therefore, it is expected that the frozen core GCM calculation with
the inert 28Si(0+

g.s.) core assumption can be a leading-order approximation, at least for the α-cluster
excited states. The frozen core GCM calculation is the extreme case of the weak coupling and it is
different from the adiabatic picture of the strong coupling. In the previous section, we start from
the strong coupling picture, in which the deformed 28Si core is located at a fixed orientation, and
then consider the rotation and shape mixing effects on the α-cluster excited states obtained by the
full GCM calculation. In this section, we discuss the features of the α-cluster excited states from the
weak coupling picture. Namely, we start from the frozen core 28Si(0+

g.s.)+α states, and then consider
the effect of the core excitations, in particular, the rotational excitation from 28Si(0+

g.s.). Note that the
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Fig. 10. The energy levels of 32S obtained by the �c = 0.38 fixed GCM calculation and full-GCM calculation
(filled circle). The energies are measured from the 28Si + α threshold (solid line). The α-cluster bands are
connected by dashed lines.

core excitations taken into account in the present model are the rotational excitation such as 28Si(2+)

and also the change of the oblate-spherical mixing (shape mixing) from 28Si(0+
g.s.).

After comparing the properties of the R-fixed 28Si+α wave function between the optimized
28Si core and the inert 28Si(0+

g.s.) core cases, we compare the result of the frozen core GCM calcu-
lation with that of the full GCM calculation containing the rotational and shape-mixing excitations
from the 28Si(0+

g.s.) core.
For a certain inter-cluster distance R, we define the R-fixed frozen core wave function

�J±
28Si(0+

g.s.)+α
(R) in Eq. (14), and also the R-fixed 28Si + α wave function �J±

28Si′+α
(R) in Eq. (13),

where the 28Si core wave function is optimized so as to minimize the energy expectation value of the
R-fixed 28Si + α wave function. Here we consider 0+ projected wave functions. In the asymptotic
region at a large inter-cluster distance R, �J±

28Si′+α
(R) is equal to �J±

28Si(0+
g.s.)+α

(R). On the other hand

�J±
28Si′+α

(R) may deviate from �J±
28Si(0+

g.s.)+α
(R) in the short inter-cluster distance region in which

the core excitation from 28Si(0+
g.s.) occurs because of the existence of the α cluster to gain the total

energy.
We plot the energy expectation values of the R-fixed frozen core wave function and the R-fixed

28Si + α wave function in Fig. 11. In Fig. 12, we show the overlap between the R-fixed 28Si + α

wave function and the frozen core wave function,

f (R) =
∣∣∣〈�0+

28Si(0+
g.s.)+α

(R)|�0+
28Si′+α

(R)
〉∣∣∣, (33)

which is reduced from 1 by the core excitation. It is found that the core excitation from 28Si(0+
g.s.)

occurs in the R < 6 fm region and it reduces the energy of the total system 32S in R ≤ 5 fm.
These results indicate that the R > 6 fm region is understood as the ideal weak coupling regime
of 28Si(0+

g.s.)+α, whereas the rotational and shape-mixing excitations of the 28Si core occur in the
R < 6 fm region.

Next, we compare the frozen core GCM calculation given by Eq. (15) with the full-GCM calcula-
tion to see the core excitation effects, in particular on the α-cluster band. Figure 13 shows the energy
spectra obtained by the full-GCM and the frozen core GCM calculations. The energy of the ground
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Fig. 11. Energy expectation values of the R-fixed 28Si + α system and the R-fixed 28Si(0+
g.s.) + α system are

plotted. The solid line is the 28Si + α system and the dashed line is the 28Si(0+
g.s.) + α system.
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Fig. 12. The wave function overlap f (R) between the R-fixed 28Si + α system and the R-fixed 28Si(0+
g.s.) + α

system defined in Eq. (33).

state decreases by about 1 MeV from the frozen core GCM to the full-GCM calculation. The energy
of the α-cluster band also shifts down slightly because of the core excitation effect.

In Fig. 14, we compare the overlap f
J±

n
28Si(0+

g.s.)+α
(R) (Eq. 17) for the frozen core GCM and

f
J±

n
28Si+α

(R) (Eq. 16) for the full-GCM. Compared with the α-cluster amplitudes for the frozen core
GCM calculation, those in the full-GCM calculation tend to be slightly suppressed in the outer region
(R ≥ 5 fm). This indicates that the α cluster is attracted toward the inner region because of the 28Si
core excitation such as deformation and rotation, which gives additional attraction in the R < 5 fm
region as discussed previously. In other words, the core excitation plays a role to stabilize the α-cluster
excited states.

4.3. α-cluster breaking at the nuclear surface

As mentioned in Sect. 3.2, the α-cluster breaking around the 28Si core is minor in the surface region.
We discuss here details of the α-cluster breaking around the 28Si core in the 28Si+α system in com-
parison with that around the 16O core in the 16O+α system to clarify the core dependence of the
α-cluster breaking.
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Fig. 13. The energy levels of 32S obtained by the frozen core GCM calculation (open circle) and the full-GCM
calculation (filled circle). The energies are measured from the 28Si + α threshold (solid line). The α-cluster
bands are connected by dashed lines.
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We perform a similar analysis of the α-cluster breaking for the 16O+α system by using the following
16O+α model wave function:

�16O+α(R, λα) = A [
�α′

(4
5 Rez, λα

)
�16O

(−1
5 Rez

)]
, (34)

�16O(R) = T̂ (R)�16O, (35)
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Fig. 15. Energy expectation value of the 16O + α system for the optimized λα as a function of the inter-cluster
distance R (dashed line). The energy for λα = 0 is also shown for comparison (solid line).

where the 16O core wave function �16O is written by a tetrahedron formed by 4α-clusters with α–α

distance 0.5 fm, which is almost equivalent to the double closed p-shell configuration. The width
parameter is taken to be ν = 0.195 fm−2. λα is optimized to minimize the energy expectation value
of the parity-projected 16O + α wave function,

E+
16O+α

(R, λα) =
〈
P+�16O+α(R, λα)|Ĥ |P+�16O+α(R, λα)

〉
〈
P+�16O+α(R, λα)|P+�16O+α(R, λα)

〉 . (36)

Figure 15 shows the energy of the R-fixed 16O+α wave function with the optimized λα (with the
α-cluster breaking) and that with the fixed λα = 0 (without the α-cluster breaking). As discussed
previously, for the 28Si core case, the energy reduction by the α-cluster breaking is found only in the
very short distance region (see Fig. 5), whereas there is almost no energy reduction in the R ≥ 3 fm
region where the α-cluster excited states have the α-cluster amplitudes. Differently from the 28Si+α

system, in the 16O + α system the significant energy reduction by the α-cluster breaking is found in a
relatively wide R region. This energy reduction by the α-cluster breaking shifts the energy minimum
position to the short distance region, and it may have a significant effect on the α-cluster structure
in the ground band of 20Ne, as discussed in Ref. [59]. In Fig. 16, we show the energy reduction by the
α breaking, i.e., the energy difference between the optimized λα and the fixed λα = 0 cases for the
16O + α and 28Si + α (�c = 0.38) systems. We also show the energy reduction for the spherical
28Si core (�c = 0.80) case. It is found that the energy reduction of the 28Si+α (�c = 0.38) system is
about half of that of the 16O + α system in the R = 2–3 fm region, and that of the 28Si+α (�c = 0.80)
system is quite small. Thus the α-cluster breaking gives energetically less important effects for the
28Si+α system than the 16O + α system.

In Fig. 17, we compare the optimized values of the α-breaking parameter λα for each system. In
both the cases of the oblate and spherical 28Si cores, the λα of the 28Si + α system is smaller than
that of the 16O + α system, at least in the R < 4 fm region. This indicates that, compared with the
16O + α system, the α-cluster breaking is relatively suppressed in 28Si + α, in particular for the case
of the spherical-type 28Si core (�c = 0.80).

The α-cluster breaking at the nuclear surface is caused mainly by the spin–orbit potential from
the core nucleus, and therefore it is naively expected that the α-cluster breaking is likely to occur in
heavier-core systems because of the stronger core potential than light-core systems. The present result
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is opposite to this expectation. The reason is understood by the Pauli blocking effect from the 28Si
core as follows. In general, in the α-cluster breaking mechanism at the nuclear surface, four nucleons
in the broken α cluster favor occupying the ls-favored orbits to gain the spin–orbit potential from the
core rather than forming the ideal (0s)4 α-cluster. However, in the 28Si + α system, the ls-favored
0d5/2 orbits are occupied by nucleons in the 28Si core, which block the α-cluster breaking. The 0d5/2

orbits are fully blocked in the j j-coupling limit �c = 1 for the sub-shell 0d5/2-closed 28Si core. Even
though the 28Si core in the 28Si+α system is not in this limit, it has a finite �c and partially blocks
the 0d5/2 orbits. This picture can describe the suppression of the α-cluster breaking at the surface of
the 28Si core compared with that of the 16O core where 0d5/2 orbits are empty, and also the larger
suppression for the spherical-type (�c = 0.80) 28Si than that for the oblate-type (�c = 0.38) 28Si
core.

5. Conclusion

We investigated the α-cluster excited states in 32S. We proposed an extended model of the 28Si+α

cluster model by taking into account the 28Si core deformation and rotation as well as the α-cluster
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breaking. The 28Si core is described by the extended 7α-cluster model with the cluster breaking due
to the spin–orbit interaction.

Applying the extended 28Si+α cluster model, we performed the GCM calculation and obtain the
α-cluster excited states near the 28Si+α threshold energy. These states construct the rotational band
up to the 6+ state with the rotational constant k = 140–150 keV. We cannot quantitatively predict the
bandhead energy because of the ambiguity of the interaction parameters. The α-cluster excited band
obtained in the present work may correspond to one of the experimentally reported bands [53,54]. The
calculated rotational constant agrees reasonably with the value of the experimental band reported in
Ref. [53]. Although the fragmentation of the α-cluster excited states was observed in the experiment
of Ref. [53], no fragmentation is found in the present calculation, maybe because of the insufficient
model space.

From the point of view of the strong coupling picture, we discussed the 28Si core deformation
and rotation effects as well as the α-cluster breaking effects in the α-cluster excited states. It is
found that the rotation of the oblately deformed 28Si core significantly reduces the excitation ener-
gies of the α-cluster excited states, whereas the α-cluster breaking gives only a minor effect. We
also analyzed the feature of the α-cluster excited band from the weak coupling picture using the
frozen core 28Si(0+

g.s.) + α wave functions. The α-cluster excited states are found to have dominant
28Si(0+

g.s.) + α components. The dimensionless reduced α widths estimated by the 28Si(0+
g.s.) + α

components are significantly large as θ2
α(a) = 0.26–0.32 at a = 6 fm. We evaluated the partial

α-decay widths from the calculated values of θ2
α(a). We also compared the result of the frozen core

GCM calculation with that of the full GCM calculation, and found that the rotational excitation from
28Si(0+

g.s.) plays a role in stabilizing the α-cluster excited states.
The present model is the extended 28Si+α cluster model, in which cluster breaking due to the

spin–orbit interaction and also the rotation of the deformed core are taken into account. The cluster
breaking effect of the 28Si core part gives a large energy reduction (18 MeV) of the isolate 28Si from
the 7α-cluster model without the cluster breaking. This is an advantage over conventional cluster
models using the Brink–Bloch α-cluster model. Moreover, the rotation effect of the deformed core
in 32S gives about a 5 MeV reduction of the α-cluster band energy from that obtained with the fixed
core orientation. This indicates the importance of the angular momentum projection of the subsystem
in the α-cluster excited states having the deformed core.
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