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1. Introduction

The hemisphere jet mass distribution is an event shape variable 
in e+e−-annihilation defined as the distribution of invariant mass 
in a single hemisphere whose axis coincides with the thrust axis. 
As is usually the case with all event shapes, it receives logarithmi-
cally enhanced perturbative corrections when the shape variable 
becomes small. However, unlike other event shapes for which sys-
tematic resummation methods are available (see [1,2] and refer-
ences therein), the resummation of logarithms for the hemisphere 
jet mass distribution has turned out to be thorny and so far re-
mained unsatisfactory even at the leading logarithmic level. This 
is due to the presence of the so-called nonglobal logarithms [3]
which arise from the energy-ordered radiation of soft gluons in a 
restricted region of phase space.

The difficulty of resumming nonglobal logarithms stems from 
the fact that one has to keep track of the distribution of an ar-
bitrary number of secondary soft gluons emitted at large angle. 
(For a recent review, see [4].) The original work by Dasgupta and 
Salam [3] employed a Monte Carlo algorithm, valid to leading log-
arithmic accuracy and in the large-Nc approximation, to actually 
generate soft gluon cascades on a computer. Later, Banfi, March-
esini and Smye (BMS) [5] reduced the problem, still at large-Nc , 
to solving a nonlinear integro-differential equation. This latter ap-
proach paved the way for the inclusion of the finite-Nc correc-
tions in the resummation [6] which has been recently put on a 
firmer ground [7], and the first quantitative finite-Nc result can 
be found in [8]. However, so far only one particular observable 
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(‘interjet energy flow’) has been computed and the full impact of 
the finite-Nc resummation is yet to be uncovered.

In this work, we apply the method developed in [8] to the 
hemisphere jet mass distribution and numerically carry out the 
resummation of nonglobal logarithms at finite-Nc , thereby achiev-
ing the full leading logarithmic accuracy for this observable.1 In 
the next section we define the observable and introduce the 
BMS equation which resums the nonglobal logarithms in the 
large-Nc limit. In Section 3, we discuss the resummation strategy 
at finite-Nc . It turns out that a naive application of the previous 
method is plagued by large numerical errors, and we shall pro-
pose a refined method which cures this problem. In Section 4, 
we present the numerical result and compare it with the previous 
all-order result at large-Nc [3] as well as the recent fixed-order 
calculations [9,10].

2. Hemisphere jet mass distribution

Consider a two-jet event in e+e−-annihilation with the center-
of-mass energy Q . Without loss of generality, we assume that the 
quark jet is right-moving with momentum pμ = Q

2 (1, 0, 0, 1) ≡
Q
2 (1, nR) and the antiquark jet is left-moving with p̄μ = Q

2 (1, 0,

0, −1) ≡ Q
2 (1, nL). Suppose soft gluons with momentum kμ

i =
ωi(1, ni) (n = (sin θ cosφ, sin θ sin φ, cos θ)) are emitted in the 

1 Recently, the resummation of nonglobal logarithms to next-to-leading logarith-
mic order has been discussed [7,11]. In particular, Ref. [7] explicitly derived the full 
NLL evolution kernel at finite Nc . See, also, an earlier suggestion [12] that the NLL 
resummation of nonglobal logarithms should be related to the NLL BFKL resumma-
tion via a conformal transformation.
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right hemisphere 0 ≤ θi ≤ π
2 . The invariant mass in the right hemi-

sphere is

M2
R =

(
p +

∑
i

ki

)2

≈
∑

i

2p · ki =
∑

i

Q ωi(1 − cos θi). (1)

We shall be interested in the probability

PLR(ρ) = 1

σ

ρ∫
0

dσ

dρ ′ dρ ′, (2)

that the rescaled invariant mass

ρ ′ = M2
R

Q 2
=

∑
i

ωi(1 − cos θi)

Q
(3)

is less than some value ρ < 1. When ρ � 1, one has to resum 
large logarithms lnn 1/ρ in the perturbative calculation of PLR(ρ). 
As observed in [3], this resummation consists of two parts. One 
is the Sudakov double logarithms (αs ln2 1/ρ)n which can be re-
summed via exponentiation. The other is the nonglobal logarithms 
(αs ln 1/ρ)n which arise from the fact that measurement is done 
only in a part of phase space (i.e., in the right hemisphere). The 
latter resummation affects various single-hemisphere event shapes 
in e+e− annihilation and DIS [3]. It is also relevant to the so-called 
soft function in the dijet mass distribution d2σ/dMRdML in the 
asymmetric limit ML � MR [13,14,9].

So far, the resummation of nonglobal logarithms for PLR has 
been carried out only in the large-Nc limit [3], or to finite orders of 
perturbation theory at large-Nc [9] and finite-Nc [10]. As stated in 
the introduction, we shall perform the all-order leading logarith-
mic resummation at finite-Nc along the lines of [6,8]. To explain 
our approach, it is best to start with the BMS equation which re-
sums both the Sudakov and nonglobal logarithms in the large-Nc

limit [5]. Adapted to the hemisphere jet mass distribution [9], the 
equation reads

∂τ Pαβ = Nc

∫
d�γ

4π
Mαβ(γ )

(
�L(γ )Pαγ Pγ β − Pαβ

)
, (4)

where

Mαβ(γ ) = 1 − cos θαβ

(1 − cos θαγ )(1 − cos θγ β)
(5)

is the soft gluon emission kernel and we defined

τ = αs

π
ln

1

ρ
. (6)

�L/R(γ ) is the ‘step function’ which restricts the angular inte-
gral d�γ = d cos θγ dφγ to the left/right hemisphere. [Below we 
also use a shorthand notation 

∫
L/R d� to represent this.] In (4), 

Pαβ = P (�α, �β) is the generalization of PLR defined for arbitrary 
pairs of solid angle directions.

Taken at its face value, Eq. (4) is ill-defined. When α or β is 
in the right hemisphere, the d�γ integral in the second term on 
the right-hand side (the virtual term) is divergent, and this is pre-
cisely the situation (αβ) = (LR) we are eventually interested in. 
Physically, this collinear divergence should be cut off by the kine-
matical effect, yielding the Sudakov factor e−O(αs) ln2 1/ρ . However, 
since the Sudakov factor is well understood anyway, one can leave 
it out of consideration by defining

Pαβ ≡ exp

⎛⎝−2C F τ

∫
R

d�γ

4π
Mαβ(γ )

⎞⎠ gαβ. (7)

(C F = N2
c −1

2Nc
and 2C F ≈ Nc in the large-Nc limit.) Unlike (4), the 

equation satisfied by gαβ is well-defined and amenable to analyt-
ical and numerical approaches. In particular, Ref. [9] analytically 
calculated gLR to five loops using the hidden SL(2, R) symmetry of 
the BMS equation [15].

3. Resummation at finite Nc

We now turn to the physically relevant case Nc = 3. Temporar-
ily forgetting about the issue of the collinear divergence, we reca-
pitulate the resummation strategy developed in [16,6,8]. First we 
make the formal identification

Pαβ ↔ 1

Nc
tr UαU †

β, (8)

where Uα is the Wilson line in the fundamental representation of 
SU(Nc) from the origin to infinity in the �α direction. The prod-
uct in (8) represents the propagation of the qq̄ jets (‘dipole’) in 
the eikonal approximation. As τ is increased, more and more soft 
gluons are emitted from the dipole and also from the secondary 
gluons. This can be simulated as a stochastic process in which 
the Wilson lines receive random kicks in the color SU(Nc) space, 
and is described by the following Langevin equation in discretized 
‘time’ τ [8]2

Uα(τ + ε) = eiS(2)
α ei Aα Uα(τ )eiBα eiS(1)

α , (9)

where

S(i)
α =

√
ε

4π

∫
R

d�γ
(nα − nγ )k

1 − nα · nγ
taξ

(i)k
γ a (i = 1,2), (10)

Aα = −
√

ε

4π

∫
L

d�γ
(nα − nγ )k

1 − nα · nγ
Uγ taU †

γ ξ
(1)k
γ a , (11)

Bα =
√

ε

4π

∫
L

d�γ
(nα − nγ )k

1 − nα · nγ
taξ

(1)k
γ a , (12)

and ξ (1) , ξ (2) are the Gaussian noises

〈ξ (i)k
γ a (τ )ξ

( j)l
γ ′b (τ ′)〉 = δi jδτ ,τ ′δ(�γ − �γ ′)δabδ

kl. (13)

This is equivalent to the following ‘Fokker–Planck’ equation to be 
compared with (4)

∂τ 〈Pαβ〉ξ = Nc

∫
d�γ

4π
Mαβ(γ )

{
�L(γ )

(〈Pαγ Pγ β〉ξ − 〈Pαβ〉ξ
)

− 2C F

Nc
�R(γ )〈Pαβ〉ξ

}
, (14)

where 〈. . .〉ξ denotes averaging over the noises. In principle, PLR(τ )

at finite-Nc can be evaluated by computing 1
Nc

tr U L U †
R for a given 

random walk trajectory with the initial condition Uα(τ = 0) = 1, 
and then averaging over many trajectories. In this calculation, it 
suffices to define Uα in the left hemisphere and at a single point 
α = R in the right hemisphere.

However, this strategy does not apply straightforwardly to our 
present problem. 〈PLR〉ξ quickly goes to zero due to the collinear 

2 We write the evolution (9) in a slightly different, but equivalent form compared 
to Ref. [8]. It should be understood that various exponentials are meaningful only 
to O(ε) [8], although in practice we keep all orders in √ε in order to preserve the 
unitarity of Uα .



256 Y. Hagiwara et al. / Physics Letters B 756 (2016) 254–258

divergence in the Sudakov factor.3 One may try to regularize the 
divergence by introducing a cutoff δ and extract the finite part

〈gLR(τ )〉ξ = lim
δ→0

exp

⎛⎝2C F τ

∫
R

d�γ

4π
MLR(γ )

⎞⎠
δ

〈P δ
LR(τ )〉ξ . (15)

Unfortunately, this does not work in practice because 〈P δ
LR〉ξ be-

comes very small and the exponential factor becomes very large 
as δ → 0. It is difficult to numerically achieve the precise cancela-
tion between the two factors.

As a matter of fact, the same problem was already noticed 
in the original Monte Carlo simulation at large-Nc [3]. There 
the authors subtracted the Sudakov contribution step-by-step, by 
modifying the emission probability as Mαβ(γ ) → Mαβ(γ ) −
�R(γ )MLR(γ ). Here we shall implement a similar subtraction di-
rectly in the evolution of Uα . The origin of the collinear divergence 
can be traced to the factors eiS(i)

α in (9). They give, after averaging 
over the noise,

〈eiS(2)
α eiS(1)

α e−i S(1)
β e−i S(2)

β 〉ξ

=
1,2∏

i

〈
exp

⎛⎝i

√
ε

4π

∫
R

d�γ
(nα − nγ )k

1 − nα · nγ
taξ

(i)k
γ a

⎞⎠
× exp

⎛⎝−i

√
ε

4π

∫
R

d�γ
(nβ − nγ )k

1 − nβ · nγ
taξ

(i)k
γ a

⎞⎠〉
ξ

= exp

⎛⎝−2C F ε

∫
R

d�γ

4π
Mαβ(γ )

⎞⎠ , (16)

which is indeed the Sudakov factor (7) generated in a single 
step. (16) can be checked by using the identity [8]

Mαβ(γ ) = 2Kαβ(γ ) −Kαα(γ ) −Kββ(γ ),

Kαβ(γ ) ≡ (nα − nγ ) · (nγ − nβ)

2(1 − nα · nγ )(1 − nγ · nβ)
. (17)

In the special case (αβ) = (LR), we have that KLR(γ ) ≡ 0 and∫
R

d�γ

4π
MLR(γ ) =

∫
R

d�γ

4π

(−KLL(γ ) −KRR(γ )
)

= ln 2

2
+

∫
R

d�γ

4π

1

1 − nR · nγ
. (18)

We see that the singularity entirely comes from the second order 
term in the expansion of eiS(i)

R .

It is thus tempting to remove the factor eiS(i)
α altogether and 

use a modified evolution equation Ũα(τ + ε) = ei Aα Ũα(τ )eiBα . 
However, this also removes an essential part of the nonglobal 
logarithms. The reason is that the linear term in the expansion 
of eiSα(ξ) = 1 + i Sα(ξ) + · · · can give finite contributions when 
the Gaussian noise ξ is contracted with that implicit in Uγ taU †

γ

in (11). Physically, the factor Uγ taU †
γ = U ab

A tb (with U A being the 
Wilson line in the adjoint representation) represents the emission 
of real gluons which is restricted to the left hemisphere. These glu-
ons together with the original qq̄ pair form a QCD antenna which 

3 This problem was not encountered in [8] because there α and β were always 
confined in the unobserved part of phase space.

coherently emits the softest gluon in the right hemisphere, thereby 
producing nonglobal logarithms.

To make the last statement more concrete, we follow the evo-
lution (9) analytically up to τ = 2ε (two steps) and collect the 
non-Sudakov contributions. We find

〈gLR(τ )〉ξ
∼ 2C F Ncτ

2
∫
L

d�γ

4π

×
∫
R

d�λ

4π

(
KLL(γ ) +KRR(γ )

) (
KLγ (λ) +Kγ R(λ) −Kγ γ (λ)

)
= −C F Ncτ

2
∫
L

d�γ

4π

×
∫
R

d�λ

4π
MLR(γ )

(
MLγ (λ) +Mγ R(λ) −MLR(λ)

)
= −π2 C F Ncτ

2

12
, (19)

in agreement with the lowest order (two-loop) result [3,9].4 In the 
third line of (19), the factors KLγ and Kγ R come from the linear 
terms in eiSL ≈ 1 + i SL and eiS R ≈ 1 + i S R , respectively. They both 
seem to be essential for obtaining the correct result.

Importantly, however, the term Kγ R(λ) vanishes when integrat-
ing over the azimuthal angle φλ

2π∫
0

dφλKγ R(λ) =
2π∫
0

dφλγ
cos θλ − 1 − cos θγ + cos θλγ

2(1 − cos θλ)(1 − cos θλγ )
= 0, (20)

where we used cos θλ > 0 > cos θγ . Moreover, by following the 
evolution (9) a few more steps, it is easy to convince oneself that 
the linear term i S R does not produce nonglobal logarithms to all 
orders because this term always reduces to factors like Kγ (n) R(λ)

(after contracting with the n-th gluon emitted in the left hemi-
sphere) and vanishes when integrating over φλ in the right hemi-
sphere. This observation brings in a major simplification in our 
resummation strategy. We can neglect the factors eiS(1,2)

R in (9) for 
α = R and use the modified Langevin equation

Ũ R(τ + ε) = ei AR Ũ R(τ )eiB R . (21)

As for Uα in the left hemisphere, we may continue to use the same 
evolution (9). Actually, we can make a slight improvement which 
speeds up the numerical simulation. The two independent noises 
ξ (1,2) defined in the right hemisphere always give identical con-
tributions for the observable at hand. Therefore, we can eliminate 
one of them and use a modified equation

Uα(τ + ε) = exp

⎛⎝i

√
2ε

4π

∫
R

d�γ
(nα − nγ )k

1 − nα · nγ
taξ

(1)k
γ a

⎞⎠
× ei Aα Uα(τ )eiBα . (22)

Note the factor of 
√

2. One can check that (22) leads to the same 
equation (14) for the product of two Wilson lines.5 Using these 

4 At this order, we have to interpret 2ε2 = τ (τ − ε) ≈ τ 2 to correct an error in 
iteratively solving a discretized differential equation.

5 We have checked numerically that (22) and (9) give equivalent results. The 
equivalence may not hold for more complicated observables.
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Fig. 1. 〈gLR(τ )〉 at Nc = 3 as a function of τ obtained by averaging over 2600 ran-
dom walks. The error bars indicate the standard error. Data points are plotted every 
0.01/ε = 200 random walk steps. Various curves are explained in the text. (For in-
terpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

Langevin equations, we finally compute the average

〈gLR(τ )〉ξ = eτC F ln 2 1

Nc
〈tr U L(τ )Ũ †

R(τ )〉ξ . (23)

The multiplicative factor in front subtracts the finite part of the 
Sudakov factor (18) which is included in the evolution of U L .

4. Numerical results and discussions

The numerical procedure is explained in Ref. [8] which we re-
fer to for details. We discretize the solid angle 1 ≥ cos θ ≥ −1 and 
2π > φ ≥ 0 into a lattice of 80 × 80 grid points and put a SU(3)

matrix Uα at each grid point on the left hemisphere cos θ < 0. In 
addition, we define a SU(3) matrix Ũ R at a single point nR in the 
right hemisphere. The Gaussian noise ξ is randomly generated at 
all grid points and at each time step.6 We then evolve Uα and Ũ R

according to (22) and (21), respectively, with ε = 5 × 10−5 and the 
initial conditions Uα = Ũ R = 1. As in the previous work [8], we 
observe large event-by-event fluctuations. In order to obtain a rea-
sonably smooth curve, we typically have to average over O(103)

random walks. Fig. 1 shows the result from 2600 random walks.7

In the same figure, we make comparisons with the following re-
sults in the literature: The blue line is a parameterization of the 
all-order Monte Carlo result in the large-Nc limit by Dasgupta and 
Salam (DS) [3]

gDS(τ ) = exp

(
−C F Nc

π2τ 2

12

1 + (aτ/2)2

1 + (bτ/2)c

)
, (24)

with a = 0.85Nc , b = 0.86Nc and c = 1.33. Here we set C F ≈
Nc/2 = 1.5 which is what was actually used in [3]. The black 
dashed line is a combination of the fixed-order analytical results 
by Schwartz and Zhu (SZ) to five-loop at large-Nc [9] and Khelifa-
Kerfa and Delenda (KD) to four-loop at finite Nc [10]

6 In [8], the authors inadvertently assumed that the noise ξ (at each time step) is 
independent of φ at the degenerate points cos θ = ±1. Fortunately, this was innocu-
ous for the observable considered in [8]. However, for the present observable this 
causes a systematic error in the evaluation of the Sudakov integral (the first term 
of (18)) already at small-τ because the integration region ∫ d�R includes the point 
cos θ = 1 (which was not the case in [8]). In the present simulations, we fixed this 
problem by generating ξ at different values of φ independently also at cos θ = ±1.

7 We also performed simulations with different discretization parameters (160 ×
40 and 80 × 40 lattices, and ε = 10−4) and found that the results are consistent 
with each other.

gSZ−KD(τ ) = 1 − C F Nc
π2

12
τ 2 + C F N2

c ζ3

6
τ 3

− 1

24

(
25

8
C F N3

c ζ4 − 13

5
C2

F N2
c ζ 2

2

)
τ 4

+ 1

120

(
−8C2

F N3
c ζ2ζ3 + 17

2
C F N4

c ζ5

)
τ 5, (25)

where C F = 4/3. Actually, the complete finite-Nc result at O(τ 5) is 
not available, and the above formula is a well-motivated guess [10]
which reduces to the known result in the large-Nc limit. Finally, 
the blue dash-dotted line is the following ‘resummed’ expression 
suggested by KD based on their four-loop result

gKD(resum)(τ ) = exp

(
−C F Nc

π2τ 2

12
+ C F N2

c ζ3τ
3

6

− π4

135

(
25

8
C F N3

c + C2
F N2

c

)
τ 4

16

)
, (26)

with C F = 4/3. Note, however, that at the moment it is not known 
whether the nonglobal logarithms actually exponentiate to all or-
ders.

We see that our result agrees very well with the most-advanced 
fixed-order result (25) up to τ � 0.5. Beyond this, the perturba-
tive result quickly deviates and eventually blows up. It has been 
observed that higher loop contributions alternate in sign and con-
verge rather poorly [17]. In addition, fixed-order results are numer-
ically sensitive to the 1/Nc -suppressed corrections when τ ∼O(1). 
This can be partly remedied in the resummed formula (26). On 
the other hand, the all-order large-Nc result (24) stays close to our 
curve up to τ = 1. In fact, the difference can be partly accounted 
for by choosing C F = 4/3 in (24), which is what was actually sug-
gested by DS as the likely functional form at finite-Nc and has 
been used for phenomenological purposes [18,19]. This is shown 
by the red line in Fig. 1. To correct the remaining difference, we 
independently determined a, b, c in (24) with C F = 4/3 and ob-
tained

a = 0.62 ± 0.06, b = 0.06 ± 0.03, c = 0.37 ± 0.04. (27)

In conclusion, we have completed the resummation project for 
the single-hemisphere jet mass distribution initiated in [3] by in-
cluding the finite-Nc corrections to all orders. We find that the 
finite-Nc effect is numerically small, and this is consistent with 
the previous finding in [8]. However, it should be kept in mind 
that the observables calculated at finite-Nc so far are defined in 
e+e− annihilation where the two outgoing jets are represented by 
the product of two Wilson lines tr UαU †

β . In hadron–hadron colli-
sions, or in processes including hard gluons, one needs to consider 
the evolution of more complicated objects such as tr(UαU †

β Uγ U †
δ)

and tr(UαU †
β) tr(Uγ U †

δ) (cf., [20]). The finite-Nc effects in the re-
summation of nonglobal logarithms for these observables have not 
been studied so far.
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