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We discuss thermalization of isolated quantum systems by using the Husimi–Wehrl entropy eval-
uated in the semiclassical treatment. The Husimi–Wehrl entropy is the Wehrl entropy obtained
by using the Husimi function for the phase space distribution. The time evolution of the Husimi
function is given by smearing the Wigner function, whose time evolution is obtained in the semi-
classical approximation. We show the efficiency and usefulness of this semiclassical treatment
in describing the entropy production of a couple of quantum-mechanical systems, whose clas-
sical counter-systems are known to be chaotic. We propose two methods to evaluate the time
evolution of the Husimi–Wehrl entropy, the test-particle method and the two-step Monte Carlo
method. We demonstrate the characteristics of the two methods by numerical calculations, and
show that simultaneous application of the two methods ensures the reliability of the results of
the Husimi–Wehrl entropy at a given time.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The thermalization process or entropy creation of isolated quantum systems is a long-standing issue,
but not a well understood problem. Relevant systems include the early universe, where the transition
from a vacuum state to a thermalized state occurs at the end of cosmic inflation, and the quan-
tum chromodynamics (QCD) matter created in the initial stage of relativistic heavy-ion collisions,
where thermal matter should be formed in a rather short time. It is known that both systems are well
described in the semiclassical approximation, and, moreover, a chaotic behavior of the classical limit
may play some role in the entropy production. The present paper is concerned with the entropy pro-
duction of an isolated quantum system for which the semiclassical approximation is valid and the
classical counterpart may show a chaotic behavior.

To describe entropy in a pure quantum system, one may, of course, adopt the von Neumann
entropy [1,2] as quantum-mechanical entropy given by

SvN = −Tr [ρ log ρ] , (1)

where ρ is the density matrix. For a pure state, however, ρ is idempotent, ρ2 = ρ, implying that the
eigenvalue of ρ is 0 or 1, and the von Neumann entropy is zero. Even if we start from a mixed state,
the time evolution described by a unitary operator will never lead to entropy growth. On the other
hand, the entropy production in a rarefied gas composed of classical or quantum-mechanical particles
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can be well described by an analog of Boltzmann’s H function given in terms of the distribution
function f (q, p):

S = −
∫

d Dq d D p

(2π�)D
f (q, p) log f (q, p) . (2)

It is noteworthy that a phase space description is desirable for making the classical-quantum cor-
respondence clear, and is even natural when the semiclassical approximation is valid. The standard
method for such a description is to use the celebrated Wigner function [3], which is defined as a
Wigner transform of the density matrix: The Wigner function fW (q, p) can be regarded as a quasi
phase space distribution function. The use of the Wigner function as the phase space distribution
function ( f (q, p) = fW (q, p) in Eq. (2)), however, has essential drawbacks: First, the Wigner func-
tion is, actually, not a genuine distribution function; fW can be negative, which prevents us from
calculating the entropy density according to Eq. (2). Second, the entropy defined by Eq. (2) given in
terms of the Wigner function fW does not grow in time, because the Wigner transform only gives
an equivalent description of the quantum system in terms of, say, the q- or p-representation [4–8].
Some coarse graining of the phase space is needed to describe the entropy production.

In a classical chaotic system, two adjacent points in the phase space depart from each other expo-
nentially in time. If the available phase space volume is limited, the exponentially diffusing classical
trajectories have to be folded in a complicated manner in the phase space. After a certain time start-
ing from a localized phase space cell, a given phase space cell (2π�)D consists of the mixture of
trajectories stemming from the initially occupied localized cell and vacant regions not yet visited.
Since we cannot distinguish the phase space points in a cell due to the uncertainty principle, it is rea-
sonable to define a phase space distribution as a smeared or coarse-grained function over the phase
space cell.

We adopt the Husimi function fH (q, p) [9] as such a coarse-grained distribution function, which is
defined as the expectation value of the density matrix with respect to a coherent state |z〉. It is readily
shown that fH (q, p) is semi-positive definite, fH ≥ 0, and a coarse-grained function of the Wigner
function, as will be shown in a later section. It is shown [10,11] that the Husimi function faithfully
describes the characteristic properties of the underlying classical system, and has been utilized to
identify the chaotic remnants in quantum systems [10–13]. Thus a natural candidate of the quantum-
mechanical entropy is given by (2) with f (q, p) being substituted by the Husimi function fH (q, p).
This entropy was introduced by Wehrl [14] and may be called the Wehrl entropy, although he himself
called it classical entropy and failed to identify the distribution function fH (q, p) with the Husimi
function: such an identification was made later [15]. We refer to the Wehrl entropy obtained by using
the Husimi function as the Husimi–Wehrl (HW) entropy [16]:

SHW = −
∫

d Dq d D p

(2π�)D
fH (q, p) log fH (q, p) . (3)

It is worth mentioning that the HW entropy can be a good measure for the quantum entanglement
of a system including quantum optical systems [17,18]. For the 1D case, there is a minimum of
SHW = 1 [19,20], in contrast to the von Neumann entropy, which takes SvN = 0 in the ground state.
It is also shown that the HW entropy takes a value close to the von Neumann entropy at high temper-
ature, and its growth rate coincides with the Kolmogorov–Sinaï entropy for the 1D inverted harmonic
oscillator [16].

A direct evaluation of the HW entropy for a quantum system is a kind of challenge even for a system
with a few degrees of freedom because, apart from the cumbersome calculation with precision of
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the logarithm, it involves a large-dimensional integral over the phase space. Nevertheless, the HW
entropy and its time evolution have been calculated for some quantum systems [21,22]. The equation
of motion (EOM) of the Husimi function is given in Ref. [11], which contains a term of the order
�, and thus has a more complicated form than that of the Wigner function, even in the semiclassical
approximation; see below. To solve the complicated EOM of the Husimi function, a test-particle
method was proposed by Tsai and Muller [22], where the evolution of the test particles is determined
to reproduce some of the moments.

As already mentioned, the semiclassical approximation is suitable for revealing the effect of the
chaotic nature of the classical counterpart. It is noteworthy that the time evolution of the Wigner
function in the semiclassical approximation where the O (

�
2
)

terms are ignored is readily obtained
by solving the classical Hamilton equation; quantum-mechanical information such as the uncertainty
relation is encoded in the initial Wigner function, provided that it is given as the Wigner transform
of the quantum density matrix.

The time evolution of the Husimi function is given by smearing the time-evolved Wigner func-
tion obtained in the semiclassical approximation. This is the method we adopt in this article. We
shall show its efficiency and usefulness in describing entropy production using a couple of quantum-
mechanical systems whose respective classical counter-systems are known to be chaotic. We propose
two methods to evaluate the time evolution of the Husimi–Wehrl entropy. One is an adaptation of the
usual test-particle method without recourse to the moments of the distribution function. The other is
a sequential application of Monte Carlo integration, which we call the two-step Monte Carlo method.
We shall demonstrate the characteristics of the two methods by numerical calculations, and show that
simultaneous application of the two methods ensures the reliability of the results of the HW entropy’s
time evolution. It should be noted that these two methods are, in principle, applicable to systems with
large degrees of freedom such as quantum field theories.

The paper is organized as follows. In Sect. 2, we summarize some basic ingredients of the Wigner
and Husimi functions together with the HW entropy. In Sect. 3, we introduce the two numerical
methods to evaluate the HW entropy in an efficient way. In Sect. 4, the quantum-mechanical models
are introduced and numerical results of the Husimi–Wehrl entropy are shown. The final section is
devoted to a brief summary and concluding remarks.

2. Wigner function, Husimi function, and Husimi–Wehrl entropy

In this section, we briefly review quantum-mechanical phase space distribution functions, the
Wigner [3] and Husimi [9] functions, and the phase space expression of the entropy, Husimi–Wehrl
entropy [14]. While we introduce the Wigner and Husimi functions in 1D quantum mechanics in
Sects. 2.1 and 2.2, extension to multidimensional cases is straightforward.

2.1. Wigner and Husimi functions

The Wigner function [3] is defined as a Wigner transform of the density matrix

fW (q, p, t) = ρW (q, p, t)

≡
∫

dη e−i pη/�
〈
q + η

2
| ρ (t) | q − η

2

〉
. (4)

While the Wigner function fW (q, p) can be regarded as a quasi phase space distribution function
and provides an intuitive picture of the phase space dynamics, it is not semi-positive definite; hence,
we cannot regard fW (q, p) as the phase space probability density.

3/16
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In order to overcome the above drawbacks of the Wigner function, Husimi introduced a Gaussian-
smeared Wigner function [9], known as the Husimi function,

fH (q, p) =
∫

dq ′dp′

π�
e−�(q−q ′)2

/�−(p−p′)2
/�� fW (q, p) , (5)

where � is an arbitrary width parameter that gives the smearing manner in the phase space.
The Husimi function is also defined as the expectation value of the density matrix with respect to

a coherent state |z〉:
fH (q, p) = 〈z|ρ|z〉, z = (�q + i p) /

√
2��, (6)

for a 1D case with � being an arbitrary constant. Here the coherent state is given by

|z〉 = eza†−z∗a|0〉, a = (
�q̂ + i p̂

)
/
√

2��, (7)

where |0〉 is the ground state; â|0〉 = 0. It is readily shown that fH (q, p) is semi-positive definite,
fH ≥ 0 by using Eq. (6), fH = |〈z|ψ〉|2 ≥ 0 for a pure state |ψ〉, and fH =

∑
i wi |〈z|ψi 〉|2 ≥ 0 for

a mixed state specified by the density matrix ρ =∑
i wi |ψi 〉〈ψi | (wi ≥ 0).

The Husimi function fH (q, p) serves as the probability density to observe the phase space vari-
ables (q, p) under a minimum wave packet |z〉, and is now semi-positive definite, fH ≥ 0. Compared
with the Wigner function, the Husimi function is smooth and the peak of the Husimi function often
appears around the expectation value of the position and momentum [11,23].

2.2. Time evolution in the semiclassical approximation

The equation of motion (EOM) for the Wigner function fW is obtained from the Wigner transform
of the von Neumann equation for the density matrix, ∂ρ/∂t = [H, ρ]/ i�. By applying the Wigner

transform of the operator product, (AB)W = AW exp
(

i�
(←−∇ q
−→∇ p −←−∇ p

−→∇ q

)
/2

)
BW [4,5,8],

commutators are replaced by Poisson brackets as [A, B]W/ i� = {A, B}PB +O (
�

2
)
. Thus the EOM

for fW is given in terms of the Wigner transform HW of the Hamiltonian H as

∂ fW

∂t
= {HW, fW}PB +O

(
�

2
)
. (8)

The Wigner transform HW of a Hamiltonian with the form H = p2/2m +U (q) does not change its
form. We note that the O (

�
2
)

term in (8) is proportional to the third derivative of HW or U . Thus the
EOM (8) without the O (

�
2
)

term turns out to be exact for some simple models such as an (inverted)
harmonic oscillator.

The semiclassical EOM for fW is given by retaining the terms up to O (�) in Eq. (8), which reads

∂ fW

∂t
+ ∂HW

∂p

∂ fW

∂q
− ∂HW

∂q

∂ fW

∂p
= 0. (9)

We remark that the semiclassical EOM is exact for the linear systems mentioned above. Equation (9)
asserts that fW is constant along the classical trajectory: Let us see this. Let (q (t; q̄) , p (t; p̄)) be a
solution of the classical EOM, i.e., Hamilton’s equation,

dq

dt
= ∂HW

∂p
,

dp

dt
= −∂HW

∂q
, (10)

with an initial condition (q (0) = q̄, p (0) = p̄). Then we have, for fW (q (t; q̄) , p (t; p̄) , t),

D fW

Dt
≡ ∂ fW

∂t
+ dq

dt

∂ fW

∂q
+ dp

dt

∂ fW

∂p
= 0, (11)

4/16

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 083A01 H. Tsukiji et al.

which implies that fW is time-independent; fW (q (t; q̄) , p (t; p̄) , t) = fW (q̄, p̄, 0). Accordingly,
we have

fW (q, p, t) = fW (q (−t; q) , p (−t; p) , 0) . (12)

Thus we can obtain the semiclassical time evolution of the Wigner function by solving the classical
equation of motion. Note that the quantum-mechanical effects are taken into account through the
distribution of the initial value in the phase space encoded in the Wigner function fW (q, p, 0)
constructed from the initial density matrix.

It is worth mentioning that the exact analytical solution of the time evolution of fW for some linear
systems including a (stable) harmonic oscillator potential [4,16], an inverted (unstable) harmonic
oscillator potential [16,24], and an external potential [16] can be obtained. Then even the analytic
form of the Husimi function fH (q, p, t) for these systems is readily obtained [16] by the Gaussian
smearing of fW (q, p, t), which is easy to perform analytically.

We note here that one may obtain the time evolution of the Husimi function fH (q, p, t) by solving
the EOM for fH (q, p, t), which involves terms proportional to � and thus has a more complicated
structure than that for fW (q, p, t) even in the semiclassical approximation [11]. If one sticks to
solving the EOM for fH directly, some numerical method would be necessary. A test-particle method
is adopted as such a numerical method by Tsai and Muller [22], where the time evolution of test
particles is determined so as to reproduce some of the moments. We remark that there are some
ambiguities in such an approach inherent in the moment method.

In this work, we do not adopt this direct method for obtaining the time evolution of the Husimi func-
tion fH (q, p, t). We take advantage of the fact that the EOM of the Wigner function fW (q, p, t)
in this regime is given simply by solving the classical EOM, and obtain fH (q, p, t) by the Gaus-
sian smearing of the thus-obtained fW (q, p, t). This strategy should be workable and natural
when the semiclassical approximation is meaningful. The remaining task that we have to do to
obtain the Husimi function is just the multidimensional integrations over the phase space with the
Gaussian kernel for the smearing, which should be feasible by standard methods such as Monte Carlo
integration.

2.3. Husimi–Wehrl entropy

Since the Wigner function fW is merely the Weyl transform of the density matrix, any observable
is calculable in terms of fW in principle, and this is also the case with the Husimi function fH.
A drawback of the fW is that it can have negative values; hence, it is not suitable for the calculation
of entropy. As mentioned in the introduction and the previous subsection, the Husimi function is,
in contrast, a semi-positive definite coarse-grained phase space distribution function smeared by
a minimum wave packet; hence, it is a good candidate for the phase space distribution f (q, p) to
evaluate the entropy of a quantum system, as Boltzmann’s H function in the classical system, Eq. (2),
or, equivalently, the Husimi–Wehrl entropy given in Eq. (3) [14].

An explicit form of the HW entropy in terms of the Wigner function is given by substituting the
D-dimensional extension of Eq. (5) into Eq. (3):

SHW (t) = −
∫

d Dq d D p

(2π�)D

∫
d Dq ′ d D p′

(π�)D
e−�(q−q ′)2

/�−(p−p′)2
/�� fW

(
q ′, p′, t

)

× log

[∫
d Dq ′′ d D p′′

(π�)D
e−�(q−q ′′)2

/�−(p−p′′)2
/�� fW

(
q ′′, p′′, t

)]
. (13)
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One may now recognize some difficulty of the numerical evaluation of the HW entropy: It involves
repeated numerical integrations over the multidimensional phase space, and one of them in particular
appears as an argument of the logarithm, which turns out to be quite problematic in the Monte Carlo
integration.

3. Numerical methods to analyze the semiclassical time evolution
of Husimi–Wehrl entropy

Here, two numerical methods are introduced to calculate the time dependence of the HW entropy
as given by the Gaussian smearing of the Wigner function obtained in the semiclassical approxima-
tion. Both methods are based on an adaptation of the Monte Carlo integration over the phase space.
We call the two methods the test-particle (TP) and two-step Monte Carlo (tsMC) methods, respec-
tively. In this section, we deal with the D-dimensional system described by the Hamiltonian H =
H (q, p), where q and p denote the D-dimensional vector, respectively, i.e., q = (q1, q2, . . . , qD)

and p = (p1, p2, . . . , pD).

3.1. Test-particle method

In the test-particle method [25–28], the Wigner function is represented as a sum of the delta functions

fW (q, p, t) = (2π�)D

NTP

NTP∑
i=1

δD (q − qi (t)) δ
D (p − pi (t)) , (14)

with the initial function

fW (q, p, 0) = (2π�)D

NTP

NTP∑
i=1

δD (q − qi (0)) δ
D (p − pi (0)) ,

where NTP is the total number of test particles, and their coordinates are given by (qi (t) , pi (t)).
The initial distribution of the test particles (qi (0) , pi (0)) (i = 1, 2, . . . , D) is chosen so as to well
sample that of fW (q, p, 0); hence, NTP is called the sampling number. The time evolution of the
coordinates (qi (t) , pi (t)) is determined by the EOM for fW (q, p, t), which is reduced to the
canonical equation of motion,

dqi

dt
= ∂HW

∂pi
,

dpi

dt
= −∂HW

∂qi
, (15)

in the semiclassical approximation.
For the test-particle representation of the Wigner function, Eq. (14), the Husimi function is readily

expressed as

fH (q, p, t) = 2D

NTP

NTP∑
i=1

e−�(q−qi (t))2/�−(p−pi (t))2/��. (16)

It is noteworthy that the Husimi function here is a smooth function in contrast to the corresponding
Wigner function in Eq. (14).

Inserting the Wigner function (14) into Eq. (13), the HW entropy in the test-particle method is
given as

S(TP)
HW = −

1

NTP

NTP∑
i=1

∫
d Dq d D p

(π�)D
e−�(q−qi (t))2/�−(p−pi (t))2/�� log fH (q, p, t) . (17)

Now note that the integral over (q, p)i for each i has a support only around the positions of the
test particles (qi (t) , pi (t)) due to the Gaussian function, and then we can effectively perform the

6/16
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Monte Carlo integration as follows. By generating a set of random numbers (Q, P)i with standard
deviations of

√
�/2� and

√
��/2, the Monte Carlo sampling point (q, p)i for each i is obtained

as (q, p)i = (Q, P)i + (qi , pi ). Thus we reach the formula to be used in the actual evaluation of
the HW entropy in the test-particle method:

S(TP)
HW � −

1

NMC NTP

NMC∑
k=1

NTP∑
i=1

log

⎡
⎣ 2D

NTP

NTP∑
j=1

e−�(Qk+qi (t)−q j (t))
2
/�−(Pk+pi (t)−p j (t))

2
/��

⎤
⎦ , (18)

where NMC denotes the sample number of (Q, P)i .

3.2. Two-step Monte Carlo method

The second method is a direct Monte Carlo evaluation of the multidimensional integrals. We rewrite
Eq. (13) as

S(tsMC)
HW = −

∫
d D Qd D P

(π�)D
e−�Q2/�−P2/��

∫
d Dqd D p

(2π�)D
fW (q, p, t)

× log

[∫
d D Q′d D P ′

(π�)D
e−�(Q′)2

/�−(P ′)2
/�� fW

(
q + Q + Q′, p + P + P ′, t

)]

� − 1

Nout

Nout∑
k=1

log

⎡
⎣ 1

Nin

Nin∑
l=1

fW
(
qk + Qk + Q′l, pk + Pk + P ′l , t

)⎤⎦

= −
〈
log

〈
fW

(
q + Q + Q′, p + P + P ′, t

)〉
Q′P ′

〉
Q Pqp

, (19)

where (Qk, Pk) and
(
Q′l, P ′l

)
are Gaussian random numbers for the Monte Carlo (MC) integra-

tion to compute the Husimi function fH (q, p). For the (q, p) integration, we generate MC samples(
q ′, p′

)
at t = 0 according to the initial distribution, and obtain the corresponding phase space sam-

ple points
(
q

(
q ′, p′, t

)
, p

(
q ′, p′, t

))
at t by solving the canonical equation of motion. Under the

semiclassical approximation, fW is constant and the Jacobian is unity along the classical trajectory,
J

(
q (t) , p (t) /q ′ (0) , p′ (0)

) = 1. Then we can replace the integral over (q, p) in the first line of
Eq. (19) with the integral at t = 0 by using the initial distribution and the Liouville theorem as

∫
d Dqd D p

(2π�)D
fW (q, p, t) g (q, p) =

∫
d Dq ′d D p′

(2π�)D
fW

(
q ′, p′, 0

)
g

(
q

(
q ′, p′, t

)
, p

(
q ′, p′, t

))
,

(20)

where
(
q ′, p′

)
are the phase space coordinates at t = 0, and

(
q

(
q ′, p′, t

)
, p

(
q ′, p′, t

))
are those at

t evolved from
(
q ′, p′

)
.

The Wigner function at t in the log in Eq. (19) can be obtained by the trace back of the trajectory
from t to t = 0, as shown in Eq. (12). Equation (19) contains an MC integral of a function obtained
by an MC integral; we first generate

(
q ′, p′

)
at t = 0 according to the distribution fW (q, p, 0) and

(Q, P) as Gaussian random numbers, and then perform the MC integral in the log by generating MC
samples

(
Q′, P ′

)
. We call this procedure two-step Monte Carlo (tsMC).

In the following sections, we show the characteristic properties of the two methods and demonstrate
numerically how they work using 2D quantum-mechanical systems.
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4. Numerical calculation of Husimi–Wehrl entropy in the quantum
Yang–Mills model

In this section, we show the numerical results of the HW entropy in a “quantum Yang–Mills system”
[29], obtained by the two distinct methods, TP and tsMC.

4.1. Model Hamiltonian and setup of initial condition

The Hamiltonian of the system is given by

H = 1

2m

(
p2

1 + p2
2

)
+ 1

2
q2

1 q2
2 . (21)

We have restricted ourselves to the 2D case here. The name “quantum Yang–Mills (qYM)” origi-
nates from the fact that the spatially uniform Yang–Mills system is reduced to a (0+ 1)-dimensional
system, i.e., a quantum-mechanical system, and its Hamiltonian is just given by Eq. (21).

We adopt the initial condition given by a minimal wave packet centered at (q1, q2, p1, p2) =
(0, 0, 10, 10):

fW (p1, p2, q1, q2, t = 0) = 4e−[q2
1+q2

2+(p1−10)2+(p2−10)2]/�. (22)

This initial condition is also adopted in Ref. [22].
In the following, we show numerical results calculated by using the TP and tsMC methods. We

show the results in units with m = 1 and � = 1, and take � = 1 for the wave-packet width. In the
case of� = 1, the smearing Gaussian is not symmetric in the p and q directions. However, the results
do not change qualitatively. We have confirmed that the results with� = 0.1 and 10 are qualitatively
the same as those with � = 1.

4.2. Numerical results with the TP method

First, we show the numerical results of the HW entropy in the qYM system calculated in the
TP method using Eq. (18).

Figure 1 shows the time evolution of the HW entropy calculated in the TP method with the follow-
ing test-particle numbers: NTP = 100, 1000, 5000, and 15 000. The MC sample number is taken to
be NMC = 500. The statistical errors are estimated for NMC samples from a standard deviation. We
note that the calculated HW entropy at each t tends to increase along with increasing NTP, which is

 0
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NTP = 1000
NTP = 5000

NTP = 15 000

Fig. 1. Time dependence of the HW entropy by using the TP method in qYM, with NTP = 100, 1000, 5000,
and 15 000, and NMC = 500. The arrow shows how the calculated HW entropy changes as NTP increases.
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an artifact due to the small number of the test particles NTP and will be discussed later. Apart from
tiny fluctuations, all the calculations show that the HW entropy first increases with time, accompa-
nied by a small oscillatory behavior; its local maxima are seen around t � 0.5 and 1.7. We note that
a similar behavior is also seen in Ref. [22].

Entropy evaluated by the TP method has an (unphysical) maximum depending on NTP, which
causes apparent saturation at large t in Fig. 1. In fact, when the system is chaotic and the phase space
volume is very large, all the test particles will be so separated from each other in the phase space at
later time that only the i = j terms in Eq. (18) will remain. In this limiting case, the HW entropy as
given in (18) is evaluated as follows:

S(TP)
HW →−

〈[
log

(
2D

NTP

)
−�Q2/�− P2/��

]〉
Q P

= D − D log 2+ log NTP, (23)

which gives the inevitable upper limit of S(TP)
HW . In Appendix A, we examine the HW entropy of an

inverted harmonic oscillator, for which SHW can be calculated analytically and is found to increase
permanently. At later times, SHW is underestimated with small NTP values because of the upper limit
discussed above. By comparison, SHW at early times is calculated precisely in the TP method, as long
as NTP is large enough for SHW to converge.

From the above argument, SHW (t) would be obtained reliably as an extrapolated value in the limit
of NTP →∞. The extrapolation should be made in the NTP range, where the limiting value is larger
than the HW entropy to be obtained. The limiting values are S(TP)

HW = 5.2, 7.5, 9.1, and 10.2 for NTP =
100, 1000, 5000, and 15 000, respectively. The large-t values found in Fig. 1 are close to these limiting
values for smaller NTP, i.e., NTP = 100 and 1000. Thus we see that the saturation behavior seen
for smaller values of NTP may be an artifact of the TP method. In contrast, the large-t values for
NTP = 5000 and 15 000 in Fig. 1 are well below the limiting values (9.1 and 10.2), found free from
the above-mentioned artifact, and can be used to obtain the extrapolated value at NTP →∞, as
discussed later in Sect. 4.4. Thus we conclude that the entropy production of the “quantum Yang–
Mills” system can be well described with the use of HW entropy as calculated with the TP method
with a sufficiently large number of test particles.

4.3. Numerical results with the tsMC method

Next, we show the numerical results of the HW entropy in qYM in the tsMC method using the
formula Eq. (19).

Figure 2 shows the time evolution of the HW entropy calculated in the tsMC method with the
sample numbers Nin = 1200, 2400, 4800, and 12 000. Nout is taken to be the same as Nin. The errors
attached to SHW in the present figure are estimated only for the Monte Carlo integrals outside the
log in Eq. (19), and those from the integral inside the log are not taken into account, which causes
an additional systematic error.

We see that the larger the value of Nin, the smaller the HW entropy, which is an opposite dependence
on the sample number to that in the TP method. Nevertheless, the gross behavior in the time evolution
of the HW entropy is quite similar in the two methods apart from tiny fluctuations: After showing
an oscillatory behavior in the first short period, it increases in a monotonous way and its growth rate
decreases gradually. A more quantitative comparison of the two methods will be presented in the
next subsection.
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Fig. 2. Time dependence of HW entropy calculated by using the tsMC method.
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SHW
(tsMC)(t = 10, N in→∞) = 9.01 ± 0.21 ± 0.06
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Fig. 3. HW entropy in qYM at t = 10 as a function of NTP (NMC), and its extrapolation to infinitely large NTP

(NMC) in the TP (tsMC) method. Filled circles (squares) show the TP (tsMC) results, and the solid (dashed)
line shows a fit function to the TP (tsMC) results. The dotted line is a limiting value given by Eq. (23). The
shaded areas show the extrapolated value in the limit of NTP, NMC →∞.

4.4. Comparison of the two methods

Figure 3 shows the HW entropy at t = 10 as a function of NTP (Nin) in the TP (tsMC) method.
We fit a linear function f (t) = at + b to the calculated SHW (t) data in the range 10−�t ≤ t ≤
10+�t (�t = 1), and adopt f (t = 10) as the HW entropy value at t = 10. This procedure provides
a smoother curve and reduces the errors coming from fluctuations compared to directly using the raw
data.

The HW entropy in the TP method becomes larger with increasing NTP, as already mentioned: At
t = 10, SHW � 5.1 for NTP = 100 and SHW � 8.7 for NTP = 15 000. We also show the fit results to
the data for larger samples, say NTP ≥ 5000, with a fit function

f (N ) = a − b

N c
. (24)

The extrapolated value to NTP →∞ is 9.19± 0.10. When we use other fit functions such as f (N ) =
a − b/ (N/c + 1) and f (N ) = a − b/N + c/N 2, the fit results have differences with a standard
deviation of 0.16, which should be considered as a systematic error. Thus the HW entropy in the
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TP method is obtained as

S(TP)
HW (t = 10) = 9.19± 0.10 (stat.)± 0.16 (syst.). (25)

With increasing Nin, the HW entropy calculated in the tsMC method decreases, which is an oppo-
site behavior to that in the TP method, as noted before. At t = 10, SHW � 13.2 for Nin = 1200 and
SHW � 9.5 for Nin = 12 000. We also show the fit results to the data. We adopt Eq. (24) for the fit
function. From the fit results, the HW entropy in the tsMC method is found to be

S(tsMC)
HW (t = 10) = 9.01± 0.21 (stat.)± 0.06 (syst.), (26)

where the central value and the statistical error are obtained from the fit using Eq. (24), and the
systematic error is evaluated from the fits using several fit functions, as done in the TP method.

4.5. Discussions

The time evolutions of the HW entropies obtained in the TP and tsMC methods both show similar
behavior: The HW entropy increases with an oscillatory behavior in the early stage, then shows a
monotonous increase with a decreasing rate. The HW entropy at each t in the TP method increases
along with NTP, while it decreases with increasing Nin in the tsMC method. Thus we can guess
that the real value of the HW entropy lies between the results in the TP and tsMC methods.
Actually, the extrapolated values at t = 10, S(TP)

HW (t = 10) = 9.19± 0.10± 0.16 at NTP →∞ and
S(tsMC)

HW (t = 10) = 9.01± 0.21± 0.06 at Nin →∞ in the TP and tsMC methods, respectively, are
consistent with each other within the error. These results are also in agreement with that in Ref. [22].

These two methods, TP and tsMC, give consistent results after N →∞ extrapolation. On the
other hand, with finite NTP and Nin, they could give seemingly inconsistent results depending on
the dynamics. We here have a deeper look at this issue. In the tsMC method, the entropy seems to
keep increasing even for later times, in contrast to the results in the TP method with finite NTP and
in Ref. [22]. The discrepancy may come from the special shape of the potential: there are two flat
directions in the potential for the qYM system, although the width of them tends to shrink at large
distances. Then, the classical trajectory can keep growing along the flat direction, which would cause
an unlimited spreading of the Husimi function and a permanent increase of the HW entropy calculated
in the semiclassical approximation. (In the case of the TP methods, there exists a limiting value of
the HW entropy depending on NTP, which gives rise to the apparent saturation of S at large t .) By
comparison, it is shown that the exact energy spectra of the qYM are all discrete ones, because of the
shrinking width leading to an increase of the kinetic energy due to the uncertainty relation, although
the volume of {(p, q) |H (p, q) ≤ E} is infinite [30]. Note that the discrete spectra imply that the
wave functions of the energy eigenstates are all bound. Thus the corresponding Husimi function
would not have support at an infinite distance due to the quantum effect, and the HW entropy may
not show ever-increasing behavior but have a saturated value. This plausible conjecture can only be
confirmed by a full quantum calculation beyond the semiclassical approximation. Such a calculation
is beyond the scope of the present work and will be left for future work. Instead, we shall take another
model, which is a modified version of the qYM one free from flat directions in its potential.

5. Modified quantum Yang–Mills model

Let us consider the model in which quartic potential terms are added to the qYM Hamiltonian:

H = p2
1

2m
+ p2

1

2m
+ 1

2
g2q2

1 q2
2 +

ε

4
q4

1 +
ε

4
q4

2 . (27)
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Fig. 4. Time dependence of HW entropy by using the TP method in modified qYM.
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Fig. 5. Time dependence of HW entropy by using the tsMC method in modified qYM.

We call the system “modified quantum Yang–Mills (mqYM)”. The system is studied in Refs. [12,13]
with g2 < 0 in the context of chaos. It is apparent that there is no flat direction in the potential due
to the quartic terms. We take g2 = 1 and ε = 0.1 in the Hamiltonian, Eq. (27). The mqYM system
is found to be integrable with ε/g2 = 1, 1/3, and∞ [13,31]. Our choice of ε/g2 = 0.1 is well apart
from the integrable region. Since ε is not very large, the HW entropy shows a similar behavior to
that in qYM at early times, as shown later.

In this section, we shall calculate the HW entropy of the mqYM system in the TP and tsMC
methods. The analyses are carried out in a similar way to those for the qYM system.

In Figs. 4 and 5, we show the time evolution of the HW entropy in mqYM calculated using the
TP (NTP = 500, 1000, 5000, and 15 000 with NMC = 500) and tsMC (Nin = 600, 1200, 2400, and
12 000) methods, respectively. Nout is taken to be the same as Nin for tsMC.

The distribution function in Eq. (22) is used as the initial condition, and the statistical errors are
estimated for NMC (Nin) samples from a standard deviation in the TP (tsMC) method, as in the
qYM cases.

Both of the calculated results show that the HW entropy first increases with an oscillatory behavior
and tends to saturate at later times, t � 6. The later-time SHW values depend on the sample number,
NTP and Nin: With increasing NTP (Nin), the HW entropy increases (decreases) in the TP (tsMC)
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Fig. 6. HW entropy in mqYM at t = 10 as a function of NTP (NMC), and its extrapolation to infinitely large NTP

(NMC) in the TP (tsMC) method. Filled circles (squares) show the TP (tsMC) results, and the solid (dashed)
line shows a fit function to the TP (tsMC) results. The dotted line is a limiting value given by Eq. (23). The
shaded areas show the extrapolated value in the limit of NTP, NMC →∞.

method. These are the features also found in qYM. By comparison, it should be noted that there
seems to be saturation of SHW in both the TP and tsMC methods in mqYM, in contrast to qYM. This
may originate from the finite phase space volume where the Husimi function has support.

In Fig. 6, we show the HW entropy at t = 10 as a function of NTP or Nin. We fit a linear function to
the calculated SHW (t) results in the range 9 < t < 11, and adopt f (t = 10) as the HW entropy value
at t = 10. In the TP method, S(TP)

HW (t = 10) � 6.4 and 7.5 for NTP = 500 and 15 000, respectively.
In tsMC, we find S(tsMC)

HW (t = 10) � 9.4 and 7.7 for Nin = 600 and 12 000, respectively.
The extrapolated values of SHW at NTP →∞ and Nin →∞ are found to be

S(TP)
HW (t = 10) = 7.61± 0.01(stat.)± 0.03(syst.), (28)

S(tsMC)
HW (t = 10) = 7.53± 0.01(stat.)± 0.04(syst.), (29)

in the TP and tsMC methods, respectively. The central values and the statistical errors are obtained
from the fit using Eq. (24), and the systematic error is evaluated from the fits using several fit
functions. These two values are consistent with each other within the error.

The observation shows that the two methods, tsMC and TP, are especially effective for such a
potential that bounds the Husimi function in a finite region. Thus, we are confident of the validity of
the two methods in the mqYM system.

6. Summary

We have discussed entropy creation in isolated quantum systems by using the Husimi–Wehrl entropy
evaluated in a semiclassical treatment. The semiclassical treatment is known to be useful in some
systems, such as inflation in the early universe and the early stage of relativistic heavy-ion collisions.
These systems are expected to bear instabilities and/or chaoticities in their classical counter-systems;
then the smearing of the phase space distribution by the minimal wave packet causes entropy produc-
tion in terms of the Wehrl entropy or Boltzmann’s H function even in isolated quantum systems. This
is nothing but the Husimi–Wehrl entropy, the Wehrl entropy obtained by using the Gaussian-smeared
Wigner function (Husimi function) for the phase space distribution.
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The semiclassical time evolution of the Husimi function is given by solving a classical equation of
motion and smearing with a Gaussian packet. Combining this semiclassical treatment with the Monte
Carlo numerical integral technique, we have developed two methods, the test-particle (TP) method
and the two-step Monte Carlo (tsMC) method. We have applied these two methods to quantum-
mechanical systems in two dimensions, the quantum Yang–Mills (qYM) and the modified quantum
Yang–Mills (mqYM) systems. The classical counter-systems of these are known to be chaotic. We
have demonstrated that the Husimi–Wehrl entropy obtained in the TP (tsMC) method approaches
the converged value from below (from above) with an increasing sample number; we can then guess
the true value of HW entropy. We have further found that the results of the TP and tsMC methods
in the infinite sampling number limit are consistent within the error. Therefore, simultaneous appli-
cation of the two methods ensures the reliability of the results of the Husimi–Wehrl entropy at a given
time.

The extension of our methods to a multidimensional system is straightforward. We expect that
these methods will be useful in systems with many degrees of freedom, such as quantum field
theory. These methods are, in principle, applicable to higher-dimensional problems, and we have
confirmed that they actually work in 3D and 4D systems. In higher dimensions, we need many more
Monte Carlo samples to obtain statistically reliable results, and it would be necessary to make some
approximations for practical purposes. Work in this direction is in progress.
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Appendix A. HW entropy in inverted harmonics

The inverted harmonic oscillator (IHO) is an unstable system, where the Hamiltonian is given as

H = p2

2m
− 1

2
λ2q2. (A1)

In this system, the classical trajectories are not restricted to a finite region, but extend to infinitely
large spatial and momentum regions. While this unbounded nature makes the numerical calculation
difficult, the analytic expression of the HW entropy is known [16]. Then, by comparing the numerical
results with the analytic solution, we can examine the validity and the precision of the numerical
methods.

A.1. Analytic solution

When the initial distribution of the Wigner function is given by a Gaussian,

fW (p, q; t = 0) = 2 exp

(
− 1

�ω
p2 − ω

�
q2

)
, (A2)

the time evolution of the HW entropy is obtained analytically [16]. Since the potential is quadratic,
the semiclassical analysis is exact, and the time evolution of the Wigner function is calculated by
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Fig. A1. Time dependence of the HW entropy of the inverted harmonic oscillator in the TP method.
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Fig. A2. Time dependence of the HW entropy of the inverted harmonic oscillator in the tsMC method.

solving the classical equation of motion. The HW entropy at time t is given as [16]

SHW (t) = log

√
A (t)

2
+ 1, (A3)

A (t) = 2
(
σρ cosh (2λt)+ 1+ δδ′) , (A4)

σ = λ2 + ω2

2λω
, δ = λ2 − ω2

2λω
, (A5)

ρ = �2 + λ2

2�λ
, δ′ = �2 − λ2

2�λ
. (A6)

A.2. Numerical results with TP

Figure A1 shows the time evolution of the HW entropy of IHO calculated in the TP method with
NTP = 50–800. We find that the TP method can well describe the time evolution of the HW entropy
at early times, and that numerical results show saturated behavior at later times. Since there exists a
limiting value of SHW in the TP method, as discussed in Sect. 4.2, we need to take a large number
of NTP to describe a large amount of entropy production. It should be noted that numerical results
converge in the limit of NTP →∞, and the converged result well describes the analytic result.
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A.3. Numerical results with tsMC in inverted harmonics

Figure A2 shows the time evolution of the HW entropy of IHO in the tsMC method with Nin =
Nout = 100 and 1000. We find that the numerical results are consistent with the analytic solution at
early times t ≤ 3, but that the numerical results tend to overestimate the analytic results and numerical
errors become very large at later times. A large error would come from the poor overlap between the
Wigner function and the coarse-graining Gaussian function at later time, which spoils the importance
sampling. On the other hand, the systematic overestimation may be due to the lack of sampling
points in the Monte Carlo integration in the logarithmic function (see Eq. (19)). We note here that
the statistical-error estimation is performed only for the Monte Carlo integration outside the log.
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