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We consider the multiple point principle of the Standard Model with scalar singlet dark matter
(DM) and three heavy right-handed neutrinos at the scale where the beta function βλ of the effec-
tive Higgs self-coupling λeff becomes zero. We do a two-loop analysis and find that the top quark
mass Mt and the Higgs portal coupling κ are strongly related to each other. One of the good points
of this model is that a larger Mt (�171 GeV) is allowed. This fact is consistent with the recent
experimental value Mt = 173.34 ± 0.76 GeV [ATLAS, CDF, CMS, and D0 Collaborations,
arXiv:1403.4427 [hep-ex]], which corresponds to the DM mass 769 GeV ≤ mDM ≤ 1053 GeV.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The discovery of the Higgs-like particle and its mass [1,2] is a very meaningful result for the Standard
Model (SM). It suggests that the Higgs potential can be stable up to the Planck scale Mpl and also
that both the Higgs self-coupling λ and its beta function βλ become very small around the Planck
scale. This fact has attracted much attention, and there are many works trying to find its physical
meaning [3–20].

One interesting and meaningful study is to consider how the physics beyond the SM affects such
a criticality. For example, recently there has been a two-loop analysis of the Higgs portal Z2 scalar
model [21]. In this model, the SM singlet scalar is a dark matter (DM) candidate, and it is found
that its mass can be predicted to be 400 GeV < mDM < 470 GeV from the requirement that λ and βλ

simultaneously become zero at 1017 GeV; this is usually called the multiple point principle (MPP)
[3–5].

In this paper, we study the MPP of the next minimal extension of the SM, namely, besides the
Higgs portal Z2 scalar, we include SM singlet heavy right-handed neutrinos [19,22,23]. The MPP
of this model at the (reduced) Planck scale Mpl has already been investigated in Ref. [19]. There, by
using the two-loop beta functions and the tree-level Higgs potential, they concluded that mDM and
the heavy Majorana mass MR of the right-handed neutrino should be

8.5 (8.0) × 102 GeV ≤ mDM ≤ 1.4 (1.2) × 103 GeV, (1)

6.3 (5.5) × 1013 GeV ≤ MR ≤ 1.6 (1.2) × 1014 GeV, (2)
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within 172.6 GeV ≤ Mt ≤ 174.1 GeV. The different points in this paper are as follows:

(1) We consider the MPP at the scale where βλ becomes zero. Namely, we do not fix the MPP
scale at Mpl. As a result, the condition βλ = 0 does not reduce the degrees of freedom of
the parameters.

(2) In addition to the two-loop beta functions, we also calculate the one-loop effective potential.
(3) We fix MR to 1013 GeV, and include the Yukawa coupling YR between the Z2 scalar and the

right-handed neutrinos.

Although, within the renormalizable Lagrangian, there are also two scalar couplings in this model
(see Eq. (12)), we focus on λ (and βλ) in this paper.1 The existence of heavy right-handed neutrinos
is naturally needed if we try to explain the light neutrino masses by the seesaw mechanism. Thus,
this model is phenomenologically interesting because it can explain both DM and the light neutrino
masses.

This paper is organized as follows. In Sect. 2, we review the MPP of the pure SM for the later
discussion. In Sect. 3, we give a two-loop analysis of the SM with the scalar singlet DM and three
right-handed neutrinos. In Sect. 4, a summary is given.

2. Preliminary: Multiple point principle of SM

In the SM, the one-loop effective potential in the Landau gauge is given by

Veff(φ, μ) = Vtree(φ, μ) + V SM
1 loop(φ, μ), (3)

where

Vtree(φ, μ) := e4�(φ) λ(μ)

4
φ4, (4)

V1 loop(φ) := e4�(φ)

{
−6 · Mt (φ)4

64π2

[
log

(
M2

t (φ)

μ2

)
− 3

2
+ 2�(φ)

]

+ 3 · MW (φ)4

64π2

[
log

(
M2

W (φ)

μ2

)
− 5

6
+ 2�(φ)

]

+3 · MZ (φ)4

64π2

[
log

(
M2

Z (φ)

μ2

)
− 5

6
+ 2�(φ)

]}
, (5)

Mt (φ) = yt (μ)√
2

φ, MW (φ) = g2(μ)

2
φ, MZ =

√
g2

2(μ) + g2
Y(μ)

2
φ. (6)

Here, μ is the renormalization scale, �(φ) is the wave function renormalization, and λ(μ), yt (μ),
g2(μ), and gY (μ) are the renormalized couplings.2 By using these results, the effective Higgs self-
coupling λeff(φ, μ) can be defined as

Veff(φ, μ) := λeff(φ, μ)

4
φ4. (7)

To minimize the contribution of V SM
1 loop(φ, μ), we set φ = μ in the following discussion.

1 It is difficult to realize the MPP of the other scalar couplings simultaneously in addition to λ. This is
discussed in Appendix B.

2 For the beta functions of the SM, see, e.g., Refs. [21,24,29]. Alternatively, we can reproduce them by using
the results in Appendix A.
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Fig. 1. Left: the running effective Higgs self-coupling λeff as a function of the Higgs field φ. The blue band
corresponds to 95% confidence level (CL) deviation of the top quark pole mass Mt . Right: the scale �β where
βλeff becomes zero as a function of Mt .

The left panel of Fig. 1 shows λeff(φ) as a function of φ. For the initial values, we have used the
numerical results of Ref. [24], and the Higgs mass is fixed at

Mh = 125.15 GeV. (8)

We use Eq. (8) as a typical value in the following discussion. The band corresponds to 95% CL
deviation of the top quark pole mass Mt . For the 1σ level, this is given by [25]

Mt = 171.2 ± 2.4 GeV. (9)

If we assume that all the other parameters of the SM except for Mt are fixed, we can find the scale
�β where βλeff becomes zero as a function of Mt . Here, βλeff means

βλeff(φ) := dλeff(φ)

d log φ
. (10)

The right panel of Fig. 1 shows �β as a function of Mt . The MPP requires that λeff(�β) should
become zero, and predicts

Mt = 170.9 GeV. (11)

This is the MPP of the pure SM. In the next section, we discuss the MPP of the SM with the scalar
singlet DM and three right-handed neutrinos.

3. MPP of the SM with scalar singlet dark matter and right-handed neutrinos

We consider the following renormalizable Lagrangian:

L = LSM + 1

2
∂μS∂μS − m2

DM

2
S2 − κ

2
S2 H† H − λDM

4!
S4 +

3∑
j=1

ν̄R j iγ
μ∂μνR j

−
∑
i, j

(
yνi j L̄ i H†νR j + h.c

)
−
∑
i, j

(
MRi j + YRi j√

2
S

)
ν̄c

RiνR j . (12)

Here, H is the Higgs field, S is the SM singlet real scalar field, mDM is its mass, νRi are right-handed
neutrinos, MRi j are their Majorana masses, and (YRi j , yνi j ) are the Yukawa couplings. For simplicity,
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we assume that MRi j , YRi j , and yνi j are diagonalized, and also that they are respectively equal for
the three generations. In this case, Eq. (12) becomes

L = LSM + 1

2
∂μS∂μS − m2

DM

2
S2 − κ

2
S2 H† H − λDM

4!
S4 +

3∑
i=1

ν̄Ri iγ
μ∂μνRi

− yν

3∑
i=1

(
L̄i H†νRi + h.c

)
−

3∑
i=1

(
MR + YR√

2
S

)
ν̄c

RiνRi . (13)

Thus, including the top mass Mt , there are seven unknown parameters,

Mt , mDM, κ, λDM, yν, MR, YR, (14)

in this model. In the following discussion, to distinguish the initial values of these parameters at
μ = Mt from their running couplings, we use the subscript 0 for their initial values, like κ0, except
for Mt . Because S is the candidate for the DM, mDM and κ must satisfy some relation such that they
can explain the observed energy density [27]:


DMh2 := ρDMh2

ρtot
= 0.1196 ± 0.0031 (68% CL). (15)

For mDM � Mh , this relation is approximately given by [28]

log10 κ � −3.63 + 1.04 log10

(mDM

GeV

)
. (16)

Moreover, if we assume that the neutrino mass is 0.1 eV, yν and MR must satisfy

− MR

2

(
1 −

√
1 + 2y2

νv2
h

M2
R

)
� y2

νv2
h

2MR
= 0.1 eV, (17)

where vh is the Higgs expectation value. This is the usual relation of the seesaw mechanism. In the
following discussion, we choose MR = 1013 GeV, so yν is fixed by Eq. (17). As a result, four of the
seven parameters remain free; they are

Mt , κ, λDM, and YR. (18)

To discuss how the effective couplings behave at the high-energy scale, we must know the renor-
malization group equations (RGEs) of this model. Their results are presented in Appendix A. Here,
note that the contributions from the heavy right-handed neutrinos should be taken into account at the
scale where μ ≥ MR. The one-loop effective potential of the Higgs field is given by

V1 loop(φ, μ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V SM
1 loop(φ) + MDM(φ)4

64π2

[
log

(
MDM(φ)2

μ2

)
− 3

2

]
− 6 · M−

ν (φ)4

64π2

[
log

(
M−

ν (φ)2

μ2

)
− 3

2

]

(for φ < MR),

V SM
1 loop(φ) + MDM(φ)4

64π2

[
log

(
MDM(φ)2

μ2

)
− 3

2

]
− 6 · M−

ν (φ)4

64π2

[
log

(
M−

ν (φ)2

μ2

)
− 3

2

]

−6 · M+
ν (φ)4

64π2

[
log

(
M+

ν (φ)2

μ2

)
− 3

2

]
(for φ > MR),

(19)

where

MDM(φ) :=
√

e2�(φ)
κφ2

2
+ m2

DM, M±
ν (φ) := MR

2

(
1 ±

√
1 + 2y2

ν e2�(φ)φ2

M2
R

)
. (20)
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Fig. 2. The running effective Higgs self-coupling λeff as a function of φ. The upper left (right) panel shows
the Mt (κ0) dependence. For Mt , the blue band corresponds to 95% CL deviation from 171.2 GeV. The lower
left (right) panel shows the λDM0 (YR0) dependence.

In these expressions, we have put S = 0 because we now focus on the MPP of the Higgs sector.3

Furthermore, we can neglect mDM in Eq. (20) because its effect is very small when φ � mDM. As
in Sect. 2, we set φ = μ, and define the effective Higgs self-coupling λeff as

λeff(φ) := 4

φ4 V (φ) = 4

φ4

(
Vtree(φ) + V1 loop(φ)

)
. (21)

Figure 2 shows λeff(φ) for various values of the parameters. Here, the typical values are chosen to be

λDM0 = 0.2, κ0 = 0.2, YR0 = 0.2. (22)

One can see that λeff depends mainly on Mt and κ0, and hardly on λDM0 and YR0. This is because λDM

does not appear in βλ and YR appears at the two-loop level (see Eq. (A7) in Appendix A). Therefore,
by fixing λDM and YR, we can relate Mt and κ0 from the MPP.

By the same procedure of Sect. 2, we can calculate the scale �β where βλeff becomes zero, and
obtain λeff(�β) as a function of Mt and κ0. Figure 3 shows the results. In the upper (lower) panels,
YR0 is fixed to 0.2 (0.7). The difference between the left and right panels is whether the tree- or
one-loop-level potential is used. The parameter regions where λeff(�β) < 0 and λDM(�β) < 0 are
filled, respectively, with blue and red. Both of them are excluded from the stability of the potentials.
The MPP predicts that Mt and κ0 should exist on the green contour. One of the good points of this

3 Of course, we can consider the MPP of the DM sector. We study such a situation in Appendix B.
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Fig. 3. The parameter dependences of λeff(�β). Here, λDM0 is fixed at 0.2, and YR0 is fixed at 0.2 (0.7) in the
upper (lower) panels. The left (right) panels show the calculations by using the tree- (one-loop-) level potential.
The green lines show the prediction by the MPP. The contours that represent �β = 1016 GeV, 1017 GeV, and
1018 GeV are also shown by red, blue, and orange, respectively.

model is that a larger Mt is allowed, unlike in the SM. This is consistent with the recent experimental
value [26],

Mt = 173.34 ± 0.76 GeV, (23)

which corresponds to the DM mass (see Eq. (16)),

769 GeV ≤ mDM ≤ 1053 GeV. (24)

Two comments are needed.

1. The contours that represent �β = 1016 GeV, 1017 GeV, and 1018 GeV are also shown in Fig. 3
by red, blue, and orange, respectively. Thus, a larger Mt (such as Eq. (23)) means that, in this
model, the MPP of the Higgs potential occurs at the relatively low-energy scale (�1016 GeV).

6/11
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2. As is seen from the lower panels of Fig. 3, we can also require λDM(�β) = 0 in addition to
λeff(λβ) = 0. Because κ0 and YR0 appear in the one-loop part of βλDM , we can obtain a further
relation between them by λDM(�β) = 0. Although one might think that the one remaining
parameter can be determined by βλDM(�β) = 0, we have checked that it is difficult to satisfy
λDM(�β) = βλDM(�β) = 0 simultaneously. See Appendix B for more details.

4. Summary

We have discussed the MPP of the SM with scalar singlet DM and right-handed neutrinos. We have
found that λeff and βλeff can simultaneously become zero within a reasonable parameter region. The
MPP predicts a strong relation between the portal coupling κ and the top mass Mt . Unlike the pure
SM, a larger Mt is allowed in this model, which is favorable for the recent experimental values
[25,26]:

Mt = 173.34 ± 0.76 GeV. (25)

Although we have found that the MPP can be satisfied for the Higgs potential, it is difficult to realize
the exact flatness of the scalar potential at some high-energy scale �:

λ(�) = βλ(�) = λDM(�) = βλDM(�) = κ(�) = βκ(�) = 0; (26)

see Appendix B for details. It would be interesting to consider a generalization of this model in such
a way that the MPP can be realized for whole scalar fields.
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Appendix A. Two-loop renormalization group equations

The two-loop RGEs where the Lagrangian is given by Eq. (13) are as follows:4

dgY

dt
= 1

(4π)2

41

6
g3

Y + g3
Y

(4π)4

(
199

18
g2

Y + 9

2
g2

2 + 44

3
g2

3 − 17

6
y2

t − 3

2
y2
ν

)
, (A1)

dg2

dt
= − 1

(4π)2

19

6
g3

2 + g3
2

(4π)4

(
3

2
g2

Y + 35

6
g2

2 + 12g2
3 − 3

2

(
y2

t + y2
ν

))
, (A2)

dg3

dt
= − 7

(4π)2 g3
3 + g3

3

(4π)4

(
11

6
g2

Y + 9

2
g2

2 − 26g2
3 − 2y2

t

)
, (A3)

4 The calculations in this appendix are based on Refs. [30–32], and our results are in agreement with the
recent result [23] when there is only one right-handed neutrino and YR = 0.

7/11

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 023B04 K. Kawana

dyt

dt
= yt

(4π)2

(
9

2
y2

t + 3y2
ν − 17

12
g2

Y − 9

4
g2

2 − 8g2
3

)

+ yt

(4π)4

{
−12y4

t − 27

4
y4
ν − 27

4
y2

t y2
ν − 9

8
Y 2

R y2
ν + 6λ2 + 1

4
κ2 − 12λy2

t

+ g2
Y

(
131

16
y2

t + 15

8
y2
ν

)
+ g2

2

(
225

16
y2

t + 45

8
y2
ν

)
+ 36g2

3 y2
t + 1187

216
g4

Y

− 23

4
g4

2 − 108g4
3 − 3

4
g2

Y g2
2 + 9g2

2g2
3 + 19

9
g2

3g2
Y

}
, (A4)

dyν

dt
= yν

(4π)2

(
9

2
y2
ν + 3y2

t + 1

4
Y 2

R − 3

4
g2

Y − 9

4
g2

2

)

+ yν

(4π)4

{
−12y4

ν − 27

4
y4

t − 19

32
Y 4

R − y2
ν

(
27

4
y2

t + 21

16
Y 2

R

)
+ 6λ2 + 1

4
κ2

− 12λy2
ν − κY 2

R + g2
Y

(
123

16
y2
ν + 85

24
y2

t + 9

16
Y 2

R

)
+ g2

2

(
225

16
y2
ν + 45

8
y2

t + 27

16
Y 2

R

)

+ 20g2
3 y2

t + 35

24
g4

Y − 23

4
g4

2 − 9

4
g2

Y g2
2

}
, (A5)

dYR

dt
= YR

(4π)2

(
3Y 2

R + 2y2
ν

)
+ YR

(4π)4

{
−81

16
Y 4

R − 27

4
Y 2

R y2
ν − 9y2

t y2
ν − 27

2
y4
ν

− λDMY 2
R − 8κy2

ν − 1

4
g2

Y y2
ν − 3

4
g2

2 y2
ν

}
, (A6)

dλ

dt
= 1

(4π)2

(
λ
(

24λ − 9g2
2 − 3g2

Y + 12y2
ν + 12y2

t

)
+ 3

4
g2

2g2
Y + 9g4

2

8

+3g4
Y

8
+ κ2

2
− 6y4

ν − 6y4
t

)
+ 1

(4π)4

{
−2κ3 − 5κ2λ − 312λ3 + 36λ2

(
g2

Y + 3g2
2

)

+ λ

(
629

24
g4

Y + 39

4
g2

2g2
Y − 73

8
g4

2

)
+ 305

16
g6

2 − 289

48
g2

Y g4
2 − 559

48
g4

Y g2
2 + 379

48
g6

Y

− 32g2
3 y4

t − 8

3
g2

Y y4
t − 9

4
g4

2

(
y2

t + y2
ν

)
+ λy2

t

(
85

6
g2

Y + 45

2
g2

2 + 80g2
3

)

+ λy2
ν

(
15

2
g2

Y + 45

2
g2

2

)
+ g2

Y y2
t

(
−19

4
g2

Y + 21

2
g2

2

)
− g2

Y y2
ν

(
3

4
g2

Y + 3

2
g2

2

)

− 144λ2
(

y2
t + y2

ν

)
− 3λ

(
y4

t + y4
ν + 3

2
Y 2

R y2
ν

)
+ 30

(
y6

t + y6
ν + 1

5
Y 2

R y4
ν

)
− 3

2
Y 2

Rκ2
}
,

(A7)

dλDM

dt
= 1

(4π)2

(
3λ2

DM + 12κ2 + 6λDMY 2
R − 18Y 4

R

)

+ 1

(4π)4

{
−17

3
λ3

DM − 20κ2λDM − 48κ3 − 72
(

y2
t + y2

ν

)
κ2 + 24

(
g2

Y + 3g2
2

)
κ2

+ 72Y 4
R

(
Y 2

R + y2
ν

)
+ λDMY 2

R

(
21

2
Y 2

R − 18y2
ν

)
− 9Y 2

Rλ2
DM

}
, (A8)
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dκ

dt
= 1

(4π)2

(
4κ2 + 12κλ + κλDM + 3κ

(
2y2

t + 2y2
ν + Y 2

R

)
− 3

2
κ
(

g2
Y + 3g2

2

)
− 12Y 2

R y2
ν

)

+ κ

(4π)4

{
−21

2
κ2 − 72κλ − 60λ2 − 6κλDM − 5

6
λ2

DM −
(

y2
t + y2

ν

)
(12κ + 72λ)

− 3Y 2
R (2κ + λDM) − 27

2
y4

t − 27

2
y4
ν − 3

4
Y 4

R + 51

4
Y 2

R y2
ν + g2

Y (κ + 24λ) + 3g2
2 (κ + 24λ)

+ y2
t

(
85

12
g2

Y + 45

4
g2

2 + 40g2
3

)
+ y2

ν

(
15

4
g2

Y + 45

4
g2

2

)
+ 557

48
g4

Y − 145

16
g4

2 + 15

8
g2

Y g2
2

}

+ Y 2
R y2

ν

(4π)4

{
3

2

(
g2

Y + 3g2
2

)
+ 27Y 2

R + 66y2
ν

}
, (A9)

d�

dt
= 1

(4π)2

(
9

4
g2

2 + 3

4
g2

Y − 3y2
t − 3y2

ν

)
. (A10)

Appendix B. Is an exact flat potential possible?

One question is whether the MPP can be realized exactly, namely, if

λ(�β) = βλ(�β) = λDM(�β) = βλDM(�β) = κ(�β) = βκ(�β) = 0 (B1)

is possible or not. Here, for simplicity, we also define �β as the scale where βλ becomes zero. To
discuss this possibility, it is qualitatively enough to consider one-loop RGEs. One can easily under-
stand that it is impossible to realize Eq. (B1) as follows: even if λ(�β), βλ(�β), λDM(�β), and
βλDM(�β) become simultaneously zero, we cannot make κ(�β) zero because the one-loop part of
βλDM at �β becomes

βλDM |�β = 1

(4π)2

(
12κ2 − 18Y 4

R

)
, (B2)

Fig. B1. The blue (red) lines show the contours where βλDM(λDM)(�β) = 0. The left (right) panel is the
Mt = 170 (176) GeV case. Here, note that, if κ0 � 0.3, �β becomes less than MR = 1013 GeV, and there is no
solution of βλDM(�β) = 0 because the one-loop part of βλDM is always positive when μ ≤ MR.
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and we need κ(�β) �= 0 to satisfy βλDM(�β) = 0.5 Furthermore, it is also difficult even to satisfy
λDM(�β) = βλDM(�β) = 0 simultaneously; see Fig. B1. This shows the contours such that λDM(�β)

and βλDM(�β) become zero, respectively. Here, we have used two-loop RGEs. One can see that the
two contours do not intersect.
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