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We consider the multiple point principle (MPP) and the inflation of the gauged B − L (baryon
number minus lepton number) extension of the Standard Model (SM) with a classical conformal-
ity. We examine whether the scalar couplings and their beta functions can become simultaneously
zero at �MPP := 1017 GeV by using two-loop renormalization group equations (RGEs). We find
that we can actually realize such a situation and that the parameters of the model are uniquely
determined by the MPP. However, as discussed by S. Iso and Y. Orikasa [Prog. Theor. Exp. Phys.
2013, 023B08 (2013) [arXiv:1210.2848 [hep-ph]]], if we want to realize electroweak symmetry
breaking by radiative B − L symmetry breaking, the self-coupling λ� of a newly introduced
SM singlet complex scalar � must have a non-zero value at �MPP, which means the breaking
of the MPP. We find that O(100) GeV electroweak symmetry breaking can be achieved even if
this breaking is very small; λ�

(
�MPP

) ≤ 10−10. Within this situation, the mass of the B − L

gauge boson is predicted to be MB−L = 2
√

2 × √
λ(vh)/0.10 × vh � 696 GeV, where λ is the

Higgs self-coupling and vh is the Higgs expectation value. This is a remarkable prediction of the
(slightly broken) MPP. Furthermore, such a small λ� opens a new possibility: � plays the role
of the inflaton [28]. Another purpose of this paper is to investigate the λ��4 inflation scenario
with non-minimal gravitational coupling ξ�2R based on two-loop RGEs.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index B02, B32, B40

1. Introduction

The discovery of the Higgs-like particle and its mass [1,2] is very meaningful for the Standard
Model (SM). The experimental value of the Higgs mass suggests that the Higgs potential can be
stable up to the Planck scale Mpl and also that both the Higgs self-coupling λ and its beta function
βλ become very small around Mpl. This fact attracts much attention, and there are many works which
try to find its physical meaning [3–22].

Well before the discovery of the Higgs, it was argued that the Higgs mass could be predicted to be
around 130 GeV by the requirement that the minimum of the Higgs potential becomes zero at Mpl

[3,4]. Such a requirement (not always at Mpl) is generally called the multiple point principle (MPP).
One of the good points of the MPP is its predictability: the low-energy effective couplings are fixed
so that the minimum of the potential vanishes; see, e.g., Refs. [23,24].

By taking the fact that the MPP can be realized in the SM into consideration, a natural question is
whether such a criticality can also be realized in the models beyond the SM. One interesting extension
is the gauged B − L (baryon number minus lepton number) model with a classical conformality
[25–28]. Here, “classical conformality” means there is no mass term at the classical level without
gravity. This model can be obtained by gauging the global U(1)B−L symmetry of the SM with three
right-handed neutrinos and an SM singlet complex scalar �. As discussed in the following, if we
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neglect the Yukawa couplings between the Higgs and neutrinos, there are six unknown parameters
in this model. In particular, two of them are new scalar couplings: κ and λ� . Therefore, in principle,
these six parameters can be uniquely fixed by the MPP conditions:

λ
(
�MPP

) = λ�

(
�MPP

) = κ
(
�MPP

) = βλ

(
�MPP

) = βλ�

(
�MPP

) = βκ

(
�MPP

) = 0, (1)

where �MPP is the scale at which we impose the MPP. The analyses in this paper are based on the
following assumptions:

1. We consider the MPP at �MPP = 1017 GeV.
2. As well as the analyses in Refs. [25,26], we do not include mass terms in the Lagrangian. As

a result, all the low-energy scales are radiatively generated.
3. The Higgs mass is fixed at

Mh = 125.7 GeV, (2)

and we regard the top mass Mt as one of the free parameters.
4. We assume that small neutrino masses are produced by the seesaw mechanism via radiative

breaking of the B − L symmetry. As a result, we can neglect the Yukawa couplings yν between
the Higgs and neutrinos because the typical breaking scale is very small

(�1013 GeV
)
.

In Sect. 2.2, we will see that Eq. (1) can be actually realized at �MPP = 1017 GeV.
One of the good features of this model is that electroweak symmetry breaking can be trig-

gered by U(1)B−L symmetry breaking via the Coleman–Weinberg (CW) mechanism. In Ref.
[26], it was argued that we can naturally obtain vh = O(100) GeV by imposing λ

(
Mpl

) = 0 and
κ
(
Mpl

) = 0. Here, the important point is that λ�

(
�MPP

) �= 0 is needed to realize such B − L
breaking.1 Therefore, if we try to combine this fact and the MPP, a natural question arises:

◦ Is O(100) GeV electroweak symmetry breaking possible even if λ�(�MPP) is small?

In Sect. 2.3, we will see that this is actually possible even if λ�

(
�MPP

) ≤ 10−10. The reason for
this is very simple: By tuning the parameters of the model, we can obtain the favorable scale
at which U(1)B−L breaks so that vh becomes O(100) GeV. Therefore, the B − L model is a
phenomenologically very interesting model in that it can explain the natural-scale electroweak sym-
metry breaking while satisfying the (slightly broken) MPP. Furthermore, within this situation, we
find that the mass of the B − L gauge boson is predicted to be

MB−L = 2gB−L(vB−L)vB−L = 2
√

2 ×
√

λ(vh)

0.10
× vh � 696 GeV, (3)

where vB−L is the expectation value of � and we have used the typical value λ(vh) � 0.1. This is
a remarkable prediction of the (slightly broken) MPP, and it is surprising that the predicted value of
MB−L depends only on the SM parameters.2

On the other hand, there are many observational results from the cosmological side. One of the
reliable possibilities to explain them is cosmic inflation. As is well known, Higgs inflation is pos-
sible in the SM where the criticality of the Higgs potential plays an important role in realizing the
inflation naturally [17]. Of course, such a Higgs inflation is possible in the B − L model, but we
can also consider the inflation scenario where � plays the role of the inflaton [28]. In this paper, we

1 Realizing B − L symmetry breaking when λ�

(
�MPP

) = 0 is difficult; see Sect. 2.
2 Unfortunately, this value of MB−L is already excluded by the ATLAS experiment [29]; see Sect. 2.3.
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study λ��4 inflation with non-minimal gravitational coupling ξ�2R. Our analysis is based on the
following condition:

◦ We consider inflation in the situation where the minimum of the Higgs potential vanishes at

�MPP = 1017 GeV and electroweak symmetry breaking occurs at O(100) GeV.

In the following discussion, we will see that this condition strongly constrains the parameters, and,
as a result, we can obtain unique cosmological predictions3 that are consistent with the recent values
observed by Planck [32] and BICEP2 [33].

This paper is organized as follows. In Sect. 2, we study the MPP and the B − L symmetry breaking
from the point of view of the slightly broken MPP. In Sect. 3, we investigate the inflation scenario
where the SM singlet complex scalar � plays the role of the inflaton. In Sect. 4, we give a summary.

2. MPP of the B − L model and symmetry breaking

The flow of this section is as follows. In Sect. 2.1, we briefly review the gauged B − L model. In
Sect. 2.2, we consider the MPP of this model. In Sect. 2.3, we study whetherO(100) GeV electroweak
symmetry breaking can be realized even if λ� (�MPP) is very small.

2.1. Short review of the B − L model

In this subsection, we briefly review the B − L extension of the SM. Here, our discussion is mainly
based on Ref. [30]. As mentioned in the introduction, this model can be obtained by gauging the
global U(1)B−L symmetry. The kinetic terms of the two U(1) gauge fields are given as follows:

Lkin = −1

4
Fμν Fμν − 1

4
Fμν

B−L FB−Lμν − ω

4
Fμν

B−L Fμν, (4)

where ω(∈ R) represents the kinetic mixing. The U(1) part of the covariant derivative of a matter
field φk is given by

Dμ = ∂μ + i
2∑

i=1

2∑
j=1

Y i
k gi j A j

μ, (5)

where A1
μ and A2

μ are the gauge fields of U(1)Y and U(1)B−L , respectively, Y i
k are the U(1) charges,

and gi j represent the U(1) gauge couplings. We can remove the mixing term by changing A1
μ and

A2
μ to the new fields AY

μ and AB−L
μ :

A1
μ = 1√

2(1 + ω)
AY

μ + 1√
2(1 − 2ω)

AB−L
μ , A2

μ = 1√
2(1 + ω)

AY
μ − 1√

2(1 − 2ω)
AB−L

μ . (6)

We simply express Eq. (6) as Ai
μ = ∑

α Ri
α Aα

μ. By this transformation, the new gauge couplings are

g′
iα :=

∑
j

gi j R j
α. (7)

We denote g′
iα as gYY, gYE, gEY, and gEE without a prime in the following discussion. Only

three of them are meaningful because we can further rotate the gauge fields without producing

3 Here, we use “unique” in the sense that our predictions do not strongly depend on the parameters of the
model, except for λ� , ξ , and the initial value of �.
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the mixing term: (
AY

AB−L

)
=
(

cos θ − sin θ

sin θ cos θ

)(
ÃY

ÃB−L

)
.

Thus, we can choose the angle θ so that one of gαβ vanishes. For convenience, we take the following
bases:

Bμ := gEE AB−L
μ + gEY AY

μ√
g2

EE + g2
EY

, Eμ := −gEY AB−L
μ + gEE AY

μ√
g2

EE + g2
EY

. (8)

In these bases, the second term of Eq. (5) becomes

gY Y Y
k Bμ +

(
gB−LY B−L

k + gmixY Y
k

)
Eμ, (9)

where

gY := gEEgYY − gEYgYE√
g2

EE + g2
EY

, gB−L :=
√

g2
EE + g2

EY, gmix := gYEgEE + gEYgYY√
g2

EE + g2
EY

. (10)

As a result, Bμ plays the role of the ordinary U(1)Y gauge field, and Eμ is a new gauge field that can
have a mass if the B − L symmetry is broken. We use Eq. (9) for the calculations of the RGEs in
Appendix A.

The particle contents (except for the gauge bosons) and their charges are presented in Table 1. In
addition to the SM particles, there are three right-handed neutrinos and a SM singlet complex scalar
whose U(1)B−L charge is +2. The relevant terms of the renormalizable Lagrangian are

L ⊃ −λ
(

H† H
)2 − λ�

(
�†�

)2 − κ
(

H† H
) (

�†�
)

−
∑

i j

yi j
ν ν̄i

R H†�
j
L − 1

2

∑
i j

Y i j
R ν̄ci

Rν
j
R� + h.c. (11)

In the following discussion, we use the bases such that yi j
ν and Y i j

R are real and diagonalized, and
assume that they are equal, respectively, for the three generations. As a result, by including the top
mass Mt , there are seven unknown parameters in this model:

Mt , gB−L , gmix, λ�, κ, yν, YR . (12)

If we assume that small neutrino masses (�1 eV) are generated by the ordinary seesaw mechanism
triggered by U(1)B−L symmetry breaking at a low-energy scale

(�1013 GeV
)
, yν should be very

small, and its effects on the RGEs are negligible. In this paper, we assume such a situation.

2.2. Multiple point principle

To understand how these couplings behave at a high-energy scale, we need to know the RGEs. The
two-loop RGEs of this model are presented in Appendix A. Furthermore, the one-loop effective

4/21
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Table 1. The particle contents of the B − L model and their charges except for
the gauge bosons. Here, i represents the generation.

SU(3)c SU(2)L U(1)Y U(1)B−L

Qi
L 3 2 +1/6 +1/3

ui
R 3 1 +2/3 +1/3

di
R 3 1 −1/3 +1/3

�i
L 1 2 −1/2 −1

νi
R 1 1 0 −1

ei
R 1 1 −1 −1

H 1 2 −1/2 0

� 1 1 0 +2

potentials in the Landau gauge are as follows:4

V H
eff(μ, φ) = λ(μ)

4
φ4 + V H

1−loop(μ, φ), V �
eff(μ, �) = λ�(μ)

4
�4 + V �

1−loop(μ, �), (13)

V H
1−loop(μ, φ) := e4�(μ)

{
−12 · Mt (φ)4

64π2

[
log

(
Mt (φ)2

μ2

)
− 3

2
+ 2�(μ)

]

+ 6 · MW (φ)4

64π2

[
log

(
MW (φ)2

μ2

)
− 5

6
+ 2�(μ)

]

+ 3 · MZ (φ)4

64π2

[
log

(
MZ (φ)2

μ2

)
− 5

6
+ 2�(μ)

]}
,

V �
1−loop(μ, �) := e4��(μ)

{
−6 · MR(�)4

64π2

[
log

(
MR(�)2

μ2

)
− 3

2
+ 2��(μ)

]

+ 3 · MB−L(�)4

64π2

[
log

(
MB−L(�)2

μ2

)
− 5

6
+ 2��(μ)

]}
, (14)

where

Mt (φ) = yt (μ)√
2

φ, MW (φ) = g2(μ)

2
φ, MZ (φ) =

√
g2

2(μ) + g2
Y(μ)

2
φ,

MR(�) = YR(μ)√
2

�, MB−L(�)2 = 22gB−L(μ)2�2. (15)

Here, μ is the renormalization scale and �, �� are the wave function renormalizations. To minimize
the one-loop contributions, we take μ = φ (�) in the following discussion.5 From these results, we

4 Here, we neglect the one-loop contributions that include λ, λ� , and κ because their effects are very small
when we consider the MPP.

5 Precisely speaking, μ should be determined as a function of φ and � by minimizing the one-loop effective
potential. However, in this paper, we simply choose μ = φ (�) when we focus on λeff (λeff

� ). It is known that
this choice is a good approximation [17].

5/21

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 073B04 K. Kawana

can define the effective self-couplings and their effective beta functions as follows:

λeff(φ) := 4V H
eff(φ)

φ4 , βeff
λ := dλeff(φ)

d ln φ
, (16)

λeff
� (�) := 4V �

eff(�)

�4 , βeff
λ�

:= dλeff
� (�)

d ln �
. (17)

Figure 1 shows the typical behaviors of λeff(φ) and its parameter dependences. Here, for later con-
venience, the initial values of λ� , κ , gB−L , gmix, and YR are given at �MPP = 1017 GeV, and their
typical values are chosen to be 0.1, respectively. One can see that λeff(φ) depends weakly on gB−L

and YR because they appear in βλ at the two-loop level.
Now, let us consider the MPP. By including the top mass Mt and neglecting yν , there are six
parameters in this model:

Mt , gB−L , gmix, λ�, κ, YR . (18)

Therefore, in principle, they are uniquely determined by the MPP conditions:

λeff(�MPP
) = λeff

�

(
�MPP

) = κ
(
�MPP

) = βeff
λ

(
�MPP

) = βeff
λ�

(
�MPP

) = βκ

(
�MPP

) = 0. (19)

Among these, λeff
�

(
�MPP

) = κ
(
�MPP

) = 0 are just the initial conditions of λ� and κ , and other
conditions give us constraints between the remaining parameters. We can understand such constraints
qualitatively from the one-loop RGEs:

◦ βeff
λ

(
�MPP

) = 0 mainly relates Mt and gmix because they appear in βλ at the one-loop level
(see Eq. (A12) in Appendix A). As a result, we can fix Mt and gmix by λeff

(
�MPP

) = βeff
λ(

�MPP
) = 0. They are

171.74 GeV ≤ Mt ≤ 171.82 GeV, 0.21 ≤ gmix
(
�MPP

) ≤ 0.27, (20)

according to 0 ≤ gB−L
(
�MPP

) ≤ 0.4.6

◦ We can obtain a relation between gB−L
(
�MPP

)
and YR

(
�MPP

)
by βλ�

(
�MPP

) = 0 because the
one-loop part of βλ� at �MPP is

βλ� |1−loop
(
�MPP

) = 1

16π2

(
96g4

B−L − 3Y 4
R

)
. (21)

◦ Finally, gB−L
(
�MPP

)
(or YR

(
�MPP

)
) can be fixed at 0 by βκ

(
�MPP

) = 0 because the one-loop
part of βκ at �MPP is

βκ |1−loop
(
�MPP

) = 1

16π2

(
12g2

B−L g2
mix − 12Y 2

R y2
ν

)
� 12g2

B−L g2
mix

16π2 . (22)

In Fig. 2, we show the effective potentials (upper) and the runnings (lower) of λeff
� and κ that satisfy

the above MPP conditions. Here, in the lower panels, we leave gB−L
(
�MPP

)
as a free parameter. One

can see that the flat potentials can be actually realized at �MPP.

Summary: From the MPP at �MPP = 1017 GeV, the parameters of the gauged B − L extension of
the SM are fixed at

Mt � 171.8 GeV, gB−L
(
�MPP

) � 0, gmix
(
�MPP

) � 0.2,

λ�

(
�MPP

) � 0, κ
(
�MPP

) � 0, YR
(
�MPP

) � 0. (23)

6 YR
(
�MPP

)
dependence is negligible.
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Mt 171.2 GeV

5 10 15 20

0.02

0.00

0.02

0.04

0.06

0.08

0.10

5 10 15 20
0.02

0.00

0.02

0.04

0.06

0.08

0.10

5 10 15 20
0.02

0.00

0.02

0.04

0.06

0.08

0.10

5 10 15 20
0.02

0.00

0.02

0.04

0.06

0.08

0.10

5 10 15 20
0.02

0.00

0.02

0.04

0.06

0.08

0.10

5 10 15 20
0.02

0.00

0.02

0.04

0.06

0.08

Fig. 1. The runnings of the Higgs effective self-coupling λeff as a function of φ. The upper-left (-right) panel
shows the Mt

(
κ
(
�MPP

))
dependence. In the case of Mt , the blue band corresponds to 95% CL deviation from

171.2 GeV. The middle-left (-right) panel shows the gmix
(
�MPP

) (
gB−L

(
�MPP

))
dependence. The lower-left

(-right) panel shows the YR
(
�MPP

) (
λ�

(
�MPP

))
dependence.

2.3. Electroweak symmetry breaking by breaking the MPP

We first explain how electroweak symmetry breaking is triggered by B − L symmetry breaking. If
� has an expectation value 〈�〉 := vB−L/

√
2, the interaction term −κ

(
H† H

) (
�†�

)
produces the

mass term of H :

L � −κ

2
v2

B−L H† H. (24)
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Fig. 2. The effective potentials (upper) and the runnings of λeff
� and κ that satisfy the MPP conditions (lower).

The upper-left (-right) panel shows V H
eff

(
V �

eff

)
. They are exactly flat at �MPP = 1017 GeV. In the lower panels, we

leave gB−L
(
�MPP

)
as a free parameter. The different colors correspond to the different values of gB−L

(
�MPP

)
.

Thus, if κ is negative at the B − L breaking scale, electroweak symmetry breaking occurs, and the
corresponding Higgs expectation value vh is given by

vh =
√

− κ

2λ
× vB−L

∣∣∣∣
μ=vh

. (25)

This is a relation between vh and vB−L . We must consider a few questions to realize electroweak
symmetry breaking at O(100) GeV:

Question 1: Does B − L symmetry breaking actually occur? In particular, is it possible to realize it
in the situation where the MPP is exactly satisfied?

See the lower-left panel of Fig. 2 once again. This shows the running of λeff
� when the MPP conditions

are satisfied. One can see that λeff
� is a monotonically decreasing function in the μ ≤ �MPP region.

Thus, we cannot obtain B − L symmetry breaking if the MPP is realized exactly. However, as dis-
cussed in Ref. [26], the situation changes when λeff

�

(
�MPP

)
> 0 and βeff

λ�

(
�MPP

)
> 0, which mean

the breaking of the MPP. See the upper- and middle-left panels of Fig. 3. They show the runnings of
λeff

� when λeff
�

(
�MPP

) = 10−10 and 10−12, respectively.7 One can see that λeff
� can cross zero, and

its scale strongly depends on gB−L
(
�MPP

)
. For convenience, we also show the corresponding effec-

tive potentials of � in the upper- and middle-right panels. Here, we have normalized the vertical
axes so that the minimums of the potentials can be easily understood. In the following discussion,

7 In Sect. 3, we will see that λeff
� is required to be small to explain the cosmological observations. This is

why we have chosen λeff
� to be so small here.
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Fig. 3. Upper (middle): the runnings of λeff
� (left) and the corresponding effective potentials (right) in the

case of λeff
�

(
�MPP

) = 10−10 (10−12). Here, the vertical axes of the right panels are properly normalized. The
different colors correspond to the different values of gB−L

(
�MPP

)
. Lower-left (-right): κ vs gB−L at Mt = 171.8

GeV for λeff
�

(
�MPP

) = 10−10 (10−12). Here, the solid blue lines are the numerical results of the RGEs, and the
dashed red contours represent −κ = 0.10 × g2

B−L .

besides λeff
�

(
�MPP

)
> 0 and β

λeff
�

(
�MPP

)
> 0, we consider the situation such that only λeff, βeff

λ , and
κ satisfy the MPP conditions:

λeff(�MPP
) = βeff

λ

(
�MPP

) = κ
(
�MPP

) = 0

λeff
�

(
�MPP

)
> 0, βeff

λ�

(
�MPP

)
> 0, βκ

(
�MPP

)
> 0. (26)

Question 2: Although we have seen that B − L symmetry breaking is possible if we break the MPP,
is it possible to realize vh = O(100) GeV?

To answer this question, we should know the typical values of κ at a low-energy scale (see Eq. (25)).
Before seeing the numerical results, let us understand them qualitatively. Because we now consider
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the MPP, the one-loop part of βκ approximately becomes (see Eq. (A13) in Appendix A)

βκ |1−loop � 12g2
B−L g2

mix

16π2 � g2
B−L

π
× 10−2, (27)

where we have used gmix � 0.2, which was obtained from λeff
(
�MPP

) = βeff
λ

(
�MPP

) = 0. Thus, κ at
a low-energy scale μ is approximately given by

− κ(μ) = c × 0.1 × g2
B−L(μ), (28)

where c is a constant and we have used the fact that gB−L does not change significantly.
This is the qualitative expression of κ(μ). In the lower-left (-right) panel of Fig. 3, we show κ vs gB−L

at μ = Mt = 171.8 GeV in the case of λeff
�

(
�MPP

) = 10−10 (10−12). One can see that Eq. (28) nicely
explains the numerical results when c is 1.0. As a result, vh is given by

vh =
√

0.1 × c × gB−L(vh)2

2λ(vh)
× vB−L � gB−L(vh)vB−L , (29)

where we have used the typical value λ(vh) � 0.1. Therefore, we can obtain vh = O(100) GeV by
tuning gB−L

(
�MPP

)
and YR

(
�MPP

)
so that the right-hand side of Eq. (29) becomes O(100) GeV.

The red lines of the upper- and middle-left panels of Fig. 3 show such examples. In the upper (lower)
case, gB−L is O(10−3(10−4)) and vB−L is O(102(103)) TeV.

A few comments are needed. First, because we no longer impose the flatness of V �
eff, the two

parameters gB−L
(
�MPP

)
and YR

(
�MPP

)
remain as free parameters. However, the parameter region

that can produce vh = O(100) GeV is quite limited. For example, in the λeff
�

(
�MPP

) = 10−10 case,
it is

1.6 × 10−3 � gB−L
(
�MPP

)
� 3.2 × 10−3, (30)

and YR
(
�MPP

)
is correspondingly fixed so that λeff

� crosses zero around O(100) TeV. The reason for
this is as follows. When gB−L

(
�MPP

)
is small, βλ� is too small to make λeff

� negative at a low-energy
scale. As a result, B − L symmetry breaking does not occur. On the other hand, when gB−L

(
�MPP

)
is too large, B − L symmetry breaking occurs at a very high-energy scale. We can actually see these
behaviors from Fig. 4. Note that the allowed values of gB−L

(
�MPP

)
become small when we decrease

λeff
�

(
�MPP

)
.

Second, gB−L at a low-energy scale does not change very much from the value at �MPP. See Fig. 5.
This shows the typical runnings of gB−L when λeff

�

(
�MPP

) = 10−10.
Finally, when Eq. (26) is satisfied, the mass of the B − L gauge boson is uniquely predicted to be

MB−L = 2gB−L(vB−L)vB−L = 2
√

2 ×
√

λ(vh)

0.10
× vh, (31)

where we have used Eq. (29) and c = 1.0. By using the experimental value vh = 246 GeV and the
typical value λ(vh) � 0.1, this leads to

MB−L � 696 GeV. (32)

Although this is a remarkable prediction of the MPP, this value is already excluded by the ATLAS
experiment [29] because gmix is too large.8

8 In Ref. [29], gmix is represented by g̃Y . Therefore, gmix � 0.24 corresponds to the contour γ ′ � 0.32/ sin θ

in Fig. 7 of Ref. [29].
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Fig. 4. The impossibility of realizing vh = O(100) GeV when gB−L
(
�MPP

)
is outside the region given by

Eq. (30). The left (right) panel shows the running of λeff
� when gB−L

(
�MPP

) = 0.0015 (0.0033). In the left
panel, one can see that λeff

� is always positive even if YR
(
�MPP

) = 0. In the right panel, one can see that B − L
symmetry breaking occurs at a very high-energy scale (� 102 TeV).

Fig. 5. The typical runnings of gB−L when λeff
�

(
�MPP

) = 10−10.

3. Non-minimal inflation: The SM singlet scalar as the inflaton

As is well known, Higgs inflation is possible in the SM [14–18]. There, the criticality of the Higgs
potential plays a crucial role in realizing inflation naturally; we can obtain sufficient e-foldings and
cosmic microwave background (CMB) fluctuations even if ξ is O(1) by making the running Higgs
self-coupling arbitrarily small (see Ref. [17] for more details). In other words, the smallness of the
self-coupling is needed to realize the inflation naturally. Such a Higgs inflation is, of course, possible
in our B − L model; however, the conclusion of the previous section indicates a new possibility:
The newly introduced SM singlet complex scalar � plays the role of the inflaton [28]. We study this
scenario in this section.

The action with the non-minimal gravitational coupling ξ�2R in the Jordan frame is given by

SJ =
∫

d4x
√−g

{
−
(

M2
pl + ξ�2

2

)
R + 1

2
gμν∂μ�∂ν� − λeff

� (�)

4
�4 + · · ·

}
, (33)

where � is the physical (real) field, and we have written the relevant terms for later discussion.
To study the inflation, it is convenient to move to the Einstein frame. Namely, by the conformal

11/21

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 073B04 K. Kawana

transformation

gE
μν := �2gμν, �2 := 1 + ξ�2

M2
pl

, (34)

and the field redefinition

dχ

d�
=
√

�2 + 6ξ2�2/M2
pl

�4 , (35)

the action becomes

SE =
∫

d4x
√−gE

{
−

M2
pl

2
RE + 1

2
gμν

E ∂μχ∂νχ − λeff
� (�)

4�4 �4(χ) + · · ·
}

. (36)

This is the canonically normalized form, and the potential in this frame is given by

U (χ) := λeff
� (�)

4�4 �4(χ). (37)

For large values of � � Mpl/
√

ξ , Eq. (35) becomes

dχ

d�
� Mpl

�

√
1 + 6ξ

ξ
, (38)

so we have

� � Mpl exp

(
χ

Mpl
√

(1 + 6ξ)/ξ

)
. (39)

In this limit, the potential in the Einstein frame, Eq. (37), becomes

U (χ) �
λeff

� (�)M4
pl

4ξ2

(
1 + exp

(
− 2χ

Mpl
√

(1 + 6ξ)/ξ

))−2

. (40)

This is an exponentially flat potential (see, e.g., Fig. 6), so we can use the slow-roll approximations.
The slow-roll parameters are

ε :=
M2

pl

2

(
1

U

dU

dχ

)2

=
M2

pl

2

(
d�

dχ

U ′

U

)2

, (41)

η := M2
pl

(
1

U

d2U

dχ2

)
=

M2
pl

U

d�

dχ

d

d�

(
d�

dχ
U ′
)

, (42)

ζ 2 := M4
pl

1

U 2

d3U

dχ3

dU

dχ
, (43)
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Fig. 6. The effective potentials in the Einstein frame. The left (right) panel shows the λeff
�

(
�MPP

) =
10−10 (10−12) case. The different colors correspond to the different values of ξ .

where a prime represents a derivative with respect to �. By using these quantities, the number of
e-foldings N , the spectral index ns , its running dns/d ln k, and the tensor-to-scalar ratio r are given by

N =
∫ χini

χend

dχ
1

M2
pl

U

dU/dχ
=
∫ �ini

�end

d�
1

M2
pl

U

U ′ (44)

ns = 1 − 6ε + 2η, (45)

dns

d ln k
= 16εη − 24ε2 − 2ζ 2, (46)

r = 16ε, (47)

where �ini (�end) represents the initial (end) value of �. In the following discussion, we denote �ini

simply as �.
Here, we give the current cosmological constraints by Planck TT + lowP [32]. The overall

normalization of the CMB fluctuations at the scale k0 = 0.05 Mpc−1 is

As := U

24π2εM4
pl

∣∣∣∣
k0

=
(

2.198+0.076
−0.085

)
× 10−9 (68% CL), (48)

and ns , dns/d ln k, and r are

ns = 0.9655 ± 0.0062 (68% CL),
dns

d ln k
= −0.0126+0.0098

−0.0087 (68% CL), r0.002 < 0.10 (95% CL),

(49)

at the scale k0 = 0.05 Mpc−1 for ns and dns/d ln k, and kr = 0.002 Mpc−1 for r0.002. On the other
hand, the BICEP2 experiment has reported an observation of r0.002 [33]:

r0.002 = 0.20+0.07
−0.05 (68% CL). (50)

There has been discussion suggesting that this result may be consistent with r = 0 due to the
foreground effect [34,35].

Our calculations are based on the following conditions:

(1) Although there are six parameters, we consider the situation where Eq. (26) is satisfied.
Namely, Mt , gmix

(
�MPP

)
, and κ

(
�MPP

)
are fixed, respectively, at 171.8 GeV, 0.2, and 0.
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Fig. 7. The cosmological predictions of the gauged B − L model. The upper, middle, and lower panels corre-
spond to λeff

�

(
�MPP

) = 10−10, 10−12, and 10−14, respectively. The left (right) panels show ns vs r (dns/ ln k).
The blue (red) lines indicate that ξ (�) = constant, and the contours that correspond to N = 50 and 60 are
represented by orange and black, respectively.

(2) As the typical values of λeff
�

(
�MPP

)
, we choose

λeff
�

(
�MPP

) = 10−10, 10−12, and 10−14. (51)
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Fig. 8. The gB−L
(
�MPP

)
dependences of ns , r , and dns/ ln k . Here, we change gB−L

(
�MPP

)
within the region

such that electroweak symmetry breaking occurs at O(100) GeV, and ξ and � are chosen so that both the
observed value of As and N = 50 are satisfied when gB−L

(
�MPP

) = 0.0020. The left (right) panel shows
r (dns/ ln k) vs ns .

(3) The remaining two parameters gB−L
(
�MPP

)
and YR

(
�MPP

)
are chosen so that vh becomes

O(100) GeV. As discussed at the end of Sect. 2, the allowed region is quite limited in this case.
We have checked that the cosmological predictions do not change very much even if we change
these parameters within such a region (see Fig. 8).

Figure 7 shows our numerical results when we fix gB−L
(
�MPP

)
and YR

(
�MPP

)
. Our results

are, of course, consistent with previous results such as Refs. [28,36]. The left (right) panels show
r (dns/ ln k) vs ns . Here, the solid blue (red) lines represent ξ (�) = constant, and the contours
that correspond to N = 50 and 60 are represented by orange and black, respectively, from ξ = 0 to
ξ = 100. In the left panels, we also show the contours of As = 2.2 × 10−9 in green. These results
are consistent with the observed results (49) and (50) of Planck and BICEP2. In particular, as one can
see from the behaviors of the green lines, the values of λeff

�

(
�MPP

)
that can simultaneously explain

As = 2.19 × 10−9, sufficient e-foldings (N ≥ 50), and the BICEP2 result r = 0.2 are quite limited:

10−14 < λeff
�

(
�MPP

)
< 10−12. (52)

Among the three quantities ns , r , and dns/ ln k, one might think that the predicted values of dns/ ln k
are small compared with the observed valuesO(−0.01). It might be possible to improve this situation
by including a higher-dimensional operator; see, e.g., Ref. [17].

In Fig. 8, we also show how ns , r , and dns/ ln k depend on gB−L
(
�MPP

)
when λeff

�

(
�MPP

) =
10−10. Here, we change gB−L

(
�MPP

)
within the region such that electroweak symmetry breaking

occurs at O(100) GeV. Furthermore, � and ξ are chosen so that they explain both the observed
value of As and N = 50 when gB−L

(
�MPP

) = 0.0020. One can see that ns and r hardly depend on
gB−L

(
�MPP

)
and that the change in dns/ ln k is at mostO(0.0001). As a result, in the situation where

the minimum of the Higgs potential vanishes at �MPP and electroweak symmetry breaking occurs at
O(100) GeV, the gauged B − L model uniquely predicts the cosmological observables. This is also
one of the benefits of the (slightly broken) MPP.
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4. Summary

In this paper, we have considered the MPP and the inflation of the gauged B − L extension of the
SM. We have found that the scalar couplings and their beta functions can simultaneously become
zero at �MPP = 1017 GeV and that the parameters of the model can be uniquely fixed by these
conditions. However, from the point of view that electroweak symmetry breaking should be realized
by radiatively broken B − L symmetry, it is necessary to break the MPP: we need λeff

�

(
�MPP

)
> 0

and β
λeff

�

(
�MPP

)
> 0. In Sect. 2.3, we found that small values of λeff

�

(
�MPP

)
are compatible with

electroweak symmetry breaking at O(100) GeV. In particular, we have found that the mass of the
B − L gauge boson can be predicted to be

MB−L = 2
√

2 ×
√

λ(vh)

0.10
× vh (53)

from the MPP of the Higgs potential and κ . This is one of the remarkable predictions of the MPP.
In Sect. 3, we have studied inflation, where the SM singlet scalar � plays the role of the inflaton.
We have calculated the cosmological observables based on the assumptions that the minimum of
the Higgs potential vanishes at �MPP = 1017 GeV and electroweak symmetry breaking occurs at
O(100) GeV. The results in this paper are consistent with the observations by Planck and BICEP2.
Among these, the predicted values of the running of the spectral index dns/ ln k are small compared
with the observed values O(−0.01). It might be interesting to consider whether we can improve this
situation. One such possibility is to include a higher-dimensional operator [17]. In conclusion, the
gauged B − L extension of the SM is a phenomenologically very interesting model in that it can
explain both the cosmological observations and electroweak symmetry breaking at O(100) GeV by
breaking the MPP.
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Appendix A. Two-loop renormalization group equations
The two-loop RGEs of the gauged B − L model are as follows:9

d�H

dt
= 1

(4π)2

(
9

4
g2

2 + 3

4
g2

Y + 3

4
g2

mix − 3y2
t − 3y2

ν

)
, (A1)

d��

dt
= 1

(4π)2

(
12g2

B−L − 3

2
Y 2

R

)
, (A2)

dgY

dt
= 1

(4π)2

41

6
g3

Y + g3
Y

(4π)4

(
199

18
g2

Y + 9

2
g2

2 + 44

3
g2

3 + 92

9
g2

B−L + 199

18
g2

mix

+ 164

9
gmixgB−L − 17

6
y2

t − 3

2
y2
ν

)
, (A3)

9 Our calculations are based on Refs. [37–40]. In particular, the two-loop results with an arbitrary number
of Abelian groups are presented in Ref. [40].
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dgmix

dt
= 1

(4π)2

(
41

6
gmix

(
g2

mix + 2g2
Y

)+ 32

3
gB−L

(
g2

mix + g2
Y

)+ 12gmixg2
B−L

)

+ 1

(4π)4

{
g3

mix

(
199

18
g2

mix + 328

9
gmixgB−L + 9

2
g2

2 + 44

3
g2

3 + 184

3
g2

B−L + 199

6
g2

Y

)

+ g2
mix

(
656

9
g2

Y gB−L + 448

9
g3

B−L + 32

3
g2

3 gB−L + 12g2
2 gB−L

)

+ gmix

(
644

9
g2

Y g2
B−L + 800

9
g4

B−L + 12g2
2 g2

B−L + 199

9
g4

Y + 9g2
2 g2

Y + 88

3
g2

3 g2
Y + 32

3
g2

3 g2
B−L

)

+ 164

9
g4

Y gB−L + 224

9
g2

Y g3
B−L + 12g2

2 g2
Y gB−L + 32

3
g2

3 g2
Y gB−L

− y2
t

(
10

3
g2

Y gB−L + 17

6
g3

mix + 10

3
g2

mixgB−L + 4

3
gmixg2

B−L + 17

3
gmixg2

Y

)

− y2
ν

(
6g2

Y gB−L + 3

2
g3

mix + 3gmixg2
Y + 6g2

mixgB−L + 12gmixg2
B−L

)
− 3Y 2

Rgmixg2
B−L

}
, (A4)

dgB−L

dt
= gB−L

(4π)2

(
12g2

B−L + 32

3
gB−L gmix + 41

6
g2

mix

)

+ gB−L

(4π)4

{
g2

B−L

(
800

9
g2

B−L + 92

9
g2

y + 184

3
g2

mix + 12g2
2 + 32

3
g2

3 + 448

9
gmixgB−L

)

+ gB−L

(
164

9
gmixg2

y + 328

9
g3

mix + 12g2
2 gmix + 32

3
g2

3 gmix

)

+ 199

18
g2

mixg2
y + 199

18
g4

mix + 9

2
g2

2 g2
mix + 44

3
g2

3 g2
mix

− y2
t

(
4

3
g2

B−L + 10

3
gmixgB−L + 17

6
g2

mix

)
− y2

ν

(
6gmixgB−L − 3

2
g2

mix − 12g2
B−L

)
− 3Y 2

R g2
B−L

}
,

(A5)

dg2

dt
= − 1

(4π)2

19

6
g3

2 + g3
2

(4π)4

(
3

2
g2

Y + 35

6
g2

2 + 12g2
3 + 4g2

B−L + 3

2
g2

mix + 4gmixgB−L − 3

2
y2

t − 3

2
y2
ν

)
,

(A6)

dg3

dt
= − 7

(4π)2
g3

3 + g3
3

(4π)4

(
11

6
g2

Y + 9

2
g2

2 − 26g2
3 + 4

3
g2

B−L + 11

6
g2

mix + 4

3
gmixgB−L − 2y2

t

)
, (A7)

dyt

dt
= yt

(4π)2

(
9

2
y2

t + 3y2
ν − 8g2

3 − 9

4
g2

2 − 17

12
g2

Y − 17

12
g2

mix − 2

3
g2

B−L − 5

3
gB−L gmix

)

+ yt

(4π)4

{
−12y4

t − 27

4
y4
ν − 27

4
y2

t y2
ν − 9

4
Y 2

R y2
ν + 6λ2 + 1

2
κ2 − 12λy2

t

+ y2
t

(
36g2

3 + 225

16
g2

2 + 131

16
g2

Y + 3g2
B−L + 131

16
g2

mix + 25

4
gmixgB−L

)

+ y2
ν

(
45

8
g2

2 + 15

8
g2

Y + 15g2
B−L + 15

8
g2

mix + 15

2
gmixgB−L

)
+ 502

27
g3

mixgB−L

+ 1085

36
g2

mixg2
B−L + 502

27
gmixg2

Y gB−L + 665

27
gmixg3

B−L + 9

4
g2

2 gmixgB−L − 20

9
g2

3 gmixgB−L

+ 203

27
g4

B−L + 3

4
g2

2 g2
B−L − 8

9
g2

3 g2
B−L + 91

12
g2

Y g2
B−L + 1187

216
g4

mix − 3

4
g2

2 g2
mix

+ 19

9
g2

3 g2
mix + 1187

108
g2

mixg2
Y − 23

4
g4

2 − 108g4
3 + 1187

216
g4

Y + 9g2
2 g2

3 − 3

4
g2

2 g2
Y + 19

9
g2

3 g2
Y

}
, (A8)
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dyν

dt
= yν

(4π)2

(
−3gmixgB−L − 6g2

B−L − 3

4
g2

mix − 3

4
g2

Y − 9

4
g2

2 + 1

4
Y 2

R + 3y2
t + 9

2
y2
ν

)

+ yν

(4π)4

{
−12y4

ν − 27

4
y4

t − 5

4
Y 4

R − y2
ν

(
27

4
y2

t + 21

8
Y 2

R

)
+ 6λ2 + 1

2
κ2 − 12λy2

ν − κY 2
R

+ y2
ν

(
225

16
g2

2 + 123

16
g2

Y + 27g2
B−L + 123

16
g2

mix + 69

4
gmixgB−L

)

+ y2
t

(
20g2

3 + 45

8
g2

2 + 85
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[36] N. Okada, V. N. S̨enoğuz, and Q. Shafi, [arXiv:1403.6403 [hep-ph]] [Search inSPIRE].
[37] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 222, 83 (1983).
[38] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 236, 221 (1984).
[39] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 249, 70 (1985).
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