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A general method of quantum-to-classical reduction of quantum dynamics is described. The key
aspect of our method is the similarity transformation of the Liouvillian, which provides a new
perspective. In conventional studies of quantum energy transport, the rotating wave approxima-
tion has frequently been regarded as an inappropriate approach because it causes the energy
flow through the system to vanish. Our formulation elucidates why this unphysical result occurs
and provides a solution for the problem. That is, not only the density matrix but also the physi-
cal quantity is to be transformed. Moreover, we show that quantum dynamics can be “exactly”
replaced with classical equations for the calculation of the transport efficiency.
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1. Introduction

Understanding the time evolution of an open quantum system (for example, a phenomenon such as
quantum transport) is an important issue in quantum physics. One of the most common methods
to study the problem is the quantum master equation approach [1]. In contrast to a classical mas-
ter equation, a quantum master equation has a coherent part (off-diagonal elements of the density
matrix), which makes the problem difficult. For example, the non-commutativity due to off-diagonal
elements prevents analytical calculation. The presence of the coherent part also leads to a difficulty in
numerical calculation because in many-body quantum systems, the number of off-diagonal elements
of the density matrix is considerably larger than the number of diagonal elements. These difficulties
are addressed by reducing a quantum master equation to the corresponding classical one, at least in
the two following cases. One is the situation in which the system we consider is under the influence
of environmental decoherence [1–3]. The other is the decoupling between the population part and
the coherent part achieved by the rotating wave approximation (RWA) [1]. The resulting classical
master equations are easy to calculate and they are also intuitively understandable. These classical
reductions are uniformly described by the projection-operator technique. Although these methods
have succeeded in many areas of quantum physics, the classical reduction of the master equation for
quantum energy transport fails as we will describe below.

In the current paper, we present a new method of classical reduction that involves not only the
classical reduction of the quantum master equation but also the transformation of the physical observ-
ables. The concept underlying our method is the similarity transformation of Liouvillians, and the
formulation explicitly indicates the necessity of the transformation of the observables. This is a cru-
cial difference between the conventional approaches (for example, the projection-operator technique)
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Table 1. Comparison table between the Redfield equation, the assumed Lindblad equation,
and the RWA equation.

Redfield equation Assumed Lindblad equation RWA equation

physical picture clear unclear clear
equilibrium solution Gibbs state not Gibbs state Gibbs state
numerical calculation difficult easy easy
positivity not ensured ensured ensured

and our method, which solves the difficulty of the conventional approaches. We provide the formula
for the transformation of the observables in the general form.

The RWA is one of the most popular methods to obtain a quantum master equation that is of
the Lindblad form, which is a desirable property because it ensures the trace-preserving prop-
erty and complete positivity of the density matrix [4]. The RWA is generally applicable as long
as the energy levels are not degenerate and the system is weakly coupled with its environment.
However, in the study of quantum energy transport, the use of the RWA leads to a puzzling prob-
lem [5]. The density matrix in the steady state for the master equation with the RWA is diagonal
in the energy representation, while the internal energy current operator is off-diagonal. Conse-
quently, there is no resulting energy flow for the RWA master equation. Only the calculation of
the bath-to-system energy flux is successfully performed, for example, with the generalized quan-
tum master equation [6,7]. This is highly unphysical, and it has been frequently considered that
the RWA is inappropriate for the study of energy transport. Our method that utilizes a similarity
transformation clearly addresses the problem: the observables should also be transformed in the
RWA.

The solution of the problem in the RWA has much significance in the study of quantum energy
transport. Conventionally, two approaches for the problem of quantum energy transport have been
proposed. One is to use the Redfield equation which is derived from the total Hamiltonian including
the reservoir and the interaction Hamiltonian [8–12]. The Redfield equation is unfortunately not of
the Lindblad form and does not ensure the positivity of the density matrix. Moreover, it is difficult
to compute the Redfield equation. If we take the RWA in the Redfield equation, we obtain the clas-
sical equation that is of the Lindblad form. However, the RWA equation has the problem mentioned
above and has not been much used. The other approach is to start with the Lindblad equation without
derivation from the total Hamiltonian [13–18]. The dissipator in this case consists of local operators
of the edges of the system. Although the assumed Lindblad equation is easy to calculate compared to
the Redfield equation, it lacks a physical picture and the stationary solution of the master equation is
not the canonical equilibrium distribution (Gibbs state) [13]. In fact, the assumed Lindblad equation
can be derived from the quantum repeated interaction model (QRIM), which is a model to repre-
sent laser-beam-like interaction and does not conserve the total energy [19,20]. The QRIM is thus
inappropriate as a model to study the energy transport. The two conventional approaches have these
respective defects. In contrast, the RWA has a clear physical picture, and at the same time, it ensures
the positivity of the density matrix (Table 1).

As another advantage of the idea of the similarity transformation of Liouvillans, we show that
the quantum-to-classical reduction rigorously holds for the calculation of a quantity such as trans-
port efficiency. The classical picture is intuitive, and it aids in understanding environment-assisted
quantum transport phenomena [21–24].
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The rest of this paper is organized as follows. In Sect. 2, we present a general method of reducing
a quantum Markovian master equation to the corresponding classical one utilizing a similarity trans-
formation. In Sect. 3, we apply the method to a system under the influence of decoherence, and we
confirm the validity of our method. In Sect. 4, we explain why the expectation value of the energy
current vanishes in the steady state of the RWA master equation, and we show that the transformation
of observables by our method recovers the consistency. Another technique of quantum-to-classical
reduction is presented in Sect. 5. The summary of the study is provided in Sect. 6. Throughout the
paper, we set the Planck constant to unity.

2. Reduction to classical dynamics

In this section, we present a method to extract the effective classical Liouvillian for a quantum system.
Our strategy is to split the eigenvalue problem of the Liouvillian into the population part and the
coherent part in a certain basis. We show that the splitting procedure can be carried out by a similarity
transformation.

First, we define the inner product of operators (A, B) as

(A, B) = Tr[A† B], (1)

where A and B denote arbitrary operators. With the definition, we represent the quantum Markovian
master equation in the block matrix form:

d

dt
ρ = Lρ =

(
LPP LPC

LCP LCC

)(
ρP

ρC

)
. (2)

Here, ρP and ρC denote the diagonal and off-diagonal components, respectively, in a certain basis
of the density matrix ρ. In the present paper, we treat superoperators as matrices and operators as
vectors. We call the subspace spanned by the diagonal components of operators “P-space” and the
remnant space “C-space.” The dynamics are called classical if they are closed in P-space.

We assume that the minimum value of the diagonal components of the superoperator LCC (say M)
is much larger than the maximum of the other components of L (say m). This is the condition of
application for the method in this study. For example, if the energy levels of the system are not
degenerate and the unitary part of the Liouvillian is large compared to other parts, the diagonal
components of LCC in the energy representation have large values, which is also the condition of
application for the RWA. In this case, the minimum of the energy level spacings corresponds to M .
In the following, without loss of generality, we set M = � and m = 1 for simplicity.

The solution of the quantum master equation (2) is related to the eigenvalue problem(
LPP LPC

LCP LCC

)(
ρE

P

ρE
C

)
= E

(
ρE

P

qρE
C

)
, (3)

where ρE = (ρE
P , ρE

C )T denotes the eigenvector corresponding to the eigenvalue E . The above
equation can be solved formally, and we obtain the equation for ρE

P as(
LPP + LPC

1

E − LCC
LCP

)
ρE

P = EρE
P . (4)

The eigenvalues of L are divided into two groups. One consists of the eigenvalues of O(�0) and the
other those of O(�). The latter is related to coherence decaying or fast rotating wave dynamics and
the time scale is fast. Therefore, the dynamics can be regarded as classical when we focus only on
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phenomena occurring at sufficiently large time scales. For an eigenvalue ε that has an O(�0) value,
the following equation approximately holds:(

LPP − LPC
1

LCC
LCP

)
ρε

P = ερε
P + O(�−2). (5)

The above effective Liouvillian is nothing but that derived by the projection-operator technique.
The above procedure can be understood in terms of a similarity transformation ofL. The eigenvalue

problem expressed by Eq. (3) is transformed by an arbitrary non-singular matrix (superoperator) S
without any changes in the eigenvalue:

S
(
LPP LPC

LCP LCC

)
S−1S

(
ρE

P

ρE
C

)
= ES

(
ρE

P

ρE
C

)
. (6)

Let us define the transformed Liouvillian L′ ≡ SLS−1 and the new density matrix ρE′ ≡ SρE. We
note that the transformation may violate the property of positive mapping, and in fact, there exists
a transformation from a positive mapping Liouvillian to a non-positive mapping Liouvillian. If we
choose S as

S =
(

I 0
−(E − LCC)−1LCP I

)
, (7)

then the density matrix is transformed as

ρE′ = SρE =
(

ρE
P
0

)
. (8)

This is because the equality

ρE
C = 1

E − LCC
LCPρE

P (9)

holds from Eq. (3). The transformed Liouvillian L′ is expressed as

L′ =
(

J LPC

LCP + LCCA − AJ −ALPC + LCC

)
, (10)

whereA = (E − LCC)−1LCP andJ = LPP + LPCA. Utilizing Eq. (3), the following equality holds:

(LCP + LCCA − AJ )ρE
P = 0. (11)

For an eigenvalue ε, S approximately becomes

S �
(

I 0
L−1

CCLCP I

)
, (12)

which does not depend on eigenvalues. All the eigenvectors of O(�0) are transformed as Eq. (8).
Next, let us consider the time evolution of the density matrix. A density matrix is expanded by the

eigenvectors of the Liouvillian, and its time evolution can be expressed as

ρ(t) = eLtρ(0) = eLt

⎛
⎝∑

α

Cαρα +
∑
β

C ′
βρβ

⎞
⎠ , (13)

where the ρα values denote the eigenvectors of the Liouvillian, which correspond to the eigenvalues
of O(�0), and the ρβ values denote the eigenvectors corresponding to the eigenvalues of O(�).
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Cα and C ′
β denote the coefficients of the expansion. We can ignore the summation over β in Eq. (13)

because the time evolution of ρβ is fast-decaying in the case wherein the real parts of the eigenvalues
are large or the time evolution is fast-rotating if the imaginary parts of the eigenvalues are large.
Consequently, this density matrix is transformed into

Sρ(0) �
(

ρP(0)

0

)
. (14)

The Liouvillian is transformed by S in Eq. (12) into

L′ = SLS−1 �
( LPP − LPCL−1

CCLCP LPC

L−1
CCLCP

(
LPP − LPCL−1

CCLCP

)
L−1

CCLCPLPC + LCC

)
. (15)

We can regard the left-bottom block of L′ in Eq. (15) as a zero matrix because we ignore the
β-summation part, and the left-bottom block of L′ does not affect the dynamics by virtue of
Eqs. (10)–(12). From Eqs. (8), (12), and (14), we obtain the following equation:

Sρ(t) = eL
′tSρ(0) �

(
eLefftρP(0)

0

)
, (16)

where we define the superoperator Leff as

Leff = LPP − LPCL−1
CCLCP. (17)

This expression is equivalent to Eq. (5). However, Eq. (5) is considered as a mere approximation,
whereas Eq. (17) means the transformation. The difference in meaning causes a significant effect on
how to calculate an expectation value of observables.

The foregoing formulation utilizing a similarity transformation provides an important perspective
on the calculation of physical quantities. The statistical average of an arbitrary physical observable
A can be written as

Tr[Aρ(t)] = Tr
[

AS−1Sρ(t)
]

= Tr
[

AS−1eLefftρP(0)
]
. (18)

Thus, when we reduce the quantum master equation to the classical one, the observable A should
also be transformed to Ã as:

Ã = AS−1 =
{
S−1

}†
A, (19)

where we introduce the adjoint superoperator for convenience, which is defined for an arbitrary
superoperator K as [1,25]

Tr[AKρ] = Tr
[
(K† A)ρ

]
. (20)

From Eq. (12), Ã is written as

Ã =
{

1 − PL†
{
(1 − P)L†(1 − P)

}−1
}

A, (21)

where the superoperator P represents the projection superoperator onto the P-space. If A has no
C-space components, it is not changed by S. The transformation given by Eq. (21) is a novel and
important outcome of our formulation, and it explains why the RWA results in problems in the study
of energy transport and further explains how the physical consistency can be recovered (Sect. 4).
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3. Example: Quantum dynamics under dephasing

In this section, we apply the method described in the previous section to a simple physical sys-
tem. We consider a single particle hopping on a one-dimensional lattice with a periodic boundary
condition, which is given by the Hamiltonian

H =
N∑

k=1

(|k〉〈k + 1| + |k + 1〉〈k|) , (22)

where the ket-vector |k〉 represents the particle being at the site k and |N + 1〉 = |1〉. We assume
that the system is influenced by its environment and the dynamics are described by the following
Lindblad equation:

d

dt
ρ = i[ρ, H ] + �

N∑
k=1

(
nkρnk − 1

2
{nk, ρ}

)
, (23)

where nk = |k〉〈k| and {., .} denotes the anticommutator. The non-unitary part in Eq. (23) is called
“pure dephasing,” which is one of the simplest models of environmental noise, and it has been
frequently used in studies of quantum transport efficiency [21–24] and quantum transport in the
stationary state [26–29].

Here, we represent the Liouvillian with the basis {|k〉〈 j |} (k, j = 1, 2, . . . , N ). Consequently, the
diagonal components of the matrix LCC are −�. Thus, we can apply our method if � � 1, which
results in

d

dt
ρP = LeffρP = −LPCL−1

CCLCPρP. (24)

Let us next consider the operation of Leff on nk . The superoperator LCP yields

LCPnk = i(|k〉〈k − 1| − |k − 1〉〈k|) − i(|k + 1〉〈k| − |k〉〈k + 1|). (25)

Although calculating the inverse operator L−1
CC is difficult in general, it is approximately given by

L−1
CC|k〉〈k + 1| = − 1

�
|k〉〈k + 1| + O

(
1

�2

)
. (26)

Using Eqs. (24)–(26), we obtain

Leffnk = 2

�
(nk−1 − 2nk + nk+1). (27)

This can be rewritten in the following Lindblad form:

d

dt
ρP = 2

�

N∑
k=1

∑
i=L ,R

(
L(i)

k,k+1ρPL(i)†
k,k+1 − 1

2
=
{

L(i)†
k,k+1L(i)

k,k+1.ρP

})
, (28)

where

L(L)
k,k+1 = |k〉〈k + 1|, L(R)

k,k+1 = |k + 1〉〈k|. (29)

Thus, the population dynamics show a diffusive behaviour that obeys Eq. (27). This result agrees
with those of previous works [2,27,28].

We next compare the original quantum dynamics with the classical reduction. We consider the case
wherein the particle is initially at site N . In our study, we numerically calculated the population at
site 1, P1(t) = Tr[n1ρ(t)], for the system size N = 5 and three different values of the dephasing
rate � (Fig. 1). In all cases, the population P1 converges to 1/5. However, the intermediate behavior
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Fig. 1. Time evolution of P1 for three different values of dephasing rate: � = 0.1 (top), � = 1.0 (middle), and
� = 10 (bottom). The red and dashed-green lines in each panel denote results based on the original quantum
dynamics (23) and the effective classical equation (24), respectively.

7/13

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 043A02 N. Kamiya

of the reduced equation is different from the original quantum dynamics for � = 0.1 and � = 1. In
contrast, for the case of � = 10, the classical and the quantum time evolutions agree with each other.
This is because quantum effects decrease as the dephasing rate increases.

In the above example, we consider the quantity nk which does not vary under the transformation
(21). The work of the transformation (21) is shown in the following section.

4. Energy transport and RWA

In this section, we show that our formulation includes the RWA that is a standard method to study
quantum open systems. By means of our method, we can clearly explain why the RWA gives
unphysical results for energy transport problems.

A system in contact with heat reservoirs is frequently described by the Redfield equation [8–12].
It is derived from the total Hamiltonian,

Htot = HS + λHSB + HB, (30)

where HS, HSB, and HB denote the system Hamiltonian, the system–bath interaction Hamiltonian,
and the bath Hamiltonian respectively. The system–bath coupling λ is assumed to be weak. Here, we
assume HSB as the following:

HSB = X ⊗ Y, (31)

where X and Y denote Hermitian operators that operate on the Hilbert space of the system and that
of the bath, respectively. Utilizing the second-order perturbation with several approximations, the
Redfield equation is obtained in the following form:

d

dt
ρ = L(Red)ρ = i[ρ, HS] + πλ2

∑
i, j

(
�i j 〈εi |X |ε j 〉[|εi 〉〈ε j |ρ, X ] + h.c.

)
, (32)

where |εi 〉 denotes the energy eigenstate of the eigenvalue εi of HS and �i j denote the Fourier trans-
formations of the reservoir correlation function. The temperature of the reservoir β is given by the
Kubo–Martin–Schwinger condition:

�i j = e−β(εi −ε j )� j i . (33)

The RWA is usually carried out by considering the interaction picture, which results in the following
classical master equation [1]:

d

dt
Pk(t) = 2πλ2

∑
i

(
�ki |Xik |2 Pi (t) − �ik |Xik |2 Pk(t)

)
, (34)

where Pk(t) denotes the probability of observing the energy εk at time t .
It is easily verified that Eq. (34) is equivalent to time evolution by L(Red)

PP with the energy repre-
sentation. The Redfield equation (32) is obtained by means of the second-order perturbation with
respect to λ. Hence, for the same level of accuracy, the effective classical Liouvillian (17) becomes
Leff � L(Red)

PP . This indicates that the procedure of the RWA represented by Eq. (32) through Eq. (34)
is accounted for in our formulation, and it also indicates that at the same time the observables should
be transformed by Eq. (21).

8/13
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As an example, let us calculate the expectation value of the energy current in the steady state for
the following non-equilibrium systems:

⎧⎪⎨
⎪⎩

d

dt
ρ = i[ρ, H ] + γ

(
σ−

1 ρσ+
1 − 1

2

{
σ+

1 σ−
1 , ρ

})+ γ

(
σ+

2 ρσ−
2 − 1

2

{
σ−

2 σ+
2 , ρ

})

H = |1〉〈2| + |2〉〈1| + h(n1 + n2)

(35)

where σ+
k = |k〉〈0|, σ−

k = |0〉〈k|, and |0〉 denotes the vacuum state. Here we are only concerned with
the single exciton space, that is, we exclude the state σ+

1 σ+
2 |0〉. Although we introduce the above

quantum master equation a priori here, the RWA can be performed for weak coupling, i.e., small
values of γ . The eigenvalues of the Hamiltonian are ε0 = 0, ε1 = h − 1, and ε2 = h + 1. The RWA
can be performed if εi − ε j � γ (i 
= j) is satisfied, and it can be realized by assuming a suitable
value of h. We define the energy current J as

J = −ih(|1〉〈2| − |2〉〈1|). (36)

As in the case of the Redfield equation, for the purpose of simplicity, we ignore the second- and
higher-order γ terms.

We first calculate the expectation of the energy current 〈J 〉 in the steady state without using the
RWA. The bracket 〈 〉 denotes the statistical average of the observables. The time derivative of an
observable A is given by

d

dt
A = L† A = −i[A, H ] + γ

(
σ+

1 Aσ−
1 − 1

2

{
σ+

1 σ−
1 .A

})+ γ

(
σ−

2 Aσ+
2 − 1

2

{
σ−

2 σ+
2 .A

})
.

(37)
Using this equation, we can write the time derivatives of the expectation values of observables by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt
〈J 〉 = −2h(〈n1〉 − 〈n2〉) − γ

2
〈J 〉

d

dt
〈n1〉 = 1

h
〈J 〉 − γ 〈n1〉

d

dt
〈n2〉 = −1

h
〈J 〉 + γ 〈n0〉.

(38)

Moreover, the completeness relation

2∑
k=0

nk = 1 (39)

holds. In the steady state, the left-hand sides of Eqs. (38) vanish. Solving Eqs. (38) and (39), we
obtain the expectation value of the energy current in the steady state:

〈J 〉 � γ h

3
, (40)

where the higher order of γ has been omitted.

9/13

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 3, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 043A02 N. Kamiya

Next, we compute the energy current J with the RWA. The RWA results in the classical Liouvillian:

Leff = γ

2

⎛
⎜⎝−2 1 1

1 −1 0
1 0 −1

⎞
⎟⎠ , (41)

where the basis {|ε0〉〈ε0|, |ε1〉〈ε1|, |ε2〉〈ε2|} is used in this order. The steady-state solution of the
Liouvillian (41) is given as

ρss = 1
3(|ε0〉〈ε0| + |ε1〉〈ε1| + |ε2〉〈ε2|). (42)

The energy current is expressed in the energy basis as

J = ih(|ε1〉〈ε2| − |ε2〉〈ε1|). (43)

We note that the expression for J has no P-space components. In conventional approaches, the energy
current J is used without any changes, thereby resulting in Tr[Jρss] = 0. This brings to light the
necessity of the transformation of J to J̃ . From Eqs. (21) and (37), the transformed current J̃ is
given as

J̃ � J + γ h

4
(2|ε0〉〈ε0| + |ε1〉〈ε1| + |ε2〉〈ε2|), (44)

which reproduces the correct expectation value of the energy current

〈 J̃ 〉 = Tr
[

J̃ρss
]

= γ h

3
. (45)

5. Exact replacement with classical dynamics

The reduced equation (17) is derived by expanding the original quantum master equation with respect
to 1/�. Therefore, it is only valid for large values of �. In this section, we show that the replacement
of quantum dynamics with the classical equation can be carried out for any values of the parameters
for quantities such as transport efficiency.

Let us consider the quantum open system that is described by the Markovian quantum master
equation,

d

dt
ρ = Lρ. (46)

Let us assume that the quantum master equation has a unique steady state ρss. Let us consider the
following quantity:

ζ =
∫ ∞

0
dtTr

[
AeLtρ(0)

]
, (47)

where A denotes a P-space observable that satisfies Tr[Aρss] = 0.
We first show that the time integral in Eq. (47) is related to a certain steady-state problem from the

analogy of the linear-response theory. For this purpose, we modify the Liouvillian L to K as

K = L + εχ, (48)

where ε is the small parameter and the superoperator χ satisfies

χ = PχP, χρss = χρss
P = ρ(0), (49)

where ρss
P denotes the P-space components of ρss. The steady-state solution η of the modified

Liouvillian K is expressed as

η = ρss + ε

∫ ∞

0
dteLtχρss + O(ε2) = ρss + ε

∫ ∞

0
dteLtρ(0) + O(ε2). (50)
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Thus, ζ can be represented as

ζ = lim
ε→0

ε−1Tr[Aη] = lim
ε→0

ε−1Tr[AηP], (51)

where ηP represents the P-space components of η.
The steady-state problem is expressed as(

LPP + εχ LPC

LCP LCC

)(
ηP

ηC

)
= 0. (52)

Let us transform the above equation by the superoperator S,

S =
(

I 0
L−1

CCLCP I

)
. (53)

From Eqs. (7) and (8), we obtain the following equation:

SLS−1Sη =
(

Leff + εχ LPC

L−1
CCLCP(Leff + εχ) L−1

CCLCPLPC + LCC

)(
ηP

0

)
= 0. (54)

Thus, ηP is the steady-state solution of the superoperator Leff + εχ , and it can be expressed as

ηP = ρss
P + ε

∫ ∞

0
dteLefftρ(0) + O(ε2). (55)

Using Eqs. (50), (51), and (55), we obtain the following equation:

ζ =
∫ ∞

0
dtTr

[
AeLtρ(0)

] =
∫ ∞

0
dtTr

[
AeLefftρ(0)

]
. (56)

Thus, the time evolution of the quantum system is fully replaced by population dynamics.
To validate the above argument, we numerically calculate the quantum transport efficiency for the

system given by the following equation:

d

dt
ρ = Lρ = i[ρ, H ] + Ldephρ + Ldissρ + Ltrapρ, (57)

where the Hamiltonian H is the tight-binding model given by Eq. (22), and the Lindblad superoper-
ators are given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ldeph = γ

N∑
k=1

(
nkρnk − 1

2
{nk, ρ}

)

Ldiss = μ

N∑
k=1

(
σ−

k ρσ+
k − 1

2

{
σ+

k σ−
k , ρ

})

Ltrap = κ

(
σ−

1 ρσ+
1 − 1

2

{
σ+

1 σ−
1 , ρ

})
.

(58)

The raising and lowering operators at the kth site are denoted by σ+
k and σ−

k , respectively. Let us
suppose that the particle is at the N th site initially. The transport efficiency is defined by how often
the particle is trapped at the first site during the time interval t , which efficiency is expressed by

ζ(t) = κ

∫ t

0
dsTr

[
n1eLsρ(0)

]
, (59)
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Fig. 2. Numerical calculation of ζ(t) based on the original quantum dynamics (red line) and the classical
dynamics (green dashed line). The original quantum evolution asymptotically coincides with the classical
replacement in the long-time regime.

where ζ(t) represents the transport efficiency at time t . We numerically calculate the time evolution
of ζ(t) with parameters N = 5, κ = 1, μ = 0.1, and γ = 0.1 (Fig. 2). The classical time evolution
based on the Liouvillian Leff does not coincide with the original quantum time evolution in the short-
time regime; however, the time evolutions converge with the same value in the long-time regime.

We note that the superoperator Leff does not ensure the positivity of the density matrix in general.
Nevertheless, in the case of the transport efficiency problem, the time evolution can be intuitively
interpreted. This is because the superoperator Leff is trace preserving. Therefore, the particle flow
can be defined. The only difference with respect to the general classical picture is that negative values
of population can be obtained.

6. Conclusions

We have proposed a general method to reduce a quantum master equation to a classical one by uti-
lizing a similarity transformation. Our formulation reveals the necessity of the transformation of
observables. This is the solution of the problem that the energy flow through the system vanishes in
the RWA scheme. We have also shown that the exact replacement with classical dynamics is possible
for the calculation of a quantity such as the transport efficiency. Our method facilitates an under-
standing of several mechanisms of environment-assisted quantum transport in the unified picture
(N. Kamiya, in preparation).

The introduction of a similarity transformation is also observed in the study of the non-relativistic
reduction of the Dirac equation with electromagnetic fields [30,31]. In such a case, the transformation
is performed on the Hamiltonian, and hence, it should be a unitary transformation. However, the
nature of the similarity transformation in the Liouville space has not been understood clearly. Thus,
it is important to examine what kinds of transformations conserve the nature of the Liouvillian that
is of the Lindblad form.

The argument in this paper is general, and we therefore expect that the results can be applied to a
wide range of quantum physics problems.
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