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I investigate quantum decoherence in a one-body density matrix of a composite particle consist-
ing of two correlated particles. Because of the two-body correlation in the composite particle,
quantum decoherence occurs in the one-body density matrix that has been reduced from the two-
body density matrix. As the delocalization of the distribution of the composite particle grows,
the entanglement entropy increases, and the system can be well described by a semi-classical
approximation, wherein the center position of the composite particle can be regarded as a classi-
cal coordinate. I connect the quantum decoherence in the one-body density matrix of a composite
particle to the coarse graining in a phase space distribution function of a single particle and
associate it with the Husimi function.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In recent decades, quantum entanglement has attracted a great deal of interest in various fields.
To estimate correlations in quantum systems, entanglement measures such as the entanglement
entropy (EE) have been intensively studied [1–9]. Many entanglement measures are defined by
reduced density matrices which describe the structure of the Schmidt decomposition and contain
information about entanglements in quantum systems. In entangled states, the EE is produced by
quantum decoherence caused by a reduction in the number of degrees of freedom (DOF).

In nuclear systems, many-body correlations are essential features in various phenomena. In light
stable nuclei, α clusters are formed by four species of nucleons, spin-up and -down protons and neu-
trons, because of the four-body correlation as known in 8Be and 20Ne having 2α and 16O + α cluster
structures. Concerning two-body correlations, deuteron and dineutron correlations, which are the
two-nucleon pairing in the isospin T = 0 channel of a proton and a neutron and that in the T = 1
channel of two neutrons with strong spatial correlations, are recent hot subjects in unstable nuclei.
To measure many-body correlations, a one-body density matrix ρ̂(1) can be useful. Uncorrelated
(non-entangled) states satisfy ρ̂(1) = {

ρ̂(1)
}2

, and therefore correlations can be measured by anal-
ysis of ρ̂(1). In this sense, the EE for the one-body density matrix is a promising measure to probe
many-body correlations. In my previous papers, I calculated entanglement measures of the one-body
density matrix in nuclear systems [10,11] and showed that the EE is enhanced by the delocaliza-
tion of the distribution of clusters, which are composite particles of spatially correlated nucleons.
The enhancement of the EE is consistent with the entanglement in composite particles described
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by deformed oscillators in Ref. [12]. My first aim in the present paper is to understand how quan-
tum decoherence occurs and how the EE is produced in the one-body density matrix of correlating
particles.

Quantum decoherence—that is, the quantum entropy—has also been investigated with the coarse
graining of distribution functions in a phase space. The Husimi function [13–15] is known to have
finite Wehrl and Rényi–Wehrl entropies [16,17] because of the coarse graining by a Gaussian smear-
ing of the Wigner function. It has been shown that the Wehrl and Rényi–Wehrl entropies are increased
by delocalization of the distributions in quantum systems [18–21]. Campos et al. have discussed a
correlation between the EE and the Rényi–Wehrl entropy in entangled states [21]. One of the funda-
mental questions in quantum physics is how the quantum decoherence in the reduced density matrix
of entangled states can be connected to the coarse graining of distribution functions. My second
aim in this paper is to understand the correspondence between the quantum decoherence in the one-
body density matrix of correlating particles and the coarse graining in the Husimi function of a
single-particle state.

In this paper, I investigate the EE of the one-body density matrix of a two-body system in which
two particles are strongly correlated to form a composite particle, and I discuss how quantum deco-
herence occurs in the reduction of the DOF. To describe two-body wave functions, I adopt a cluster
wave function in the generator coordinate method in nuclear physics [22,23]. Let us consider a sys-
tem where two particles (c1 and c2) with masses m and um form a bound state with an attractive
inter-particle force. I assume that the bound state is described by the lowest state of a harmonic oscil-
lator (ho) potential and can be approximately treated as an inert composite particle, where intrinsic
excitations cost a relatively high amount of energy compared with the center of mass (cm) motion of
the composite particle. In this approximation, a total two-body wave function is given as∣∣�(2)

〉 =
∫

ds F(s)|s; b〉1|s; b2〉2, (1)

〈
ri
∣∣s; b

〉
i = exp

[
− 1

2b2 (ri − s)2
]/(

b2π
)1/4

, (2)

where b2 = b/
√

u, and
〈
�(2)|�(2)

〉 = 1. r1 (r2) is the coordinate of c1 (c2). Here, I describe the
one-dimensional case, but the present model can also be extended to the three-dimensional case.
|s; b〉1|s; b2〉2 indicates the composite particle localized around the mean position s, and �(2) is
given by the superposition of different s states with the weight factor F(s). We should comment that
the present model for the two-body wave function gives the one-body density matrix of c1 equivalent
to the one-body density matrix for a cluster composed of (1 + u) particles with the equal mass m.∣∣�(2)

〉
can be expressed by the cm motion and the intrinsic wave functions as∣∣�(2)

〉 = |�G(R)〉|φint(r)〉, (3)

〈R|�G(R)〉 =
∫

ds
F(s)(

b2
Gπ

)1/4 exp

[
− 1

2b2
G

(R − s)2

]
, (4)

with the cm coordinate R = u1r1 + u2r2 (u1 = 1/(u + 1) and u2 = u/(u + 1)), the relative coor-

dinate r = r1 − r2, and bG = √
u1b. Here, 〈r |φint(r)〉 = exp

[
− 1

2b2
r
r2

]
/
(
b2

r π
)1/4

with br = b/
√

u2

is the lowest intrinsic state for the ho potential, Uho(μ, br ; r) = −�
2r2/2μb4

r , with μ = u2m. Thus,
general low momentum states of the inert composite particle can be expressed by the form (1), in
which the cm motion �G(R) is expressed by the shifted Gaussian expansion as given in Eq. (4).
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The one-body density matrix ρ̂
(1)

�(2) for c1 is defined by the matrix reduced from the many-body

density matrix ρ̂
(2)

�(2) = ∣∣�(2)
〉 〈

�(2)
∣∣ as ρ̂

(1)

�(2) = Tr2

[
ρ̂

(2)

�(2)

]
and is given as

ρ̂
(1)

�(2) =
∫

ds ds′F∗(s′)F(s))2〈s′; b2|s; b2〉2|s; b〉11〈s′; b|, (5)

ρ
(1)

�(2)

(
q1, q ′

1

) =
〈
q1

∣∣∣ρ̂(1)

�(2)

∣∣∣q ′
1

〉
=

∫
ds ds′ F∗(s′)F(s)(

b2π
)1/2

× exp
[
− u

4b2

(
s − s′)2

]
exp

[
− 1

2b2 (q1 − s)2 − 1

2b2

(
q ′

1 − s′)2
]

, (6)

where Trρ̂(1)

�(2) = 1. Note that ρ̂
(1)

�(2) for u = 3 equals the one-body density matrix of an α cluster
composed of four nucleons with an equal mass investigated in previous papers [10,11]. The Wigner
transformation (Wigner function) of ρ̂

(1)

�(2) is

ρW
(
ρ̂

(1)

�(2); q1, p1

)
=

∫
dη

〈
q1 + η

2

∣∣ρ̂(1)

�(2)

∣∣q1 − η

2

〉
exp

[
− i p1η

�

]

= 2
∫

ds ds′ F∗(s′)F(s)(
b2π

)1/2 exp
[
− u

4b2

(
s − s′)2

]

× exp

[
− 1

2b2

(
q1 − s

)2 − 1

2b2

(
q1 − s′)2 − b2

�2

{
p1 − i�

2b2

(
s − s′)}2

]
.

(7)

The Rényi EE of order 2 (Rényi-2 EE) and von Neumann EE for �(2) with the one-body density
matrix ρ̂

(1)

�(2) are given as

SR2
(
ρ̂

(1)

�(2)

)
= −ln

(
Tr

[{
ρ̂

(1)

�(2)

}2
])

= −ln

(∫
dq1dp1

{
ρW

(
ρ̂

(1)

�(2); q1, p1

)}2
)

, (8)

SvN
(
ρ̂

(1)

�(2)

)
= −Tr

[
ρ̂

(1)

�(2) ln ρ̂
(1)

�(2)

]
. (9)

The latter equality in Eq. (8) generally holds because of the definition of the Wigner transformation.
If ρW

(
ρ̂

(1)

�(2); q1, p1
) ≥ 0 is satisfied in the entire phase space, I can consider the phase-space Shannon

entropy SSh (ρ(q, p)) = − ∫ dqdp
2π�

ρ(q, p)ln ρ(q, p) for ρW
(
ρ̂

(1)

�(2); q1, p1
)

as,

SW−Sh
(
ρ̂

(1)

�(2)

)
= SSh

(
ρW

(
ρ̂

(1)

�(2); q1, p1

))
, (10)

which I call the “Wigner–Shannon EE.”
In the one-body density matrix ρ̂

(1)

�(2) and its Wigner transformation, quantum decoherence occurs

and produces the EEs because of the factor 2〈s′; b2|s; b2〉2 = exp
[ − u

4b2

(
s − s′)2]

, which originates

in the reduction of the DOF of c2. Indeed, in the case of u = 0, without this factor, ρ̂(1) = {
ρ̂(1)

}2

and the Rényi-2 and von Neumann EEs are zero, corresponding to a pure single-particle state.

Let us consider a semi-classical approximation of ρ̂
(1)

�(2) . The factor exp
[
− u

4b2

(
s − s′)2

]
, which

is the source of the quantum decoherence, has a sharp peak around s′ ≈ s with a width 2b/
√

u.

I assume that the function F(s) is a slowly varying function compared with exp
[
− u

4b2

(
s − s′)2

]
,
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and it can be approximated as F
(
s′) ≈ F(s). Then I obtain a semi-classical approximation,

ρ
(1)

�(2)

(
q1, q ′

1

) cl≈ ρ
(1),cl
�(2)

(
q1, q ′

1

) =
∫

ds
| f (s)|2(
b2

r π
)1/2 exp

[
− 1

2b2
r

(
q1 − s

)2 − 1

2b2
r

(
q ′

1 − s
)2
]

(11)

where f (s) ∝ F(s) whose normalization is determined by
∫

dq1ρ
(1),cl
�(2) (q1, q1) = ∫

ds| f (s)|2 = 1.
This corresponds to

ρ̂
(1)

�(2)

cl≈ ρ̂
(1),cl
�(2) ≡

∫
ds| f (s)|2|s; br 〉11〈s; br |. (12)

In the large u limit—that is, the large c2 mass limit— ρ
(
q1, q ′

1

) → ρcl
(
q1, q ′

1

)
and br → b, and the

parameter s and the squared amplitude | f (s)|2 are regarded as a classical coordinate and a classical
distribution of the second particle (c2), respectively. Note that, even in the large u limit, |s〉1 and
|s′〉1, which are states of the first particle (c1) parametrized by s and s′, are not orthogonal to each
other for s �= s′ because of the quantum fluctuations of the c1 position around the second particle.
Therefore, we call Eq. (12) a “semi-classical approximation.”

We should comment that in the large m limit, that is, the large mass limit of the two particles c1 and
c2, |s〉1 and |s′〉1 become approximately orthogonal to each other for s �= s′, and Eq. (12) corresponds
to the Schmidt decomposition meaning that the system corresponds to a classical system with the
distribution probability P(s) ≡ | f (s)|2. In this classical limit, the von Neumann EE is given just by
the Shannon entropy in the coordinate space for the classical value s as SvN → − ∫

dsP(s)lnP(s).
This relation of the von Neumann EE to the coordinate-space Shannon entropy in the classical limit
corresponds well to the work discussed for Ising models in Ref. [26].

In the semi-classical approximation given by Eq. (12), the Wigner function is approximated as

ρW
(
ρ̂

(1)

�(2); q1, p1

) cl≈ 2
∫

ds| f (s)|2 exp

[
− 1

b2
r
(s − q1)

2 − b2
r

�2 p2
1

]
, (13)

which is positive semidefinite. Using ρ̂
(1),cl
�(2) I also define the EEs in the semi-classical approximation:

SR2,cl = SR2
(
ρ̂

(1),cl
�(2)

)
and SW−Sh,cl = SW−Sh

(
ρ̂

(1),cl
�(2)

)
.

As a simple example, I first consider the zero-momentum state of the composite particle in a
finite volume V described by a constant F(s). I assume that V  b and the contribution of the
box boundary can be ignored, and obtain

ρ
(1)

�(2)

(
q1, q ′

1

) = 1

V
exp

[
− 1

4b2
r

(
q1 − q ′

1

)2
]

, (14)

ρW
(
ρ̂

(1)

�(2); q1, p1

)
= 2brπ

1/2

V
exp

[
−b2

r

�2 p2
1

]
. (15)

In this case, ρ
(1)

�(2)

(
q1, q ′

1

) = ρ
(1),cl
�(2)

(
q1, q ′

1

)
is satisfied. The Rényi-2, von Neumann, and Wigner–

Shannon EEs are

SR2 = ln Veff − 1
2 ln (2π), (16)

SvN = SW−Sh = SR2 + 1
2(1 − ln 2), (17)

where Veff = V/br denotes the effective volume size for the cm motion. These results are not valid
for a small Veff because of the box boundary.

The one-body density matrix is diagonalized in the momentum space with a Gaussian distribution,

exp
[
− b2

r
�2 p2

1

]
. This indicates that the one-body density matrix of a free composite particle is equiva-

lent to the thermal state of a single particle at finite temperature kT = �
2/2mb2

r . The temperature is

4/8
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of the same order as the mean kinetic energy, �
2/2mb2, of constituent particles confined in the com-

posite particle. Strictly speaking EEs are not thermodynamic entropies; however, by associating the
one-body density matrix of the free composite particle with a quantum mixed state of a single parti-
cle, I can propose an interpretation of the entropy production and thermalization as follows: when the
DOF of c2 are reduced, the quantum decoherence occurs, producing the entropy, and simultaneously,
the intrinsic kinetic energy of the composite particle is converted into heat.

Next, I consider a composite particle moving in an external ho potential, where the lowest state of

the composite particle is given by the Gaussian distribution F(s) = exp
[
− s2

2B2

]/(
B2π

)1/4
. This

gives the exact solution to the two-body wave function,
〈
r1, r2|�(2)

〉 = 〈
R, r

∣∣�(2)
〉
, for ho poten-

tials Uho
(
M, β; R

) + Uho
(
μ, br ; r

)
, with M = (u + 1)m and β =

√
B2 + u1b2. Note that, in the

case of u = 3, it corresponds to the one-dimensional Tohsaki–Horiuchi–Schuck–Röpke wave func-
tion [24,25] for an α cluster confined in an external field [10], whereas, in the case of a large
u, it corresponds to the model of a composite boson of a proton and an electron discussed in
Ref. [27]. In the B = 0 limit, �(2) describes a localized composite particle that corresponds to a non-
entangled (uncorrelated) state of two constituent particles and has zero Renyi-2 and von Neumann
EEs. As B enlarges and the delocalization of the cm of the composite particle grows, the EEs increase.
The Wigner function and EEs for ρ̂

(1)

�(2) are

ρW
(
ρ̂

(1)

�(2); q1, p1

)
= 2

√
γ b√

b2 + B2
exp

[
− 1

b2 + B2 q2
1 − γ b2

�2 p2
1

]
, (18)

SR2 = 1

2
ln

(
1 + v2

eff

) − 1

2
ln γ, (19)

SW−Sh = SR2 + 1 − ln 2, (20)

where γ = (
1 + (

u + 1
)
v2

eff

)
/
(
1 + uv2

eff

)
, and veff = B/b denotes the effective volume size.

The EEs increase as veff enlarges and approach ln veff in the large veff limit. In the semi-classical
approximation, the Wigner function and EEs are

ρW
(
ρ̂

(1)

�(2); q1, p1

) cl≈ 2br√
b2

r + B2
exp

[
− 1

b2
r + B2 q2

1 − b2
r

�2 p2
1

]
, (21)

SR2 cl≈ SR2,cl = 1

2
ln

(
1 + v2

c,eff

)
, (22)

SW−Sh cl≈ SW−Sh,cl = SR2,cl + 1 − ln 2, (23)

where vc,eff = B/br . The EEs for u = 1 and u = 8 are shown in Fig. 1. SvN is calculated numer-
ically, as was done in the previous paper [10]. SR2,cl for the semi-classical approximation agrees
well with SR2 in the veff ≥ 2 case to within 10% error for u = 1, and the agreement is better for the
larger mass ratio, u = 8. SW−Sh has a constant shift 1 − ln 2 (a constant scaling e/2 in the eS plot
in Fig. 1) from SR2, and it is finite even at veff = 0. SvN starts from zero at veff = 0 and approaches
SW−Sh as veff increases. As the mass ratio u increases, the EEs converge on values in the large u
limit.

Finally, I connect the quantum decoherence in the one-body density matrix of the composite
particle to coarse graining in the phase space distribution function of a single particle and asso-
ciate it with the Husimi function. Let us start from the Wigner transformation of the full two-body

5/8
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(a) (b)

e

v v

uu
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S

Fig. 1. EE of a composite particle with a Gaussian distribution for (a) u = 1 and (b) u = 8. eS for the
Rényi-2

(
SR2 and SR2,cl

)
, von Neumann

(
SvN

)
, and Wigner–Shannon (SW−Sh) EEs are plotted as functions

of the effective volume size, veff. The Rényi-2 EE in the large u limit is also shown in panel (b).

density matrix ρ̂
(2)

�(2) ,

ρW
(
ρ̂

(2)

�(2); q1, p1, q2, p2

)
=

∫
dηdξ

〈
q1 + η

2
, q2 + ξ

2

∣∣∣ρ̂(2)

�(2)

∣∣∣q1 − η

2
, q2 + ξ

2

〉

× exp

[
− i

�
p1η − i

�
p2ξ

]
. (24)

It is rewritten by a separable form in the phase space for the cm and relative coordinates as

ρW
(
ρ̂

(2)

�(2); q1, p1, q2, p2

)
= ρW

(
ρ̂

(G)
�G

; Q, P
)
ρW

(
ρ̂

(r)
φint

; q, p
)
, (25)

where ρ̂
(G)
�G

= ∣∣�G
〉 〈

�G
∣∣ and ρ̂

(r)
φint

= ∣∣φint
〉 〈

φint
∣∣. The Wigner function of the one-body density

matrix can be written as

ρW
(
ρ̂

(1)

�(2); q1, p1

)
=

∫
dq2dp2

2π�
ρW

(
ρ̂

(2)

�(2); q1, p1, q2, p2

)

= 1

u2

∫
d Qd P

2π�
ρW

(
ρ̂

(G)
�G

; Q, P
)
ρW

(
ρ̂

(r)
φint

; q1 − Q

u2
, p1 − u1 P

)
(26)

= 1

u2

∫
d Qd P

π�
ρW

(
ρ̂

(G)
�G

; Q, P
)

exp

[
− 1

b2
r u2

2

(q1 − Q)2 − b2
r

�2 (p1 − u1 P)2

]
.

(27)

Here I use the relations q = (q1 − Q)/u2, p = p1 − u1 P and the transformation dq2dp2 =
|J |d Qd P with the determinant of Jacobian |J | = 1/u2. This means that ρW

(
ρ̂

(1)

�(2); q1, p1
)

is

regarded as a coarse-grained distribution function of ρW
(
ρ̂

(G)
�G

; Q, P
)

with a Gaussian smearing. In
other words, the quantum decoherence caused by the reduction of the DOF of c2 can be interpreted
as the coarse graining in the phase space distribution of a single-particle state. It is important that,
if the internal DOF are decoupled from the cm motion of the composite particle, Eq. (26) describes
a general form of the coarse-grained distribution function that corresponds to the Wigner function
of ρ̂

(1)

�(2) .

6/8
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Let us consider the u = 1 case and associate the coarse graining in Eq. (27) with the Husimi
function. Eq. (27) for u = 1 is rewritten as

ρW
(
ρ̂

(1)

�(2); q1, p1

)
= 2ρH

�/2

(
ρ̂

(G)
�G

; b2
G; q1, p1

)
, (28)

ρH
�/2

(
ρ̂(1); α; q, p

) ∫
d Qd P

π(�/2)

∫
dη

〈
Q + η

2

∣∣ρ̂(1)
∣∣Q − η

2

〉
exp

[
− i Pη

�/2

]

× exp

[
− 1

α
(q − Q)2 − α

(�/2)2 (p − P)2
]

, (29)

where ρH
�/2 is normalized as

∫ dqdp
2π(�/2)

ρH
�/2 = 1. ρH

�/2 eventually has the same form as the normal

Husimi function, except for the scaling of Planck’s constant � → �/2. I call ρH
�/2 the “�/2-Husimi

function.” It is clear that ρW
(
ρ̂

(1)

�(2); q1, p1
)

for the two-body state �(2) is equivalent to twice the
�/2-Husimi function for the single-particle state, |�G〉. The Gaussian smearing in the coarse graining
originates from the reduction of the DOF of c2 in ρW

(
ρ̂

(r)
φint

; (q, p)
)
, as shown previously. Note that the

�/2-Husimi function is not a distribution function for a physical single-particle state, but is regarded
as a “distribution” function defined in the down-scaled phase space, � → �/2. The reason for the
down scaling � → �/2 is that the (q2, p2) phase space is scaled down in the transformation from
(q1, p1, q2, p2) to (q1, p1, Q, P).

Considering the one-to-one correspondence between ρW
(
ρ̂

(1)

�(2); q1, p1
)

and ρH
�/2

(
ρ̂

(G)
�G

; q1, p1
)
,

I can connect entropies defined by the �/2-Husimi function to EEs as

SWehrl
�/2

(
ρ̂

(G)
�G

)
= SW−Sh

(
ρ̂

(2)

�(2)

)
+ ln 2, (30)

SR2−Wehrl
�/2

(
ρ̂

(G)
�G

)
= SR2

(
ρ̂

(2)

�(2)

)
+ ln 2. (31)

Here I define the Wehrl entropy and the Rényi–Wehrl entropy of order 2 in the down-scaled phase
space as

SWehrl
�/2

(
ρ̂(1)

) = −
∫

dqdp

2π(�/2)
ρH

�/2

(
ρ̂(1); q, p

)
ln ρH

�/2(q, p),

SR2−Wehrl
�/2

(
ρ̂(1)

) = −ln

[∫
dqdp

2π(�/2)

{
ρH

�/2

(
ρ̂(1); q, p

)}2
]

In summary, I investigated the quantum decoherence in the one-body density matrix of the com-
posite particle that comprises two correlated particles in the inert composite particle approximation.
Because of the two-body correlation in the composite particle, the quantum decoherence occurs by
the reduction of the DOF of the second particle. As the delocalization of the distribution of the
composite particle grows, the entanglement entropy increases. I found a one-to-one correspondence
between the quantum decoherence in the reduced density matrix and the coarse graining in the phase
space distribution, which is related to the Husimi-like function defined in the down-scaled phase
space. In the present paper, the inert composite particle approximation is applied to static systems
but it can also be extended to time-dependent systems if the energy scale of the internal DOF of the
composite particle is decoupled from that of the external DOF. The present study may shed light on
the fundamental problems of quantum decoherence and coarse graining which produces entropies
in quantum systems. I discussed general features of quantum entanglement of a composite particle,
and it is interesting to apply the present concept of entanglement to various systems such as hadron,
nuclear, and atomic systems.
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