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Triangle–hinge models [M. Fukuma, S. Sugishita, and N. Umeda, J. High Energy Phys. 1507,
088 (2015)] are introduced to describe worldvolume dynamics of membranes. The Feynman
diagrams consist of triangles glued together along hinges and can be restricted to tetrahedral
decompositions in a large-N limit. In this paper, after clarifying that all the tetrahedra resulting
in the original models are orientable, we define a version of triangle–hinge models that can
describe the dynamics of unoriented membranes. By regarding each triangle as representing a
propagation of an open membrane of disk topology, we introduce a local worldvolume parity
transformation which inverts the orientation of a triangle, and define unoriented triangle–hinge
models by gauging the transformation. Unlike two-dimensional cases, this local transformation
generally relates a manifold to a nonmanifold, but still is a well-defined manipulation among
tetrahedral decompositions. We further show that matter fields can be introduced in the same way
as in the original oriented models. In particular, the models will describe unoriented membranes
in a target spacetime by taking matter fields to be the target space coordinates.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B25, B83, B86, E05

1. Introduction

The worldvolume theory of membranes in a spacetime is equivalent to a system of three-dimensional
quantum gravity coupled to matter fields corresponding to the target space coordinates. One approach
to treating such a class of systems is the use of models that generate three-dimensional random
volumes. Triangle–hinge models [1] are proposed as such models. The dynamical variables are
given by a pair of N × N symmetric matrices, A and B, and the Feynman diagrams consist of
triangles glued together along their edges. We can restrict the diagrams such that they represent only
three-dimensional tetrahedral decompositions by taking a large-N limit. The simplest model thus
obtained corresponds to discretized three-dimensional pure quantum gravity with a bare cosmological
constant. We can further introduce extra degrees of freedom representing the target space coordinates.
A prescription to introduce such matter degrees of freedom to triangle–hinge models is given in [2].
The prescription also enables us to describe various spin systems such as the q-state Potts models
coupled to quantum gravity, and to realize colored tensor models [3,4] in terms of triangle–hinge
models.

As pointed out in [1], the original triangle–hinge models generate only (and all of the) orientable
tetrahedral decompositions. In this paper, we generalize the models such that unoriented membranes
can be treated. We will call the obtained models unoriented triangle–hinge models. In the context of
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string theory, to consider unoriented models is not just interesting as a mathematical generalization,
but has a physically important meaning.Actually, an unoriented superstring theory, type I superstring,
is one of the (perturbatively) consistent superstring theories. We expect that unoriented membrane
theory is also physically important.1

In two-dimensional cases, an unoriented theory is obtained by gauging the worldsheet parity of an
oriented theory. If we discretize worldsheets by triangular decompositions, the gauging procedure
is to treat equally two ways to identify an edge of a triangle with that of another triangle; one way
preserves the local orientations of two triangles and the other does not. We will define unoriented
membrane theories by generalizing the prescription to three-dimensional tetrahedral decompositions.
Roughly speaking, the unoriented models equally treat two possible ways to identify a triangle of
a tetrahedron with that of another tetrahedron; one way preserves the orientation and the other
does not.

Here, we comment on the treatment of orientability in other three-dimensional random volume
theories, tensor models. Tensor models [5–7] are natural generalizations of matrix models to higher
dimensions. One can introduce various kinds of tensor models [6] depending on how indices of rank-3
tensors are assigned to triangles in tetrahedral decompositions.2 A class of models where each index
is assigned to a vertex of a triangle generate only orientable tetrahedral decompositions [6]. Although
we may be able to construct unoriented models by modifying the models, it is difficult to solve them.
Analytical treatment of tensor models is improved in colored tensor models [3,4]. The models only
generate tetrahedral decompositions belonging to a specific class.3 This restriction enables us to take
a 1/N expansion of the free energy [14,15]. Furthermore, in the so-called invariant models [16] one
can take the double scaling limit [17,18]. It can be shown that tetrahedral decompositions generated
by colored tensor models are orientable. However, if we try to modify the models to unoriented ones,
the solvability of the models may be lost.

The original triangle–hinge models are expected to be solvable because the dynamical variables are
matrices. In fact, for simple models (such as the models characterized by matrix rings), the interaction
terms in the action can be rewritten to the traces of powers of matrices (M. Fukuma, S. Sugishita,
and N. Umeda, in preparation). Thus, in order to reduce the systems to those of eigenvalues, we only
need to integrate the exponential of the quadratic term in the action over the angular parts of matrices.
Moreover, numerical integrations (M. Fukuma, S. Sugishita, and N. Umeda, in preparation) show
that the eigenvalue distributions of matrices A and B have a similar structure to those of one-matrix
models with double-well potentials, and that the effective theory of eigenvalues for either of matrix
A or B has critical points. Since there are integration contours for which the matrix integrations are
finite (M. Fukuma, S. Sugishita, and N. Umeda, in preparation), it is highly expected that the original
oriented triangle–hinge models have well-defined continuum limits. We will see that the actions of
unoriented triangle–hinge models have a similar structure to the original ones, and thus we expect

1 We should comment that the low-energy effective theory of unoriented supermembranes is not 11-
dimensional supergravity, because the three-form fields in the supergravity multiplet cannot couple to
unoriented membranes. Nevertheless, we expect that unoriented membrane theory serves as a toy model
to obtain a better understanding of dynamics of membranes.

2 There is another type of tensor model (called the canonical tensor model) which realizes the constraints in
the canonical quantization of gravity [8–10]. An interesting connection to random tensor networks is studied
in [11,12].

3 See, e.g., [13] for an attempt to relax the restriction on the diagrams generated in colored tensor models.
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Fig. 1. Part of a configuration consisting of triangles glued together with multiple hinges [1].

that unoriented triangle–hinge models are also solvable and might be easier to solve due to the higher
symmetry they have.

This paper is organized as follows. In Sect. 2, we review triangle–hinge models and show that the
tetrahedral decompositions generated by the models are orientable. In Sect. 3, after reviewing matrix
models for unoriented strings, we define unoriented membrane theories in terms of tetrahedral
decompositions. In Sect. 4, we give a version of triangle–hinge models that realizes unoriented
membrane theories. In Sect. 5, we show that matter fields can also be introduced to unoriented
triangle–hinge models by the same procedure as [2]. Section 6 is devoted to our conclusions.

2. Orientability in triangle–hinge models

In this section, we clarify the fact that the original triangle–hinge model [1] generates the set of
oriented tetrahedral decompositions.

2.1. Brief review of triangle–hinge models

Triangle–hinge models [1] are designed to generate Feynman diagrams each of which can be regarded
as a collection of triangles glued together along multiple hinges and will eventually give a three-
dimensional tetrahedral decomposition in a large-N limit (see Fig. 1).4

The dynamical variables are given by a pair of N × N real symmetric matrices, A = (Aij = Aji)

and B = (Bij = Bji), and the action takes the form5

S[A, B] = 1

2
[AB] − λ

6
[CAAA] −

∑
k≥1

μk

2k
[Yk B · · · B︸ ︷︷ ︸

k

]

≡ 1

2
AijB

ij − λ

6
Ci1j1i2j2i3j3Ai1j1Ai2j2Ai3j3 −

∑
k≥1

μk

2k
Yi1j1...ik jk Bi1j1 · · · Bik jk . (2.1)

The free energy is given by

F = log
∫

dA dB e−S[A,B] , (2.2)

and if we expand F with respect to λ and μk , each term is expressed by a group of Wick contractions
as usual. There are two types of interaction vertices: one (coming from λ [CA3]) corresponds to a
triangle, and the other (coming from μk [YkBk ]) to a multiple hinge (see Fig. 2). The coefficients

4 Here, a (multiple) hinge is an object connecting edges of triangles.A hinge with k edges is called a k-hinge.
5 Note that we have included in the action the interaction term corresponding to 1-hinges.
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(a) (b)

Fig. 2. Interaction vertices corresponding to (a) triangles and (b) k-hinges [1].

(a () b)

Fig. 3. Two ways to connect an edge of a triangle to an edge of a hinge. If we fix the position of the triangle,
(b) represents the diagram where the edge of the hinge is glued to that of the triangle upside down compared
to (a).

Cijklmn and Yi1j1...ik jk are real constant tensors, and we will not assume any symmetry for the indices
of Ci1j1i2j2i3j3 and Yi1j1...ik jk until we give their explicit forms later [see (2.12) and (2.10)].6 They are
connected by a free propagator

AijB
kl = δk

i δl
j + δl

iδ
k
j . (2.3)

The two terms on the right-hand side in (2.3) express that there are two ways to connect an edge of a
hinge to an edge of a triangle, as shown in Fig. 3. We regard the two types of pairing as representing

two independent Wick contractions and write the first type as AB(+), or simply as AB(+), and the

second type as AB(−) = AB(−), where we have omitted the indices i, j, . . ..7 Then, a group of Wick
contractions (denoted by x) can be specified uniquely in a form such as

x = [CA1A2A3] [CA4A5A6] · · · [YkB(+)
1 B(−)

6 · · · ] [Yk ′B(+)
5 · · · ] · · · , (2.4)

where the subscript I of AI and B(±)
I indicates that they belong to the I th contraction of type AB(±).

As explained above, we do not impose a symmetry for the coefficients C and Y , and think that

6 In fact, when multiplied by Ai1j1 Ai2j2 Ai3j3 (Aij = Aji), only fully symmetric parts of Ci1j1i2j2i3j3 survive
that are invariant under interchanges of indices iα and jα (α = 1, . . . , 3) and under permutations of three
pairs of indices (i1j1), (i2j2), (i3j3), so we could have assumed that the tensor C in (2.1) has the symmetry
Ci1j1i2j2i3j3 = Ci2j2i3j3i1j1 = Cj1i1i2j2i3j3 = Ci2j2i1j1i3j3 . However, we do not assume this symmetry and regard
contractions using Ci1j1i2j2i3j3 , Ci2j2i3j3i1j1 , Cj1i1i2j2i3j3 , or Ci2j2i1j1i3j3 as giving independent Wick contractions
[1,2]. Note that only the fully symmetric part is actually left when all the diagrams are summed. The same
argument is applied to the hinge parts.

7 Of course, the two pairs appear in a combined way as AB(+) + AB(−).
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changing the order of the labels in [CA3] or [YkBk ] (e.g., replacing [CA1A2A3] by [CA2A3A1]) leads
to a different group of Wick contractions.

In [1], we investigated in detail the case where the interaction terms μk [YkBk ] are characterized by
a semisimple associative algebra A. Let a basis of A be {ei} (i = 1, . . . , N ), where N is the dimension
of A as a linear space. The multiplication × of A is then specified by the structure constants y k

ij as

ei × ej = y k
ij ek . (2.5)

We further introduce a rank-k tensor from the structure constants as8

yi1...ik = y jk
i1j1 y j1

i2j2 · · · y jk−1
ik jk

, (2.6)

which enjoys the cyclic symmetry yi1...ik = yi2...ik i1 . Then the coupling constants Yi1j1...ik jk associated
with hinges are defined to be

Yi1j1...ik jk ≡ yi1...ik yjk ...j1 , (2.7)

which enjoy the symmetry properties

Yi1j1...ik jk = Yi2j2...ik jk i1j1 = Yjk ik ...j1i1 . (2.8)

In order to restrict configurations so as to represent only tetrahedral decompositions, we consider
the case where the algebra A is a matrix ring A = Mn=3m(R) with n being a multiple of three [1]. The
dimension of A is then given by N = n2 = (3m)2. We take a basis {ei} to be {eab} (a, b = 1, . . . n),
where eab are the matrix units whose (c, d) elements are (eab)cd = δacδbd . Note that indices i are
replaced by double indices ab. Then, the rank-k tensors (2.6) are given by

yi1i2...ik = ya1b1, a2b2,..., ak bk = n δb1a2 · · · δbk−1ak δbk a1 , (2.9)

which in turn give the k-hinge tensor Yi1j1i2j2...ik jk as

Ya1b1c1d1, a2b2c2d2, ..., ak bk ck dk = n2 δb1a2 · · · δbk−1ak δbk a1 δc1d2 · · · δck−1dk δck d1 . (2.10)

We further introduce a permutation matrix ω of the following form:

ω =
⎛
⎜⎝ 0 1n/3 0

0 0 1n/3

1n/3 0 0

⎞
⎟⎠ , 1m : m × m unit matrix, (2.11)

and set the tensor Ci1j1i2j2i3j3 in (2.1) to be

Ca1b1c1d1, a2b2c2d2, a3b3c3d3+ ≡ 1

n3 ωd1a2ωd2a3ωd3a1ωb3c2ωb2c1ωb1c3 . (2.12)

8 The rank-one tensor yi is especially defined as yi = y j
ij .
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(a) (b)

Fig. 4. (a) Thickened triangles; (b) thickened hinges [1]. Each thickened triangle has six index lines with
arrows corresponding to ω.

Note that C+ enjoys the symmetry properties

Ci1j1i2j2i3j3+ = Ci2j2i3j3i1j1+ = Cj3i3j2i2j1i1+ . (2.13)

The action then takes the form

S = 1

2
[AB] − λ

6
[C+AAA] −

∑
k≥1

μk

2k
[Yk B · · · B︸ ︷︷ ︸

k

]

≡ 1

2
AabcdBabcd

− λ

6n3 ωd1a2ωd2a3ωd3a1ωb3c2ωb2c1ωb1c3Aa1b1c1d1Aa2b2c2d2Aa3b3c3d3

−
∑
k≥1

n2μk

2k
Ba1a2b2b1 · · · Bak−1ak bk bk−1Bak a1b1bk . (2.14)

The interaction vertices can be represented by thickened triangles and hinges (see Fig. 4), and are
connected with the use of two types of Wick contractions between Aabcd and Befgh,

AB(+) = δaeδbf δcgδdh , AB(−) = δagδbhδceδdf . (2.15)

Note that arrows are assigned to index lines on triangles, as in Fig. 4, and that their directions are
preserved when two triangles are glued together along an intermediate hinge (see Fig. 5).

We introduce here some terminology to discriminate between a group of Wick contractions and
a Feynman diagram. We have already clarified our rule about Wick contractions. We now introduce
an equivalence relation to the set {x} of groups of Wick contractions, saying that a group x of Wick
contractions is equivalent to another group y (and writing x ∼ y) if x is obtained from y by repetitive
use of the relations (2.8) and (2.13) and by permuting interaction vertices of the same type. We
denote the equivalence class of x by [x] = {y | y ∼ x}, and call γ = [x] a Feynman diagram. The
perturbative expansion of the free energy is then given by a sum over connected Feynman diagrams
γ , F = ∑

γ F(γ ) . In a connected diagram, every index line makes a loop since all the indices are
contracted.

6/24
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Fig. 5. Gluing of thickened triangles along a hinge. Indices a2 and d4 are contracted with g1 and h2, respectively,
giving (ω2)d1a5 .

2.2. Restriction to tetrahedral decompositions

Although configurations generated in triangle–hinge models do not generally represent tetrahedral
decompositions, the set of Feynman diagrams can be reduced such that they represent only (and all
of the) tetrahedral decompositions if we take a large-n limit with n/λ and n2μk fixed [1].9 The point
is the following. We have tr ω� when ω appears � times in an index loop (see Fig. 5), and thus F(γ )

is given by

F(γ ) = 1

S(γ )

( λ

n3

)s2(γ )
[ ∏

k=1

(n2μk)
sk
1(γ )

] ∏
�=1

[tr ω�]t�2(γ ). (2.16)

Here, t�2(γ ) denotes the numbers of index �-gons in diagram γ ;10 s2(γ ) and sk
1(γ ) denote the number

of triangles and k-hinges in diagram γ , respectively; and S(γ ) is the symmetry factor. Due to the
definition of matrix ω, we have

tr ω� =
{

n (� = 0 mod 3)

0 (� �= 0 mod 3).
(2.17)

Thus, there can survive only the diagrams with � a multiple of three (� ≡ 3�′), and we can assume
(2.16) to take the form

F(γ ) = 1

S(γ )
λs2(γ )

[ ∏
k≥1

(n2μk)
sk
1(γ )

]
n−3s2(γ )+∑

�′≥1 t3�′
2 (γ ) . (2.18)

One can show that only the index polygons with � = 3 (i.e. �′ = 1) survive in the limit n → ∞ with
n/λ and n2μk fixed [1]. We give here a proof in a form slightly different from the original one such
that it can be applied to unoriented models. We first note that the relation

∑
�′≥1 3�′t3�′

2 (γ ) = 6s2(γ )

holds because the left-hand side counts the number of ω in diagram γ and each thickened triangle has

9 The set of tetrahedral decompositions can be further restricted so as to represent manifolds by extending
the algebra A as having a center to count the number of vertices [1].

10 An index loop is called an index �-gon if it consists of � intervals, each living on a side of an intermediate
triangle [1].
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Fig. 6. An index triangle made on three sides of thickened triangles, which form a corner of a tetrahedron.

six insertions of ω. Then, if we introduce a nonnegative quantity d(γ ) ≡ ∑
�′≥1 3(�′−1)t3�′

2 (γ ) ≥ 0,

we have the relation d(γ ) = 6s2(γ ) − 3
∑

�′≥1 t3�′
2 (γ ). Thus, λs2(γ ) can be rewritten as

λs2(γ ) = λ− 1
3 d(γ )λ3s2(γ )−∑

�′≥1 t3�′
2 (γ ) . (2.19)

Substituting this expression into (2.18), F(γ ) is expressed as

F(γ ) = 1

S(γ )
λ− 1

3 d(γ )

[ ∏
k≥1

(n2μk)
sk
1(γ )

] (n

λ

)−3s2(γ )+∑
�′≥1 t3�′

2 (γ )

. (2.20)

Therefore, in the limit n → ∞ with n/λ and n2μk fixed (and thus λ → ∞), only the diagrams
satisfying d(γ ) = 0 can give nonzero contributions to the free energy. Since d(γ ) = 0 means that all
the index polygons in γ are triangles, we conclude that the large-n limit reduces the set of diagrams
so that all the index polygons are triangles. One can further prove that such diagrams represent
tetrahedral decompositions [1], as may be understood intuitively from the fact that if there is an
index triangle, then sides of thickened triangles must be attached as in Fig. 6.11

We end this subsection with a comment. The above argument can also be applied to the unoriented
models to be defined in the next section. Namely, if a set of diagrams is reduced such that all the index
polygons are triangles, then the diagrams represent tetrahedral decompositions even for unoriented
models.

2.3. Orientability

It is pointed out in [1] that all the tetrahedral decompositions generated by the action (2.14) are
orientable. We give here a detailed proof of this statement, by clarifying the definition of orientation
for Feynman diagrams in a triangle–hinge model.

We first recall that a thickened triangle has two triangular sides, on each of which directed index
lines are drawn [see Fig. 4(a)]. Given a tetrahedron T formed by four triangular sides (each coming
from a thickened triangle), we embed it in a three-dimensional Euclidean space E3 as a regular
tetrahedron of unit volume. Note that there can be two embeddings f + and f − (up to rotations and
translations in E3), depending on whether the directions of the index lines are counterclockwise or
clockwise when seen from the center of the embedded tetrahedron (see Fig. 7).12 We say the former

11 Note that there is ω at each corner of a side of a thickened triangle.
12 Note that if the directions of the index lines are counterclockwise for one side, they are also counter-

clockwise for the other three sides because index lines are connected in such a way that the direction is
preserved.
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Fig. 7. A positively oriented tetrahedron T +, corresponding to a positive embedding of T in E3.

(a) (b1) (b2)

Fig. 8. Two tetrahedra T1 and T2 glued at triangle �. (a) Both tetrahedra are positively oriented, and the
orientation is preserved because they are in opposite positions with respect to �. (b1) Both are positively
oriented, but the orientation is not preserved because they are in the same position with respect to �. (b2) They
are in opposite positions but are differently oriented.

embedding is positive and the latter negative. We then define an oriented tetrahedron T± to be the
pair of tetrahedron and embedding, T± ≡ (T , f ±).

When two positively oriented tetrahedra T+
1 and T+

2 are glued at a triangle �, we say that the
orientation is preserved if the two positive embeddings f +

1 and f +
2 can be extended (with the use

of rotations and translations) to a common embedding f of T+
1 ∪ T+

2 such that the images of two
tetrahedra are in opposite positions with respect to the intermediate triangle � (see Fig. 8). We
then say that a tetrahedral decomposition 	 is orientable if the orientation is preserved for any two
adjacent tetrahedra of positive orientation.

The above orientability condition actually holds for the tetrahedral decompositions discussed in
the previous subsection. In fact, the index lines on the two sides of a thickened triangle are drawn
in opposite directions as in Fig. 4(a), and thus for any two adjacent tetrahedra there always exists a
natural extension of their positive embeddings such that the images of two tetrahedra are in opposite
positions with respect to the triangle. Since this holds for every two adjacent tetrahedra, we conclude
that all the tetrahedral decompositions are orientable.

3. Unoriented membrane theories

In this section, we define unoriented membrane theories in terms of tetrahedral decompositions. A
realization of unoriented membrane theories within the framework of triangle–hinge models will be
given in the next section.

9/24
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3.1. Matrix models for unoriented strings

As a warm-up before discussing unoriented membrane theories, we review the definition of unori-
ented string theories and how some of them are realized in terms of real symmetric matrix
models.

We first recall that an oriented open string is an oriented one-dimensional object with two ends.
If we forget about the target-space degrees of freedom, the scattering processes of oriented open
strings are represented by Feynman diagrams of Hermitian matrix models:

S[M ] = tr
(1

2
M 2 − λ

3
M 3

)
, (3.1)

where M = (Mij) = M † is an N × N Hermitian matrix. In fact, the propagator and the interaction
vertex are expressed as13

propagator : ∼ δilδjk
(= MijMkl

)
, (3.2)

interaction : ∼ λ δjk δlm δni . (3.3)

Each Feynman diagram can also be thought of as a triangular decomposition of an orientable two-
dimensional surface by representing it with the dual diagram.

We now introduce a transformation 
 which acts on one-string states and inverts the worldsheet
parity (the orientation of the string). Unoriented open string theories are then defined as theories
where the transformation 
 is gauged (see, e.g., [19]). Namely, we demand that every propagator in
the open-string channel be invariant under the action of 
 . This is realized by inserting the projector
(1 + 
)/2 to every propagator. If we do not change the form of interaction, the Feynman rules are
then expressed as follows (we have rescaled the projector for later convenience):

propagator : + ∼ δilδjk + δikδjl
(= XijXkl

)
, (3.4)

13 Note that in tr(M 3) = CijklmnMijMklMmn, only such components of Cijklmn survive that are totally symmetric
under the permutation of three pairs of indices, (ij), (kl), (mn). However, when we write Cijklmn = δjkδlmδni ,
we intentionally think that Cijklmn are only cyclically symmetric for three pairs of indices, and distinguish
two diagrams, one coming from Cijklmn and the other from Cklijmn. Of course, by summing two forms of Wick
contraction in calculating the free energy, the two diagrams appear in a combined way and Cijklmn will be
automatically symmetrized. This “trick” enables us to identify a Feynman diagram with a triangulated surface,
and is widely and implicitly adopted in the study of matrix models.
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(a) (b)
(b1)

(b2)

Fig. 9. Two ways to identify edges of triangles of positive orientation. The orientation is preserved for (a)
(i1, j1) = (j2, i2), but is not for (b) (i1, j1) = (i2, j2). The local two-dimensional orientations of triangles induce
one-dimensional orientations of the edges to be identified. The identification (b) can also be expressed as (b1)
or (b2). The expression (b2) is necessarily accompanied by the flip of the right triangle, which means that the
local two-dimensional orientation is not preserved when one moves from the left triangle to the right triangle
across the identified edge.

interaction : ∼ λ δjk δlm δni. (3.5)

It is easy to see that the above Feynman rules are obtained from a real symmetric matrix model:

S = tr
(1

4
X 2 − λ

6
X 3

)
, (3.6)

where X = (Xij) = X T is an N × N real symmetric matrix.
A Feynman diagram for the above unoriented string theory can also be represented as a collection

of triangles glued together along two-hinges. In fact, if we express the vertex Cijklmn (only with a
cyclic symmetry) by an oriented triangle, the two contractions in (3.4) can be illustrated as in Fig. 9.
The first contraction leads to a gluing of two oriented triangles with the orientation being preserved,
while the second contraction leads to a gluing for which the orientation is not preserved.

3.2. Unoriented membrane theories

In the previous subsection, we have seen that unoriented string theories are obtained from oriented
theories by gauging the worldsheet parity transformation 
. We now apply the same prescription
to membrane theories in order to define unoriented membrane theories. We first prepare oriented
models and introduce the worldvolume parity transformation 
 that inverts the orientation of the
open membrane, and then gauge the transformation 
 by inserting (1 + 
)/2 to every propagator
of the open membrane in the original oriented models. In the rest of this paper, we assume that
worldvolumes in oriented models are already represented as tetrahedral decompositions.

3.2.1. Open membranes of disk topology as fundamental objects
We first argue that the worldvolume dynamics of oriented closed membranes of various topologies
can also be regarded as that of oriented open membranes of disk topology. In fact, tetrahedra in a
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(a) (b)
(b1)

(b2)

Fig. 10. Two ways to identify triangles of tetrahedra of positive orientation. The orientation is preserved for
(a) (E1E2E3) = (E′

1E′
2E′

3), but is not for (b) (E1E2E3) = (E′
3E′

2E′
1). The local three-dimensional orientations

of tetrahedra induce two-dimensional orientations of the triangles to be identified. The identification (b) can
also be expressed as (b1) or (b2). The expression (b2) is necessarily accompanied by the orientation change
of the right tetrahedron, which means that the local three-dimensional orientation is not preserved when one
moves from the left tetrahedron to the right tetrahedron across the identified triangle.

tetrahedral decomposition can be thought of as interaction vertices that are connected with propaga-
tors of membranes of disk topology (i.e. triangles). One thus may say that a worldvolume theory of
closed membranes of arbitrary topologies has a dual picture where open membranes of disk topology
play fundamental roles, despite the fact that open membranes can have topologies other than disk
(such as disks with handles).

3.2.2. Fundamental triplets for oriented membranes
Given an oriented model, we focus on two adjacent, positively oriented tetrahedra T+

1 and T+
2 in a

tetrahedral decomposition 	, where T+
1 and T+

2 are glued by identifying a triangle �1 in T+
1 with a

triangle �2 in T+
2 (the resulting identified triangle will be denoted by �). Note that the orientation of

a tetrahedron naturally induces the positive orientation for four triangles belonging to the tetrahedron,
and we represent them by arrows as in Fig. 10(a). We express the identification of edges at � as

(E1E2E3) = (E′
1E′

2E′
3) , (3.7)

where E1, E2, E3 (or E′
1, E′

2, E′
3) are the edges of �1 (or �2). Note that the orientations of �1

and �2 must be opposite in order to form an oriented tetrahedral decomposition, and thus the
three-dimensional orientation is preserved when one moves from the inside of T1 to that of T2

through the identified triangle � [Fig. 10(a)]. Three-dimensional orientation is also preserved for
the two other tetrahedral decompositions that are obtained from (3.7) by cyclically permuting the
edges (E′

1, E′
2, E′

3). We denote by 	1(= 	), 	2, 	3, respectively, the tetrahedral decompositions
corresponding to the three edge-identifications that preserve the orientation,

	1 : (E1E2E3) = (E′
1E′

2E′
3), 	2 : (E1E2E3) = (E′

2E′
3E′

1), 	3 : (E1E2E3) = (E′
3E′

1E′
2) . (3.8)

We will call (	1, 	2, 	3) the fundamental triplet associated with triangle �.
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3.2.3. Definition of unoriented membrane theories
In addition to the edge-identifications (3.8) [leading to the fundamental triplet (	1, 	2, 	3)], we intro-
duce another triplet (	̃1, 	̃2, 	̃3) that are obtained, respectively, by the following edge-identifications
at the same triangle � :

	̃1 : (E1E2E3) = (E′
3E′

2E′
1), 	̃2 : (E1E2E3) = (E′

1E′
3E′

2), 	̃3 : (E1E2E3) = (E′
2E′

1E′
3) . (3.9)

Note that, in contrast to (3.8), three-dimensional orientation is not preserved across � [see Fig. 10(b)].
We introduce a transformation 
 that interchanges two triplets (	1, 	2, 	3) and (	̃1, 	̃2, 	̃3), and
define unoriented membrane theories to be those that are obtained from the oriented theories by the
projection operator (1 + 
)/2 acting on every triangle. We will call the set (	1, 	2, 	3, 	̃1, 	̃2, 	̃3)

the fundamental sextet associated with triangle �. So far we have assumed that the tetrahedral
decomposition 	1 is orientable, but one can easily see that 	1 is not necessarily orientable for the
above definition of a sextet to make sense because we focus only on local configurations around
triangle �. In the rest of paper, we understand that the domain of definition for 
 is extended so as
to include nonorientable tetrahedral decompositions.

Note that each sextet (	1, . . . , 	̃3) consists of both manifolds and nonmanifolds, unlike the two-
dimensional cases where 
 always relates a manifold to another manifold. In fact, suppose that a
tetrahedral decomposition 	1 represents a three-dimensional manifold. Then, the change of the edge-
identification at � from (E1E2E3) = (E′

1E′
2E′

3) to (E1E2E3) = (E′
3E′

2E′
1) gives rise to a singularity

at the midpoint of edge E2 = E′
2 in 	̃1 around which we cannot define a local orientation. The

appearance of singularity will be demonstrated explicitly when we consider an example in Sect. 4.3.

4. Triangle–hinge models for unoriented membranes
4.1. Action and Feynman rules

In this section, we realize unoriented membrane theories as triangle–hinge models. We show that they
are obtained simply by replacing C = C+ in the original oriented models (2.14) with C = C+ +C−:

S = 1

2
[AB] − λ

6

([C+AAA] + [C−AAA]) −
∑

k

μk

2k
[Yk B · · · B︸ ︷︷ ︸

k

]

≡ 1

2
AabcdBabcd

− λ

6n3 (ωd1a2ωd2a3ωd3a1 + ωd3a2ωd2a1ωd1a3) ωb3c2ωb2c1ωb1c3 Aa1b1c1d1Aa2b2c2d2Aa3b3c3d3

−
∑

k

n2μk

2k
Ba1a2b2b1 · · · Bak−1ak bk bk−1Bak a1b1bk . (4.1)

Here, C+ is again given by Eq. (2.12), and C− by

Ca1b1c1d1a2b2c2d2a3b3c3d3− ≡ 1

n3 ωd3a2ωd2a1ωd1a3ωb3c2ωb2c1ωb1c3 . (4.2)

We first note that the interaction vertices corresponding to [C+AAA] and [C−AAA] can be expressed
by thickened triangles with directed index lines, as in Fig. 11. Contractions using [C+AAA] yield
the identification of a triangle belonging to a tetrahedron with another triangle belonging to an
adjacent tetrahedron so that the orientation is preserved [see Fig. 11(a)]. The two positively oriented
tetrahedra thus reside in opposite positions with respect to the thickened triangle, and the edges
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(a) (b1) (b2)

Fig. 11. Interaction vertices corresponding to (a) [C+AAA] and (b) [C−AAA]. If C+ represents triangle-
identifications which preserve three-dimensional local orientation, C− represents triangle-identifications which
do not preserve orientation.

(a1, d1), (a2, d2), (a3, d3) will be identified with the edges (b1, c1), (b2, c2), (b3, c3), respectively,
when we deflate the triangle to get a tetrahedral decomposition. On the contrary, contractions using
[C−AAA] yield an identification of triangles where the orientation is not preserved [see Fig. 11(b1,
b2)]. In fact, the indices of C− [see (4.2)] can be expressed as Fig. 11(b1) or (b2). We use the
expression (b1) in a Feynman diagram where the triangle is connected to hinges, but we exploit the
other expression (b2) when the thickened triangle is interpreted as representing two triangles to be
identified in gluing two tetrahedra of positive orientation. Then, the edges (a1, d1), (a2, d2), (a3, d3)

will be identified with the edges (c1, b1), (c2, b2), (c3, b3), respectively, when we deflate triangles to
get a tetrahedral decomposition. It is easy to see that the two positively oriented tetrahedra are now in
the same position with respect to the triangle and thus will take the configuration of Fig. 8(b1) after
the triangle is deflated. This means that the orientation is not preserved for this gluing of tetrahedra.

Note that the direction of arrows on index lines is still preserved for diagrams using C−. Thus,
taking the same large-n limit as in the oriented models, we can reduce the set of diagrams such that all
their index polygons are triangles,14 and can conclude that they represent tetrahedral decompositions.

4.2. Wick contractions corresponding to the fundamental sextet

Recall that for each triangle � in a tetrahedral decomposition 	 = 	1, we have the fundamental
sextet of tetrahedral decompositions, (	1, 	2, 	3, 	̃1, 	̃2, 	̃3), which close among themselves under
the action of 
 . In this subsection, we write down the corresponding sextet (γ1, γ2, γ3, γ̃1, γ̃2, γ̃3) in
unoriented triangle–hinge models.

We first note that, while the total number of triangles (as well as that of tetrahedra) is the same
among the sextet (	1, . . . , 	̃3), this is not the case for those numbers around each edge of triangle �.
For example, let us consider the case where the three edges of � in 	1 [denoted by E1(= E′

1), E2(=
E′

2), E3(= E′
3)] are connected to three different hinges. If we change the identification at � from

(E1E2E3) = (E′
1E′

2E′
3) to (E1E2E3) = (E′

2E′
3E′

1) to obtain 	2, all the three edges E1, E2, E3 must be
the same due to triangle-identifications at other triangles.15 Therefore, Feynman diagrams γ1 and γ2 in
a triangle–hinge model must have different numbers and different types of hinges if they correspond
to 	1 and 	2, respectively. This means that the constructions of sextets are not so straightforward in
triangle–hinge models compared to other models (such as tensor models).

14 As in the original models, a tetrahedron has one index triangle at each corner (see Fig. 6).
15 Since we assume that 	 is a tetrahedral decomposition without boundaries, other triangle-identifications

in 	 ensure the edge-identifications E1 = E′
1, E2 = E′

2, and E3 = E′
3. See the discussions below (4.12) for

more details.
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Fig. 12. Labeling of edges around a k-hinge.

Let us take the above consideration to a more concrete form, considering a triangle � in a tetrahedral
decomposition 	1, at which two positively oriented tetrahedra are glued with the orientation being
preserved. We first note that there are the following three cases for the three edges I , J , K of
triangle �:

(1) Three edges I , J , K are connected to three different hinges.

(2) Two and only two of them are connected to the same hinge.

(3) All of them are connected to the same hinge. (4.3)

We suppose that 	1 is of the type (1) at �, and that edges I , J , K are connected to the (p + 1)-,
(q + 1)-, (r + 1)-hinges, respectively. Including p other edges connected to the (p + 1)-hinge, we
label the edges around the (p + 1)-hinge as [I , I1, . . . , Ip] in a cyclic order. Here, we define the
cyclic ordering of edges around a k-hinge as follows (see Fig. 12): We first pick up two neighboring
triangles t1 and t2 belonging to the same tetrahedron T+

1 of positive orientation, and label their edges
connected to the hinge as L1 and L2, respectively. Next to T+

1 there is another positively oriented
tetrahedron T+

2 determined by triangle t2 and another triangle t3 sharing the same hinge, and we
label as L3 the edge of t3 that is connected to the hinge. Repeating this procedure, we obtain a
sequence [L1, L2, . . . , Lk ] around the k-hinge. Since another choice (t2, t3) is possible as the initial
pair for the same configuration of edges around the hinge, we should regard the above sequence
as being cyclically symmetric, [L1, L2, . . . , Lk ] = [L2, L3, . . . , Lk , L1]. Note that, if we take (t2, t1)
as the initial pair, the edges around the k-hinge will be represented as a sequence in reverse order,
[Lk , . . . , L2, L1].

Labeling similarly the edges around the (q + 1)- and (r + 1)-hinges by [J , J1, . . . , Jq] and
[K , K1, . . . , Kr], respectively, we have

	1 : edge I is connected to a (p + 1)-hinge as [I , I1, . . . , Ip],
edge J is connected to a (q + 1)-hinge as [J , J1, . . . , Jq],
edge K is connected to a (r + 1)-hinge as [K , K1, . . . , Kr]. (4.4)

Then, the remaining tetrahedral decompositions in the sextet have the following configurations:

	2 : three edges I , J , K are connected to a single (p + q + r + 3)-hinge

as [I , I1, . . . , Ip, K , K1, . . . , Kr , J , J1, . . . , Jq]. (4.5)

15/24

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 2, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2016, 073B01 M. Fukuma et al.

Fig. 13. The splitting of � corresponding to 	1. Edge I becomes two edges E1 and E′
1, and edge J (or K)

becomes E2 and E′
2 (or E3 and E′

3). The (p + 1)-, (q + 1)-, (r + 1)-hinges accordingly become (p + 2)-,
(q + 2)-, (r + 2)-hinges, respectively. 	1 is restored by the edge-identification (E1E2E3) = (E′

1E′
2E′

3) for the
split triangles.

	3 : three edges I , J , K are connected to a single (p + q + r + 3)-hinge

as [I , I1, . . . , Ip, J , J1, . . . , Jq, K , K1, . . . , Kr]. (4.6)

	̃1 : two edges I , K are connected to a (p + r + 2)-hinge as [I , I1, . . . , Ip, K , K1, . . . , Kr],
and edge J is connected to a (q + 1)-hinge as [J , J1, . . . , Jq]. (4.7)

	̃2 : two edges J , K are connected to a (q + r + 2)-hinge as [J , J1, . . . , Jq, K , K1, . . . , Kr],
and edge I is connected to a (p + 1)-hinge as [I , I1, . . . , Ip]. (4.8)

	̃3 : two edges I , J are connected to a (p + q + 2)-hinge as [I , I1, . . . , Ip, J , J1, . . . , Jq],
and edge K is connected to a (r + 1)-hinge as [K , K1, . . . , Kr]. (4.9)

Equations (4.4)–(4.9) can be understood in the following way. We begin with (4.4), which is the
simplest and most obvious. We first split the triangle � in 	1 into two triangles as in Fig. 13 in
order to realize the configuration before the edge-identification (E1E2E3) = (E′

1E′
2E′

3) is made. This
splitting is accompanied by that of edge I to two edges E1 and E′

1, and that of edge J (or K) to E2 and
E′

2 (or to E3 and E′
3). Accordingly, the (p + 1)-, (q + 1)-, (r + 1)-hinges are transformed to (p + 2)-,

(q + 2)-, (r + 2)-hinges, respectively. Now we follow the sequence of the edges connected to each
hinge in the other direction. If we start from the edge E1 connected to the (p+2)-hinge, we then pass
through the edges I1, . . . , Ip following the original sequence [I , I1, . . . , Ip], and reach the edge E′

1,
which will be identified with the starting edge E1 (i.e., E′

1 = E1 = I ) under the edge-identification
for 	1, (E1E2E3) = (E′

1E′
2E′

3). Let us write the total path schematically as a cycle,

• E1 → I1 → · · · → Ip → E′
1 = E1. (4.10)

Similarly, if we start from the edge E2 connected to the (q + 2)-hinge or from the edge E3 connected
to the (r + 2)-hinge, we then have the following paths:

• E2 → J1 → · · · → Jq → E′
2 = E2, (4.11)

• E3 → K1 → · · · → Kr → E′
3 = E3. (4.12)

Equations (4.10)–(4.12) are exactly what is expressed in (4.4).
Now we consider the tetrahedral decomposition 	2, which was obtained from 	1 by changing the

edge-identification from (E1E2E3) = (E′
1E′

2E′
3) to (E1E2E3) = (E′

2E′
3E′

1) [see Fig. 14(a)]. If we
start from the edge E1 connected to the (p+2)-hinge, we then again pass through the edges I1, . . . , Ip

and reach the edge E′
1. However, this is not the end of the journey because E′

1 will be identified with
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(a) (b)

Fig. 14. The splittings of � corresponding to (a) 	2 and (b) 	̃1. 	2 is obtained by the edge-identification
(E1E2E3) = (E′

2E′
3E′

1) for the split triangles, and 	̃1 by (E1E2E3) = (E′
3E′

2E′
1) for the split triangles.

E3 in the edge-identification, and we need to follow another sequence of edges, K1, . . . , Kr , to reach
E′

3. Since E′
3 will be identified with E2, we need to continue the journey; we pass through the edges

J1, . . . , Jq to reach E′
2, which finally will agree with the starting edge E1. The total path can thus be

written as the following cycle:

• E1 → I1 → · · · → Ip → E′
1 = E3 → K1 → · · · → Kr

→ E′
3 = E2 → J1 → · · · → Jq → E′

2 = E1. (4.13)

Since E′
1 = E3 = K , E′

3 = E2 = J , and E′
2 = E1 = I under the edge-identification, the path (4.13)

can be written as (4.5). Similarly, (4.6) can be understood from the path:

• E1 → I1 → · · · → Ip → E′
1 = E2 → J1 → · · · → Jq

→ E′
2 = E3 → K1 → · · · → Kr → E′

3 = E1. (4.14)

Equation (4.7) can be understood in a similar way, by recalling that 	̃1 is obtained from 	1

by changing the edge-identification from (E1E2E3) = (E′
1E′

2E′
3) to (E1E2E3) = (E′

3E′
2E′

1) [see
Fig. 14(b)], which gives the following two disconnected cycles:

• E1 → I1 → · · · → Ip → E′
1 = E3 → K1 → · · · → Kr → E′

3 = E1,

• E2 → J1 → · · · → Jq → E′
2 = E2. (4.15)

Similarly, the cycles for 	̃2 [edge-identification (E1E2E3) = (E′
1E′

3E′
2)] are given by

• E2 → J1 → · · · → Jq → E′
2 = E3 → K1 → · · · → Kr → E′

3 = E2,

• E1 → I1 → · · · → Ip → E′
1 = E1, (4.16)

and those for 	̃3 [edge-identification (E1E2E3) = (E′
2E′

1E′
3)] are given by

• E1 → I1 → · · · → Ip → E′
1 = E2 → J1 → · · · → Jq → E′

2 = E1,

• E3 → K1 → · · · → Kr → E′
3 = E3. (4.17)

Now that we understand in detail the configurations of the fundamental sextet (	1, . . . , 	̃3) asso-
ciated with triangle �, it is easy to translate (4.4)–(4.9) in terms of unoriented triangle–hinge
models, and we obtain the sextet of Feynman diagrams (γ1, . . . , γ̃3) as the following groups of
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Wick contractions:16

γ1 : [C+AI AJ AK ] XI1...Ip,J1...Jq,K1...Kr

× [Yp+1B(+)
I B

σI1
I1

· · · B
σIp
Ip

] [Yq+1B(+)
J B

σJ1
J1

· · · B
σJq
Jq

] [Yr+1B(+)
K B

σK1
K1

· · · B
σKr
Kr

] , (4.18)

γ2 : [C+AI AJ AK ] XI1...Ip,J1...Jq,K1...Kr

× [Yp+q+r+3B(+)
I B

σI1
I1

· · · B
σIp
Ip

B(+)
K B

σK1
K1

· · · B
σKr
Kr

B(+)
J B

σJ1
J1

· · · B
σJq
Jq

] , (4.19)

γ3 : [C+AI AJ AK ] XI1...Ip,J1...Jq,K1...Kr

× [Yp+q+r+3B(+)
I B

σI1
I1

· · · B
σIp
Ip

B(+)
J B

σJ1
J1

· · · B
σJq
Jq

B(+)
K B

σK1
K1

· · · B
σKr
Kr

] , (4.20)

γ̃1 : [C−AI AJ AK ] XI1...Ip,J1...Jq,K1...Kr

× [Yp+r+2B(+)
I B

σI1
I1

· · · B
σIp
Ip

B(+)
K B

σK1
K1

· · · B
σKr
Kr

] [Yq+1B(+)
J B

σJ1
J1

· · · B
σJq
Jq

] , (4.21)

γ̃2 : [C−AI AJ AK ] XI1...Ip,J1...Jq,K1...Kr

× [Yq+r+2B(+)
J B

σJ1
J1

· · · B
σJq
Jq

B(+)
K B

σK1
K1

· · · B
σKr
Kr

] [Yp+1B(+)
I B

σI1
I1

· · · B
σIp
Ip

] , (4.22)

γ̃3 : [C−AI AJ AK ] XI1...Ip,J1...Jq,K1...Kr

× [Yp+q+2B(+)
I B

σI1
I1

· · · B
σIp
Ip

B(+)
J B

σJ1
J1

· · · B
σJq
Jq

] [Yr+1B(+)
K B

σK1
K1

· · · B
σKr
Kr

] . (4.23)

Here, we have used the abbreviation for Wick contractions introduced in Sect. 2.1, and the super-
script σ takes (+) or (−). We have written explicitly only for the part of the interaction vertices
corresponding to � (expressed by [C±AI AJ AK ]) and the hinges connected to �. The remaining
part (denoted by XI1...Ip,J1...Jq,K1...Kr ) is common among the sextet (γ1, . . . , γ̃3) and represents the
other interaction vertices and their contractions.17 As for diagrams γ1, γ2, γ3, the identification at �

preserves the orientation as in Fig. 10(a), and thus we have used the vertex [C+AI AJ AK ]. On the
other hand, as for diagrams γ̃1, γ̃2, γ̃3, the identification at � does not preserve the orientation as in
Fig. 10(b), and thus we have used the vertex [C−AI AJ AK ]. In Appendix A we prove that the diagrams
γ2, . . ., γ̃3 represent tetrahedral decompositions if γ1 does.

So far we have assumed that the orientation is preserved at � in 	1 and also that 	1 is of type (1)
in (4.3). For other cases, one can also obtain the corresponding sextets (γ1, . . . , γ̃3) in a similar way.

4.3. Example

To understand the meaning of the above sextet (4.18)–(4.23), let us consider a simple example. We
take a tetrahedral decomposition 	1 of a three-sphere, consisting of two tetrahedra glued together
at their faces as shown in Fig. 15. Diagram γ1 representing 	1 is realized by the following group of
Wick contractions [Eq. (4.18)]:

[C+AI AJ AK ]�[Y2B(+)
I B(−)

I1
][Y2B(+)

J B(−)
J1

][Y2B(+)
K B(−)

K1
] × XI1J1K1 , (4.24)

XI1J1K1 = [C+AI1AM1AN2]1[C+AJ1AN1AL2]2[C+AK1AL1AM2]3

× [Y2B(+)
L1

B(−)
L2

][Y2B(+)
M1

B(−)
M2

][Y2B(+)
N1

B(−)
N2

] . (4.25)

16 Due to the cyclic symmetry of C+ , a group of Wick contractions containing [C+AI AJ AK ] and that
containing [C+AJ AK AI ] represent the same Feynman diagram.

17 XI1...Kr includes AI1 , . . ., AKr , which are the partners of BI1 , . . ., BKr in the Wick contractions.
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Fig. 15. Tetrahedral decomposition 	1 of three-sphere, where triangles with the same label are identified.

(a1) (a2) (b) (c)

Fig. 16. Feynman diagram γ1 representing 	1. (a1) The part corresponding to X . (a2) The part corresponding
to �. The interaction vertices corresponding to triangles are specified by the labels �, 1, 2, 3. Three 2-hinges
exist in (a1) but are not displayed explicitly there. (b) Edge-identification at �, which is realized by contracting
(a1) and (a2). (c) The obtained tetrahedral decomposition 	1.

Here, the subscripts �, 1, 2, 3 specify the triangles corresponding to the interaction vertices; �

specifies the triangle at which we change the edge-identification to obtain γ2, . . . , γ̃3, and 1, 2, 3
specify the triangles belonging to the remaining part X , which consists of three triangles (1, 2, 3) and
three 2-hinges (see Fig. 16). Figure 16(a1) depicts the part corresponding to X , while Fig. 16(a2)
depicts the part corresponding to �, which consists of a triangle and three 2-hinges. In Fig. 16(a1) and
(a2), edges with the same indices are connected by contractions. Recalling that the edge-identification
of 	1 is expressed by (E1E2E3) = (E′

1E′
2E′

3), we label the ordered indices (bi, ci) and (ai, di)

(i = 1, 2, 3) in Fig. 16(a1) as Ei = Ei(bi, ci) and E′
i = E′

i(ai, di), respectively. Since edges Ei and E′
i

are expressed as in Fig. 16(b) when (a1) and (a2) are combined, we see that the edge-identification
(E1E2E3) = (E′

1E′
2E′

3) will certainly be realized after triangle � is deflated.
Now we consider diagram γ2 representing the tetrahedral decomposition 	2 that is obtained from

	1 by changing the edge-identification from (E1E2E3) = (E′
1E′

2E′
3) to (E1E2E3) = (E′

2E′
3E′

1) (see
Fig. 17). Note that 	2 has the topology of a three-dimensional lens space L(3, 1), as can be seen from
Fig. 17(c). Diagram γ2 is given by (4.19), that is,

[C+AI AJ AK ][Y6B(+)
I B(−)

I1
B(+)

K B(−)
K1

B(+)
J B(−)

J1
] × XI1J1K1 . (4.26)

Since the part given by X is common among the sextet, we have the same labeling of edges,
Ei(bi, ci) and E′

i(ai, di) (i = 1, 2, 3), and diagram γ2 takes the form shown in Fig. 17(a1) and
(a2). In Fig. 17(a2), the ordered indices (b1, c1) are connected to (g, f ) by index lines, and (a2, d2)
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(a1) (a2) (b) (c)

Fig. 17. Feynman diagram γ2 representing 	2. (a1) The part corresponding to X . (a2) The part corresponding
to �. (b) The edge-identification at �. (c) The obtained tetrahedral decomposition 	2.

(a1) (a2) (b) (c)

Fig. 18. Feynman diagram γ̃1 representing 	̃1. (a1) The part corresponding to X . (a2) The part corresponding
to �. (b) The edge-identification at �. (c) The obtained tetrahedral decomposition 	̃1, where the midpoint of
the edge shared by triangles 2 and � is singular.

are connected to (h, e). Thus, as can be seen from Fig. 17(b), edge E1(b1, c1) = (g, f ) will be
identified with edge E′

2(a2, d2) = (h, e) after triangle � is deflated. Similarly, edges E2(b2, c2) and
E3(b3, c3) will be identified with edges E′

3(a3, d3) and E′
1(a1, d1), respectively. We thus obtain the

edge-identification (E1E2E3) = (E′
2E′

3E′
1) of 	2. In a similar way, we can realize 	3 [resulting from

the edge-identification (E1E2E3) = (E′
3E′

1E′
2) at �] as a diagram γ3 [Eq. (4.20)] of a triangle–hinge

model. 	3 has the topology of a lens space L(3, 2) = L(3, 1). Thus, in this simple example, two
diagrams γ2 and γ3 represent the same tetrahedral decomposition, 	2 = 	3.

As for the tetrahedral decomposition 	̃1 [resulting from the edge-identification (E1E2E3) =
(E′

3E′
2E′

1) at �], the corresponding diagram γ̃1 is obtained from the following group of Wick
contractions [Eq. (4.21)]:

[C−AI AJ AK ][Y4B(+)
I B(−)

I1
B(+)

K B(−)
K1

][Y2B(+)
J B(−)

J1
] × XI1J1K1 . (4.27)

The diagram is depicted in Fig. 18. In Fig. 18(a2), the ordered indices (b1, c1) are connected to
(h, e) by index lines, and (d3, a3) are connected to (f , g). Thus, due to the edge-identification for
C− explained below (4.2), edge E1(b1, c1) = (h, e) will be identified with edge E′

3(d3, a3) = (f , g)

after triangle � is deflated. Similarly, edges E2(b2, c2) and E3(b3, c3) will be identified with edges
E′

2(d2, a2) and E′
1(d1, a1), respectively. We thus obtain the edge-identification (E1E2E3) = (E′

3E′
2E′

1)

of 	̃1.Although 	̃1 consists of two tetrahedra, it is not a three-dimensional manifold. In fact, there is a
singularity at the midpoint of edge E2 = E′

2 of �, around which we cannot define a local orientation.
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It is easy to see that the other diagrams γ̃2 and γ̃3 are realized by (4.22) and (4.23), respectively, and
represent the same tetrahedral decomposition as 	̃1.

4.4. Note on the weights of diagrams

We comment that a sextet (γ1, γ2, γ3, γ̃1, γ̃2, γ̃3) appears in the free energy with the same coefficients.
By “the same coefficients” we mean that the numerical factors of these diagrams are the same except
for powers of n, λ, μk if we treat the common part X as a set of distinguished external vertices and
sum over all diagrams representing the same tetrahedral decomposition.

We note that, if a group x of Wick contractions represents a tetrahedral decomposition and if all
the interaction vertices are distinguished, then x contributes to the free energy as18

1

s2!
( λ

6n

)s2 ∏
k=1

[
1

sk
1!

(n2μk

2k

)sk
1
]

. (4.28)

Here, s2 and sk
1 denote the numbers of triangles and k-hinges, respectively, in diagram γ = [x]. Thus,

there arise 1/(s2! 6s2) and 1/(sk
1! (2k)sk

1) in the free energy as numerical factors.
If there are nk internal k-hinges in a diagram,19 there are nk ! different contractions corresponding

to the permutation of these hinges, since the external vertices are distinguished. For each k-hinge,
there are 2k ways to give the same diagram due to the symmetry of k-hinge vertices. Thus, the
numerical factor of each contraction, 1/(nk !(2k)nk ), is compensated if we sum these contributions.
The numerical factor 1/6 of triangle � is also canceled. Actually, since C+ has the symmetry (2.13)
there are six ways to give the same diagram. The above computation ensures that three diagrams
γ1, γ2, γ3 are generated with unit coefficient in the original triangle–hinge model. Furthermore, since
C− also has the symmetry

Ci1j1i2j2i3j3− = Ci2j2i3j3i1j1− = Cj1i1j2i2j3i3− , (4.29)

γ̃1, γ̃2, γ̃3 are also generated with unit coefficient in an unoriented model.

5. Matter fields in unoriented triangle–hinge models

In this section we show that matter fields can be introduced to unoriented triangle–hinge models in
the same way as the original triangle–hinge models [2]. We focus here on assigning matter degrees
of freedom only to tetrahedra, but the assignment can be done to simplices of any dimensions,
as in [2].

Introducing matter degrees of freedom is realized by coloring each tetrahedron in tetrahedral
decompositions. Actually, we only need to repeat the steps given in [2]. We first extend the algebra A
to a tensor product of the form A = Agrav ⊗Amat. Here, Agrav is again Mn=3m(R), and we take Amat

to be M|J |(R), where J is the set of colors. Now the dynamical variables A, B have eight indices
A = (Aabαβ,cdγ δ), B = (Babαβ,cdγ δ), where the indices a, b, c, d correspond to Agrav, and α, β, γ , δ
to Amat.20 Next we set the tensor C to take the form C = C+ + C− (C± represents two ways to

18 The n dependence comes from the assumption that all the index polygons are triangles.
19 Internal hinges mean the parts not in X but connected to �.
20 A and B are real-valued matrices symmetric with respect to the pair of indices, Aabαβ,cdγ δ = Acdγ δ,abαβ ,

Babαβ,cdγ δ = Bcdγ δ,abαβ .
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Fig. 19. Interaction vertices corresponding to a triangle (Amat part). The upper (lower) side of each triangle
has color α (β).

Fig. 20. Index triangles inside a tetrahedron with triangles colored as in (5.1), (5.2) [2].

glue tetrahedra depicted in Fig. 11), and assume that each has a factorized form C± = C±gravC±mat.
Here, we set C±grav to the form (4.1), and let C±mat take the following form:

Cα1β1γ1δ1α2β2γ2δ2α3β3γ3δ3+mat =
∑

α,β∈J
λαβ pδ1α2

α pδ2α3
α pδ3α1

α pβ3γ2
β pβ2γ1

β pβ1γ3
β , (5.1)

Cα1β1γ1δ1α2β2γ2δ2α3β3γ3δ3−mat =
∑

α,β∈J
λαβ pδ3α2

α pδ2α1
α pδ1α3

α pβ3γ2
β pβ2γ1

β pβ1γ3
β , (5.2)

where pα = (pβγ
α = δ

β
α δ

γ
α ) is the projector to the αth component and λαβ is a real constant.

Equations (5.1) and (5.2) mean that we insert pα to each of the index lines (as ω was inserted for
Agrav) and take a summation over α and β with weight λαβ . The Amat part of the interaction vertex
[C+A3] + [C−A3] can be illustrated as in Fig. 19. Note that pα is common among three index lines
on each side of a triangle. Thus, one can say that each side of a triangle has a color.

In this construction, the index function F(γ ) of diagram γ is factorized to the form

F(γ ) ≡ F(γ ; A) = F(γ ; Agrav)F(γ ; Amat) ≡ Fgrav(γ )Fmat(γ ), (5.3)

and the factor Fgrav(γ ) ensures that diagram γ represents a tetrahedral decomposition. The index
lines corresponding to Amat also form index triangles (see Fig. 20). A tetrahedron surrounded by
four sides of triangles with color α1, α2, α3, α4 gives the factor

tr(pα1pα2pα3)tr(pα2pα1pα4)tr(pα1pα3pα4)tr(pα3pα2pα4)

=
{

1 (α1 = α2 = α3 = α4)

0 (otherwise).
(5.4)

This means that Fmat(γ ) can take nonvanishing values only when four sides of triangles of each
tetrahedron have the same color (say α), which enables us to say that the tetrahedron has the color
α. We thus succeed in coloring tetrahedra in γ .
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If two tetrahedra with color α and β are glued at their faces, the face (corresponding to C±mat)
gives the factor λαβ . In this sense the coupling constants λαβ define a local interaction between the
color α and β [2]. If we take the set of colors, J , to be R

D = {x} and let the coupling constants λx,y

(x, y ∈ R
D) take nonvanishing values only around y as a function of x, then x can be interpreted as the

target space coordinates of a tetrahedron in R
D. Since neighboring tetrahedra are locally connected

in R
D, the model can describe the dynamics of unoriented membranes embedded in R

D.

6. Conclusion and outlook

In this paper, we first defined unoriented membrane theories in terms of tetrahedral decomposi-
tions, and then realized them as triangle–hinge models. Unoriented membrane theories are obtained
from oriented open membrane theories of disk topology by gauging the worldvolume parity trans-
formation 
. For each triangle � in a tetrahedral decomposition, we have introduced two types
of triplets, (	1, 	2, 	3) and (	̃1, 	̃2, 	̃3), which respectively correspond to two ways of identifi-
cation at �, (3.8) and (3.9). The transformation 
 is then defined as the interchange between
(	1, 	2, 	3) and (	̃1, 	̃2, 	̃3). After gauging 
, an unoriented membrane theory treats all the
tetrahedral decompositions in the sextet (	1, 	2, 	3, 	̃1, 	̃2, 	̃3) equally.

An unoriented membrane theory is realized as a triangle–hinge model with the action (4.1). It
generates Feynman diagrams representing unoriented tetrahedral decompositions. We gave explicitly
in (4.18)–(4.23) the sextet of Feynman diagrams (γ1, . . . , γ̃3) corresponding to (	1, . . . , 	̃3), and
showed that these six diagrams appear with unit coefficient up to factors of coupling constants if we
treat the common part X as a set of distinguished external vertices and sum over all Wick contractions
giving the same diagram. We further showed that matter degrees of freedom can be introduced to
unoriented triangle–hinge models by coloring tetrahedra as carried out in [2]. Although we only
discussed the coloring of tetrahedra in this paper, we can set matter degrees of freedom to simplices
of any dimensions (i.e. tetrahedra, triangles, edges, and/or vertices) as in [2].

We expect that unoriented triangle–hinge models are solvable at least at the same level as the orig-
inal oriented models (M. Fukuma, S. Sugishita, and N. Umeda, in preparation), since the dynamical
variables are the same type of matrices and the actions have almost the same structure as the original
oriented triangle–hinge models. The unoriented models actually might be easier to solve than the
original oriented models, because the interaction term corresponding to a triangle has higher sym-
metry, which may help us to carry out the path integrals more analytically. It is interesting to study
critical behaviors of the models in both analytical and numerical ways.
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Appendix A. Sextet as tetrahedral decompositions

In this Appendix, we show that the diagrams γ2, . . ., γ̃3 represent tetrahedral decompositions if γ1

does. Let us look into the indices in the group of Wick contractions (4.18). We label the indices of
BI1 as Ba′

I1
b′

I1
c′

I1
d ′

I1
, while we label those of AI1 as AaI1 bI1 cI1 dI1

or AcI1 dI1 aI1 bI1
according to σI1 = (+)
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or (−), so that we always have

AI1B
σI1
I1

= δaI1 a′
I1
δbI1 b′

I1
δcI1 c′

I1
δdI1 d ′

I1
. (A.1)

We use a similar labeling for other AIi and BIi . Through the parts other than X in (4.18), indices aI1 ,
. . ., dKr of X are connected to each other by index lines. The other parts are given by

[C+AI AJ AK ] = AaI bI cI dI AaJ bJ cJ dJ AaK bK cK dK ωdI aJ ωdJ aK ωdK aI ωbK cJ ωbJ cI ωbI cK , (A.2)

[Yp+1BI BI1 · · · BIp] = Ba′
I b′

I c′
I d ′

I
Ba′

I1
b′

I1
c′

I1
d ′

I1
· · · Ba′

Ip
b′

Ip
c′

Ip
d ′

Ip
δb′

I a′
I1

· · · δb′
Ip

a′
I
δc′

I d ′
I1

· · · δc′
Ip

d ′
I

. (A.3)

Thus, by combining them with (A.1), the index lines connecting aI1 , . . ., dKr are given by

ω
cIp bJq ω

cJq bKr ω
cKr bIp ωaK1 dJ1 ωaJ1 dI1 ωaI1 dK1 δbI1 aI2

· · · δbIp−1 aIp
δcI1 dI2

· · · δcIp−1 dIp
· · · . (A.4)

One can find that index lines out of X take the same form as (A.4) in diagrams γ2, . . ., γ̃3. Since
we assume that diagram γ1 represents tetrahedral decomposition 	1, all the index loops in γ1 make
index triangles. Then, the index loops of γ2, . . ., γ̃3 also must make only index triangles because
the index loops have the same form as those of γ1. We thus have shown that the diagrams represent
tetrahedral decompositions if γ1 does.
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