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We propose a method to define a d + 1-dimensional geometry from a d-dimensional quantum
field theory in the 1/N expansion. We first construct a d + 1-dimensional field theory from the
d-dimensional one via the gradient-flow equation, whose flow time t represents the energy scale
of the system such that t → 0 corresponds to the ultraviolet and t → ∞ to the infrared. We
then define the induced metric from d + 1-dimensional field operators. We show that the metric
defined in this way becomes classical in the large-N limit, in the sense that quantum fluctuations
of the metric are suppressed as 1/N due to the large-N factorization property. As a concrete
example, we apply our method to the O(N ) nonlinear σ model in two dimensions. We calculate
the 3D induced metric, which is shown to describe an anti-de Sitter space in the massless limit.
Finally, we discuss several open issues for future studies.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index B30, B34, B35, B37, B39

1. Introduction One of the most surprising and significant findings in field theories and string
theories is the anti-de Sitter/conformal field theory (AdS/CFT) (or, more generally, gravity/gauge
theory) correspondence [1], which claims that a d-dimensional conformal field theory is equiva-
lent to some d + 1-dimensional (super-)gravity theory on the AdS background. After this proposal,
there appeared a tremendous amount of evidence to support this correspondence. This equivalence
is, however, still mysterious and needs to be understood, even though the open-string/closed-string
duality may explain it.

In this paper, we consider such gravity/field theory correspondences from a different point of view,
and propose an alternative method to define a geometry from a field theory. Explicitly, we consider a
d-dimensional quantum field theory in the large-N expansion, and lift it to a d + 1-dimensional one
using the gradient flow [2–5], where the flow time t becomes an additional coordinate and represents
the energy scale of the original d-dimensional theory. We then define the induced metric from the field
in this d + 1-dimensional theory. In this way, we define the metric from the original d-dimensional
theory and its scale dependence; the method is quite generic and can be applied to all field theories
in principle. As shown in the next section, however, the metric defined in this way becomes classical
only in the large-N limit; thus, the use of the large-N expansion for field theories may be mandatory.

This paper is organized as follows. We first propose our method for general field theories in the
large-N expansion to define the induced metric. We discuss some general properties of this con-
struction. We next apply the method to the 2D O(N ) nonlinear σ model. We calculate the vacuum
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expectation value (VEV) of the 3D induced metric in the particular definition, which is shown to
describe (asymptotically) an AdS space in the massless (ultraviolet (UV)) limit. We finally discuss
several remaining issues of the method for future studies.

2. Proposal We consider the generic large-N field ϕa,α(x) where x is d-dimensional space-
time coordinate, a = 1, 2, . . . , is the large-N index, while α represents other indices such as spinor
or vector indices, so that hαβϕa,α(x)ϕb,β(x) can be made Lorentz invariant by a constant tensor hαβ .
We denote the action of this theory S.

We first extend the d-dimensional field ϕa,α(x) to φa,α(t, x) in d + 1 dimensions, using the
gradient-flow equation as [6]

d

dt
φa,α (t, x) = −gab (φ (t, x))

δS

δϕb,α (x)

∣∣∣∣
ϕ→φ

, (1)

with an initial condition that φa,α(0, x) = ϕa,α(x), where gab is the metric of the space of the large-N
index. Since the length dimension of t is 2 and t ≥ 0, we introduce a new variable τ = 2

√
t . (Here

a factor 2 makes some later results simpler.) Then we denote the d + 1-dimensional coordinate as
z = (τ, x) ∈ R

+(= [0, ∞]) × R
d and the field as φa,α(z).

We propose to define a d + 1-dimensional metric as

ĝμν (z) := gab (φ (z)) hαβ∂μφa,α (z) ∂νφ
b,β (z) , (2)

where a mass dimension of the constant tensor hαβ
1 must be −2(1 + dϕ), with dϕ being that of ϕ,

to make the metric dimensionless. This is an induced metric from a d + 1-dimensional manifold
R

+ × R
d on a curved space in R

N with the metric gab. Using the above definition, we then calculate
the expectation values of gμν and its correlations as〈

ĝμν (z)
〉

:= 〈
ĝμν (z)

〉
S, (3)〈

ĝμ1ν1 (z1) ĝμ2ν2 (z2)
〉

:= 〈
ĝμ1ν1 (z1) ĝμ2ν2 (z2)

〉
S, (4)〈

ĝμ1ν1 (z1) · · · ĝμnνn (zn)
〉

:= 〈
ĝμ1ν1 (z1) · · · ĝμnνn (zn)

〉
S, (5)

where 〈O〉S is the expectation values of O(ϕ) in d dimensions with the action S as

〈O〉S := 1

Z

∫
Dϕ O (ϕ) e−S, Z :=

∫
Dϕ e−S (6)

in the large-N expansion. Even though the “composite” operator ĝμν(z) contains a product of two
local operators at the same point z,

〈
ĝμν(z)

〉
is finite as long as τ 
= 0 [7]. This is the reason why we

define the induced metric in d + 1 dimensions from φ, not the d-dimensional induced metric from ϕ,
which diverges badly.

Thanks to the large-N factorization, quantum fluctuations of the metric ĝμν are suppressed in the
large-N limit. For example, the two-point correlation function of ĝμν behaves as

〈
ĝμν (z1) ĝαβ (z2)

〉 = 〈
ĝμν (z1)

〉〈
ĝαβ (z2)

〉+ O

(
1

N

)
, (7)

which shows that the induced metric ĝμν is classical in the large-N limit, and quantum fluctuations
are sub-leading and can be calculated in the 1/N expansion. A use of the 1/N expansion here seems

1 In general, we may introduce a z-dependence tensor hαβ(z) here, but we consider the constant case only in
this paper.
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important for the geometrical interpretation of the metric ĝμν . For example, in the large-N limit, the
VEV of the curvature tensor operator is directly obtained from the VEV of ĝμν as in the classical
theory.

3. An example: O(N ) nonlinear σ model in two dimensions As a concrete example of our
proposal, we consider the O(N ) nonlinear σ model in two dimensions, whose action is given by

S = 1

2g2

∫
d2x

N−1∑
a,b=1

gab (ϕ)

2∑
k=1

(
∂kϕ

a (x) ∂kϕb (x)
)

, (8)

where

gab (ϕ) = δab + ϕaϕb

1 − ϕ · ϕ
, gab (ϕ) = δab − ϕaϕb (9)

with ϕ · ϕ = ∑N−1
a=1 ϕaϕa , and the N th component of ϕ is expressed in terms of other fields as

ϕN = ±√
1 − ϕ · ϕ, so that the metric gab appears in the action. The 3D metric gμν(z) will be

extracted from this theory, according to our proposal.

3.1 Solution to the gradient-flow equation in large N In the previous study [8], the solution
of the gradient-flow equation was obtained in the momentum space as

φa (t, p) = f (t) e−p2t
∞∑

n=0

: X2n+1 (ϕ, p, t) : (10)

where X2n+1 only contains ϕ2n+1 terms and is O
(
1/N 2n+1

)
. The leading order term X1 is given by

Xa
1(ϕ, p, t) = ϕa(p) with

f (t) = 1√
1 − 2λJ (t)

, J (t) =
∫ t

0
ds I (s) , I (t) =

∫
d2q

(2π)2

q2e−2q2t

q2 + m2 , (11)

where λ = g2 N is the ’t Hooft coupling constant, and m is the dynamically generated mass, which
satisfies

1 = λ

∫
d2q

(2π)2

1

q2 + m2 . (12)

Introducing the momentum cut-off , we have

f (t) = e−m2t

√
log

(
1 + 2/m2

)
Ei
(−2t

(
2 + m2

))− Ei
(−2tm2

) , (13)

where Ei(x) is the exponential integral function defined by Ei(−x) = ∫
d x e−x/x . The two-point

function, which dominates in the large-N limit, is calculated as

〈φa (t, x) φb (s, y)〉S =
∫

d2q

(2π)2

e−q2(t+s)eiq(x−y)

q2 + m2 δab
λ

N
f (t) f (s) + O

(
N−2

)
. (14)

3.2 Induced metric An induced metric for this model is given by

ĝμν (z) := h gab (φ (z)) ∂μφa (z) ∂νφ
b (z) , (15)

where z = (2
√

t, x), and the constant h is introduced so that the mass dimension of the metric opera-
tor ĝμν(z) is zero. This is the induced metric from a 3D manifold R

+ × R
2 on the N − 1-dimensional

sphere defined by φa .
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The VEV of the metric, gμν , which does not depend on x due to the translational invariance of the
2D O(N ) nonlinear σ model, can easily be calculated in the large-N limit as giτ (τ ) = gτ i (τ ) = 0
for i = 1, 2, while

gi j (z) := 〈
ĝi j (z)

〉 = h
〈
gab (φ) ∂iφ

a (t, x) ∂ jφ
b (t, x)

〉
� h

2
δi jλ f 2 (t) I (t) = h

2
δi j

ḟ (t)

f (t)
(16)

for i, j = 1, 2, where we use an equality that ḟ (t) := d f (t)/dt = λ f (t)3 I (t). Furthermore,

gττ (τ ) = τ 2h

4

〈
φ̇a (t, x) gab (φ (t, x)) φ̇b (t, x)

〉
, (17)

which, after using the gradient-flow equation, is evaluated as

gττ (τ ) � τ 2h

4

[〈
∇2φ · ∇2φ

〉
−
〈
φ · ∇2φ

〉2] = −τh

4

d

dτ

(
ḟ

f

)
. (18)

Thus the expectation values of the induced metric turns out to be diagonal as

gμν =

⎛
⎜⎝B (τ ) 0 0

0 A (τ ) 0
0 0 A (τ )

⎞
⎟⎠ , (19)

where we define

A (τ ) = h

2

ḟ (t)

f (t)
|t=τ 2/4, B (τ ) = −τ

2
A,τ ,

and f,τ means the derivative of f with respect to τ . This A(τ ), and hence also B(τ ), is finite in the
 → ∞ limit as

A (τ ) = −m2h

2

[
1 + e−τ 2m2/2

Ei
(−τ 2m2/2

)
m2τ 2/2

]
. (20)

From the metric, we can calculate the VEV of composite operators such as the Einstein tensor
Gμν(ĝ) as

〈
Gμν(ĝ)

〉 = Gμν

(〈ĝ〉), thanks to the factorization in the large-N limit.
After a little algebra, we obtain

Gττ = A2
,τ

4A2 , Gi j = δi j

[
A,ττ

2B
− A,τ B,τ

4B2 − A2
,τ

4AB

]
, (21)

and Giτ = Gτ i = 0.

3.3 Massless limit and AdS space We consider the massless limit (m → 0), where A and its
derivatives are given by

A � − 1

τ 2

h

log
(
m2
)
[

1 + O

(
1

log
(
m2
)
)]

; (22)

A,τ � −2A/τ and A,ττ � 6A/τ 2. We here use the expansion Ei(−x) = log x + γ +∑∞
n=1(−x)n/

(n · n!). In order to have positive and finite gμν in the massless limit, we take h = −R2
0 log

(
m2 R2

0

)
,

4/7
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where a mass dimension of the constant R0 is −1. We thus obtain gττ = R2
0

τ 2 , gi j = δi j
R2

0

τ 2 , so that

ds2 = R2
0

τ 2

[
dτ 2 +

(
d x
)2
]

, (23)

which describes the Euclidean AdS space. Indeed, the Einstein tensor reads

Gμν = −0gμν, 0 = − 1

R2
0

, (24)

which give the negative cosmological constant 0. It is interesting to see that the AdS geometry is
realized for the conformal field theory defined in the massless limit, which corresponds to the UV
fixed point of the theory.

3.4 Metric in UV and IR limits In the short-distance (UV) limit (mτ → 0), we have A �
−h/

[
τ 2 log

(
m2τ 2

)]
, so that gττ � −h/

[
τ 2 log

(
m2τ 2)] and gi j � −δi j h/

[
τ 2 log

(
m2τ 2)].

As briefly discussed for generic cases, had we defined the d-dimensional metric directly from
the d-dimensional field theory as ĝd

i j (x) := gab(ϕ(x))∂iϕ
a(x)∂ jϕ

b(x), the VEV of ĝd
i j (x) would

become UV divergent due to the short distance singularity of ϕa(x)ϕb(y) at x → y. In contrast, the
d + 1-dimensional metric ĝμν defined from the d-dimensional field theory via Eq. (2) is free from
UV divergence, since the flowed field φ(t, x) and any local composite operators constructed from
it are expected to be finite as long as t ∼ τ 2 is nonzero [7–10]. This is the reason why we employ
the flowed field and why the induced metric is defined on d + 1 dimensions, not on d dimensions.
Consequently, the classical metric, gμν , is UV finite in our proposal, as it should be. Note that the
UV divergence presented in the 2D O(N ) nonlinear σ model appears, e.g., in the mτ → 0 limit as
gμν ∼ 1/

(
τ 2 log m2τ 2

)
.

In this limit, the “effective” cosmological constant is given as

eff
0 = − log

(
m2τ 2

)
R2

0 log
(
m2 R2

0

) , (25)

where the non-conformal natures of the original 2D asymptotic-free field theory appear in its log τ 2

dependence.
In the mτ → ∞ (infrared (IR)) limit, on the other hand, A � h/τ 2, which gives gττ � h/τ 2 and

gi j � δi j h/τ 2. Since eff
0 = [

R2
0 log

(
m2 R2

0

)]−1
in this limit, the theory becomes asymptotically

AdS
(
eff

0 < 0
)

if log
(
m2 R2

0

)
< 0. This result looks rather nontrivial, since the massive theory is

expected naively to become trivially conformal due to decouplings of all massive modes in the IR
limit.

Assuming the Einstein equation, Gμν = 8πGTμν , we can define the energy momentum tensor
Tμν . In both the UV and IR limits, we have Tμν = δμν/

(
8πGτ 2

)
, which does not depend on m and

therefore holds even at m = 0. As a consequence, T matter
μν vanishes in both the UV and IR limits,

where we define T matter
μν := Tμν + gμν0/(8πG).

4. Discussions In our proposal, a correspondence between a geometry and a field theory is
explicit by construction, and the method proposed here can be applied to an arbitrary quantum field
theory, as long as the large-N expansion is employed. If the theory is solvable in the large-N limit, the
VEV of ĝμν can be calculated exactly. Let us discuss the remaining issues that should be investigated
in future studies.
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First, we do not yet have a full dictionary to interpret a quantum field theory in terms of the
corresponding metric operator and vice versa. For the 2D O(N ) nonlinear σ model, the dynam-
ically generated mass m can be extracted from the asymptotic behavior of the metric that gμν ∼
1/
[
τ 2 log

(
m2τ 2

)]
as mτ → 0. However, this gives only a partial knowledge of the field theory.

It would be nice if we could determine the whole structure of the matter content based on a gravity
action that gives the same Einstein equation that we have assumed.

Secondly, since our method can be applied to a large class of quantum field theories, one should
investigate what kind of geometry emerges from various large-N models other than the 2D O(N )

nonlinear σ model, including conformal theories. One possible direction is to introduce a source field
in the original theory to break the translational invariance to generate geometries with nontrivial z
dependence. In particular, it would be a challenge to find the field theory set-up that induces the black
hole geometry.

Thirdly, the fluctuations around the background geometry should be studied. In principle, we can
calculate an arbitrary correlation function for the metric ĝμν including the quantum fluctuation of
the metric in the 1/N expansion. In practice, however, calculations in the next leading order become
much more complicated than those in the large-N limit [8]. Although no action is explicitly given for
ĝμν in our approach, one may effectively define the quantum theory of the metric in this way. It would
be interesting to investigate whether this quantum theory is renormalizable (or even UV finite) or not,
in contrast to the unrenormalizable quantum theory of the Einstein gravity. Furthermore, it is also
interesting to calculate an effective action for the composite operator of ĝμν .

Since Eq. (1) is not a unique way to define the flow equation, and thus the d + 1-dimensional
field φ from d-dimensional ϕ, a dependence of the induced metric on the flow equation should be
investigated.

Finally, in the case of gauge theories, simple choices for the induced metric may be

ĝμν (z) := h
d∑

i, j=1

Tr DμFi j (z) Dν Fi j (z) , (26)

ĝμν (z) := h
d∑

α=0

Tr Fμα (z) Fν
α (z) , (27)

both of which are invariant under the τ -independent gauge transformation [3–5]. Here Di (i =
1, . . . , d) is the covariant derivative in d dimensions while Dτ := ∂τ , and then the field strength
is given as Fμν := [Dμ, Dν]. It will be interesting to calculate the induced metric from the large-N
gauge theory in two dimensions (’t Hooft model) [11] with our method.
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