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The worldvolume theory of membranes is mathematically equivalent to 3D quantum gravity
coupled to matter fields corresponding to the target space coordinates of an embedded membrane.
In a recent paper [M. Fukuma et al., J. High Energy Phys. 1507, 088 (2015) [arXiv:1503.08812
[hep-th]]], a new class of models that generate 3D random volumes was introduced, where the
Boltzmann weight of each configuration is given by the product of values assigned to the triangles
and the hinges. These triangle–hinge models describe 3D pure gravity and are characterized by
semisimple associative algebras. In this paper, we introduce matter degrees of freedom to the
models by coloring simplices in such a way that they have local interactions. This is achieved
simply by extending the associative algebras of the original triangle–hinge models, and the profile
of the matter field is specified by the set of colors and the form of the interactions. The dynamics
of a membrane in D-dimensional spacetime can then be described by taking the set of colors
to be R

D . By taking another set of colors, we can also realize 3D quantum gravity coupled to
various spin models such as the Ising model. 3D colored tensor models can also be realized as
triangle–hinge models by coloring tetrahedra, triangles, and edges at one time.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index B25, B83, B86, E05

1. Introduction

M-theory is a candidate for the theory of everything including quantum gravity, where membranes are
believed to be fundamental objects [2–6]. The worldvolume theory of membranes is mathematically
equivalent to 3D quantum gravity coupled to matter fields, corresponding to the target space coordi-
nates of an embedded membrane [7]. However, our understanding of 3D quantum gravity coupled to
matter is still not at a sufficient level if we compare it with the 2D case, where the dynamics of random
surfaces has been well understood from various perspectives by using matrix models as an analytic
tool (see, e.g., Ref. [8] for a review). In fact, matrix models generate random surfaces as Feynman
diagrams and can be solved analytically. This solvability enables us to find a critical point around
which the continuum limit is taken, and we now have a clear understanding of 2D quantum gravity
coupled to a large class of matter fields (e.g., c ≤ 1 noncritical string theories). Thus, we expect that
our understanding of the dynamics of membranes will be substantially developed if we can find a
3D analog of matrix models that generates 3D random volumes as Feynman diagrams and allows us
to investigate the dynamics analytically (hopefully at the level of matrix models). It will then lead to
a consistent formulation of M-theory if such models admit the introduction of supersymmetry and
do not have an issue like the c = 1 barrier in 2D theories.

© The Author(s) 2016. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Recently, as a first step in this direction, the authors constructed a new class of models that generate
3D random volumes [1]. Since the dynamical variables are given by matrices and each model can
be specified by a semisimple associative algebra, these models have the potential to be solved ana-
lytically using matrix model techniques. We call these models triangle–hinge models because each
Feynman diagram is treated as consisting of “triangles and hinges.”1 This is in sharp contrast to the
setup in tensor models [10–12] or in group field theory [13,14], where the minimum unit of the Feyn-
man diagram is given by a tetrahedron.2 Triangle–hinge models have an intrinsic problem that 3D
volumes cannot be assigned to a large portion of Feynman diagrams. However, one can reduce the
set of possible diagrams such that they represent only and all of the tetrahedral decompositions of 3D
manifolds, by introducing specific interaction terms and taking an appropriate limit of parameters in
the models [1]. Therefore, triangle–hinge models can be regarded as discrete models of 3D quantum
gravity.

The original triangle–hinge models given in Ref. [1] do not have any extra degrees of freedom
other than those of simplicial decompositions and thus describe 3D pure gravity. However, in order
to describe the dynamics of membranes, we need to extend the models so that they contain matter
fields corresponding to the target space coordinates.

The main aim of this paper is to introduce local matter degrees of freedom to triangle–
hinge models, by coloring simplices in tetrahedral decompositions (actually simplices of arbitrary
dimensions (tetrahedra, triangles, edges, and vertices)). The coloring is realized within the alge-
braic framework of the original triangle–hinge models, and we only need to extend the defin-
ing semisimple associative algebras and to modify the interaction terms accordingly. The matter
fields thus obtained have local interactions because colored simplices interact only with their
neighbors.

A matter field is specified by the set of colors and the form of interactions. The worldvolume theory
of membranes is given by taking the set of colors to be R

D with a local interaction in the target
spacetime. Besides this, we can construct various spin systems on random volumes. For example,
the Ising model on random volumes can be realized by taking the set of colors to be Z2 = {+, −} and
by assigning a color (±) to each tetrahedron. We can also set up q-state Potts models, restricted solid-
on-solid (RSOS) models [26], and even more generic models on random volumes. We will further
show that 3D colored tensor models [27]3 can be realized as triangle–hinge models by assigning
specific matter degrees of freedom to tetrahedra, triangles, and edges at one time.

This paper is organized as follows. In Sect. 2, we review the basic structure of triangle–hinge
models. In Sect. 3, we give a general prescription to introduce matter degrees of freedom to the
models. In Sect. 4, we review the Feynman rules of colored tensor models and show that they can
be reproduced from triangle–hinge models by coloring tetrahedra, triangles, and edges in a specific
way. Section 5 is devoted to the conclusion.

1 A similar approach was taken for 3D topological lattice field theories [9].
2 There is another type of tensor model (called the canonical tensor model) that realizes the constraints in the

canonical quantization of gravity [15–20]. An interesting connection to the random tensor network is studied
in Refs. [21–25].

3 Although the original tensor models can generate diagrams not homeomorphic to pseudomanifolds, col-
ored tensor models are free from this issue [28]. Furthermore, it is known that colored tensor models have good
analytical properties (see, e.g., Ref. [29] for a review).
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2. Review of triangle–hinge models

In this section, we give a brief review of triangle–hinge models, which generate random diagrams
consisting of triangles glued together along multiple hinges (see the original paper [1] for details).
Note that a tetrahedral decomposition can always be regarded as a Feynman diagram of a triangle–
hinge model, as can be understood from Fig. 1.

2.1. Generalities

We first give the definition of triangle–hinge models. The dynamical variables are given by N × N
real symmetric matrices A and B:

Ai j = A ji , Bi j = B ji (i, j = 1, . . . , N ), (2.1)

and the action takes the form

S[A, B] = 1

2
Ai j Bi j − λ

6
Ci jklmn Ai j Akl Amn

−
∑
k≥2

μk

2k
Bi1 j1 · · · Bik jk yi1,...,ik y jk ,..., j1, (2.2)

where Ci jklmn , yi1,...,ik , λ, and μk are real-valued coupling constants. The Feynman diagrams are
obtained by expanding the action (2.2) around the “kinetic term” (1/2)Ai j Bi j . The interaction ver-
tices corresponding to λ Ci1 j1i2 j2i3 j3 and μk yi1,...,ik y jk ,..., j1 can be represented by triangles and
k-hinges, respectively, as in Fig. 2, if we assume the coupling constants to have the following
symmetry properties:

Ci1 j1i2 j2i3 j3 = Ci2 j2i3 j3i1 j1, Ci1 j1i2 j2i3 j3 = C j3i3 j2i2 j1i1, (2.3)

yi1i2,...,ik = yi2,...,ik i1, (2.4)

which realize the symmetries of triangles and hinges under rotations and flips.4 The propagator has
the form 〈

Ai j Bkl
〉
= δk

i δl
j + δl

iδ
k
j , (2.5)

where the two terms on the right-hand side correspond to two ways of gluing an edge of a triangle
to that of a hinge (in the same or opposite direction). Thus, the action (2.2) gives Feynman diagrams
consisting of triangles that are glued together along multiple hinges in all possible ways.

A wide class of triangle–hinge models can be defined by semisimple associative algebras A of
linear dimension N [1]. With a basis {ei } (i = 1, . . . , N ) of A

[
A = ⊕N

i=1 Rei
]
, the multiplication

4 In fact, when multiplied by Ai1 j1 Ai2 j2 Ai3 j3

(
Ai j = A ji

)
, only such parts of Ci1 j1i2 j2i3 j3 survive that are

invariant under interchanges of indices iα and jα (α = 1, . . . , 3) and under permutations of three pairs of
indices (i1 j1), (i2 j2), and (i3 j3). Thus, one could assume the symmetry Ci1 j1i2 j2i3 j3 = C j1i1i2 j2i3 j3 = Ci2 j2i1 j1i3 j3

in the action (2.2). We, however, do not assume this symmetry and regard the contributions from Ci1 j1i2 j2i3 j3 ,
C j1i1i2 j2i3 j3 , and Ci2 j2i1 j1i3 j3 as giving different Feynman diagrams. This prescription enables us to interpret the
interaction vertices as triangles and is commonly adopted in the standard treatment of matrix models. Note that
only the fully symmetric part is actually left when all the diagrams are summed. The same argument is applied
to the hinge parts.
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Fig. 1. Construction of tetrahedral decompositions with triangles and multiple hinges [1].

Fig. 2. Triangles and multiple hinges [1].

Fig. 3. Index lines on a triangle [1].

is expressed as

ei × e j = yk
i j ek . (2.6)

Then, the cyclically symmetric rank-k tensor yi1,...,ik is constructed from the structure constants yk
i j as

yi1,...,ik ≡ y jk
i1 j1

y j1
i2 j2

· · · y jk−1
ik jk

. (2.7)

The rank-two tensor yi j is especially denoted by gi j and is called a metric, gi j ≡ yi j = y�
ik yk

j�.5

A possible choice of Ci jklmn satisfying (2.3) is

Ci jklmn = g jk glm gni , (2.8)

which corresponds to the index lines illustrated in Fig. 3. This is not the unique solution to the
condition (2.3), and we will use this arbitrariness later (see (2.18)).

5 An associative algebra A is semisimple (i.e., a direct sum of matrix rings) if and only if the metric g = (gi j )

has its inverse g−1 ≡ (
gi j
)

[30].

4/17

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 2, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2016, 053B04 M. Fukuma et al.

Fig. 4. Part of an index network (left) and a connected index network around a vertex v (right) [1]. When
hinges share a common vertex v, their index lines are connected via intermediate triangles and give a polygonal
decomposition of a closed surface enclosing vertex v. The closed surface need not be a sphere, and we denote
its genus by g(v).

The free energy of the model is given by the summation of Boltzmann weights w(γ ) over all
possible connected diagrams γ :

log Z =
∑
γ

w(γ ), (2.9)

w(γ ) = 1

S(γ )
λs2(γ )

⎛
⎝∏

k≥2

μ
sk
1 (γ )

k

⎞
⎠ F(γ ), (2.10)

where S(γ ) denotes the symmetry factor of diagram γ , s2(γ ) the number of triangles, and sk
1(γ )

the number of k-hinges. F(γ ) is a function of Ci jklmn and yi1,...,ik

(
and thus a function only of the

structure constants yk
i j

)
and is called the index function of diagram γ .

It is easy to see that the index function F(γ ) is the product of the contributions ζ(v) from vertices
v (to be called the index functions of vertices):

F(γ ) =
∏

v: vertex of γ

ζ(v). (2.11)

In fact, index lines out of different hinges are connected if and only if the hinges share a common
vertex in γ , and then a connected component of the index lines forms a polygonal decomposition of
a closed 2D surface enclosing a vertex (see Fig. 4).6 Moreover, ζ(v) is a 2D topological invariant
of the closed surface around v. In fact, ζ(v) is the product of yk

i j whose indices are all contracted
appropriately, and is invariant under 2D topology-preserving local moves that are generated by the
fusion move and the bubble move (see Fig. 5), which are equivalent to the condition of associativ-
ity yl

i j ym
lk = yl

jk ym
il and the definition of the metric, yl

ik yk
jl = gi j , respectively [30]. Thus the index

function ζ(v) is the 2D topological invariant associated with algebra A [30] and is characterized only
by the genus g(v) of the closed surface around vertex v, ζ(v) = Ig(v)[A]. Therefore, the free energy

6 As is argued in Ref. [1], a 2D surface can be uniquely assigned to each connected index network by carefully
following the contraction of indices.
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Fig. 5. Fusion move (top) and bubble move (bottom) [30]. The index function ζ(v) is invariant under these
2D topology-preserving local moves.

of the model takes the form

log Z =
∑
γ

1

S(γ )
λs2(γ )

⎛
⎝∏

k≥2

μ
sk
1 (γ )

k

⎞
⎠ ∏

v: vertex

Ig(v)[A]. (2.12)

2.2. Matrix ring

The simplest example of semisimple algebra is the matrix ring Mn(R) = ⊕
Reab (with linear dimen-

sion N = n2). Here, we take the basis to be {eab} (a, b = 1, . . . , n), where eab is a matrix unit whose
(c, d) element is (eab)cd = δacδbd . Note that indices i are now double indices, i = (a, b). When we
take A = Mn(R) as the defining associative algebra of a triangle–hinge model, the choice of (2.7)
and (2.8) gives the action of the form [1]

S = 1

2
Aabcd Babcd − λ

6n3 Abacd Adce f A f eab

−
∑
k≥2

n2μk

2k
Ba1a2b2b1 Ba2a3b3b2 · · · Baka1b1bk . (2.13)

Here, the variables A and B satisfy

Aabcd = Acdab, Babcd = Bcdab, (2.14)

and we have used the fact that the tensor Ci1 j1i2 j2i3 j3 = Ca1b1c1d1a2b2c2d2a3b3c3d3 in (2.8) takes the
form

Ca1b1c1d1a2b2c2d2a3b3c3d3 = 1

n3 δd1a2δd2a3δd3a1δb3c2δb2c1δb1c3 . (2.15)

The interaction terms can then be expressed by thickened triangles as in Fig. 6. Accordingly, the
index lines in Fig. 4 are drawn with double (or thickened) lines as in Fig. 7. Polygons formed by
index loops will be called index polygons. One can show that Ig in (2.12) is given by n2−2g for a
connected index network of genus g [1].

Furthermore, the model with A = Mn(R) has a duality that interchanges the roles of triangles and
hinges [1]. In fact, with the new variables dual to A and B,7

Ãabcd ≡ Abcda, B̃abcd ≡ Bbcda, (2.16)

7 We will use this duality transformation when we discuss a duality of coloring in Sect. 3.4.
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Fig. 6. Index lines on a triangle in the case of a matrix ring [1].

Fig. 7. A connected index network with double lines [1]. This represents a polygonal decomposition of a
closed surface. Each polygon will be called an index polygon.

the action (2.13) can be rewritten in the form

S = 1

2
Ãabcd B̃abcd − λ

6n3 Ãabcd Ãbe f c Ãead f

−
∑
k≥2

n2μk

2k
B̃a1b1b2a2 B̃a2b2b3a3 · · · B̃akbkb1a1 . (2.17)

The way to contract the indices of Ã (or B̃) in the dual action (2.17) is the same as that of B (or A) in
the original action (2.13). Thus, in the dual picture, the diagrams consist of polygons and 3-hinges,
which are actually the dual diagrams to the original ones.

2.3. Restriction to tetrahedral decompositions

The diagrams generated in the model (2.13) consist of triangles whose edges are randomly glued
together, and generally do not represent tetrahedral decompositions. However, one can define mod-
els such that the leading contributions in a large N = n2 limit represent (only and all of the)
tetrahedral decompositions. By denoting the defining associative algebra by Agrav, this can be
achieved by (i) taking Agrav to be Mn=3m(R) with n a multiple of three, (ii) modifying the tensor

7/17
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Fig. 8. A connected index network with double lines in the presence of a matrix ω [1].

Ca1b1c1d1a2b2c2d2a3b3c3d3 from (2.15) to8

Ca1b1c1d1a2b2c2d2a3b3c3d3
grav ≡ 1

n3 ωd1a2ωd2a3ωd3a1ωb3c2ωb2c1ωb1c3 (2.18)

with a permutation matrix ω of the form

ω ≡

⎛
⎜⎝ 0 1n/3 0

0 0 1n/3

1n/3 0 0

⎞
⎟⎠ , 1m : m × m unit matrix, (2.19)

and (iii) taking an appropriate limit for the parameters in the model [1].
In fact, with this modification, each index polygon with � segments gives a factor tr ω�, which

vanishes unless � ≡ 0 (mod 3) (see Fig. 8). Thus, the index function ζ(v) = Ig(v) at vertex v takes
a nonvanishing value

(=n2−2g(v)
)

only when the number of segments of every index polygon is a
multiple of three. As proved in Ref. [1] in detail, the possible number of segments can be further
reduced to three by taking the limit n → ∞ with n2 μk and n/λ being fixed, and there are left only
such diagrams that represent tetrahedral decompositions.9

3. Introducing matter degrees of freedom

The above prescription to reduce the configurations to tetrahedral decompositions also works when
Agrav is extended to a tensor product of the form A = Agrav ⊗ Amat. Here, Agrav is again Mn=3m(R),
and Amat is another semisimple associative algebra to characterize the matter degrees of freedom. In
fact, since the structure constants of A are given by the product of the structure constants of Agrav

and those of Amat, the index function F(γ ) of each diagram γ is factorized to the product of the
contributions from Agrav and Amat if we set the tensor C to take a factorized form C = CgravCmat:

F(γ ) ≡ F (γ ;A) = F
(
γ ;Agrav

)
F (γ ;Amat) ≡ Fgrav(γ )Fmat(γ ). (3.1)

Then, by setting Cgrav in the form (2.18) and by taking the limit n → ∞ with n2 μk and n/λ

being fixed as in Sect. 2.3, the index function F(γ ) vanishes unless γ represents a tetrahedral

8 This modification can be absorbed into a modification of the kinetic term by redefining Aabcd as
ωd ′a Aabcd ωbc′ → Ad ′c′cd . One then can show that there still exists a duality between triangles and hinges.

9 The set of possible diagrams can be further reduced so as to represent 3D manifolds by introducing a
parameter to control the number of vertices [1].
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Fig. 9. A thickened triangle. The upper (lower) side has color α (β).

decomposition, and thus we can reduce the set of possible diagrams to tetrahedral decompositions
independently of the choice of Amat.10 In this section, assuming that this reduction is already made,
we show that a set of colors (representing matter degrees of freedom) can be assigned to simplices
of arbitrary dimensions (tetrahedra, triangles, edges, and vertices) by choosing Amat and interaction
terms appropriately.

Note that for A = Agrav ⊗ Amat the dynamical variables take the form Aabcd,i j and Babcd,i j , where
(ab, cd) are matrix indices for Agrav and (i, j) are those for Amat. In the rest of the paper, we omit
the indices a, b, . . . with respect to Agrav in order to simplify the expressions. We will denote the set
of colors by J and the number of elements by

∣∣J ∣∣.
3.1. Coloring tetrahedra

We show that tetrahedra can be colored despite the fact that the action (2.2) does not have inter-
action terms corresponding to tetrahedra. We first set Amat = M|J |(R) = ⊕

α,β∈J Reαβ and let the
interaction terms take the form11

−
∑

α,β∈J

λαβ

6|J |3
∑

α1,...,δ3∈J
Aα1β1γ1δ1 Aα2β2γ2δ2 Aα3β3γ3δ3

× pδ1α2
α pδ2α3

α pδ3α1
α pβ3γ2

β pβ2γ1
β pβ1γ3

β , (3.2)

where λαβ = λβα , and pα is the projection matrix to the αth component:

pα1α2
α = δα1

α δα2
α . (3.3)

The interaction terms can be expressed by thickened triangles as in Fig. 9, where the projection
matrices pα and pβ are inserted into the index lines such that each side of the triangle has its own
color. Thus, each index triangle at a corner of a tetrahedron gives a factor of the form tr(pα1 pα2 pα3)

if there meet three triangles with colors α1, α2, α3 at the corner (see Fig. 10). Since there are four

10 Note that the introduction of matter degrees of freedom may further reduce the set of possible diagrams
because Fmat(γ ) may vanish for a subset of simplicial decompositions.

11 Recall that we are only looking at the matter part. Actually, the variable A has extra indices of Agrav =
Mn=3m(R) as Aabcd,αβγ δ , and the interaction terms (3.2) have extra factors (2.18).
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Fig. 10. Index triangles inside a tetrahedron with triangles colored as in (3.2).

corners in a tetrahedron, the tetrahedron illustrated in Fig. 10 gives the factor

tr
(

pα1 pα2 pα3

)
tr
(

pα2 pα1 pα4

)
tr
(

pα1 pα3 pα4

)
tr
(

pα3 pα2 pα4

)
=
{

1 (α1 = α2 = α3 = α4)

0 (otherwise)
. (3.4)

This means that the index function F(γ ) can take nonvanishing values only when four index triangles
of each tetrahedron have the same color (say, α), which enables us to say that the tetrahedron has a
definite color α. We thus succeed in coloring tetrahedra in γ . The parameters λαβ in (3.2) represent
the coupling constants of local interactions among matter degrees of freedom on tetrahedra, because
λαβ appears in F(γ ) when the corresponding triangle is shared by neighboring tetrahedra of colors
α and β.

If we take the set of colors to be J = R
D = {x} and let the coupling constants λx,y (x, y ∈ R

D)

take nonvanishing values only around y as a function of x, then x can be interpreted as the target
space coordinates of a tetrahedron in R

D . Since neighboring tetrahedra are locally connected in R
D ,

the model can describe the dynamics of membranes in R
D . Instead, if we take J to be a finite set

with |J | = q, then the model can describe a q-state spin system on random volumes. In particular,
if we consider the case q = 2 (with colors α = ±), then the model represents 3D quantum gravity
coupled to the Ising model. The system is ferromagnetic when λ++ ≥ λ+− and λ−− ≥ λ+−. If the
global Z2 symmetry (+ ↔ −) is explicitly broken by setting λ++ �= λ−−, then the model describes
a system in the presence of an external magnetic field. With generic q, we can construct q-state Potts
models or RSOS models [26] on random volumes by appropriately choosing λαβ .

3.2. Coloring triangles

Triangles can be colored by making an argument similar to the one in Sect. 3.1. We set Amat =
Ms(R) = ⊕s

α,β=1 Reαβ ,12 and let the interaction terms take the form

−
∑
μ∈J

λμ

6 s2 Aα1β1γ1δ1 Aα2β2γ2δ2 Aα3β3γ3δ3 uδ1α2
μ uδ2α3

μ uδ3α1
μ uβ3γ2

μ uβ2γ1
μ uβ1γ3

μ . (3.5)

12 The linear dimension s can be set to any value as long as the coupling constants (3.6) take the desired
forms.
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Fig. 11. Index triangles inside a tetrahedron formed by colored triangles.

The model with (3.5) generates diagrams where a color μ (μ ∈ J ) is assigned to each triangle. If
three triangles (with colors μ, ν, ρ) meet at a corner of a tetrahedron to construct an index triangle,
the index function gets the factor tr

(
uμuνuρ

)
. Then, the tetrahedron illustrated in Fig. 11 gives a

factor of the form

tr
(
uμuνuρ

)
tr
(
uνuμuσ

)
tr
(
uμuρuσ

)
tr
(
uρuνuσ

)
. (3.6)

Such factors behave as the coupling constants of local interactions among matter degrees of freedom
located on triangles.

There is another prescription to assign colors to triangles. We introduce |J | copies of variables A
and B (denoted by A(r) and B(r) (r = 1, . . . , |J |)), and let the action take the form

S =
∑
r∈J

1

2
A(r)

i j Bi j
(r) −

∑
r∈J

λr

6
A(r)

i j A(r)
kl A(r)

mn g jk glm gni

−
∑

r1,...,rk∈J

∑
k≥2

μ
r1,...,rk
k

2k
Bi1 j1

(r1)
· · · Bik jk

(rk)
yi1,...,ik y jk ,..., j1 . (3.7)

Then, this model also generates tetrahedral decompositions with colored triangles. The index func-
tion F(γ ) of the model (3.7) gets the factor μ

r1,...,rk
k from a k-hinge shared by k triangles with colors

r1, . . . , rk , and thus has a form different from (3.6). Therefore, although matter degrees of free-
dom are assigned to triangles in both (3.5) and (3.7), they give different local interactions (at least
apparently).

3.3. Coloring edges

There are two prescriptions to assign colors to edges, as is the case in coloring triangles.
As in the first prescription in Sect. 3.2, we take Amat = Ms(R) = ⊕s

α,β=1 R eαβ . We now let the
interaction terms corresponding to hinges take the form

−
∑
m∈J

∑
k≥2

s2μm
k

2k
Bα1β1γ1δ1 · · · Bαkβkγkδk um

β1α2
· · · um

βkα1
um

γ1δ2
· · · um

γkδ1
. (3.8)

This generates diagrams where each edge has a color m (m ∈ J ), and each index triangle gives the
factor tr(um1um2um3) depending on the colors of the edges. They give the coupling constants of local
interactions among matter degrees of freedom located on edges.
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Another prescription to assign colors to edges can be given by modifying the action (2.2) to the
form

S =
∑
r∈J

1

2
A(r)

i j Bi j
(r) −

∑
r1,r2,r3∈J

λr1r2r3

6
A(r1)

i j A(r2)
kl A(r3)

mn g jk glm gni

−
∑
r∈J

∑
k≥2

μk

2k
Bi1 j1

(r) · · · Bik jk
(r) yi1,...,ik y jk ,..., j1 . (3.9)

Each triangle gives the factor λr1r2r3 if three hinges (with colors r1, r2, r3) meet there.

3.4. Coloring vertices

Vertices can also be colored despite the fact that the action (2.2) does not have interaction terms
corresponding to vertices.

We first set the matter associative algebra to be Amat = A(1)
mat ⊕ · · · ⊕ A(|J |)

mat , and let the interaction
terms corresponding to hinges take the form

−
∑

α,β∈J

∑
k≥2

μ
αβ
k

2k
Bi1 j1 · · · Bik jk y(α)

i1,...,ik
y(β)

jk ,..., j1
. (3.10)

Here y(α)
i1,...,ik

are the coupling constants constructed from the structure constants y(α)k
i j of A(α)

mat and

take nonvanishing values only when all the indices i1, . . . , ik belong to A(α)
mat. Accordingly, all the

junctions in the same connected index network should have the same color α in order for the index
function F(γ ) to take nonvanishing values. Thus, we can assign a color to the index network of each
vertex in diagram γ , and can say that the model generates diagrams with colored vertices. The matter
degrees of freedom located on vertices have local interactions, and having two neighboring vertices
with colors α and β (connected by a hinge) gives the factor μ

αβ
k to F(γ ).

The above coloring of vertices can also be realized by setting Amat = M|J |(R) and letting the
interaction terms corresponding to hinges take the form

−
∑

α,β∈J

∑
k≥2

|J |2μαβ
k

2k
Bα1β1γ1δ1 · · · Bαkβkγkδk pα

β1α2
· · · pα

βkα1
pβ
γ1δ2

· · · pβ
γkδ1

, (3.11)

where pα is the projection matrix to the αth component (the same as the one given in (3.3)). It is
easy to see that this model is dual to the model with (3.2) through the duality transformation (2.16).
That is, the action with the interaction term (3.11) can be regarded as a q-state system on the dual
lattice of γ (q = |J |).

We thus conclude that matter degrees of freedom can be introduced to triangle–hinge models such
that they live on simplices of any dimensions and interact with themselves locally.

4. Relations to colored tensor models

We can further construct various kinds of models by combining several prescriptions explained in
the previous section. For example, we show in this section that 3D colored tensor models [29] can
be realized as triangle–hinge models by coloring tetrahedra, triangles, and edges at one time.

4.1. Feynman rules of colored tensor models

We first review the Feynman rules of 3D colored tensor models (see, e.g., Ref. [29] for a review). The
dynamical variables of colored tensor models are given by a pair of rank-three tensors φ

μ
IJK and φ̄

μ
IJK
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Fig. 12. Part of a Feynman diagram in colored tensor models. There are two tetrahedra, one corresponding to an
interaction vertex proportional to κ and the other to κ̄ . The two adjacent tetrahedra have opposite orientations.

with no symmetry properties under permutations of the subscripts I, J, K . The tensors represent two
kinds of colored triangles, where {I } is the set of indices assigned to edges, and {μ} = {1, 2, 3, 4}
are the colors assigned to triangles.13 The action takes the form

S =
4∑

μ=1

φ
μ
IJKφ̄

μ
IJK + κ φ1

IJKφ2
KMLφ3

MJNφ4
LNI + κ̄ φ̄1

IJKφ̄2
KMLφ̄3

MJNφ̄4
LNI. (4.1)

Looking at the way of contraction of indices I , one easily sees that this action generates Feynman
diagrams where the interaction vertices can be identified with tetrahedra that are glued at their faces
through the propagator. Since there are two types of interaction terms κ φ4 and κ̄ φ̄4, the set of
tetrahedra can be decomposed to two different classes, which we label with α = ±, respectively. We
assign four different colors μ = 1, . . . , 4 to four triangles of each tetrahedron. This coloring of trian-
gles naturally introduces the coloring of six edges in a tetrahedron, and we assign color (μν) = (νμ)

to an edge if the edge is shared by two triangles with colors μ and ν (μ �= ν). Since the tensors
φ

μ
I J K and φ̄

μ
I J K have no permutation symmetry with respect to the subscripts, two tetrahedra can be

glued at their faces only when two triangles to be identified have the same color μ and two edges
to be identified have the same color (μν), as in Fig. 12. We say that the tetrahedron has positive (or
negative) orientation if triangles 1, 2, 3 are located clockwise (or counterclockwise) when seen from
triangle 4 (see Fig. 12). Since the kinetic term has the form φ φ̄ (not including φ2 or φ̄2), two adjacent
tetrahedra must have different orientations.

The Feynman rules for colored tensor models (4.1) can thus be summarized as follows:

1. Interaction vertices are represented by two types (orientations) of tetrahedra, α = ±, and any
two adjacent tetrahedra have different types.

2. Four different colors μ = 1, . . . , 4 are assigned to four triangles of each tetrahedron, such that
the assignment agrees with the orientation of the tetrahedron when α = +, while it is opposite
when α = −.

3. Two tetrahedra are glued at their faces in such a way that two triangles to be identified have
the same color μ and two edges to be identified have the same color (μν).

13 In the original Boulatov model [13] the index I runs over the elements of group manifold SU (2).
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4.2. Realization of colored tensor models as triangle–hinge models

The above Feynman rules for 3D colored tensor models can be reproduced from triangle–hinge
models by coloring tetrahedra, triangles, and edges at one time. To see this, we set the matter
associative algebra Amat to be a matrix ring M2s(R) and let the action take the form

S =
∑
(μν)

1

2
A(μν)

αβγ δ Bαβγ δ

(μν) − λ

6(2s)3

4∑
μ=1

1

6

4∑
ν,ρ,σ=1

(μνρσ): all different

A(μν)
α1β1γ1δ1

A(μρ)
α2β2γ2δ2

A(μσ)
α3β3γ3δ3

×
(

uδ1α2+μ uδ2α3+μ uδ3α1+μ uβ3γ2−μ uβ2γ1−μ uβ1γ3−μ + uδ1α2−μ uδ2α3−μ uδ3α1−μ uβ3γ2+μ uβ2γ1+μ uβ1γ3+μ

)

−
∑
k≥2

n2μk

2k

∑
(μν)

Bα1α2β2β1
(μν) Bα2α3β3β2

(μν) · · · Bαkα1β1βk
(μν) . (4.2)

Here, the indices (μν) = (νμ) (μ, ν = 1, . . . , 4; μ �= ν) stand for the colors assigned to edges, the
sum

∑
(μν) is taken over all different colors of edges, and we have again neglected the gravity part,

which ensures that the resulting Feynman diagrams form a set of tetrahedra (see footnote 11). We
further assume the matrices u±μ to have the form

u+μ =
(

uμ 0
0 0

)
, u−μ =

(
0 0

0
(
uμ

)T
)

. (4.3)

Here s × s matrices uμ are chosen such that they satisfy14

tr
(
uμuνuρ

)
tr
(
uνuμuσ

)
tr
(
uμuρuσ

)
tr
(
uρuνuσ

) =
{

1
(
εμνρσ = +1

)
0 (otherwise)

, (4.4)

where εμνρσ is the totally antisymmetric tensor with ε1234 = 1. The interaction vertices correspond-
ing to triangles can be expressed by thickened triangles as in Fig. 13. Note that we make colorings
for simplices of three different dimensions (tetrahedra, triangles, and edges), which are described
in Sects. 3.1, 3.2, and 3.3, respectively. In fact, each tetrahedron has a type (orientation) α = ±,
each triangle has a color μ = 1, . . . , 4, and each edge has a color (μν) = (νμ) (μ �= ν). The
interaction terms corresponding to triangles indicate that the three edges of a triangle of color μ

have different colors (μν), (μρ), (μσ). Note that we particularly set λαβ as λ++ = λ−− = 0 (and
λ+− = λ−+ = λ), so that any two adjacent tetrahedra have different types. As can be seen from (3.6),
a tetrahedron of type α = + (or α = −) gives the factor

tr
(
uαμuανuαρ

)
tr
(
uανuαμuασ

)
tr
(
uαμuαρuασ

)
tr
(
uαρuανuασ

)
(α = ±) , (4.5)

which takes a nonvanishing value (= 1) only when the four colors μ, ν, ρ, σ are all different and
correspond to the positive (or negative) orientation. Thus, a tetrahedron in a nonvanishing Feynman

14 For example, one can take the following 6 × 6 matrices:

u1 = 2− 2
3

⎛
⎝0 σ1 0

0 0 σ1

0 0 0

⎞
⎠, u2 = 2− 2

3

⎛
⎝ 0 0 0

0 0 −iσ2

−iσ2 0 0

⎞
⎠,

u3 = 2− 2
3

⎛
⎝ 0 σ3 0

0 0 0
σ3 0 0

⎞
⎠, u4 = 2

1
3

⎛
⎝ 1 iσ2 0

0 1 −σ3

−σ1 0 1

⎞
⎠,

where σi (i = 1, 2, 3) are the Pauli matrices.

14/17

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 2, 2016
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2016, 053B04 M. Fukuma et al.

Fig. 13. A thickened triangle vertex coming from the action (4.2), which realizes colored tensor models.

diagram has a positive orientation when its color is α = + and a negative orientation when α = −.
Furthermore, if two triangles sharing an edge of color (μν) (μ �= ν) belong to the same tetrahedron,
then one of the two triangles has color μ and the other has color ν. In fact, any triangle connected
to a hinge of color (μν) must have color μ or ν, but two triangles sharing the edge (μν) must have
different colors if they belong to the same tetrahedron.

Therefore, the Feynman diagrams generated by the action (4.2) consist of tetrahedra where two
adjacent tetrahedra have different orientations α = ±, and four triangles in each tetrahedron have
different colors μ = 1, . . . , 4 so as to be consistent with the orientation of the tetrahedron. Further-
more, the coloring of each edge does not depend on the choice of a tetrahedron including the edge,
which leads us to the interpretation that two tetrahedra are glued at their faces such that the edges
to be identified have the same color. We thus conclude that the Feynman diagrams obtained from
the action (4.2) obey the same Feynman rules obtained from the action (4.1) of 3D colored tensor
models.

5. Conclusion

In this paper, we give a general prescription to introduce matter degrees of freedom to triangle–
hinge models. This is achieved by setting the defining associative algebra A to be a tensor product of
the form Agrav ⊗ Amat and by modifying the interaction terms appropriately. The matter fields thus
obtained have local interactions, since a colored tetrahedron can only interact with the neighbors.
We can assign colors not only to tetrahedra but also to simplices of arbitrary dimensions. We further
show that there exists a duality between matter fields on a tetrahedral lattice and those on its dual
lattice, which can be realized by applying the duality transformation (2.16), which interchanges the
roles of triangles and hinges.

When we take the set of colors to be R
D and assign colors to tetrahedra as in (3.2), the matter

fields represent the target space coordinates of membranes in D dimensions. By taking different sets
of colors, we can also construct various spin systems on random volumes, including the Ising model,
q-state Potts models, and RSOS models.

A wider class of models can be further obtained as triangle–hinge models by coloring lower-
dimensional simplices as well as tetrahedra. For example, 3D colored tensor models can be obtained
by coloring tetrahedra, triangles, and edges at one time. This is shown in Sect. 4.2 by explicitly
demonstrating that the same Feynman rules are obtained.
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It should be interesting to investigate the critical behaviors of triangle–hinge models with matter
fields. In particular, it is important to study the case when matter fields correspond to the target
space coordinates of embedded membranes. It would also be interesting to investigate if there is any
obstacle in introducing matter fields like the “c = 1 barrier” for matter fields on random surfaces.
Introduction of supersymmetry to triangle–hinge models is another interesting problem. Studies in
these directions are now in progress and will be communicated elsewhere.
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