A NEW FUZZY GRANULAR TECHNIQUE FOR THE

CONDITION MONITORING OF ELECTRICAL

HOTSPOTS BASED ON INFRARED THERMOGRAPHY

www.ump.edu.my

INVENTOR: DR. MD MANJUR AHMED

FACULTY OF COMPUTER SYSTEMS AND SOFTWARE ENGINEERING. UNIVERSITI MALAYSIA PAHANG,

26300 GAMBANG, PAHANG, MALAYSIA

EMAIL: manjur@ump.edu.my

CO-INVENTORS: PROF. DR. KAMAL ZUHAIRI ZAMLI, A. S. NAZMUL HUDA, PROF. DR. NOR ASHIDI MAT ISA, DR. MUHAMMAD NOMANI

PRODUCT BACKGROUND

- In Malaysia, more than 46% of the total causes of fires in buildings are because of the failure of electrical distribution http://www.bomba.gov.my)
- Infrared thermography technology is currently being used in various applications, including fault diagnosis in electrical equipment.
- Thermal abnormalities are diagnosed by identifying and classifying the hotspot conditions of electrical components.
- The proposed intelligent system is applied to automatically realize and formulate the conditions of the thermal abnormalities. On the basis of the priority level, the hotspot conditions are categorized as normal, warning, and critical.

APPLICATION/ BENEFITS

INTELLIGENT DEFECT ANALYSIS TOOL

- → It outperforms the existing intelligent methods!
- → Thus, allowing predictive and preventive diagnosis to maintain the reliable and uninterrupted operation of the power system

the state of the s					
Recommended class	Classifier	Classification			
		accuracy (%)			
Defect and Normal	Proposed Method	92.3			
(No. of rules = 2)	ANFIS	87.9			
	SVM	88.1			
	MLP with LM	73.2			
	kNN (k = 3)	88.1			
	kNN (k = 5)	86.5			
	kNN (k = 7)	88.9			
	kNN (k = 9)	87.3			
Critical, warning and normal	Proposed Method	80.0			
(No. of rules = 4)	ANFIS	62.7			
	SVM	N/A*			
	MLP with LM	64.4			
	kNN (k = 3)	64.8			
	kNN (k = 5)	66.4			
	kNN (k = 7)	66.4			
	kNN (k = 9)	64.8			
Function svmtrain() for SVM does not support more than two classes.					

PATENT

PATENT FILLING STATUS: Invention disclosure submitted on 20 March 2018

COLLABORATION

Invitation letter their shows interest for potential commercialization of invention.

Name: Techno Plast Consultancy, Dhaka, Bangladesh

MARKETABILITY

This technique for the direct monitoring of actual operating conditions. Potential ~ 1) Industries related to the electrical and electronics business, for example,

member of TEEAM or Tenaga Nasional.

2) Industry and Home: Reduction of energy loss.

- 3) Home Electrical Equipment: Prevent from the gross overloads, excessive thermal insulation, stray currents, ground faults, and overvoltage.
- 4) Industry and Home: Reduced maintenance cost.

PUBLICATIONS

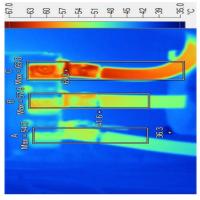
- 1. Md. Manjur Ahmed et al. (2015). Recursive construction of output-context fuzzy systems for the condition monitoring of electrical hotspots based on infrared thermography. Engineering Applications of Artificial Intelligence (Q1 in Computer Science Area).
- 2. Md. Manjur Ahmed and Nor Ashidi Mat Isa (2017). Knowledge Base to Fuzzy Information Granule: A Review from the Interpretability-Accuracy Perspective. Applied Soft Computing (Q1 Journal in Computer Science Area).
- 3. Md. Manjur Ahmed and Nor Ashidi Mat Isa (2015). Evolving output-context fuzzy system for effective rule base. Expert Systems with Applications (Q1 in Computer Science Area).

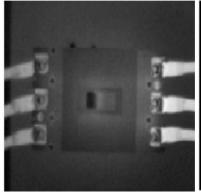
ACHIEVEMENTS

- ■GOLD MEDAL, CREATION, INNOVATION, TECHNOLOGY RESEARCH EXPOSITION, 2018, UMP
- ■KEYNOTE SPEAKER, KHULNA UNIVERSITY OF ENGINEERING AND TECHNOLOGY (KUET), BANGLADESH, 7th FEBRUARY 2017
- ■SANGGAR SANJUNG AWARD 2015 (JOURNAL PUBLICATION), UNIVERSITI SAINS MALAYSIA (USM), MALAYSIA. AWARDED ON 2017

SIGNIFICANCE OF THE PROPOSED SELF-ADAPTIVE FUZZY GRANULAR **ALGORITHM**

1) It automatically observes the prominent distinction point on the output domain using the following equations:


$$\sigma_{init}^{t} = \sigma_{init}^{t-1} - \sigma_{evolve}, \& BNR_{t} = \frac{(NR_{t} - NR_{t-1})^{2}}{NR_{t}}$$


Here, σ_{init}^t is the self-adaptive evolving parameter, σ_{evolve} is taken arbitrarily and BNR index indicating the balanced number of rules.

- 2) The evolving is fully online, does not follow a predefined threshold.
- 3) It uses BNR index to identify the overfitting situation and thus termination occur.

THERMOGRAPHIC DIAGNOSTIC OF ELECTRICAL COMPONENTS

1) Hotspot detection

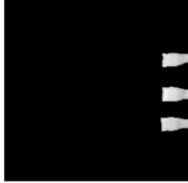


Figure 1: Typical load imbalance problem: (a) thermal image that is showing three different conditions, (b) grayscale image, (c) segmented image.

2) Automatic feature extraction

A total of six intensity features were computed by using the pixel intensity. The features are maximum intensity, minimum intensity, average intensity, median intensity, standard deviation, and variance of intensity values.

3) Condition monitoring of hotspots: proposed fuzzy granular approach

Table 1: Evolving process of the proposed fuzzy granular system to obtain an effective rulebase. Here, σ_{init}^t is the self-adaptive evolving parameter.

σ_{init}^t	No. of rules	Training error in RMSE	BNR	σ_{init}^{t}	No. of rules	Training error in RMSE	BNR
7.5	1	18.3974	0	4.5	2	4.3824	0
7.0	2	4.4896	0.5	4.0	2	4.3824	0
6.5	2	4.3824, minimum	0	3.5	2	4.3824	0
6.0	2	4.3824	0	3.0	2	4.3824	0
5.5	2	4.3824	0	2.5	4	3.2737	1.0, termination
5.0	2	4.3824	0				

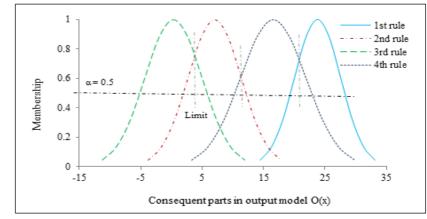


Figure 2: Four distinct points $\Delta(^{\circ}C)=\{0.3, 7.1, 16.6, 23.8\}$ as the center of consequent parts (or output contexts) shows the semantic interpretability

Class	ΔT (°C)	Recommended actions
Critical	$\Delta T > 10.8$, Priority 1	Major discrepancy; repair immediately
Warning	$3.8 < \Delta T \le 10.8$, Priority 2	Probable deficiency; repair as time permits
Normal	$\Delta T \leq 3.8$, Priority 3	Minor overheating; warrants investigation

Table 2: Classification of the electrical components conditions realized by the proposed intelligent system when the number of rules are 4 and $\sigma_{init}^t = 2.5$