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The effect of a single dotlike defect on the transport through a quantum dot single electron transistor
weakly coupled to external leads is studied. It is found that the conductance profile is changed
significantly by the quantum mechanical tunneling between the dot and the defect and the
interactions between them, both of which are dependent on the distance between the dot and the
defect, as also by the morphology of the defect. In particular, we find that even a very small strength
of interdot interaction has a major influence on the transport and must be taken into account in
device fabrication. © 2006 American Institute of Physics. [DOI: 10.1063/1.2205349]

Semiconductor quantum dots with their discrete energy
levels continue to be a subject of intensive research mainly
because of their potential for wide-ranging technological ap-
plication. As it is possible to tune the number of electrons on
a dot by varying its electrochemical potential, the dot can be
used as a single electron turnstile and an electron pump.l’2
Single electron tunneling transistors fabricated from quan-
tum dots, where one can monitor and manipulate the motion
of individual electrons, can function as extremely sensitive
electrometers.> In recent times one has also seen a spurt in
investigations of coupled quantum dot systems, with indi-
vidual dots coupled by both the quantum mechanical tunnel-
ing as well as by the interdot Coulomb interactions.” A Sys-
tem of two to three coupled dots with tunable interdot
coupling can be used to generate tunable qubit circuits. It is
possible to create a two level system from a coupled double
dot containing a single electron.’® Controlling the electron
spin in individual and coupled quantum dots could thus lead
to technology for quantum information processing.L9 Recent
theoretical investigations in the parallel coupled two path
double quantum dot systems also suggest that forms of cor-
related behavior can be observed in these systems which are
driven by a competition between the Kondo coupling to the
leads and the interdot coupling.m’ll

A common feature of quantum dot devices is the ex-
treme sensitivity of the device to the surrounding electro-
static environment. The transport through a single dot device
can be significantly changed by the presence of a defect in
the proximity of the active device as a result of tunneling
between the defect and the active device and the interactions
between them. Such defects could arise naturally in the pro-
cess of fabrication of the device or could be introduced de-
liberately in order to control the properties of the device.
Recent studies of the charge transport through a single elec-
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tron transistor (SET) with a single fabricated dot, in fact,
shows the signature of double dotlike charging behavior'?
indicating the presence of another dot in its vicinity.

In this context we study analytically the effect of a dot-
like defect present near a quantum dot single electron tran-
sistor which consists of a semiconductor quantum dot
weakly coupled to the the source and drain leads and to the
gate electrode. The single electron charging properties of
such coupled dot systems in a parallel configuration have
been experimentally reported by different groups.B’14 For the
analysis presented here we describe the system using an ex-
tended Anderson Hamiltonian and the conductance is calcu-
lated using the nonequilibrium Green’s function technique.
The analysis is valid for temperatures higher than the Kondo
temperatures for these systems.15

Our model system consists of a quantum dot attached to
ideal leads, hitherto referred to as dot 1, which represents the
SET. A second dot at a distance r from this dot represents the
defect in the system and is referred to as dot 2. A schematic
diagram of this model system is shown in the inset of Fig. 1.
This double quantum dot system can be described by an
(extended) Anderson Hamiltonian as follows:'®!
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The first term of the Hamiltonian represents the energy of an
electron in the ath level of the ith dot, with (i=1,2) and CZTM
is the creation operator for an electron with spin o in the
same dot. The second term represents the tunneling between
the dots and the third term represents the Coulomb interac-

tion between the electrons (both onsite and interdot) in the
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FIG. 1. Variation of conductance with the chemical potential for two differ-
ent values of the tunneling coefficient and a fixed value of the interdot
interaction g/U=0.08. The inset shows a schematic diagram of the model
system which consists of a quantum dot attached to ideal leads representing
the SET and a second (defect) dot at a distance r from this dot.

dots. The next two terms are the energies of the electrons in
the leads, where s} and d]_ are the creation operators for the
source and drain, respectively. The last four terms denote
coupling terms of dot 1 to the source and drain.

The system conductance is calculated by using Meir’s
extension'’ of the Landauer formula for interacting systems,

2 * o) Y Fdo-

(e + T%(e) Im[Gy,(e)], (2)

where the elastic couplings of the dot 1 to the leads, I'*“(e)
and I'%(€), are defined as

Do) =27, |ViD25(e - €D, (3)
k

and G,,(e) is the Fourier transform of the following retarded
Green’s function pertaining to dot 1,

G1o(1) = = 10D {c14(1),¢],(00}) = (c143€14(0)). (4)

The subscript « on the operators has been dropped by assum-
ing that the dots are small enough so that each dot has just
one relevant energy level which is denoted by €, for dot 1
and e, for dot 2. The onsite Coulomb interaction on both dots
U;=U, for i=j=1, U, for i=j=2, and the interdot Coulomb
interaction U;;=g for i # j. The tunneling matrix element ¢;;
=t. Green’s functions for the problem were evaluated by us-
ing Keldysh’s nonequilibrium Green’s function formalism.
Green’s function is differentiated with time, which leads to
higher order Green’s functions. At some stage Green’s func-
tions must be approximated in order to close the equations.
In our calculations all Green’s functions containing up to
four operators are retained as they are whereas the higher
order terms are approximated by the Hartree-Fock approxi-
mation. These approximations are valid at temperatures
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which are higher than the Kondo temperatures for these sys-
tems. In addition to G,,(), Green’s function for the second
dot G,,(1) is defined in the same way, and also evaluated by
the same approach. This scheme of truncation leads to eight
equations for G,,(¢). The seven other Green’s functions
which appear in this scheme are

Gao(D) ={CagiClo)s  Gaolt) = (nygciichy),

GS.]()'(t) = <n2(TCl(r;c-1rg—>s

Gs0(1) = <”2601U§CJ1(U>’ Gro(t) = <"26€20§CJ1FU>’

Go.15(1) = (N1 gCa03C] o)

and Go (1) = (m1Ca0i¢],)-
The equations for Green’s functions are as follows:
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[w— €& —g(1 +(ny,)) = Uxny5)1Go 5,(€)
=1G4,(€) + (n1 ) UrG7,(€) + 8Go 1,(€)], (12)

where X=3,|Vi*/(e-¢€) and Y=3,|Vi*/(e-€)). Another
eight equations result for G,,(€). The equations for G(€)
and G,,(€) are solved self-consistently as a function of the
chemical potential u along with the following equations for
the average occupation numbers:

)= f defrp(Q- Im[Gy(O]). i=12.  (13)

The conductance as a function of the chemical potential is
then calculated from Eq. (2). The implicit equations are
solved numerically. We study the conductance for different
parameters of the system, which are the difference between
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the energy levels on the two dots, the tunneling matrix, the
interdot interaction, and the temperature.

The calculations for the conductance are carried out for
the paramagnetic case. Hence (n;,)=(n;5) and G,;=G; for
both dots. The remaining parameters for the calculation are
chosen by keeping in mind the systems which have been
studied in experiments. All energies in the calculation are
scaled to the onsite charging energy for dot 1, U;=U.

The conductance of a single quantum dot weakly
coupled to ideal leads was studied by Meir et al."” In our
scheme of calculation, in the absence of tunneling and inter-
dot interactions, the results of Ref. 17 are reproduced. If €
represents the bare energy level on the dot, then two peaks
are seen in the variation of the conductance with chemical
potential, which are at € and e+ U. The presence of a second
dot in the vicinity of this dot modifies this picture consider-
ably. When electrons are able to tunnel coherently between
the two dots the eigenstates of the dots which were hitherto
localized within the dot get delocalized, extending over the
entire double dot system. In a simplified picture, with no
interactions between the dots and taking into account only
one occupied level in each dot, the system can be treated as
a quantum mechanical two level system and it is then pos-
sible to calculate exactly the eigenenergies of this system. In
this case the energy level of the single dot is now split by the
tunneling between the dots into two closely spaced levels.
The splitting energy is proportinal to the tunneling energy
and the difference between the bare energies of the the two
dots.” Thus it is expected that the single peaks observed at €
and e+ U for an ideal SET comprising of a single quantum
dot will split into two peaks each for the SET+defect dot
system. The position and heights of the peaks are further
modified by the interdot Coulomb interaction. Here we re-
port separately and in detail the effects of the variation of the
tunneling coefficient, interactions, and the energy level tun-
ing between the dots in the presence of Coulomb interactions
on the conductance of the system.

We first study the effect of the change in the interdot
tunneling parameter on the conductance with varying chemi-
cal potential. The energy levels on the two dots are €,/U
=0 and €,/U=0.1, respectively, U,/U=1 and I'*/U=T¢/U
=0.025. Since dot 2 is the defect, it is necessary to ensure
that the tunneling matrix element ¢ is much smaller than
Vs(d), the coupling between the dot and the leads. However, a
perceptible change in the conductance behavior of the SET
due to the presence of the defect will be observed only when
t is larger than the temperature of operation. Otherwise the
temperature induced smearing of the conductance peak will
mask the effect of the defect. In our studies the temperature
is kept fixed at kzg7/U=0.03. It is the smallest parameter in
the system and kzT<t<V*9<U. In Fig. 1 we plot the
variation of the conductance with the chemical potential for
two different values of the interdot tunneling coefficient
t/U=0.05 and ¢/ U=0.07, with the interaction strength being
kept fixed at g/U=0.08. The single dot peaks at €;/U and
(€,+U)/U are split into two peaks each (the splitting being
proportional to the tunneling coefficient), which are now
separated by (U+A)/U, where A is the renormalization of
the onsite Coulomb repulsion by the interdot interaction. The
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FIG. 2. Variation of conductance with the chemical potential for a perfectly
tuned double dot system and for a detuned system for two different values of
U,/U.

peak separation betwen the first and second peaks, where the
interaction effects are not important, is decided entirely by
the energy level difference €,—¢€, and the tunneling coeffi-
cient #, and tallies with the results for a two level system,
which predicts a peak separation ~1\{(€,—&)?+ (212’ The
peak separation between the third and fourth peaks is larger
than this, which is an effect of interdot interactions. The
second and fourth peaks are suppressed compared to the first
and third, but the height of these peaks is found to increase
as the tunneling strength is increased. The second and fourth
peaks indicate the noise that would be recorded in the SET
due to the presence of the defect dot.

Tunneling between the dots is enhanced by the increase
of the overlap between the wave functions corresponding to
the levels €; and €, which can then be controlled by the
distance between the dots. If the distance between the dot
and the defect is reduced the noise recorded in the conduc-
tance of the SET will increase further, an effect which must
either be eliminated or utilized to tailor-make a specific de-
vice.

Another parameter that may be expected to influence the
transport through the SET is the tuning between the energy
levels and the charging energies of the two coupled dots,
which would be decided by the morphology of the defect. It
is expected that the tuning of the energy levels should lead to
the enhanced tunneling of electrons between the two dots. In
order to elucidate this point, in Fig. 2 we plot the variation of
the conductance with the chemical potential for three differ-
ent sets of values for €,/U and U,/U for a fixed value of
€/U=0, t/U=0.1, g/U=0.08, and kzT/U=0.03. For €,/U
=0 and U,/U=1, the two dots are identical and we can see
that the heights of the first and second peaks are almost iden-
tical, as also of the third and fourth peaks. This is in contrast
to the case where the two dots are detuned where the second
and fourth peaks are much smaller than the first and third
peaks, respectively (Fig. 1). To note the effect of U, we have
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FIG. 3. Variation of conductance with the chemical potential for two differ-
ent interaction strengths and a fixed value of the tunneling coefficient. The
inset shows the variations of the separation between the first and third peaks
as a function of interaction strength.

also plotted the conductance for €,/U=0.2 and U,# U,
which is the more likely situation. For U,/U=1.25, the
fourth peak is not only at a larger value of the chemical
potential but also reduces in weight compared to the third
peak. For U,/U=0.75, the defect dot becomes prominent
because of its lower charging energy compared to the main
dot and the fourth peak actually gains in height compared to
the third. Thus it is expected that along with the proximity to
the dot, the shape and structure of the defect dot (which in
turn controls the energy level spectra and the charging en-
ergy, i.e., € and U,) will also influence the transport through
the SET.

In the next figure we study the effects of interdot inter-
actions on the transport through the dots. The energy levels
are €/U=0 and €,/U=0.1, respectively, U,/U=1 and
I*/U=T%/U=0.025, the temperature kzT/U=0.03 and the
tunneling parameter is fixed at t/U=0.1. It is seen that, as
expected, the first and second peaks are not affected by the
change in the interaction strength (Fig. 3). However, there is
a significant change in both the position and the width of the
third and fourth peaks. With increasing interactions, the third
and fourth peaks are shifted to higher chemical potentials
due to the renormalization of the onsite Coulomb interaction
by the addition of electrons. Both peaks show a broadening
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and a reduction in height which indicate that the filling of the
third and fourth electrons in the double dot system is inhib-
ited due to the interdot interactions. In the inset we plot the
separation between the first and third peaks as a function of
interaction strength, which shows an almost monotonic in-
crease when the interaction strength is increased from 0.08 to
0.12. Thus even an interaction strength of the order of ~10%
of the onsite Coulomb energy makes a substantial difference
in the conductance. Both the tunneling matrix element and
the intersite Coulomb interactions can be calculated for a
specific device geometry as a function of the intersite sepa-
ration. This would make it possible to modify the properties
of the device by defect engineering.

This study clearly shows how the presence of defects in
the vicinity of an active device changes its electrical re-
sponse. Given that the transport properties of the device are
affected not only by the morphology of the neighboring de-
fect but also by the distance between them, which decides
the tunneling matrix and the interactions; this study is rel-
evant to understand the limits to the packing density of
single electron devices. It is also possible to tailor-make
single electron devices with the desired electrical response
by incorporating defects of various shapes and sizes.
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