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Mathematical notations

Notation Description

Matrix operations

X−1 Inverse of matrix X

XT Transpose of matrix X

Numbers

R>0 Positive real numbers

Rn n-dimensional space of real numbers (vector space)

Rn×m (n×m)-dimensional space of real numbers (matrix space)

Operators

1A Indicator function that is 1 if case A occurs and 0 otherwise

x ∈ [a, b] x is an element of the interval [a, b]

|a| Absolute value of a

bac Rounding down a to integer

a−b
(
1
a

)b
f

′
(x) 1st partial derivative of the function f with respect to x, i.e.

∂f(x)
∂x

j := a j is set to a

exp(a) Natural exponential function of the real number a

max(x) Maximum of x

log(a) Natural logarithm of the positive real number a

logb(a) Logarithm of the positive real number a to base b

sign(r) Sign of r

sin(r) Sine function with respect to r∑n
i=1 f(i) Sum of all f(i) with respect to all natural numbers i from 1

to n
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(continued)

Notation Description

Regression analysis

y ∼ x1 + x2 y is described by x1 and x2 (regression model)

β̂ Estimate of β

Theory of probability

E[Y ] Expectation of random variable Y

P [Y = y] Probability of random variable Y having realisation y

P [Y = y|X] Conditional probability of random variable Y having realisa-

tion y given event X

V [Y ] Variance of random variable Y

Y ∼ Bin(m, p) Random variable Y is binomial distributed with m trials and

success probability p

Y ∼ N (µ, σ2) Random variable Y is normally distributed with expectation

µ and standard deviation σ

Y ∼ Poi(λ) Random variable Y is Poisson distributed with parameter λ

Other

∃ It exists
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Abbreviations

Abbreviation Description

aCGH Array-based comparative genomic hybridisation

AUC Area under the receiver operating characteristic curve

BMI Body mass index

cf. Compare (confer)

CI Confidence interval

CO2 Carbon dioxide

CpG Cytosine-phosphate-Guanine (dinucleotide)

DCM Dilated cardiomyopathy

DNA Deoxyribonucleic acid

e.g. For example (exempli gratia)

FPR False positive rate

GAW 18 18th Genetic Analysis Workshop

GRR Genotype relative risk

GWAS Genome-wide association study

HBV Hepatitis B virus

HCC Human hepatocellular carcinoma

HCV Hepatitis C virus

HTN Hypertension

IDI Integrated discrimination improvement

i.e. That is (id est)

1 kb 1 kilobase pair

LD Linkage disequilibrium

LR Logistic regression

MAD Median absolute deviation

MAF Minor allele frequency

MSE Mean squared error
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Abbreviation Description

NAFLD Non-alcoholic fatty liver disease

OR Odds ratio

Q1 1st quartile

Q3 3rd quartile

ROC Receiver operating characteristic

RT-qPCR Real-time quantitative polymerase chain reaction

SNP Single nucleotide polymorphism
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1 Introduction

Genetics comprise the area of research dealing with the principles of heritable traits

and their inheritance. A major engagement of human genetics research is aimed at

metabolic regulation of organisms and the development of heritable diseases. Hence,

the transfer of such genetic findings into medical research and medical application

is of prime importance. To gain and handle this knowledge, genetic studies must be

analysed by the application of statistical methods. Due to the diversity of genetic

data, adequate statistical methods must be found.

Section 1.1 introduces the design and standard approaches for the analysis of genetic

studies. As data never are homogeneous, the term “outliers” is explained in section

1.2. The following sections introduce into robust statistics and familiarises with

terms needed to discuss the robust generalised linear model framework. Section 1.3

gives a short overview about the essential terms as well as section 1.4 about the

standard approach in generalised linear models, and the robust generalised linear

model framework considered in this work will be explained in section 1.5. The

chapter ends with the presentation of the objectives and the structure of this thesis

(section 1.6) as well as of the work performed by myself (section 1.7).

1.1 Design and standard analysis of genetic studies

Statistical genetics share only a small part in the wide field of biostatistics. Their

task is to analyse genetic data and, hence, to improve and to develop useful statis-

tical techniques to answer specific questions dealing with relations between genetics

and diseases. Genetic data often exhibit a high dimensionality, which is defined by

a much higher number of variables than observations. In the framework of statis-

tical genetics, data under investigation often describe genotypes, gene expression

or DNA methylation. These genetic features will be introduced later in greater
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1 Introduction

detail. To analyse these kinds of data, one uses for example linear or generalised

linear models (see for example Kesselmeier et al. (accepted) for the analysis of DNA

methylation data). These kinds of models are not only applied in statistical genetics

but also for other purposes such as non-genetical clinical research to quantify the

Hawthorne effect in hand hygiene compliance (Hagel et al., 2015) or biogeosciences

to estimate effects of elevated carbon dioxide in the atmosphere (global change) on

the exchange of climatic relevant trace gases (Sandoval-Soto et al., 2012). Among

generalised linear models, one often applies logistic and Poisson regression. With

logistic regression, one investigates for example the association of a binary dis-

ease phenotype or a pathway affiliation and some clinical or genetic measure (e.g.

Kesselmeier et al. (in preparation); Ali et al. (in preparation)). If the response

variable has countable values, one can use Poisson regression for analysis.

1.2 Outliers, outliers in genetic data and robust

statistics

In high-dimensional data, few data points usually occur being distinct from the

majority of the data. In other words,

“Many times values occur which are ’dubious’ in the eyes of the ana-

lyst.”

as stated by Dixon (1950) on page 488. Citing the “intuitive” definition of Hawkins

(1980) on page 1, an outlier is

“an observation which deviates so much from other observations as to

arouse suspicions that it was generated by a different mechanism”.

Their handling is a great challenge because they can significantly affect the analysis

– e.g. significance levels, confidence intervals or hypothesis tests can be concerned

(Sarkar et al., 2011; Wilcox, 1998; Muhlbauer et al., 2009). Standard methods

used to estimate the parameters of regression models (e.g. iteratively re-weighted

least squares) are of limited value due to their dependence on few outliers. This

understanding contrasts the purpose of genetic risk models predicting a particular

health outcome for the bulk of individuals and identifying persons with a deviat-

ing high-risk of disease. Therefore, the handling of outliers is a major scope of

“robust statistics”. Hampel et al. (1986) suggests on pages 6-7 two definitions for

16



1.2 Outliers, outliers in genetic data and robust statistics

robustness; the more informal one is

“In a broad informal sense, robust statistic is a body of knowledge, partly

formalized into ’theories of robustness’, relating to deviations from ide-

alized assumptions in statistics.”

and the more formal one is given by

“Robust statistics, as a collection of related theories, is the statistics of

approximative parametric models.”

In particular, robust statistics aim at integrating outliers into the analyses but

with consideration of their difference. Hence, outliers are down-weighted in robust

statistics and one does not need to delete them a priori. In general, there are two

different kinds of robustness (Heritier and Ronchetti, 1994). In statistical questions,

it is desirable to control the amount of true but rejected null hypotheses (false

negative rate). Outlier may hamper this goal. Hence, one aim is a non-increasing

type I error rate in the presence of a small amount of outliers. This stability is called

robustness of validity. The second aspect is robustness of efficiency concerning the

amount of not rejected but false null hypotheses, i.e. the false positive rate. The

related true negative rate is called power of a test and a non-decreasing power in

the presence of outliers is desirable.

In the case of expected outliers, it is possible to robustify linear and generalised

linear models in different ways. In this work, the method proposed by Cantoni and

Ronchetti (2001) for robust logistic and Poisson regression will be investigated and

extended. Consequently, this extension will be analysed and compared to its basis

as well as standard methods. Note that the combination of logistic and Poisson

regression models results in a hurdle model. This type of model at first estimates the

probability of an event to occur. In case of a positive answer, the model estimates

the positive value using a truncated Poisson model, i.e. a Poisson model restricted

to positive counts.

17



1 Introduction

1.3 Illustration of and essential terms in robust

statistics

It is essential to understand the term “robust”. In parametric statistics, assump-

tions are used to specify the desired model such as normality, independence or

linearity. If these assumptions are valid, parametric models describe the data well.

But reality can only be approximated using such assumptions for several reasons.

Measured data can be erroneous. In close accordance to this practical problem, the

underlying theoretical model might not fit as well. Classical parametric methods

rely on the central limit theorem but the normal approximation for large data sets

is still an approximation (Hampel, 1968; Hampel et al., 1986).

Figure 1 gives an illustrative example to visualise the impact of the violation of

these assumptions on standard estimates and their handling by robust regression.

There, the influence of few and several outliers on standard and robust linear re-

gression is demonstrated. These two simulated situations possibly occur in case

of observations arbitrarily differing from the majority of the data. Figures 1(a)

and (b) differ in the amount of mismatching observations, i.e. two (radial) outliers

versus a group of ten (clustered) outliers. It is obvious that the robust approach is

not noticeably affected by the distinct observations in both scenarios whereas the

standard method is highly sensitive to this minority of data – even in the pres-

ence of only two outliers. This is in close accordance with Rousseeuw (1984). In

case of the clustered outliers one must ask whether these two groups of data re-

ally represent one event or if there is a confounder so that it might be necessary

to perform an adjusted analysis. In a group-adjusted analysis, the standard and

robust estimates given as triples (intercept, slope, group) are (5.034, 5.008, 20.234)

and (5.038, 5.009, 19.026), respectively, compared to the unadjusted estimates as

tuples (intercept, slope) (7.339, 1.694) and (5.037, 5.012). There are two main ob-

servations:

• The standard and robust estimates are comparable in the adjusted analysis.

• The robust intercept and slope estimates of the adjusted and the unadjusted

analysis are comparable but this is not the case for the standard estimates.

Summarising this small simulation, the robust estimates reliably approximate the

simulated data even in the unadjusted analysis. This demonstrates the strong

18



1.3 Illustration of and essential terms in robust statistics
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(b) Group of 10 clustered outliers in the
left outer region in relation to 90 inliers.

Figure 1: Influence of outliers on standard and robust linear regression. The x
value is normally distributed as N (0, 1). The y values of the inliers (yin)
are 4 + 5x + N (1, 0.22). The y values for the two radial outliers are
elements of {−1,max(yin)} and the ten clustered outliers are equal to
yin +N (20, 1). Hence, the expected intercept is 5, the expected slope is
5 and the expected group difference is 20.

influence of outliers on standard linear regression estimates and the handling of the

same by robust linear regression.

Using standard estimates, the outlier might influence the regression model in a way

that the residual value of the outlier is reduced whereas the residuals of the non-

outliers are enlarged. This can lead to outlier hiding (masking effect) or spurious

identification of an observation as outlier (swamping effect). These results might

cause problems in the naive approach to control the outlier influence by identifica-

tion and removal based on classical techniques (Cantoni and Ronchetti, 2006; Jajo,

2005). This removing might additionally lead to sample selection bias (Heckman,

1979). Consequently, robust approaches aim at identifying the model best describ-

ing the structure of the majority of the data under consideration of outliers and

mismatching substructures.

As demonstrated in figure 1, identification of outliers might be easier with a ro-

bust approach when relying on residuals because in this case the difference between

estimated and observed values should be larger for the extreme observations as

compared to standard techniques. An alternative to the use of residuals for outlier

19



1 Introduction

identification is to use the Cook’s distances based on standard regression techniques.

The Cook’s distance of an observation is the difference between the estimated re-

sponse variable with and without this observation. To give an example for Cook’s

distances, one can inspect parts of the real data set analysed in Sandoval-Soto et al.

(2012) with linear regression. Figure 2(a) shows this real data of trace gas exchange

between the atmosphere and European or common beech (Fagus sylvatica) grown

under elevated CO2 (carbon dioxide). Based on this distribution, assuming a linear

relation and, hence, applying a linear model are reasonable. The Cook’s distances

for each observation of this data set are given in figure 2(b) indicating that some

observations have a large impact on the standard regression result. Thus, it is

not surprising that the robust estimates differ from the standard estimates – now

accounting for the influential observations (figure 2(a)).
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Figure 2: Existence proven by Cook’s distance and impact of outliers in real data.
Colour indicates the Cook’s distance size of the observation, i.e. the
Cook’s distance is smaller than 0.1, in the interval [0.1, 0.2], in the interval
[0.2, 0.4], in the interval [0.4, 1.0] or larger than 1.

Applying regression methods, the identification of data points with high impact is

desirable. If such data points exhibit departing values in the independent variable,

they are called high leverage points. For example, all four observations in figure

2(a) with large impact on the standard estimate are points with high leverage. The

20



1.4 Linear and generalised linear models

need of identifying deviations from assumed structures leads to the definition of a

breakdown point which indicates the percentage of the maximal admitted amount

of outliers to still get reliable results. The maximal achievable breakdown point is

0.5 for location estimators treating observations at both estimator sides symmet-

rically; the median for example has such a maximal breakdown point whereas the

mean has a breakdown point of 0 (Hampel, 1968; Hoaglin et al., 1983). An esti-

mator with a breakdown point of 0.5 is called globally robust. Robust estimators

with a contamination sensitivity larger than 0 are called locally robust (Ferretti

et al., 1999). The influence function represents the standardized effect of a specific

amount of outliers. It is possible to investigate the influence of a given amount of

outliers with this function. The influence function is an indicator for the stability

of an estimator and one can use it to answer questions about gross error sensitivity

(i.e. supremum of the influence function over all possible values for its argument),

local shift sensitivity (i.e. supremum of the difference in the influence functions

between two possible data values divided by the distance of these two values) and

the rejection point (i.e. minimal value defining the influence function to be zero for

all values larger than this value) (Hampel et al., 1986). It should be clear, however,

that the use of robust statistics does not allow to use a model that does not fit the

data at all. The underlying model has always to be considered as reasonable and

useful.

1.4 Linear and generalised linear models

Linear models are used to describe a linear relation between a q-dimensional ex-

planatory variable X = (1, x1, . . . , xq−1) ∈ Rn×q and a continuous/discrete indepen-

dently normally distributed response variable Y ∈ Rn×1 with mean µ ∈ Rn×1 and

constant variance σ2, i.e. it is assumed that

Y = Xβ (1.1)

with an unknown parameter vector β ∈ Rq×1. Then, β can be determined by

β̂ =
(
XTX

)−1
XTY (1.2)

If the rank of XTX is not full, the inverse has to be replaced by a generalised

21



1 Introduction

inverse. Although the solution is no more unique, the variance and covariance are

correct. To estimate the coefficient vector β, the inverse matrix of XTX has to be

calculated. Several approaches are possible such as Gaussian elimination, Cholesky

decomposition or direct decomposition (McCullagh and Nelder, 1996).

Generalised linear models use a function of the response’s mean instead of the mean

itself (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1996). Hence, these

models can be used on various data sources. They are characterized by

η = g(µ) = Xβ (1.3)

with the link function g(·). Due to the central limit theorem in large samples, the

violation of the normal assumption might only lead to a modest reduced efficiency

(McCullagh and Nelder, 1996).

Obviously, using the identical link, generalised linear models reduce themselves to

classical linear models. For binomial and Poisson distributed random variables, the

link function is defined as

g(µ) =

logit(µ) = log
(

µ
1−µ

)
if Y is binomially distributed

log(µ) if Y is Poisson distributed
(1.4)

The identical link in linear regression is meaningful because all real numbers are

reasonable. This is not the case for logistic (binomial) or Poisson regression. Poisson

regression is used for count data which are non-negative and integer valued. Based

on the binomial distribution, logistic regression is applied if the response is 0-1

coded and, hence, the regression response value has to be between 0 and 1. These

two conditions are fulfilled by those link functions mentioned in equation (1.4). The

coefficients of logistic regression can be interpreted as log odds ratios. The larger

the mean of the Poisson distribution, the more the distribution tends towards the

normal distribution (Ramsey and Schafer, 2002). Under these conditions, a linear

regression is an alternative to Poisson regression.

To estimate the parameter vector, the needed maximum likelihood estimation equa-

tion equals
n∑
i=1

Wi(yi − µi)
dηi
dµi

xij = 0

where the weight function W is defined as
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1.4 Linear and generalised linear models

W−1 =

(
dη

dµ

)2

V (1.5)

with variance function V (Nelder and Wedderburn, 1972; McCullagh and Nelder,

1996). As an example, the explicit log-likelihood for logistic regression is given in

chapter 2.3 on page 46. Then, the parameter vector β can be iteratively determined.

Initial values have to be calculated based on the data itself. Let be η̂0 the current

estimate of η, the linear predictor, and µ̂0 the current estimator of µ, the fitted value

derived from the link function. Then, the following procedure has to be repeated till

convergence, i.e. the changes between two iterations are sufficiently small (Nelder

and Wedderburn, 1972; McCullagh and Nelder, 1996). First, calculate the adjusted

dependent variable via

z0 = η̂0 + (y − µ̂0)

(
dη

dµ

)
0

evaluated at µ0 and the quadratic weight via

W−1
0 =

(
dη

dµ

)2

0

V0

with variance function V0 evaluated at µ̂0 according to equation (1.5). Then, de-

termine new parameter estimates β̂1 by regressing z0 on X using weight W0, i.e.

β̂1 =
(
XTW0X

)−1
XTW0z0

(weighted least squares) and derive new estimate η̂1 from

η̂1 = β̂1X

Note that the method used to calculate z0 follows the first order Taylor series of

the link function. To begin the iteration, µ̂0 = y can be taken and η̂0 can then

be deduced from µ̂0 because they are related via the link function (Nelder and

Wedderburn, 1972).
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1.5 Robust approaches to generalised linear

regression models

These classical estimators are sensitive to outliers. These are observations with

large response deviations from the response’s mean or observations departing from

the majority of the data in the explanatory variable (leverage points). For exam-

ple, Rousseeuw (1984) stated that the breakdown point of least square estimates

is 0 compared to a highest possible breakdown point of 0.5 (Muhlbauer et al.,

2009). Based on the central limit theorem, this is more important in small than in

larger samples. To robustify generalised linear models, several methods have been

developed and discussed. There were proposals

• to correct the score function (Nakamura, 1990),

• to use a bootstrap approach (Haukka, 1995),

• to generalise globally robust estimators to become locally and globally robust

(Ferretti et al., 1999),

• to adjust the estimation function’s scale (Adimari and Ventura, 2001),

• to rely on influence functions (Kordzakhia et al., 2001),

• to rely on flexible nonparametric extensions of the underlying model (Bed-

narski, 2002),

• to adapt the likelihood (Li and Hsiao, 2004),

• to average the mean squared error of predictions over the parameter space

that defines the class of the unknown true model, i.e. a neighbourhood of the

true model (Adewale and Xu, 2010),

• to apply a variance stabilising transformation to the response and to use then

an M-estimator (Valdora and Yohai, 2014) or

• to combine the use of a bounded exponential score function and leverage-

based weights (Lv et al., 2015).

The method investigated in this thesis was suggested by Cantoni and Ronchetti

(2001) accounting for outliers in the response as well as for leverage points sepa-

rately. They proposed to solve the estimation equation
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1.5 Robust approaches to generalised linear regression models

0 =
n∑
i=1

ν(yi, µi)w(xi)µ
′
i − α(β) (1.6)

with weighting functions ν(·) (outlier in the response) and w(·) (outlier in the

explanatory variable). According to equation (1.3)

µi = µi(β) = g−1
(
xTi β

)
and µ′i denotes the derivative of µi with respect to β. Finally, the α function ensures

Fisher consistency, i.e. the estimate equals the true value when deduced from the

whole population (Fisher, 1922), and is defined as

α(β) =
1

n

n∑
i=1

E[ν(yi, µi)]w(xi)µ
′
i (1.7)

where the expectation is taken with respect to the conditional distribution of y|x.

This estimator is based on a quasi-likelihood and is asymptotically normally dis-

tributed with asymptotic variance

Ω =

(
E

[
∂

∂β
Ψ(y, µ)

])−1
E
[
Ψ(y, µ)Ψ(y, µ)T

](
E

[
∂

∂β
Ψ(y, µ)

])−1
where Ψ denotes the score function

Ψ(yi, µi) = ν(yi, µi)w(xi)µ
′
i − α(β)

The influence function of this M-estimator is defined as

IF (y; Ψ) = −
(
E

[
∂

∂β
Ψ(y, µ)

])−1
Ψ(y, µ)

The objective of the weighting functions is to confine the influence of outlying

observations to get a more reliable result describing the majority of the data. A

usual choice for the weighting function w is

w(xi) =
√

1− hii

where hii is the ith diagonal element of the hat matrix H = X(XTX)−1XT . Due

to its definition based on the hat matrix, one must consider that this weight does
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not have a high breakdown point (Cantoni and Ronchetti, 2001). A different and

often used choice is related to the Mahalanobis distance di and is defined as

w(xi) =
1√

1 + 8 max
(

0,
d2i−q√

2q

)
This weighting function has a high breakdown point but its use is only reasonable

in case of continuous explanatory variables (Heritier et al., 2009). The second

weighting function ν can be defined via

ν(yi, µi) =
ψ(ri)

V 1/2(µi)

with an appropriate ψ(·). This weighting function, in particular ψ, aims for down-

weighting outlier influence and assigning usual weights to inliers. Several choices

for this function are possible. Huber (1964) proposed

ψHuber(r; c) =

r if |r| < c

sign(r) c otherwise
(1.8)

with c ∈ R>0. This function does not weight extreme outliers down to zero but to

a selected size. The asymptotic efficiency is 95% for c equal to 1.345 (Cantoni and

Zedini, 2011). A different class of estimates are the re-descending M-estimators

which set the weights of outliers with an impact larger than a pre-specified size

to zero. Considering the tuning constant triplet (a, b, c) with a, b, c ∈ R>0 and

a < b < c, the Hampel M-estimator

ψHampel(r; a, b, c) = sign(r) ·



|r| if |r| < a

a if a ≤ |r| < b

c−|r|
c−b a if b ≤ |r| < c

0 otherwise

(1.9)

belongs to this class as well as Tukey’s biweight M-estimator

ψTukey(r; c) =


[(

r
c

)2 − 1
]2
r if |r| ≤ c

0 otherwise
(1.10)
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1.5 Robust approaches to generalised linear regression models

or Andrews’ sine wave M-estimator

ψAndrews(r; c) =

sin
(
r
c

)
if |r| < cπ

0 otherwise
(1.11)

with c ∈ R>0 (Hampel et al., 1986; Beaton and Tukey, 1974; Andrews et al., 1972).

For 95% efficiency when using the Hampel function the tuning constant triplet can

be chosen as 0.902 · (1.5, 3.5, 8) for a slope of the re-descending part equal to 1/3

or as 0.691 · (2, 4, 8) for a slope of the re-descending part equal to 1/2 (as originally

proposed) (Rousseeuw et al., 2012; Koller and Mächler, 2014; Koller and Stahel,

2011). To assure 95% efficiency for the Tukey function, the tuning constant has

to be equal to 4.6851 (Alamgir et al., 2013). The Andrews function is often used

with c = 1 (Alamgir et al., 2013). The shapes of these functions are shown in

figure 3 with the tuning constants mentioned above to assure 95% efficiency for the

Huber, Hampel and Tukey function. The rejection point for the use of the Huber

function is infinity, cπ for Andrews and c for Hampel and Tukey function. Hence,

re-descending functions always have a finite rejection point.
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Figure 3: Shapes of different ψ functions. The tuning constants for this plot are
given in brackets.

To use this robust regression framework, the R package robustbase is available

(R Core Team, 2013; Rousseeuw et al., 2012). In this package, only the use of the

Huber function was implemented at the time of method application.
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1.6 Objectives and structure of this thesis

As discussed above, the scope of robust methods is to control the outlier influence

by assigning each observation a weight using, e.g., the bounded Huber function.

In literature, the use of re-descending weighting functions is advised which van-

ish outside a pre-specified region (Müller, 2004; Shevlyakov et al., 2008). Among

them, the Hampel function performs well in many situations (Andrews et al., 1972;

Alamgir et al., 2013). The re-descending Hampel function down-weights outliers

more strongly than the bounded Huber function. Hence, the Hampel function can

be useful if extreme outliers are expected. Its application has a possible impact

on the type I error rate, bias, mean squared error (MSE) and statistical power

for associated estimators. Under these circumstances, the aim of this thesis was

threefold:

1. Comparison of standard and existing robust regression methods relying on

the Huber function regarding different aims of analysis based on simulated

and real data

2. Adaptation of the regression framework proposed by Cantoni and Ronchetti

(2001) for logistic and Poisson models to the use of the Hampel function as an

example for re-descending influence functions. As this proposed method has

been already implemented in the R package robustbase, it takes advantage

of the Huber function (R Core Team, 2013; Cantoni, 2004; Rousseeuw et al.,

2012). To implement this procedure using the Hampel function into R, I

derived the necessary quantities and adapted the existing programme.

3. Investigation of this extended method by comparing it to the use of the Huber

function and to standard regression techniques regarding simulated and real

data

These aims are reflected in the thesis structure as described as follows: Evaluation

methods for the different regression approaches as well as the evaluation results and

their discussion are described in the chapters 2, 4 and 5. There, the standard and

the already existing robust regression approaches are compared first (sections 2.2,

4.1 and 5.1) with respect to consistency of model selection and prediction accuracy,

influence of one single outlier and influence of genotyping errors on estimates (Aim

1). The required calculations and adjustments of the R code for the explicit use

of the extended method will be presented in chapter 3 together with a plausibility
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check (Aim 2). This extended logistic regression approach is compared to the

standard and the existing robust logistic regression approaches (sections 2.3, 4.2

and 5.2) with respect to several statistical properties (Aim 3). Chapter 5 also

comprises a final conclusion and a perspective for further work (section 5.4). Special

attention will be given to the hurdle model arising from the combination of logistic

and (truncated) Poisson models. Chapter 6 summarizes the complete thesis in few

words.

1.7 Collaborations and own work

As usual, real data applications need collaborations. These collaborations will be

mentioned by article citation during the thesis when introducing the relevant data.

In case of the use of real data for my methodological investigations, the collaborators

only provided the data but where not involved in the research.

For the simulation described in section 2.3, the genotype relative risk (GRR) at

the marker locus must be deduced from the GRR at the causal variant locus and,

secondly, the randomly drawn allele frequency concerning the so-called null marker

loci and the minor allele frequency at the marker have to be corrected for the

prevalence in the population. The two corresponding R scripts were provided by

my supervisor Prof. Dr. Justo Lorenzo Bermejo.

For the necessary calculations to extend the robust approach, I relied on the ap-

pendix A of Cantoni and Ronchetti (2001). To implement this extended approach

into the statistical language R, I adapted the R scripts provided in the R package

robustbase (Rousseeuw et al., 2012).

Main parts of this thesis are based on my methodological publications and I pre-

sented several parts on research conferences:

• Section 3.1.1 is based on the Supplemental Note of Kesselmeier and Lorenzo

Bermejo (in preparation) [currently submitted to Briefings in Bioinformat-

ics ].

• Parts concerning figure 7 in section 3.3 are based on Kesselmeier and Lorenzo

Bermejo (in preparation) [currently submitted to Briefings in Bioinformat-

ics ].
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• Sections 2.1.1, 2.2.1, 4.1.1 and 5.1.1 were presented at the Annual Meetings

of the International Genetic Epidemiology Society (IGES) 2011 and 2012

(conference abstracts: Kesselmeier et al., Genetic Epidemiology 2012, 36:157–

157; Kesselmeier et al., Genetic Epidemiology 2012, 36:768–769).

• Sections 2.1.2, 2.2.2, 4.1.2 and 5.1.2 are based on Kesselmeier et al. (2014)

and were also presented within the 18th Genetic Analysis Workshop (GAW

18).

• Sections 2.1.4, 2.2.3, 4.1.3 and 5.1.3 were presented at the 3rd Joint Statistical

Meeting of the DAGStat “Statistics under one Umbrella” 2013.

• Sections 2.1.3, 2.1.5, 2.3, 4.2 and 5.2 are based on Kesselmeier and Lorenzo

Bermejo (in preparation) [currently submitted to Briefings in Bioinformat-

ics ]. Parts were also presented at the 42nd European Mathematical Genetics

Meeting 2014 (conference abstract: Kesselmeier and Lorenzo Bermejo, Hu-

man Heredity 2013, 76:104–105) and at the 4th Joint Statistical Meeting of

the DAGStat “Statistics under one Umbrella” 2016.
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2 Material and methods to compare

standard and robust regression

approaches

Simulated and real data are usually used to investigate performance of statistical

methods. An advantage of simulated data is the knowledge about data proper-

ties, e.g. underlying distribution, relations between variables and effect sizes. But

simulations stay artificial despite all invested efforts to create them in a realistic

way. Thus, it is a common wish to observe the method performance in real data

applications. In this chapter, the simulated and the real data are presented with

background information at first (section 2.1). Then, the methods to compare dif-

ferent standard and robust regression approaches on these simulated and real data

sets are developed (sections 2.2 and 2.3).

All calculations were done with R version 3.0.2 (R Core Team, 2013). The standard

regression models were estimated using lm for linear models and glm for generalised

linear models, such as logistic and Poisson regression. For the robust linear models,

the function rlm from the package MASS was used (Venables and Ripley, 2002). For

robust logistic and Poisson regression considering the Huber function, the existing

function glmrob from the R package robustbase was applied (Rousseeuw et al.,

2012).

2.1 Data sets

This section provides a description of the data sets. The first three data sets are

real data sets dealing with DNA methylation and chromosomal instability in indi-

viduals suffering from human hepatocellular carcinoma (section 2.1.1), genotypes
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2 Material and methods to compare standard and robust regression approaches

and phenotypes in individuals with hypertension (section 2.1.2) and genetic data

from the Personal Genome Project (section 2.1.3). Then, the simulation of two

data sets are presented in the sections 2.1.4 and 2.1.5.

2.1.1 DNA methylation and chromosomal instability in

individuals suffering from human hepatocellular carcinoma

Genetic background

Gene expression is usually quantified by the amount of resulting products, for ex-

ample proteins. Amongst others, expression of a gene depends on its accessibility.

If DNA is densely packed around histones (alkaline proteins) a gene cannot be ex-

pressed. Epigenetical control, such as DNA methylation, influences gene expression

as well. This process means that a methyl group binds to the DNA chain, typically

occurring at CpG sites (dinucleotide Cytosine-phosphate-Guanine). This event

can cause gene silencing (Seyffert, 2003). Furthermore, gene expression can be in-

fluenced by copy number variations. These variations are either deletions or local

duplications of chromosomal regions compared to a reference. In particular, a chro-

mosomal region is called “normal” if there are two copies of this region. A situation

with at least one copy less than in the reference is called “loss” and a situation is

called “gain” if there is at least one more copy than in the reference. So it is clear

that duplication can result in a higher expression compared to a deletion which

usually leads to loss of expression. It is possible to measure copy number variation

via array-based comparative genomic hybridisation (aCGH) (Stratton et al., 2009;

van Wieringen et al., 2013). aCGH information can be used to define chromosomal

instability which is related to tumour stage in several kinds of cancer (van Wierin-

gen et al., 2013). To later define chromosomal instability via aCGH data, the term

“centromer” is needed. The centromer is the part near the middle of a chromosome

linking sister chromatids. It divides each chromosome into a short and a long arm

(Laird and Lange, 2011). Since gene expression is related to both chromosomal in-

stability and DNA methylation, it is of interest to explore the relationship between

DNA methylation and chromosomal instability.
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2.1 Data sets

Epidemiological and medical background

This data set comprises information about persons suffering from human hepatocel-

lular carcinoma (HCC) which is one of the most frequent malignancies worldwide

– among men the 5th and among women the 7th most common. The incidence de-

pends on the geographic region with incidence rates from more than 20 per 100,000

individuals in Sub-Saharan Africa and Eastern Asia to less than 5 per 100,000

individuals in North and South America (Mittal and El-Serag, 2013). An early di-

agnosis is essential for a successful treatment (de Lope et al., 2012). HCC develops

mostly in a process lasting several years which is normally initiated by a chronic

liver disease. The underlying aetiology is often unknown (El-Serag and Rudolph,

2007; Breuhahn, 2010). Most prominent risk factors are cirrhosis, the infections

with the hepatitis B or C virus (HBV, HCV), non-alcoholic fatty liver disease

(NAFLD) and high alcohol consumption whereas coffee intake seems to reduce the

risk of developing liver cirrhosis and thus of HCC. Because only a small number of

persons infected with HBV or HCV develops HCC, genetic factors might influence

the progression to HCC as well (Mittal and El-Serag, 2013). Because cancer has

its origin in DNA alteration, a better understanding of the relationship between

chromosomal alterations and gene methylation may advance the identification of

relevant steps in the development of HCC (van Wieringen et al., 2013).

Data

The SFB/TRR77 Consortium has generated a collection of patients with aCGH in-

formation, gene expression and DNA methylation (Neumann et al., 2012; Kesselmeier

et al., in preparation). Information on DNA methylation for 600 selected genes as

proposed by Hoshida et al. (2009) as well as aCGH data was available for 54 HCC

samples. CpG sites in the selected genes were included in the analysis if they ful-

filled the data quality criteria which were (i) a detection p-value below 0.01, (ii)

methylation values between 0 and 1 and (iii) a positive median absolute deviation

(MAD) which is defined as

MAD(X) = median (|X −median(X)|)

with X ∈ Rn (Bortz and Schuster, 2010). A chromosome arm was defined as

instable if it contained at least one region larger than 1000 kb with a gain or a
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loss. Genomic instability of one sample was defined as the number of instable

chromosome arms divided by the total number of investigated arms.

2.1.2 Genotypes and real phenotypes in individuals with

hypertension

Epidemiological and medical background

Data for the second real data application describes persons with and without hy-

pertension. Hypertension is a common chronic disease characterised by elevated

arterial blood pressure. High blood pressure is associated with an increased risk

of stroke, heart attack and other serious diseases. Age, gender, tobacco smoking,

alcohol consumption and high body mass index (BMI) constitute established risk

factors for hypertension (Jonas et al., 1997). A genetic component has also been

postulated. It has been shown that individuals with a family history of hypertension

have on average a higher blood pressure than individuals without. For siblings of

affected persons Yanek et al. (1998) found a 44% higher prevalence of hypertension

than in the general reference population. In a Canadian study, standardised risk

ratios of hypertension were reported to be higher for first-degree relatives than for

spouses of probands with hypertension (Katzmarzyk et al., 2001). In genetic stud-

ies, a large number of polymorphisms has been associated with hypertension and

validated in independent collectives; fourteen loci have been identified until 2010

and many genetic studies are currently in progress (Levy et al., 2009; Newton-Cheh

et al., 2009; Wang et al., 2009; Ehret, 2010; Padmanabhan et al., 2012).

Data

The analysed data (real phenotypes) from the 18th Genetic Analysis Workshop

(GAW 18) were derived from 142 unrelated individuals who participated in the San

Antonio Family Heart or Family Diabetes/Gallbladder studies. Longitudinal infor-

mation on hypertension, age, gender and current tobacco smoking was measured

up to four times per individual. The present analyses relied on the first available

measurement. Further information is provided in several articles (Mitchell et al.,

1996; Duggirala et al., 1999; Hunt et al., 2005; Almasy et al., 2014).
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2.1.3 Genetic data from the Personal Genome Project

Project background

There is a global network of Personal Genome Projects (Church, 2005) including

projects in the United States of America at Harvard Medical School, in Canada

at the University of Toronto and the Hospital for Sick Children in Toronto, in the

United Kingdom at the University College London and in Austria at the CeMM

Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vi-

enna (http://www.personalgenomes.org/). The aim of this project is to provide

public genetic data comprising information about individual’s genome, its health /

environment and human traits to extend the knowledge about human health and

to guide the evidence-based medicine. All participants voluntarily provide their

personal data in a non-anonymous manner. Currently (2016/06/20), only the site

at Harvard Medical School provides enough data for public use because the other

projects are still under construction.

Data

The public genetic data was accessed at the Personal Genome Project website

(https://my.pgp-hms.org/public_genetic_data) on 2015/06/11. The filter “ge-

netic data - 23andMe (e.g., exome or genotyping data)” was applied and text files

with genome data downloaded. The individual’s age and body height information

was manually extracted from the participant profiles (https://my.pgp-hms.org/

users) on 2015/06/11. When several files were available per person, only the most

recent one was included. Files with incomplete and inconsistent genotype data were

excluded as well as files without the corresponding information on age and body

height. The first 1000 genotypes were extracted from each file, variants measured

in all individuals selected and individuals with missing genotypes subsequently ex-

cluded. Figure 4 shows the flow chart for data pre-processing.
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Extracted from the Personal 
Genome Project (n=227) 

Read into R (n=208) 

Excluded individuals (n=19) 
- No full genome file (n=5) 
- No consistent genome file (n=3) 
- No information about age  and height (n=11) 

Analysed (n=144) 

Excluded individuals (n=64) 
- Missing genotype values (n=64) 

Figure 4: Flow chart of data processing in the real data application.

2.1.4 Simulated data for increasing genotyping error rates

The simulation will start with given genotypes and age to deduce the case control

status. The genotypes will afterwards be modified by introducing genotyping errors.

The simulation strategy is given in figure 5.

Disease status 
(case / control) 

Genotype 

Genotyping 
error 

Age 

Figure 5: Simulation strategy. Straight arrows indicate the simulation direction. A
bent arrow denotes the influence direction.
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One must consider in advance some probabilities for data generation. Given are

the causal allele frequency (pC), the genotype relative risks for homozygous and

heterozygous causal allele carriers (GRRC,hom and GRRC,het) and the prevalence in

the population (π). pC can be transformed into the minor allele frequency (MAF).

The MAF is defined as the frequency of the less common allele in a given population.

Hence, this frequency equals the minimum of pC and 1− pC . The prevalence π in

the population is

κ0
[
p2C GRRC,hom +2pC (1− pC) GRRC,het +(1− pC)2

]
where κ0 is the prevalence for non causal allele carriers (πnc). Knowing π, κ0 can

be calculated as

κ0 =
π

p2C GRRC,hom +2pC (1− pC) GRRC,het +(1− pC)2

The prevalence for causal allele carriers (πc) can be calculated based on κ0 and

equals κ0 ·GRR.

For simulation, some of these values have to be defined in advance. The causal allele

frequency is set to three different values: 0.005, 0.05 and 0.13. The age-specific

prevalence is oriented at the NORDCAN project for breast cancer in the year 2010

(Engholm et al., 2010, 2012). The genotype relative risk was taken from results

investigating the association of the CHECK2 gene to breast cancer risk (CHEK2

Breast Cancer Case-Control Consortium, 2004). The age distribution is orientated

at the age distribution in Sweden 2010. These population-specific characteristics

are shown in table 3.

Table 3: Age, prevalence and genotype relative risk for simulation.

Age interval (numeric ID) Age frequency π(Age) GRRHom(Age)

20-29 (0) 0.172 0.0001 7.91
30-39 (1) 0.023 0.0015 2.65
40-49 (2) 0.192 0.0084 2.80
50-59 (3) 0.212 0.0245 2.13
60-69 (4) 0.401 0.0478 1.95

For heterozygous allele carriers, the genotype relative risk (GRRC,het) depends on

the penetrance model and is defined as
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GRRC,het =


1
2

(GRRC,hom +1) for an additive penetrance model

GRRC,hom for a dominant penetrance model

1 for a recessive penetrance model

(2.1)

Following these preparations, a dominant penetrance model was assumed. The

simulation started with genotypes and age intervals. For the genotype, one drew two

uniform distributed random numbers on the interval [0, 1] (rng1 , rng2). Genotype

G was then defined via

G =


CC if rng1 < pC and rng2 < pC

cc if rng1 ≥ pC and rng2 ≥ pC

Cc otherwise

The corresponding age interval A was estimated according to the defined age distri-

bution using a uniform distributed random number on the interval [0, 1] rna. This

means that

A =



0 if rna < 0.172

1 if 0.172 ≤ rna < 0.195

2 if 0.195 ≤ rna < 0.387

3 if 0.387 ≤ rna < 0.599

4 otherwise

Using these information and a uniform distributed random number rncc ∈ [0, 1],

the case control status (CaCo) follows as

CaCo =

case if (G 6= cc and rncc < πc) or (G = cc and rncc < πnc)

control otherwise

Two scenarios were investigated: (i) no genotyping errors occurred (model M0)

and (ii) different genotyping error rates were considered, namely 0.005, 0.010, 0.025

and 0.050 (model M1). In case of genotyping errors, the fixed proportion of true

genotypes were randomly assigned to one of the two other possible genotypes.

According to these parameters, 1000 data sets with 1000 cases and 1000 controls

were simulated.
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2.1.5 Simulated data for varying population characteristics

A data set with information on age and genotype was generated for 3.5 million

cases and 3.5 million controls. Genetic association studies were simulated by ran-

dom sampling from this large data set. The age distribution of controls relied on

data from the European Union (Office for Official Publications of the European

Communities, 2006). The age of cases mirrored the incidence of colorectal cancer

in European women (Ferlay et al., 2013). The two age distributions are shown in

table 4.

Table 4: Age distribution, prevalence and age-dependent genotype relative risk
(GRR) for the simulation study

Age interval Control Disease Age-dependent
[years] frequency prevalence GRR
≤ 35 0.14 0.0001 20.00

36− 40 0.14 0.0007 15.00
41− 45 0.13 0.0019 10.00
46− 50 0.13 0.0040 5.00
51− 55 0.12 0.0073 1.57
56− 60 0.10 0.0122 1.00
61− 65 0.09 0.0189 1.00
66− 70 0.08 0.0273 1.00
> 70 0.07 0.0389 1.00

Null marker genotypes were simulated independently of case-control status. For

associated markers, the age of the individual was first drawn according to case-

control status. Then, causal variant genotypes were simulated assuming a given

penetrance model. In more detail, let GRRhom represent the relative risk for ho-

mozygous carriers of the causal variant. The GRR for carriers of only one copy of

the causal variant (GRRhet) was

GRRhet =


1
2

(GRRhom + 1) for an additive penetrance model

GRRhom for a dominant penetrance model

1 for a recessive penetrance model

Let C denote the high-risk allele and c the low-risk allele at the causal locus. Let

M denote the high-risk allele and m the low-risk allele at the marker locus. Let pC

be the causal allele frequency and pM the marker allele frequency. pC and pM were
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related via

pM =

[
r2(1− pC)

pCD
′2

+ 1

]−1
where r2 represents the correlation and D

′
Lewinson’s measure of the relative link-

age disequilibrium between causal and marker loci. The expected distribution of

genotypes (G) at the marker locus in controls (D=0) was

P [G = mm|D = 0] = (1− pM)2

P [G = Mm|D = 0] = 2pM(1− pM)

and

P [G = MM |D = 0] = p2M

The expected distribution of genotypes in cases (D=1) was

GRRhom =
P [D = 1|G = MM ]

P [D = 1|G = mm]

and

GRRhet =
P [D = 1|G = Mm]

P [D = 1|G = mm]

with P [D = 1|G = mm] = κ0 representing the disease prevalence among low-risk

allele homozygotes. Let κ denote the disease prevalence in the total population.

Then,

P [G = mm|D = 1] = (1− pM)2
κ0
κ

P [G = Mm|D = 1] = 2pM(1− pM)GRRhet
κ0
κ

and

P [G = MM |D = 1] = p2MGRRhom
κ0
κ

In summary, genotypes depended on genetic parameters (MAF, GRR, penetrance

model for the causal allele, association (r2 and D
′
) between causal and marker loci)

and also on study characteristics (sample size and genotyping error rate) that were

specified considering different scenarios (Hemminki and Lorenzo Bermejo, 2007;

Lorenzo Bermejo et al., 2011; Lewontin, 1964; Hill and Robertson, 1968). Ten null

marker loci and one marker locus were simulated.

Under the reference scenario, the MAF was fixed to 0.05 for a dominant causal
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variant, no genotyping errors assumed and 400 studies simulated with 1000 cases

and 1000 controls each. The GRR was set to 1.43 to reach a statistical power

equal to 0.6. This reference scenario built the basis for sensitivity analyses where

just one parameter was changed at once: the penetrance model fitted to the data

(additive, recessive), the MAF (from 0.001 to 0.25) and r2 (from 0.8 to 1.0) were

modified. In addition to a constant GRR of 1.43 under the reference scenario,

decreasing GRRs with increasing age as specified in table 4 were also considered.

Age-dependent GRRs were consistent with the overall GRR of 1.43 assumed in the

reference scenario. Genotyping errors were considered, too. For this purpose, a

fixed proportion of true genotypes were randomly assigned to one of the two other

possible genotypes. Genotyping arrays generally show error rates below 0.01, but

genotyping errors seem to be more frequent for sequence data (Kennedy et al., 2003;

Montgomery et al., 2005; Hong et al., 2012). In the present simulations, genotyping

error rates varied from 0 to 0.05. Because the aim was to stay as realistic as possible

and it was expected that some of these parameters introduced extreme observations

with a possible impact on the different approaches, no further contamination was

introduced.

Preliminary results motivated a closer investigation of rare and recessive variants.

For rare variants, study and effect sizes were accommodated to reach around 0.6

statistical power using standard logistic regression. This led to the triplets (MAF,

number of cases / controls, assumed GRR) equal to (0.001, 5000/5000, 2.53), (0.005,

1000/1000, 2.65) and (0.01, 1000/1000, 2.07). Genotyping error rates from 0 to 0.05

were considered. The remaining parameters were fixed to the same values as in the

reference scenario. For recessive variants, the GRR was fixed to 6.32 in order to

achieve 0.6 statistical power (MAF=0.05 and 1000 cases / 1000 controls). Additive,

dominant and recessive models were fitted to recessively simulated data. Again,

the genotyping error rate varied from 0 to 0.05. The remaining parameters were

fixed to the same values as in the reference scenario.
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2.2 Methods to compare standard versus existing

robust regression methods

Sections 2.2.1 and 2.2.2 deal with two real data applications. The first one (section

2.2.1) is about the comparison of standard and robust linear as well as Poisson re-

gression with respect to model selection consistency and prediction accuracy. In the

second real data application (section 2.2.2), standard and robust logistic regression

clarify their handling of one single outlier. In section 2.2.3, the influence of geno-

typing errors on standard and robust logistic regression estimates are investigated

in simulated data.

2.2.1 Consistency of model selection and prediction accuracy in

real data

With the data set described in section 2.1.1, the relationship between DNA methyla-

tion and chromosomal instability was investigated using standard and robust linear

as well as Poisson regression with the Huber function relying on the regression

models

Chromosomal instability ∼
n∑
i=1

CpG(i)

for linear regression and

# instable arms ∼
n∑
i=1

CpG(i) + offset(# investigated arms)

for Poisson regression with the ith included CpG site CpG(i) and # denoting

“number of”. n denotes the number of CpG sites that were included into the

model. The model was forwardly selected. The decision on whether to include an

additional variable into the model was made on a deviance criterion. If the deviance

was not significantly reduced the model without the additional variable was the final

model. In order to compare the four regression methods, 54 leave-one-out cross-

validations were used. This means that all but one sample was used as a training

data set to select the best model and the remaining sample was used to validate

the model. This was repeated till every sample was once used as validation sample.

Leave-one-out cross-validation was chosen to keep the original data distribution
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as unaffected as possible. The regression models were then compared based on

two criteria: goodness-of-fit and reproducibility (consistency). Reproducibility was

defined as the number of times a specific model was selected and goodness-of-

fit as the difference between observed and predicted instability. The latter was

examined with the Wilcoxon signed rank test to search for differences between the

methods. Standard linear regression was used as reference because it is a common

and often used technique. The differences between the methods were quantified by

the median as well as 5th and 95th quantiles. The relationship between instability

and methylation at CpG sites identified as relevant for the regression model as

well as gene expression were investigated with Spearman’s correlation coefficient

with 95% confidence intervals. An overview about model selection and validation

is given in figure 6.

Training  
data sets 

Validation  
data set 

Data 1:53 
observations 

Model 
selection 

Model 
validation 

- Goodness-of-fit 
- Reproducibility 

54th 
repetition? 

No 

Yes 

Figure 6: Model selection and validation via leave-one-out cross validation.

2.2.2 Influence of one single outlier in real data

The relationship between inherited genetic polymorphisms and a binary response

variable (with/without hypertension) can be investigated using logistic regression

models that simultaneously consider the effects of multiple risk factors. Here, data

from GAW 18 (see section 2.1.2) was used to explore the possible benefit of robust

parameter estimates in logistic regression models for the genetic prediction of hy-

pertension risk. The original data was filtered according to the following criteria:

(1) at least one measurement with complete information on hypertension and age,

(2) monomorphisms were excluded and each polymorphism had to be represented
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by at least two individuals, (3) individuals with more than 5% missing genotypes

were excluded and (4) variants with missing data in any individual were removed.

The relationship between hypertension and age, gender and current tobacco smok-

ing was first investigated by χ2 tests. Covariates significantly associated at the

0.05 confidence level entered the intercept-only model to build the baseline model.

Subsequently, standard logistic regression (iteratively re-weighted least squares)

was used to identify possible hypertension-associated SNPs (single nucleotide poly-

morphisms) with minimal deviance taking into account associated covariates. The

goodness-of-fit criterion deviance D is defined as

D(y;µ) = 2 l(y; y)− 2 l(µ; y)

with maximal achievable log-likelihood l(y; y) in an exact fit and the usual log-

likelihood l(µ; y) of the observation y and the mean µ. Minimizing the deviance is

equivalent to maximizing the log-likelihood as l(y; y) is independent of the param-

eters (McCullagh and Nelder, 1996).

Genotypes were coded according to an additive penetrance model, i.e. 0, 1 and

2 indicating the number of causal alleles. Outliers according to standard logistic

regression were identified based on the Cook’s distance in the baseline model. The

Cook’s distance for observation i is defined as

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2
qMSE

where ŷj denotes the full regression model prediction for observation j, ŷj(i) repre-

sents the regression model prediction for observation j estimated omitting obser-

vation i and MSE indicates the mean squared error of the regression model with q

explanatory variables and n observations. Thus, the Cook’s distance quantifies the

impact of observation i on the regression model.

To investigate the possible benefit of robust parameter estimates in logistic re-

gression, model coefficients were also estimated using the approach proposed by

Cantoni and Ronchetti (2001) using the Huber function. Variable selection under

robust logistic regression relied on the minimal quasi-deviance as described by Can-

toni and Ronchetti (2001), which is a robust test statistic for model selection. The

quasi-deviance between two nested models is defined as
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ΛQM = 2

[
n∑
i=1

QM(yi, µ̂i)−
n∑
i=1

QM(yi, µ̇i)

]
with

QM(yi, µi) =

∫ µi

s̃

v(yi, t)w(xi) dt−
1

n

n∑
j=1

∫ µj

t̃

E[v(yj, t)w(xj)] dt

with s̃ such that v(yi, s̃) = 0 and t̃ such that E[v(yi, t̃)] = 0 and the estimated linear

predictor µ̂ is associated to the estimate β̂ of β and µ̇ is associated to β̇ which is the

estimate of (β(1), 0). Linkage disequilibrium was not accounted for during variant

selection.

The comparison of the performance of standard and robust logistic regression was

based on different statistics. First, standard and robust estimates of age effects were

used to exemplify the potential influence of departing observations. Due to a dif-

ferent handling of outliers, it was expected that different age-genotype models were

selected under standard and robust logistic regression. Therefore, the areas under

the receiver operating characteristic curves (AUC) were subsequently compared in

order to investigate the discriminative performance of the selected models. Com-

parisons were conducted for the complete data set and after exclusion of potential

outliers.

In addition, concordance, sensitivity, specificity, clinical net benefit and AUCs were

estimated for age-genotype models using a leave-one-out cross-validation approach

(Vickers and Elkin, 2006). Concordance was defined as the proportion of correctly

estimated hypertension statuses using several cut-off values for the predicted affec-

tion probability. The clinical net benefit (NB) was defined by

NB(c) =
True positive counts

Sample size
− c

1− c
False positive counts

Sample size

= Sensitivity (% Hypertensive)− c

1− c
(1− Specificity) (% Normotensive)

where c is the chosen threshold for allocating an individual to the cases based on

the logistic regression probability estimate. Note that the net benefit depends on

the hypertension prevalence in the study population. The standard and robust lo-

gistic regression models were also compared based on the integrated discrimination

improvement (IDI) estimated by cross-validation which is defined as
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IDI =

(
1

nA

nA∑
i=1

p̂rob,i −
1

nN

nN∑
j=1

p̂rob,j

)
−

(
1

nA

nA∑
i=1

p̂stand,i −
1

nN

nN∑
j=1

p̂stand,j

)

where p̂rob,i, p̂rob,j, p̂stand,i and p̂stand,j denote the probability estimates from the

robust and standard logistic regression models for cases and controls as well as nA

and nN the number of cases and controls (Pencina et al., 2008). The IDI represents

the difference in the discrimination slopes of the two compared models. A positive

IDI indicates that the robust model discriminates better between hypertensive and

normotensive individuals than the standard model.

2.2.3 Influence of genotyping errors on estimates in simulated

data

For both scenarios described in section 2.1.4, standard and robust logistic regres-

sion with the Huber function was used to estimate genotype odds ratios (ORs). A

value of 1.345 was introduced as tuning constant for the Huber function. To com-

pare standard and robust logistic regression, the relative differences in the genotype

ORs calculated based on standard and robust logistic regression were compared.

Let ∆OR denote this relative difference. Based on preliminary results, a narrow

genotyping error rate grid varying from 0 to 0.05 was additionally evaluated re-

garding |∆ORstand| − |∆ORrob| for a causal allele frequency of 0.13.

2.3 Methods for statistical properties evaluation

applying the Hampel function

Introduction

Logistic regression is an established technique used in genetic case-control associa-

tion studies to investigate the relationship between genetic markers and a disease

of interest simultaneously considering possible confounders. The large sample sizes

required to identify novel low-penetrance susceptibility variants often result in some

study individuals with genotypes and phenotypes departing from the majority of
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the population (outliers). It is well known that outliers strongly influence standard

maximum likelihood estimators. For example, few patients diagnosed unusually

early in life, and also healthy controls of advanced age, may outweigh the bulk

of ’average individuals’ in the calculation of standard probability values, point

estimates and confidence intervals (Sarkar et al., 2011; Wilcox, 1998; Muhlbauer

et al., 2009). Outlier identification can be extremely challenging due to the high-

dimensionality of genetic data, which is often accompanied by reciprocal masking

of outlier effects. Even if outliers can be flagged, outlier definition is always ar-

bitrary and their handling often controversial. Robust statistics aim to estimate

population parameters relying on the majority of the study population. Therefore,

they constitute a valuable alternative to the state of the art outlier identification

and subsequent arbitrary removal.

Standard and robust logistic regression

Logistic regression is a generalisation of the linear regression model. In logistic

regression, the conditional mean of the response variable is linked to a linear com-

bination of explanatory variables (linear predictor), usually via the logit or probit

link functions. The model investigated in the present study is

logit(E[Y ]) = logit(µ) = Xβ + ε

where the n-dimensional vector Y represents the case-control status as response

variable of n individuals, the n×3-dimensional matrix X = (X1, X2, X3) (Xi ∈ Rn)

includes the intercept (X1) and the individual genotype (X2) as well as age (X3)

as explanatory variables, β ∈ R3 is a coefficient vector and ε is an error term. In

standard logistic regression, β is estimated by maximizing the log-likelihood

L(β|Y,X) = Y TXβ −
n∑
i=1

log (1 + exp (Xi·β))

with Xi· denoting the ith row of X. Maximum likelihood estimators of β are found

by solving the equation

∂

∂β
L(β|Y,X) = Y TX −

n∑
i=1

exp (Xi·β)

1 + exp (Xi·β)
Xi·
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Cantoni and Ronchetti’s robust estimator relies on the wider class of M-estimators

of β
n∑
i=1

[
ψ(ri; β, φ, c)w(Xi·)

1√
φνi

µ
′

i − α(β)

]
= 0

where ri represents Pearson residuals

ri =
Yi − µi√
φνi

In particular, for logistic regression

µi = nπi

and

φνi = nπi(1− πi)

with the number of individuals n and the disease probability πi. Other components

of the M-estimator equation are

µ
′

i =
∂µi
∂β

=
∂

∂β
[1 + exp (−Xi·β)]−1 =

exp (−Xi·β)

[1 + exp (−Xi·β)]2
Xi·

and

α(β) =
1

n

n∑
i=1

E [ψ(ri; β, φ, c)]w(Xi·)
1√
φνi

µ
′

i

which is a constant guaranteeing Fisher consistency of the estimator (Cantoni and

Ronchetti, 2001). In the particular case of maximum likelihood estimators,

ψ(ri; β, φ, c) = ri

and

w(Xi·) = 1

for all observations. Different influence functions ψ(ri; β, φ, c) and weight functions

w(Xi·) can be used for robust parameter estimation. Here, the weight function

w(Xi·) =
√

1− hii

with hii the ith diagonal element of the matrix H = X(XTX)−1XT was considered
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although it does not have a high breakdown point. An often used choice with a

high breakdown point is related to the Mahalanobis distance but its use is only

reasonable in case of continuous explanatory variables (Heritier et al., 2009). Dif-

ferent bounded influence functions can be used to constrain outlier influence. In

this study the bounded Huber and the re-descending Hampel function were inves-

tigated (Huber, 1964; Hampel et al., 1986). Tuning constants can be selected to

ensure 95% asymptotic efficiency when used in the Gaussian family with identity

link (i.e. the linear model) in the absence of outliers. Obviously, they do not nec-

essarily yield the 95% asymptotic efficiency in the logistic regression framework.

According to this, a c value equal to 1.345 for the Huber function and the two

(a, b, c) vector values (1.5, 3.5, 8)× 0.9 and (2, 4, 8)× 0.7 corresponding to slopes of

the re-descending part of the Hampel function equal to 1
3

and 1
2
, respectively, were

chosen (Rousseeuw et al., 2012; Koller and Stahel, 2011; Koller and Mächler, 2014).

Computer simulations

Extensive simulations were conducted to examine the impact of differences between

standard and robust GRR estimation on the type I error rate, bias, variance, mean

squared error (MSE) and statistical power (see the data set described in section

2.1.5). The case-control status was regressed on individual genotype and age using

standard and robust logistic regression using the above described influence functions

and tuning constants. Then, standard and robust GRR estimates were compared

with respect to type I error rate, bias, variance, mean squared error (MSE) and

statistical power. The type I error rate was derived as the false positive rate at a

0.05 significance level across null marker loci (Majumdar et al., 2013). The bias of

the GRR estimator was calculated as the difference between the mean estimated

GRR in simulated studies and the true GRR used for simulation. The MSE was

calculated as the sum of the squared bias and the variance of GRR estimates.

Statistical power was estimated as the true positive rate at a 0.05 significance level.

Application to real data

In the data set described in section 2.1.3, genotypes were recoded assuming a reces-

sive penetrance model (homozygous carriers of the minor variant versus others) and

the body hight dichotomised (1 larger than the median, 0 otherwise). Then, the
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dichotomised body height was regressed on individual genotype and age for each

genotype. Standard and robust logistic regression was used with the Huber and the

Hampel functions and the tuning constants described above. Possible influential

observations were identified based on Cook’s distances and methods were compared

with respect to p-values and estimated GRRs.

R code for simulations and analysis of the real data is provided in appendix D on

page 153.
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function into robust generalised

linear models

As mentioned before, one can use the R script provided in the robustbase package

for robust generalised linear models with the Huber function only to account for

outliers in the response variable (R Core Team, 2013; Rousseeuw et al., 2012). Thus,

to use different weighting functions, one must adapt the Fisher consistency correc-

tion and the asymptotic variance according to Cantoni and Ronchetti (2001). The

only part to be evaluated for the Fisher consistency correction is the expectation

E[ν(yi, µi)] which can be rewritten as

E[ν(yi, µi)] =
E[ψ(ri)]

V 1/2(µi)

with the Pearson residuals

ri =
Yi − µi
V 1/2(µi)

(cf. appendix A of Cantoni and Ronchetti (2001)). Hence, one has to derive

E[ψ(ri)] (3.1)

For estimation of the asymptotic variance, one must determine two weighting func-

tion ψ-dependent expressions:

E
[
ψ2 (ri)

]
(3.2)

and

E

[
ψ (ri)

Yi − µi
V (µi)

]
(3.3)

(cf. appendix B of Cantoni and Ronchetti (2001)).
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Due to the structure of the Hampel function (cf. equation (1.9)), one must dis-

tinguish different cases for the Pearson residual value r: r ∈ (−∞,−c] (case D1),

r ∈ (−c,−b] (case C1), r ∈ (−b,−a] (case B1), r ∈ (−a, a) (case A), r ∈ [a, b) (case

B2), r ∈ [b, c) (case C2) or r ∈ [c,∞) (case D2). In the case of case A, it is

−a ≤ j − µi
V 1/2(µi)

≤ a

for a realisation j of a random variable. This is equivalent to

µi − aV 1/2(µi) ≤ j ≤ µi + aV 1/2(µi)

Accordingly, limits to allocate a realisation j of a random variable to a specific case

are

jz1 := bµi − zV 1/2(µi)c and jz2 := bµi + zV 1/2(µi)c

with z ∈ {a, b, c}. For example, the condition ja1 + 1 ≤ j ≤ ja2 for realisation j of

a random variable limits this random variable to case A.

In this chapter, the required calculations for the Fisher consistency correction and

asymptotic variance to use the Hampel function are given for binomial and Poisson

distributed random variables Yi, i = 1, . . . , n (section 3.1). The implementation

in R for the Hampel function follows in section 3.2. To finish the development, a

plausibility check is given in section 3.3 for a first check of the performance of the

implementation.
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3.1 Calculation of Fisher consistency correction and

asymptotic variance

This section is about the calculations of the Fisher consistency correction and the

asymptotic variance. Subsection 3.1.1 provides these calculations for a binomial

distributed random variable with the results in theorems 1-3 on pages 53, 56 and

59. Subsection 3.1.2 provides the same for a Poisson distributed random variable

with the results in theorems 4-6 on pages 61, 63 and 67.

3.1.1 Binomial distributed random variable

Let Yi ∼ Bin(mi, pi), Ỹi ∼ Bin(mi−1, pi) and ˜̃Yi ∼ Bin(mi − 2, pi) be three binomial

distributed random variables related by

j P[Yi = j] = µi P[Ỹi = j] (3.4)

and

j(j − 1) P[Yi = j] = mi(mi − 1)p2i P[ ˜̃Yi = j] (3.5)

Note that

j2 − 2µij = j(j − 1) + j(1− 2µi) (3.6)

Then, it holds for expectation (3.1) to correct for Fisher consistency:

Theorem 1 (Binomial distributed random variable: Fisher consistency correction).

E

[
ψHampel

(
Yi − µi
V 1/2(µi)

)]
=

µi
V 1/2(µi)

(
P
[
ja1 ≤ Ỹi ≤ ja2 − 1

]
− P[ja1 + 1 ≤ Yi ≤ ja2 ]

)
+ a (P[ja2 + 1 ≤ Yi ≤ jb2 ]− P[jb1 + 1 ≤ Yi ≤ ja1 ])

+
a

c− b

{(
c+

µi
V 1/2(µi)

)
P[jb2 + 1 ≤ Yi ≤ jc2 ]

−
(
c− µi

V 1/2(µi)

)
P[jc1 + 1 ≤ Yi ≤ jb1 ]

− µi
V 1/2(µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+ P

[
jc1 ≤ Ỹi ≤ jb1 − 1

])}
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Proof. Expectation (3.1) for the Hampel function equals

mi∑
j=0

 j − µi
V 1/2(µi)

1A + a (1B2 − 1B1) +
c−

∣∣∣ j−µi
V 1/2(µi)

∣∣∣
c− b

a (1C2 − 1C1)

 P[Yi = j] (3.7)

This expression will be calculated in three steps. For case A, one splits the sum

into two sums, i.e.

V −1/2(µi)

(
mi∑
j=0

j P[Yi = j] 1A − µi
mi∑
j=0

P[Yi = j] 1A

)
(3.8)

Allocating realisation j of Yi to the probability P[Yi = j] in the first sum and the

direct derivation of the second sum of the probabilities leads to

µi
V 1/2(µi)

(
mi∑
j=1

P
[
Ỹi = j

]
1A − P[ja1 + 1 ≤ Yi ≤ ja2 ]

)

because the second sum of equation (3.8) equals the probability of Yi having a

realisation according to case A. The remaining sum is equal to the probability of Ỹi

having a realisation between ja1 and ja2−1, i.e. P
[
ja1 ≤ Ỹi ≤ ja2 − 1

]
. Combination

of these results leads to

µi
V 1/2(µi)

(
P
[
ja1 ≤ Ỹi ≤ ja2 − 1

]
− P[ja1 + 1 ≤ Yi ≤ ja2 ]

)
(3.9)

as result for case A. One can directly determine the term for cases B1 and B2 as

the probability of the random variable Yi to have a realisation according to these

two cases. This equals

a · (P[ja2 + 1 ≤ Yi ≤ jb2 ]− P[jb1 + 1 ≤ Yi ≤ ja1 ])

The last remaining term of equation (3.7) is the expression for the cases C1 and

C2. Due to the absolute value of the residuals, one must distinguish between case

C1 and C2 in more detail. First, one splits the sum into one residual-independent

sum and in one residual-dependent sum which results in

a c

c− b

mi∑
j=0

P[Yi = j] (1C2 − 1C1)−
a

c− b

mi∑
j=0

j − µi
V 1/2(µi)

P[Yi = j] (1C2 + 1C1)

54



3.1 Calculation of Fisher consistency correction and asymptotic variance

One directly calculates the residual-independent expression and derives the depen-

dent part similarly to equation (3.9). Hence, this leads to

a c

c− b
(P[jb2 + 1 ≤ Yi ≤ jc2 ]− P[jc1 + 1 ≤ Yi ≤ jb1 ])

− a

c− b
µi

V 1/2(µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+ P

[
jc1 ≤ Ỹi ≤ jb1 − 1

]
− P[jb2 + 1 ≤ Yi ≤ jc2 ]− P[jc1 + 1 ≤ Yi ≤ jb1 ]

)
Then, a slight simplification of the result of these two sums by combining the

prefactors of identical probabilities leads to

a

c− b

{(
c+

µi
V 1/2(µi)

)
P [jb2 + 1 ≤ Yi ≤ jc2 ]

−
(
c− µi

V 1/2(µi)

)
P [jc1 + 1 ≤ Yi ≤ jb1 ]

− µi
V 1/2(µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+ P

[
jc1 ≤ Ỹi ≤ jb1 − 1

])}
Combination of the partial results results in the statement.
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3 Incorporation of the Hampel function into robust generalised linear models

For the first expectation for the asymptotic variance (expectation (3.2)), it is:

Theorem 2 (Binomial distributed random variable: Asymptotic variance I).

E

[
ψ2
Hampel

(
Yi − µi
V 1/2(µi)

)]
=

µ2
i

V (µi)
P[ja1 + 1 ≤ Yi ≤ ja2 ] +

mi (mi − 1) p2i
V (µi)

P
[
ja1 − 1 ≤ ˜̃Yi ≤ ja2 − 2

]
+

(1− 2µi)µi
V (µi)

P
[
ja1 ≤ Ỹi ≤ ja2 − 1

]
+ a2 (P[ja2 + 1 ≤ Yi ≤ jb2 ] + P[jb1 + 1 ≤ Yi ≤ ja1 ])

+
a2

(c− b)2

{[
c+

µi
V 1/2(µi)

]2
P[jb2 + 1 ≤ Yi ≤ jc2 ]

+

[
c− µi

V 1/2(µi)

]2
P[jc1 + 1 ≤ Yi ≤ jb1 ]

+
mi(mi − 1) p2i

V (µi)

(
P
[
jb2 − 1 ≤ ˜̃Yi ≤ jc2 − 2

]
+ P

[
jc1 − 1 ≤ ˜̃Yi ≤ jb1 − 2

])
−
(

2cµi
V 1/2(µi)

− (1− 2µi)µi
V (µi)

)
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+

(
2cµi

V 1/2(µi)
+

(1− 2µi)µi
V (µi)

)
P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]}
Proof. The expectation (3.2) for the Hampel function equals

mi∑
j=0

(
j − µi
V 1/2(µi)

)2

P[Yi = j] 1A + a2
mi∑
j=0

P[Yi = j] (1B2 + 1B1)

+
a2

(c− b)2
mi∑
j=0

(
c− |j − µi|

V 1/2(µi)

)2

P[Yi = j] (1C2 + 1C1)

(3.10)

To calculate the first term, one expands the Pearson residuals and split the sum then

in a j-dependent and a j-independent part. Hence, calculation of the probability

of Yi having realisation j according to case A yields the second part equalling

V −1(µi)

mi∑
j=0

(
j2 − 2µij

)
P[Yi = j] 1A +

µ2
i

V (µi)
P[ja1 + 1 ≤ Yi ≤ ja2 ] (3.11)

Relying on the trick mentioned in equation (3.6), the sum of the first part of

equation (3.11) equals
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3.1 Calculation of Fisher consistency correction and asymptotic variance

V −1(µi)

mi∑
j=0

[j (j − 1) + j (1− 2µi)] P[Yi = j] 1A

which can be calculated to

V −1(µi)

{
mi∑
j=0

j (j − 1) P[Yi = j] 1A + (1− 2µi)

mi∑
j=0

j P[Yi = j] 1A

}

The first summand describes the probability of a random variable ˜̃Yi with mi − 2

trials and probability pi to take the value j. The summand of the second sum

corresponds again to the probability of a random variable Ỹi with mi − 1 trials

and probability pi to take the value j. Considering that mipi equals µi, the sum of

equation (3.11) can be derived as

mi (mi − 1) p2i P[ja1 − 1 ≤ ˜̃Yi ≤ ja2 − 2] + µi(1− 2µi) P[ja1 ≤ Ỹi ≤ ja2 − 1] (3.12)

Combination leads to the final result for the first term of equation (3.10) and this

is

µ2
i

V (µi)
P[ja1 + 1 ≤ Yi ≤ ja2 ] +

mi (mi − 1) p2i
V (µi)

P
[
ja1 − 1 ≤ ˜̃Yi ≤ ja2 − 2

]
+

(1− 2µi)µi
V (µi)

P
[
ja1 ≤ Ỹi ≤ ja2 − 1

] (3.13)

Direct derivation of the second term of equation (3.10) leads to

a2 (P[ja2 + 1 ≤ Yi ≤ jb2 ] + P[jb1 + 1 ≤ Yi ≤ ja1 ])

For the last term of equation (3.10), one splits this term into two sums, one for

each case because of the absolute value of the residuals. So, this results in the

reformulation

a2

(c− b)2

{
mi∑
j=0

(
c− j − µi

V 1/2(µi)

)2

P[Yi = j] 1C2

+

mi∑
j=0

(
c+

j − µi
V 1/2(µi)

)2

P[Yi = j] 1C1

} (3.14)

Only differing regarding their sign of the expression in the squared brackets, one
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3 Incorporation of the Hampel function into robust generalised linear models

gains the second expression directly from the first expression. After extending the

squared expression of the first term, one splits the sum into three sums, i.e.

a2

(c− b)2
mi∑
j=0

([
c+

µi
V 1/2(µi)

]2
− 2 c

V 1/2(µi)
j +

j (j − 2µi)

V (µi)

)
P[Yi = j] 1C2

Based on equations (3.8) and (3.12), this expression equals

a2

(c− b)2

{[
c+

µi
V 1/2(µi)

]2
P[jb2 + 1 ≤ Yi ≤ jc2 ]−

2cµi
V 1/2(µi)

P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+
mi(mi − 1) p2i

V (µi)
P
[
jb2 − 1 ≤ ˜̃Yi ≤ jc2 − 2

]
+

(1− 2µi)µi
V (µi)

P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]}
In the end, one combines the partial results and simplifies somewhat the final result.

This leads to

a2

(c− b)2

{[
c+

µi
V 1/2(µi)

]2
P[jb2 + 1 ≤ Yi ≤ jc2 ]

−
(

2cµi
V 1/2(µi)

− (1− 2µi)µi
V (µi)

)
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+
mi(mi − 1) p2i

V (µi)
P
[
jb2 − 1 ≤ ˜̃Yi ≤ jc2 − 2

]}
Then, the second part of the last term of equation (3.14) equals

a2

(c− b)2

{[
c− µi

V 1/2(µi)

]2
P[jc1 + 1 ≤ Yi ≤ jb1 ]

+

(
2cµi

V 1/2(µi)
+

(1− 2µi)µi
V (µi)

)
P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]
+
mi(mi − 1) p2i

V (µi)
P
[
jc1 − 1 ≤ ˜̃Yi ≤ jb1 − 2

]}
Combination of the partial results results in the statement.
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3.1 Calculation of Fisher consistency correction and asymptotic variance

Finally, for the second expectation for the asymptotic variance (expectation (3.3)),

it holds:

Theorem 3 (Binomial distributed random variable: Asymptotic variance II).

E

[
ψHampel

(
Yi − µi
V 1/2(µi)

)
Yi − µi
V (µi)

]
=

µ2
i

V 3/2(µi)
P[ja1 + 1 ≤ Yi ≤ ja2 ] +

mi (mi − 1) p2i
V 3/2(µi)

P
[
ja1 − 1 ≤ ˜̃Yi ≤ ja2 − 2

]
+

(1− 2µi)µi
V 3/2(µi)

P
[
ja1 ≤ Ỹi ≤ ja2 − 1

]
+

a µi
V (µi)

(
P
[
ja2 ≤ Ỹi ≤ jb2 − 1

]
− P[ja2 + 1 ≤ Yi ≤ jb2 ]

−P
[
jb1 ≤ Ỹi ≤ ja1 − 1

]
+ P[jb1 + 1 ≤ Yi ≤ ja1 ]

)
+

a c µi
(c− b)V (µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
− P[jb2 + 1 ≤ Yi ≤ jc2 ]

−P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]
+ P[jc1 + 1 ≤ Yi ≤ jb1 ]

)
− a

(c− b)V 3/2(µi)

{
µ2
i (P[jb2 + 1 ≤ Yi ≤ jc2 ] + P[jc1 + 1 ≤ Yi ≤ jb1 ])

+mi (mi − 1) p2i

(
P
[
jb2 − 1 ≤ ˜̃Yi ≤ jc2 − 2

]
+ P

[
jc1 − 1 ≤ ˜̃Yi ≤ jb1 − 2

])
+(1− 2µi)µi

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+ P

[
jc1 ≤ Ỹi ≤ jb1 − 1

])}
Proof. Expectation (3.3) for the Hampel function equals

mi∑
j=0

(j − µi)2

V 3/2(µi)
P [Yi = j] 1A +

a

V (µi)

mi∑
j=0

(j − µi) P [Yi = j] (1B2 − 1B1)

+
a

c− b

mi∑
j=0

(
c−

∣∣∣∣ j − µiV 1/2(µi)

∣∣∣∣) j − µi
V (µi)

P [Yi = j] (1C2 − 1C1)

(3.15)

One directly deduces the first two terms from equations (3.13) and (3.9). One also

derives the third term from these two equations after reformulation of this term,

this implies splitting the sum into two sums. Hence, splitting the third term leads

to
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3 Incorporation of the Hampel function into robust generalised linear models

a c

(c− b)V (µi)

mi∑
j=0

(j − µi) P [Yi = j] (1C2 − 1C1)

− a

(c− b)V 3/2(µi)

mi∑
j=0

(j − µi)2 P [Yi = j] (1C2 + 1C1)

Application of equations (3.9) and (3.13) results in

a c µi
(c− b)V (µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
− P[jb2 + 1 ≤ Yi ≤ jc2 ]

−P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]
+ P[jc1 + 1 ≤ Yi ≤ jb1 ]

)
− a

(c− b)V 3/2(µi)

{
µ2
i (P[jb2 + 1 ≤ Yi ≤ jc2 ] + P[jc1 + 1 ≤ Yi ≤ jb1 ])

+mi (mi − 1) p2i

(
P
[
jb2 − 1 ≤ ˜̃Yi ≤ jc2 − 2

]
+ P

[
jc1 − 1 ≤ ˜̃Yi ≤ jb1 − 2

])
+(1− 2µi)µi

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+ P

[
jc1 ≤ Ỹi ≤ jb1 − 1

])}
Combination of the partial results results in the statement.

3.1.2 Poisson distributed random variable

For the Poisson distribution, one performs the same calculations as for the binomial

distribution. One derives the sums in a different manner caused by the different

definition of the probability function. So, assume Yi ∼ Poi(µi) with E[Yi] = V[Yi] =

µi. Although expectation and variance are equal, they will not be cancelled during

the calculations. Note for a realisation j of Yi that

j P [Yi = j] = µi · P [Yi = j − 1] (3.16)

and

j(j − 1) P [Yi = j] = µ2
i · P [Yi = j − 2] (3.17)
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3.1 Calculation of Fisher consistency correction and asymptotic variance

Then, it holds for expectation (3.1) to correct for Fisher consistency:

Theorem 4 (Poisson distributed random variable: Fisher consistency correction).

E

[
ψHampel

(
Yi − µi
V 1/2(µi)

)]
=

µi
V 1/2(µi)

{
P[Yi = ja1 ]− P[Yi = ja2 ]−

a

c− b
(P[Yi = jb2 ]− P[Yi = jc2 ]

+ P[Yi = jc1 ]− P[Yi = jb1 ])

}
+ a

{
P[ja2 + 1 ≤ Yi ≤ jb2 ]− P[jb1 + 1 ≤ Yi ≤ ja1 ]

+
c

c− b
(P[jb2 + 1 ≤ Yi ≤ jc2 ]− P[jc1 + 1 ≤ Yi ≤ jb1 ])

}
Proof. Expectation (3.1) for the Hampel function equals

ja2∑
j=ja1+1

j − µi
V 1/2(µi)

P[Yi = j] + a

 jb2∑
j=ja2+1

P[Yi = j]−
ja1∑

j=jb1+1

P[Yi = j]


+

a

c− b


jc2∑

j=jb2+1

(
c− j − µi

V 1/2(µi)

)
P[Yi = j]

−
jb1∑

j=jc1+1

(
c+

j − µi
V 1/2(µi)

)
P[Yi = j]


(3.18)

Splitting the first sum results in

V −1/2(µi)

 ja2∑
j=ja1+1

j P[Yi = j]−
ja2∑

j=ja1+1

µi P[Yi = j]


Settling the probability with the sum index according to equation (3.16) compen-

sated by adjusting the sum indices leads to

V −1/2(µi)

(
µi

j2−1∑
j=j1

P[Yi = j]− µi
j2∑

j=j1+1

P[Yi = j]

)

Allocation of the two sums with respect to their indices results in
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3 Incorporation of the Hampel function into robust generalised linear models

µi
V 1/2(µi)

(P[Yi = ja1 ]− P[Yi = ja2 ]) (3.19)

Direct derivation of the second part of equation (3.18) leads to

a (P[ja2 + 1 ≤ Yi ≤ jb2 ]− P[jb1 + 1 ≤ Yi ≤ ja1 ])

Excluding a
c−b from the third part of equation (3.18) and splitting its first sum into

two sums lead to a sum of probabilities of Yi having a realisation in the interval

[jb2 + 1, jc2 ] and a second sum similar to the first sum of equation (3.18). Hence,

the first sum of the third part equals

a

c− b

{
cP[jb2 + 1 ≤ Yi ≤ jc2 ]−

µi
V 1/2(µi)

(P[Yi = jb2 ]− P[Yi = jc2 ])

}
With respect to different signs of the two sums of the third part, it follows for its

second sum by adjusting for these signs

− a

c− b

{
cP[jc1 + 1 ≤ Yi ≤ jb1 ] +

µi
V 1/2(µi)

(P[Yi = jc1 ]− P[Yi = jb1 ])

}
So, the calculation of equation (3.18) results in

µi
V 1/2(µi)

(P[Yi = ja1 ]− P[Yi = ja2 ])

+ a (P[ja2 + 1 ≤ Yi ≤ jb2 ]− P[jb1 + 1 ≤ Yi ≤ ja1 ])

+
a

c− b

{
cP[jb2 + 1 ≤ Yi ≤ jc2 ]−

µi
V 1/2(µi)

(P[Yi = jb2 ]− P[Yi = jc2 ])

}
− a

c− b

{
cP[jc1 + 1 ≤ Yi ≤ jb1 ] +

µi
V 1/2(µi)

(P[Yi = jc1 ]− P[Yi = jb1 ])

}
Combination of the partial results leads to the statement.
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3.1 Calculation of Fisher consistency correction and asymptotic variance

For the first expectation for the asymptotic variance (expectation (3.2)), it is

Theorem 5 (Poisson distributed random variable: Asymptotic variance I).

E

[
ψ2
Hampel

(
Yi − µi
µi

)]
=

µ2
i

V (µi)

{
P[Yi = ja1 − 1]− P[Yi = ja2 − 1]− P[Yi = ja1 ] + P[Yi = ja2 ]

+
a2

(c− b)2
(P[Yi = jb2 − 1]− P[Yi = jc2 − 1]− P[Yi = jb2 ] + P[Yi = jc2 ]

+ P[Yi = jc1 − 1]− P[Yi = jb1 − 1]− P[Yi = jc1 ] + P[Yi = jb1 ])

}
+

µi
V (µi)

[
P[ja1 ≤ Yi ≤ ja2 − 1]

+
a2

(c− b)2
(P[ja1 ≤ Yi ≤ ja2 − 1] + P[jc1 ≤ Yi ≤ jb1 − 1])

]
+ a2

[
P[ja2 + 1 ≤ Yi ≤ jb2 ] + P[jb1 + 1 ≤ Yi ≤ ja1 ]

+
c2

(c− b)2
(P[jb2 + 1 ≤ Yi ≤ jc2 ] + P[jc1 + 1 ≤ Yi ≤ jb1 ])

]
− 2cµi
V 1/2(µi)

a2

(c− b)2
(P[Yi = jb2 ]− P[Yi = jc2 ]− P[Yi = jc1 ] + P[Yi = jb1 ])

Proof. Expectation (3.2) for the Hampel function equals

ja2∑
j=ja1+1

(j − µi)2

V (µi)
P[Yi = j] + a2

 jb2∑
j=ja2+1

P[Yi = j] +

ja1∑
j=jb1+1

P[Yi = j]


+

a2

(c− b)2


jc2∑

j=jb2+1

(
c− j − µi

V 1/2(µi)

)2

P[Yi = j]

+

jb1∑
j=jc1+1

(
c+

j − µi
V 1/2(µi)

)2

P[Yi = j]


(3.20)

The calculations for this expression will be performed separately. One splits the

first sum as usual into three sums which leads to
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3 Incorporation of the Hampel function into robust generalised linear models

V −1(µi)


ja2∑

j=ja1+1

j(j − 1) P[Yi = j] + (1− 2µi)

ja2∑
j=ja1+1

j P[Yi = j]

+µ2
i

ja2∑
j=ja1+1

P[Yi = j]


Using equations (3.16) and (3.17), it follows

V −1(µi)
{
µ2
i P[ja1 − 1 ≤ Yi ≤ ja2 − 2] + (1− 2µi)µi P[ja1 ≤ Yi ≤ ja2 − 1]

+µ2
i P[ja1 + 1 ≤ Yi ≤ ja2 ]

}
and equals rewritten

µ2
i

V (µi)
{P[ja1 − 1 ≤ Yi ≤ ja2 − 2]− 2 P[ja1 ≤ Yi ≤ ja2 − 1] + P[ja1 + 1 ≤ Yi ≤ ja2 ]}

+
µi

V (µi)
P[ja1 ≤ Yi ≤ ja2 − 1]

(3.21)

One allocates probabilities with a coefficient of µ2
i to each other so that there will

not be anymore a probability for a realisation within an interval but equalling a

specific value because

P[ja1 − 1 ≤ Yi ≤ ja2 − 2]− 2 P[ja1 ≤ Yi ≤ ja2 − 1] + P[ja1 + 1 ≤ Yi ≤ ja2 ]

equals

(P[ja1 − 1 ≤ Yi ≤ ja2 − 2]− P[ja1 ≤ Yi ≤ ja2 − 1])

+ (P[ja1 + 1 ≤ Yi ≤ ja2 ]− P[ja1 ≤ Yi ≤ ja2 − 1])

Writing the probabilities as finite sums leads to ja2−2∑
j=ja1−1

P[Yi = j]−
ja2−1∑
j=ja1

P[Yi = j]

+

 ja2∑
j=ja1+1

P[Yi = j]−
ja2−1∑
j=ja1

P[Yi = j]


Allocation results in
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3.1 Calculation of Fisher consistency correction and asymptotic variance

(P[Yi = ja1 − 1]− P[Yi = ja2 − 1]) + (P[Yi = ja2 ]− P[Yi = ja1 ]) (3.22)

Hence, one simplifies expression (3.21) to

µ2
i

V (µi)
{P[Yi = ja1 − 1]− P[Yi = ja2 − 1]− P[Yi = ja1 ] + P[Yi = ja2 ]}

+
µi

V (µi)
P[ja1 ≤ Yi ≤ ja2 − 1]

(3.23)

The sums between the round brackets of equation (3.20) directly equal

a2 (P[ja2 + 1 ≤ Yi ≤ jb2 ] + P[jb1 + 1 ≤ Yi ≤ ja1 ])

The sums in the curly brackets of equation (3.20) only differ in the sign. So,

one directly deduces this second sum from this first sum. This first sum will be

calculated now. One splits the sum into three sums leading to

a2

(c− b)2

c2
jc2∑

j=jb2+1

P[Yi = j]− 2c

jc2∑
j=jb2+1

j − µi
V 1/2(µi)

P[Yi = j]

+

jc2∑
j=jb2+1

(j − µi)2

V (µi)
P[Yi = j]


One either directly calculates or deduces these sums from previous calculations.

The first sum equals

c2 P[jb2 + 1 ≤ Yi ≤ jc2 ]

Using the results of the first part of equation (3.18) for the second sum, it follows

−2c
µi

V 1/2(µi)
(P[Yi = jb2 ]− P[Yi = jc2 ])

Deduction of the third sum from the expression of the first line of equation (3.20)

leads to

µ2
i

V (µi)
(P[Yi = jb2 − 1]− P[Yi = jc2 − 1]− P[Yi = jb2 ] + P[Yi = jc2 ])

+
µi

V (µi)
P[jb2 ≤ Yi ≤ jc2 − 1]
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3 Incorporation of the Hampel function into robust generalised linear models

Combination of these results leads to the value of the forth sum of equation (3.20)

and this is

a2

(c− b)2

{
c2 P[jb2 + 1 ≤ Yi ≤ jc2 ]− 2c

µi
V 1/2(µi)

(P[Yi = jb2 ]− P[Yi = jc2 ])

+
µ2
i

V (µi)
(P[Yi = jb2 − 1]− P[Yi = jc2 − 1]− P[Yi = jb2 ] + P[Yi = jc2 ])

+
µi

V (µi)
P[jb2 ≤ Yi ≤ jc2 − 1]

}
One deduces the last sum of equation (3.20) from the previously calculated sum.

Then, this sum equals

a2

(c− b)2

{
c2 P[jc1 + 1 ≤ Yi ≤ jb1 ] + 2c

µi
V 1/2(µi)

(P[Yi = jc1 ]− P[Yi = jb1 ])

+
µ2
i

V (µi)
(P[Yi = jc1 − 1]− P[Yi = jb1 − 1]− P[Yi = jc1 ] + P[Yi = jb1 ])

+
µi

V (µi)
P[jc1 ≤ Yi ≤ jb1 − 1]

}
Summing up the partial results and simplification lead to the statement.
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3.1 Calculation of Fisher consistency correction and asymptotic variance

For the second expectation for the asymptotic variance (expectation (3.3)), it holds:

Theorem 6 (Poisson distributed random variable: Asymptotic variance II).

E

[
ψHampel

(
Yi − µi
V 1/2(µi)

)
Yi − µi
V (µi)

]
=

µ2
i

V 3/2(µi)

{
P[Yi = ja1 − 1]− P[Yi = ja2 − 1]− P[Yi = ja1 ] + P[Yi = ja2 ]

− a

c− b
(P[Yi = jb2 − 1]− P[Yi = jc2 − 1]− P[Yi = jb2 ] + P[Yi = jc2 ]

+ P[Yi = jc1 − 1]− P[Yi = jb1 − 1]− P[Yi = jc1 ] + P[Yi = jb1 ])

}
+

µi
V 3/2(µi)

{
P[ja1 ≤ Yi ≤ ja2 − 1]

− a

c− b
(P[jb2 ≤ Yi ≤ jc2 − 1] + P[jc1 ≤ Yi ≤ jb1 − 1])

}
+

aµi
V (µi)

{
P[Yi = ja2 ]− P[Yi = jb2 ]− P[Yi = jb1 ] + P[Yi = ja1 ]

+
c

c− b
(P[Yi = jb2 ]− P[Yi = jc2 ]− P[Yi = jc1 ] + P[Yi = jb1 ])

}

Proof. Expectation (3.3) for the Hampel function equals

ja2∑
j=ja1+1

(j − µi)2

V 3/2(µi)
P[Yi = j]

+
a

V (µi)

 jb2∑
j=ja2+1

(j − µi) P[Yi = j]−
ja1∑

j=jb1+1

(j − µi) P[Yi = j]


+

a

(c− b)V (µi)

 jc2∑
j=jb2+1

(
c− j − µi

V 1/2(µi)

)
(j − µi) P[Yi = j]

−
jb1∑

j=jc1+1

(
c+

j − µi
V 1/2(µi)

)
(j − µi) P[Yi = j]



(3.24)

The first sum equals (cf. equation (3.23))

µ2
i

V 3/2(µi)
{P[Yi = ja1 − 1]− P[Yi = ja2 − 1]− P[Yi = ja1 ] + P[Yi = ja2 ]}

+
µi

V 3/2(µi)
P[ja1 ≤ Yi ≤ ja2 − 1]
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3 Incorporation of the Hampel function into robust generalised linear models

and one rewrites the next two sums deduced from equation (3.19) as

aµi
V (µi)

(P[Yi = ja2 ]− P[Yi = jb2 ]− P[Yi = jb1 ] + P[Yi = ja1 ])

Reordering the last two sums of equation (3.24) leads to

a

(c− b)V (µi)

c
 jc2∑
j=jb2+1

(j − µi) P[Yi = j]−
jb1∑

j=jc1+1

(j − µi) P[Yi = j]


−V −1/2(µi)

 jc2∑
j=jb2+1

(j − µi)2 P[Yi = j] +

jb1∑
j=jc1+1

(j − µi)2 P[Yi = j]


Using the results of the first expression in equations (3.18) and (3.20) now, the

desired expression is equal to

a

(c− b)V (µi)

{
cµi (P[Yi = jb2 ]− P[Yi = jc2 ]− P[Yi = jc1 ] + P[Yi = jb1 ])

−
[

µ2
i

V 1/2(µi)
(P[Yi = jb2 − 1]− P[Yi = jc2 − 1]− P[Yi = jb2 ]

+ P[Yi = jc2 ] + P[Yi = jc1 − 1]− P[Yi = jb1 − 1]− P[Yi = jc1 ] + P[Yi = jb1 ])

+
µi

V 1/2(µi)
(P[jb2 ≤ Yi ≤ jc2 − 1] + P[jc1 ≤ Yi ≤ jb1 − 1])

]}
Combination of the partial results and simplification lead to the statement.
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3.2 Implementation in R

After the theoretical preparation of the expressions required for implementing the

Hampel function, the topic of this section is the practical implementation in R

exactly orientated on the glmrobMqle.R file of the package robustbase version

0.9-8 (Date: 14/06/2013). First, general adjustments are given in section 3.2.1

followed by the sections concerning the changes needed for binomial and Poisson

distributed random variables (sections 3.2.2 and 3.2.3). One has to place all code

sections exactly where they can be found in the original file for the Huber function.

Afterwards, one must install the package as a whole under a modified name. For

further instructions see supplemental chapter D on page 153.

3.2.1 General adjustments

In all calculated expectations, there are probabilities to derive. These probabilities

always depend on the limits given by the definition of the Hampel function. These

values are the same for both distributions. Hence, one can define them earlier. The

values for the Hampel function are given in R language by

Ha <- floor(mu*ni -tcc [1]*sni*sV); Ka <- floor(mu*ni+tcc [1]*sni*sV);

Hb <- floor(mu*ni -tcc [2]*sni*sV); Kb <- floor(mu*ni+tcc [2]*sni*sV);

Hc <- floor(mu*ni -tcc [3]*sni*sV); Kc <- floor(mu*ni+tcc [3]*sni*sV);

The aim of Cantoni and Ronchetti (2001) was to solve the estimation equation (1.6)

which was

0 =
n∑
i=1

[ν(yi, µi)w(xi)µ
′
i − α(β)]

In comparing the sum of this equation and the α function by substituting the α

function in the estimation equation, i.e.

0 =
n∑
i=1

[
ν(yi, µi)w(xi)µ

′
i −

1

n

n∑
j=1

E[ν(yj, µj)]w(xj)µ
′
j

]

one observes that most of their arguments are the same. The second summand is

independent of i and hence the right side of this equation equals
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3 Incorporation of the Hampel function into robust generalised linear models

n∑
i=1

ν(yi, µi)w(xi)µ
′
i − n

1

n

n∑
j=1

E[ν(yj, µj)]w(xj)µ
′
j

which is the same as

n∑
i=1

(ν(yi, µi)− E[ν(yi, µi)])w(xi)µ
′
i

ν(yi, µi) is equal to the ψ function divided by the square root of the variance of µi

and so this expression equals

n∑
i=1

(ψ(yi, µi)− E[ψ(yi, µi)])
w(xi)µ

′
i

V 1/2(µi)

Hence, the only part to be adjusted for the Hampel function is the expression

ψ(yi, µi)−E[ψ(yi, µi)]. The expectation is different for binomial and Poisson distri-

bution and will be implemented later on in the adequate sections. But nevertheless,

the calculations can be prepared by defining the difference using for the expectation

an expression that will be called up in the programme. So, call this difference

cpsi and write it in R as

cpsi <-

ifelse ((0<=abs(residPS )) & (abs(residPS)<tcc[1]), residPS ,

ifelse ((tcc[1]<=abs(residPS )) & (abs(residPS)<tcc[2]),

sign(residPS)*tcc[1],

ifelse ((tcc[2]<=abs(residPS )) & (abs(residPS)<tcc[3]),

sign(residPS)*tcc [1]*(tcc[3]-abs(residPS ))/(tcc[3]-tcc[2]),

0))) - eval(Epsi)

where Epsi indicates the expectation of E [ψHampel (ri)] with Pearson residual ri.

The last general step will be the adjustment of the residual weights wr. Therefore,

consider that these weights are given by ψHampel(r)/r (Fox and Weisberg, 2011).

Thus,

wr =



1 if |r| < a

a
|r| if a ≤ |r| < b

(c−|r|) a
(c−b) |r| if b ≤ |r| < c

0 otherwise

Hence, the modified R code is
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3.2 Implementation in R

w.r <- ifelse(abs(residPS)<tcc[1], 1,

ifelse ((tcc[1]<=abs(residPS )) & (abs(residPS)<tcc[2]),

tcc [1]/abs(residPS),

ifelse ((tcc[2]<=abs(residPS )) & (abs(residPS)<tcc[3]),

(tcc[3]-abs(residPS ))/(tcc[3]-tcc [2])*tcc[1]/abs(residPS),

0)))

3.2.2 Adjustments for a binomial distributed random variable

The binomial distribution-specific adjustments are the three needed expectations.

First, define the probabilities needed for the expectations as

EpsiBin.init <- expression ({

# P[Y_i <= j_z2]

pKa <- pbinom(Ka , ni , mu); pKb <- pbinom(Kb , ni , mu);

pKc <- pbinom(Kc , ni , mu)

# P[Y_i <= j_z1]

pHa <- pbinom(Ha , ni , mu); pHb <- pbinom(Hb , ni , mu);

pHc <- pbinom(Hc , ni , mu)

# P[Y_i~ <= j_z2 -1]

pKam1 <- pbinom(Ka -1, pmax.int(0, ni -1), mu)

pKbm1 <- pbinom(Kb -1, pmax.int(0, ni -1), mu)

pKcm1 <- pbinom(Kc -1, pmax.int(0, ni -1), mu)

# P[Y_i~ <= j_z1 -1]

pHam1 <- pbinom(Ha -1, pmax.int(0, ni -1), mu)

pHbm1 <- pbinom(Hb -1, pmax.int(0, ni -1), mu)

pHcm1 <- pbinom(Hc -1, pmax.int(0, ni -1), mu)

# P[Y_i~~ <= j_z2 -2]

pKam2 <- pbinom(Ka -2, pmax.int(0, ni -2), mu)

pKbm2 <- pbinom(Kb -2, pmax.int(0, ni -2), mu)

pKcm2 <- pbinom(Kc -2, pmax.int(0, ni -2), mu)

# P[Y_i~~ <= j_z1 -2]

pHam2 <- pbinom(Ha -2, pmax.int(0, ni -2), mu)

pHbm2 <- pbinom(Hb -2, pmax.int(0, ni -2), mu)

pHcm2 <- pbinom(Hc -2, pmax.int(0, ni -2), mu)

})

Write the expectation of the Hampel function with respect to the Pearson residuals

for the Fisher consistency correction as

EpsiBin <- expression ({
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3 Incorporation of the Hampel function into robust generalised linear models

tcc [1]*(pKb -pKa -pHa+pHb) +

tcc [1]*tcc[3]/(tcc[3]-tcc [2])*(pKc -pKb -pHb+pHc) +

(pKam1 -pHam1 -pKa+pHa)*mu*sni/sV -

tcc [1]/(tcc[3]-tcc [2])*((pKcm1 -pKbm1 -pKc+pKb)*mu*sni/sV +

(pHbm1 -pHcm1 -pHb+pHc)*mu*sni/sV)

})

The first expectation for the asymptotic variance is the expectation of the squared

Hampel function with respect to the Pearson residuals. This is equal to

Epsi2Bin <- expression ({

tcc [1]*tcc[1]*(pKb -pKa+pHa -pHb) +

tcc [1]*tcc[1]*tcc[3]*tcc[3]/(tcc[3]-tcc [2])/(tcc[3]-tcc [2])*

(pKc -pKb+pHb -pHc) +

mu*mu*ni/Vmu*(pKa -pHa) +

tcc [1]*tcc[1]/(tcc[3]-tcc [2])/(tcc[3]-tcc [2])*mu*mu*ni/Vmu*

(pKc -pKb+pHb -pHc) +

mu/Vmu*(ni -1)*mu*(pKam2 -pHam2) +

tcc [1]*tcc[1]/(tcc[3]-tcc [2])/(tcc[3]-tcc [2])*mu/Vmu*(ni -1)*

mu*((pKcm2 -pKbm2 )+(pHbm2 -pHcm2)) +

mu/Vmu*(1-2*mu*ni)*(pKam1 -pHam1) +

tcc [1]*tcc[1]/(tcc[3]-tcc [2])/(tcc[3]-tcc [2])*mu/Vmu*

(1-2*mu*ni)*((pKcm1 -pKbm1 )+(pHbm1 -pHcm1)) -

tcc [1]*tcc[1]/(tcc[3]-tcc [2])/(tcc[3]-tcc [2])*2*tcc[3]*

((pKcm1 -pKbm1 -pKc+pKb)*mu*sni/sV -(pHbm1 -pHcm1 -pHb+pHc)*

mu*sni/sV)

})

The second expectation for the asymptotic variance is the expectation of the Ham-

pel function with respect to the Pearson residuals multiplied by the Pearson resid-

uals divided by the square root of the variance of µi. This equals

EpsiSBin <- expression ({

Q2V + ifelse(ni==0, 0, Q1V/sni/sV)

})

where

Q1V <- mu*mu*ni/Vmu*(pKa -pHa) -

tcc [1]/(tcc[3]-tcc [2])*mu*mu*ni/Vmu*(pKc -pKb+pHb -pHc) +

mu*mu*(ni -1)/Vmu*(pKam2 -pHam2) -

tcc [1]/(tcc[3]-tcc [2])*mu*mu*(ni -1)/Vmu*

((pKcm2 -pKbm2 )+(pHbm2 -pHcm2)) +
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3.2 Implementation in R

mu/Vmu*(1-2*mu*ni)*(pKam1 -pHam1) -

tcc [1]/(tcc[3]-tcc [2])*mu/Vmu*(1-2*mu*ni)*

((pKcm1 -pKbm1 )+(pHbm1 -pHcm1))

and

Q2V <- tcc[1]*((pKbm1 -pKam1 -pKb+pKa)*mu/Vmu -

(pHam1 -pHbm1 -pHa+pHb)*mu/Vmu) +

tcc [1]*tcc[3]/(tcc[3]-tcc [2])*

((pKcm1 -pKbm1 -pKc+pKb)*mu/Vmu -(pHbm1 -pHcm1 -pHb+pHc)*mu/Vmu)

One must include the calculations of Q1V and Q2V in EpsiBin.init.

3.2.3 Adjustments for a Poisson distributed random variable

The required probabilities are

EpsiPois.init <- expression ({

# P[Y_i = j_z1]

dpHa <- dpois(Ha , mu); dpHb <- dpois(Hb , mu);

dpHc <- dpois(Hc , mu)

# P[Y_i = j_z2]

dpKa <- dpois(Ka , mu); dpKb <- dpois(Kb , mu);

dpKc <- dpois(Kc , mu)

# P[Y_i = j_z1 -1]

dpHa1 <- dpois(Ha -1, mu); dpHb1 <- dpois(Hb -1, mu);

dpHc1 <- dpois(Hc -1, mu)

# P[Y_i = j_z2 -1]

dpKa1 <- dpois(Ka -1, mu); dpKb1 <- dpois(Kb -1, mu);

dpKc1 <- dpois(Kc -1, mu)

# P[Y_i <= j_z1 -1]

pHam1 <- ppois(Ha -1, mu); pHbm1 <- ppois(Hb -1, mu);

pHcm1 <- ppois(Hc -1, mu)

# P[Y_i <= j_z2 -1]

pKam1 <- ppois(Ka -1, mu); pKbm1 <- ppois(Kb -1, mu);

pKcm1 <- ppois(Kc -1, mu)

# P[Y_i <= j_z1]

pHa <- pHam1 + dpHa; pHb <- pHbm1 + dpHb;

pHc <- pHcm1 + dpHc

# P[Y_i <= j_z2]

pKa <- pKam1 + dpKa; pKb <- pKbm1 + dpKb;

pKc <- pKcm1 + dpKc
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3 Incorporation of the Hampel function into robust generalised linear models

})

Implement the expectation needed for Fisher consistency as

EpsiPois <- expression ({

mu/sV*(dpHa -dpKa -tcc [1]/(tcc[3]-tcc [2])*(dpKb -dpKc+dpHc -dpHb ))+

tcc [1]*(pKb -pKa -pHa+pHb + tcc[3]/(tcc[3]-tcc [2])*

(pKc -pKb -pHb+pHc))

})

The two expectations for the asymptotic variance are

Epsi2Pois <- expression ({

mu*(dpHa1 -dpKa1 -dpHa+dpKa +

tcc [1]/(tcc[3]-tcc [2])*tcc[1]/(tcc[3]-tcc [2])*

(dpKb1 -dpKc1 -dpKb+dpKc+dpHc1 -dpHb1 -dpHc+dpHb)) +

(pKam1 -pHam1 +

tcc [1]/(tcc[3]-tcc [2])*tcc[1]/(tcc[3]-tcc [2])*

(pKam1 -pHam1+pHbm1 -pHcm1 )) -

tcc [1]*tcc[1]*(pKb -pKa+pHa -pHb +

tcc [3]/(tcc[3]-tcc [2])*tcc[3]/(tcc[3]-tcc [2])*

(pKc -pKb+pHb -pHc)) -

2*tcc[3]*mu/sV*tcc[1]/(tcc[3]-tcc [2])*tcc[1]/

(tcc[3]-tcc [2])*(dpKb -dpKc -dpHc+cpHb)

})

and

EpsiSPois <- expression ({

mu/sV*(dpHa1 -dpKa1 -dpHa+dpKa - tcc [1]/(tcc[3]-tcc [2])*

(dpKb1 -dpKc1 -dpKb+dpKc+dpHc1 -dpHb1 -dpHc+dpHb)) +

1/sV*(pKam1 -pHam1 -

tcc [1]/(tcc[3]-tcc [2])*(pKcm1 -pKbm1+pHbm1 -pHcm1)) +

tcc [1]*(dpKa -dpKb -dpHb+dpHa +

tcc [3]/(tcc[3]-tcc [2])*(dpKb -dpKc -dpHc+dpHb))

})
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3.3 Plausibility check

To verify the developed approach and its implementation in R, one can check its

outlier control and compare it to the use of the Huber function as well as to standard

logistic regression. In the first step, logistic regression was evaluated. There, by

checking for plausibility, the lack of robustness of standard genotype relative risk

(GRR) estimators against single cases and controls in relatively large association

studies were also illustrated and the bounded influence of outliers on robust GRR

estimates depicted. Let the logistic regression model

case/control ∼ ∃variant + age

describe the relation between the case-control status and two explaining variables

(existence of a genetic variant and age). In order to examine the influence of sin-

gle outliers on standard and robust estimators of the GRR, a 1000 case / 1000

control study investigating a rare variant was simulated with a minor allele fre-

quency (MAF) of 0.0075 and a dominant GRR equal to 1.84. In a dominant

genetic model, the genotypes are coded 0 or 1 indicating whether the genotype

comprises at least one causal allele. The two genetic parameters were chosen

in consistency with the moderate-penetrance breast cancer susceptibility variant

CHEK2*1100delC (Meijers-Heijboer et al., 2002). Hypothetical outliers were mim-

icked by single cases and controls aged between 0 and 125 years who carried the

high-risk variant. Standard and robust logistic regression models with Huber and

Hampel influence functions were fitted to the baseline data set with 2000 individuals

and to the extended data sets with 2001 individuals. The corresponding standard

and robust odds ratios (ORs) were used as GRR estimates. In this context, the

curves of the influenced standard and robust estimates are of special interest. Stan-

dard estimates can be influenced without any bound. By comparison, bounded and

re-descending estimators limit the outlier influence to a pre-specified amount. In

the latter case, the influence is cancelled if the outlier strength exceeds the defined

limits. The estimate curves have to represent these characteristics and figure 7

shows results from this small simulation exercise.
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Figure 7: Influence of outliers on standard and robust estimates of the genotype
relative risk (GRR). The influence was examined by including single cases
and controls that carried the high-risk variant to the baseline data set with
1000 cases and 1000 controls, a dominant GRR of about 2 and a minor
allele frequency (MAF) of 0.0075. The fitted logistic regression model
was disease status (case/control) explained by genotype and age. The
tuning constants were for the Huber function 1.345 and for the Hampel
function (1.5, 3.5, 8)× 0.9.

For example, one single case diagnosed at age 25 years who carried the high-risk

variant increased the estimated standard GRR from approximately 1.70 (1000 cases

and 1000 controls) to 2.40 (study with 2001 individuals). The influence of the same

single case was less accentuated on robust GRR estimates. The GRR increased to

around 1.9 (2.0) when the Hampel (Huber) influence function was used. Note that

the influence of single outliers on standard GRR estimates was unbounded. By
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contrast, the larger the departure of the outlier from the bulk of the study popula-

tion, the smaller its influence on robust GRR estimates. Summarising, additional

observations aged between 45 and 80 years were better handled by standard than by

robust logistic regression. Outside this range, robust regression is less influenced by

departing observations. The difference between standard and robust logistic regres-

sion heavily increases with increasing outlier strength. Furthermore, the Hampel

function controls the outlier influence even better than the Huber function. Thus,

the incorporation of the Hampel function resulted in a clear improvement for ex-

treme outliers in both additional cases and controls.

For consideration of Poisson regression, 1000 Poisson distributed random variables

were simulated for several Poisson parameter λ to create the response variable y,

λ ∈ {10, 50, 100, 250}. The independent variable x was calculated as

x =
log(y)− βInt

βx

with regression coefficients βInt = 0 and βx = 10. Hence, the true regression

coefficient for x equals 10 and the intercept is 0. Hypothetical outliers were

mimicked by single observations defined by the tuples (max(x),max(y) + i) with

i ∈ {1, 2, . . . , 100}. Standard and robust logistic regression models with Huber and

Hampel influence functions were fitted to the baseline data set with 1000 observa-

tions and to the extended data sets with 1001 observations. Results are shown in

figure 8. Again, robust methods controlled the influence of departing observations

whereas the standard estimates increased without any bounds. Once again, the

use of the Hampel function reflected the characteristic of a re-descending weighting

function. Figure 8 demonstrates that, in case of the existence of a highly influential

outlier, both robust estimates were more reliable because the outlier influence was

bounded. In absence of outlying observations the accuracy of both robust Poisson

regression methods depended on the underlying distribution although the response

was perfectly Poisson distributed and the explanatory variable was exactly log-

linear related with the response. This underestimation of the slope by the robust

methods decreased with increasing Poisson parameter λ. The robust approaches

overestimated the intercept for λ equal to 10 and 50. The standard Poisson re-

gression estimated both coefficients correctly. Table 5 summarises the estimated

coefficients (intercept and slope) for standard and robust Poisson regression regard-

ing the case without outliers.
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(c) λ = 100
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(d) λ = 250

Figure 8: Investigation of the influence of one single outlier on standard and robust
Poisson regression estimates. The response variable y was simulated as
Poisson distributed considering different Poisson parameters λ. The in-
dependent variable x was calculated according to the regression model
with an intercept equal to 0 and a slope equal to 10. Outliers were cre-
ated as data points (max(x),max(y) + i) with i ∈ {1, 2, . . . , 100}. The
observation number indicates the distance between the additional and the
maximal value of the independent variable in the outlier-free scenario, i.e.
the value of i. The tuning constants were for the Huber function 1.345
and for the Hampel function (1.5, 3.5, 8)× 0.9.
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3.3 Plausibility check

Table 5: Estimated regression coefficients for intercept and slope (βInt, βx) in ab-
sence of additional observations. The true values are 0 for the intercept
and 10 for the slope.

λ
βInt βx

Standard Huber Hampel Standard Huber Hampel

10 0.00 0.03 0.03 10.00 9.92 9.92
50 0.00 0.01 0.01 10.00 9.99 9.98
100 0.00 0.00 0.00 10.00 9.99 9.99
250 0.00 0.00 0.00 10.00 10.00 10.00

In view of figures 7 and 8, it seems that the use of the Hampel function resulted

in a robuster method as compared to the use of the Huber function. To explore

this assumption, the simulated data of the illustrative example with ten clustered

outliers in chapter 1 was used again with the response rounded to non-negative

integer (see figure 9 for the modified data). This time, the amount of outliers

were increased in each iteration by one additional outlier from the outlying group

of observations. Thus, the influence of an increasing amount of outliers could be

demonstrated. Figure 10 shows that both robust methods are considerably less

influenced than the standard method. Additionally, the Hampel function inhibited

almost any noticeable reaction on contamination whereas the use of the Huber func-

tion to weight deviating observations still led to a clear decrease of the regression

coefficient. This is in close accordance with Arora and Biegler (2001) who showed

that re-descending estimators are very robust as compared to non re-descending

(robust as well as standard) estimators.
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Figure 9: Simulated data with ten clustered outliers.
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3 Incorporation of the Hampel function into robust generalised linear models
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Figure 10: Investigation of the influence of different amounts of outliers on standard
and robust Poisson regression estimate βx by inclusion of 0 to 10 outliers.
The tuning constants were for the Huber function 1.345 and for the
Hampel function (1.5, 3.5, 8)× 0.9.
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4 Results of method application

After deducing the theoretical background and explaining the practical application

to analyse simulated and real data in chapter 2, the results are presented in this

chapter starting with the results of the comparison between standard and exist-

ing robust logistic regression approaches (section 4.1) followed by the comparison

between standard and robust logistic regression applying both the Huber and the

Hampel function (section 4.2).

4.1 Standard versus existing robust regression

methods

Ordering follows the method section. The results of consistency of model selection

and prediction accuracy are given first (section 4.1.1). Then, the results of the

influence of one single outlier (section 4.1.2) and of genotyping errors on estimates

(section 4.1.3) are provided.

4.1.1 Consistency of model selection and prediction accuracy in

real data

The distribution of the chromosomal instability is shown in figure 11. Very similar

results were found for different sizes, e.g. 500 kb (data not shown).
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4 Results of method application

Figure 11: Genomic instability distribution. Instability is given as the ratio be-
tween the number of instable chromosome arms and the total number
of investigated arms.

Using the relation between instability and DNA methylation in (robust) linear

and Poisson regression models (relying on the Huber function), goodness-of-fit was

analysed based on the residuals. The comparison of residuals’ magnitudes of all four

regression types is shown in table 6. No significant difference between the standard

linear regression (reference) and the other three approaches could be identified (all

p-values > 0.05). For standard linear regression, a median residual value of 5.2 was

found. Robust linear regression and standard Poisson regression were very similar

compared to the reference (median residual values of 5.1 and 4.9). The highest

accuracy was reached by robust Poisson regression (median residual value of 3.4)

but it also showed the highest residual variation.

Table 6: Goodness-of-fit regarding the residuals. The p-value results from the resid-
ual two-sided Wilcoxon signed rank test.

Residuals
Linear Robust linear Poisson Robust Poisson

regression regression regression regression

Median 5.2 5.1 4.9 3.4
5th & 95th quantile 0.6, 12.5 0.5, 13.0 1.0, 10.9 0.3, 15.7
p-value reference 0.09 0.86 0.27

The second aspect was reproducibility. Figure 12 shows that standard and robust

linear regression selected identical models. In particular, they selected the methy-

lation of the same single gene in all iterations; this gene was GNS (Glucosamine

(N-acetyl)-6-sulfatase). Standard and robust Poisson regression models built sev-

eral different models including the methylation of two or three genes; GNS was

always one of them.
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4.1 Standard versus existing robust regression methods

0% 20% 40% 60% 80% 100%

Robust Poisson regression

Poisson regression

Robust linear regression

Linear regression

Figure 12: Reproducibility (frequency of selected models). Each colour represents
a selection of a different model.

The monotone relationship between chromosomal instability and GNS methylation

shown in figure 13 (a) resulted in a Spearman’s correlation coefficient of −0.61.

However, a relationship between GNS expression and chromosomal instability or

GNS expression and GNS methylation was not found for this gene (see figures 13

(b) and (c)). The correlation coefficients for these investigated relations were 0.15

and 0.18, respectively.

(a) Instability versus methylation

(b) Instability versus expression (c) Methylation versus expression

Figure 13: Comparative scatterplots for genomic instability, DNA methylation and
gene expression of GNS. ρ indicates Spearman’s correlation coefficient
given in combination with its 95% confidence interval (CI).
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4 Results of method application

4.1.2 Influence of one single outlier in real data

χ2 tests revealed no influence of gender (p = 0.95) and tobacco smoking (p = 1.00)

on hypertension risk. Hence, only age was included in the logistic regression models

as covariate. Filter criteria resulted in 130 individuals (43 cases and 87 controls)

with complete genotype and phenotype information. The age of the individuals

ranged between 20 and 95 years with a median age of 52 years. The total number

of measured SNPs on chromosome 3 in the investigated GAW 18 data set was

35,045.

A plot of Cook’s distances under the age-only standard logistic regression model

(figure 14) revealed several observations that departed from the majority of the

sample. Considering a threshold of 0.05 for the Cook’s distance, four observations

could be defined as outliers. Information on disease status and age of deviating

individuals is shown in table 7. Individuals 62, 58 and 24 were older than 80 years

and normotensive. On the other hand, individual number 60 was affected by the

condition early in life (38 years old).

Figure 14: Cook’s distances from the age-only standard logistic regression model.
The four most prominent observations are indicated by their observation
number.
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4.1 Standard versus existing robust regression methods

Table 7: Estimated odds ratios (OR) per year of age. Odds ratios were estimated
based on standard and robust logistic regression (LR) models for the com-
plete set of individuals and after exclusion of the four most remarkable
outliers. HTN: Hypertension

Excluded
HTN Age

OR – Age (% Change)

individuals Standard LR Robust LR

None 1.085 (reference) 1.084 (reference)
62 0 90.23 1.095 (+11.2) 1.091 (+7.8)
58 0 87.66 1.094 (+10.0) 1.091 (+7.9)
60 1 38.44 1.091 (+ 6.5) 1.089 (+5.1)
24 0 80.27 1.091 (+ 6.6) 1.091 (+7.6)

The influence of these outliers on standard and robust parameter estimates of age

effects is also shown in table 7. For example, the exclusion of individual 62 resulted

in an 11.2% increase of the excess risk of hypertension per year according to stan-

dard logistic regression compared to a 7.8% increase for robust logistic regression.

The odds of hypertension by age interval are shown in table 8.

Table 8: Overall odds of hypertension per age interval. Age intervals were defined
by the age quartiles in controls.

Age interval
Odds

(Number of cases : controls)

< 39.0 ( 1 : 22) 0.05
[39.0, 46.0) ( 2 : 20) 0.10
[46.0, 56.2) ( 9 : 23) 0.39
≥ 56.2 (31 : 22) 1.41

Standard logistic regression identified SNP rs3934103 located in the ULK4 gene as

the variant that most improved the model fit. Robust logistic regression identified

SNP rs11918360 in RP11-408H1.3 as the variant with the strongest association

signal. Under both standard and robust regression, model selection clearly favoured

the two identified SNPs as represented in figure 15. The pairwise r2 between SNP

rs3934103 and SNP rs11918360 was 0.003.
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4 Results of method application

Figure 15: Quantile-quantile plots from the age-genotype standard and robust lo-
gistic regression models. The two selected SNPs are indicated by their
reference SNP ID number.

The influence of the four outliers on the AUCs from the standard and robust logistic

regression models is shown in table 9. Robust and standard AUCs for the age-

only models were identical. For the age-genotype models, the AUCs were slightly

smaller and also slightly less outlier-dependent for robust than for standard logistic

regression.
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4.1 Standard versus existing robust regression methods

Table 9: Area under the receiver operating characteristic curve (AUC) for standard
(upper table) and robust logistic regression (lower table). AUCs were
calculated for the complete set of individuals and after exclusion of the
four most remarkable outliers. The relative contributions of the variables
age and SNP (rs3934103 and rs11918360) are also shown.

Standard Excluded AUC – Age AUC – Age + SNP
individuals (% Change) (% Change)

None 0.811 (reference) 0.852 (reference)
62 0.820 (+1.1) 0.861 (+1.1)
58 0.820 (+1.1) 0.861 (+1.1)
60 0.825 (+1.7) 0.859 (+0.9)
24 0.819 (+1.0) 0.859 (+0.9)

Robust Excluded AUC – Age AUC – Age + SNP
individuals (% Change) (% Change)

None 0.811 (reference) 0.843 (reference)
62 0.820 (+1.1) 0.852 (+1.0)
58 0.820 (+1.1) 0.853 (+1.2)
60 0.825 (+1.7) 0.851 (+0.9)
24 0.819 (+1.0) 0.844 (+0.0)

Table 10 summarizes the results from the leave-one-out cross-validation. The con-

cordance was better for the robust logistic regression model at every cut-off prob-

ability compared to standard logistic regression. Both models allocated best at

probability 0.5 and almost identically at probability 0.3 (the investigated popula-

tion included 43 cases and 87 controls, i.e. 33% hypertension prevalence). At a

probability of 0.3, sensitivities were identical and the specificity was slightly higher

under robust regression. Standard and robust estimates showed similar discrimina-

tive performances supported by an IDI of −0.07 at every cut-off probability. AUCs

were also almost identical. The clinical net benefit was slightly larger for the robust

logistic regression model in the probability range between 0.2 and 0.6.
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4 Results of method application

Table 10: Overview: Concordance, sensitivity, specificity, clinical net benefit and
overall AUCs. These characteristics rely on standard (upper table) and
robust logistic regression models (lower table) estimated based on leave-
one-out cross validation.

Standard Probability Concordance Sensi- Speci- Net

cut-off N (%) tivity ficity benefit

0.0 43 (33.1) 1.00 0.00 0.33

0.1 79 (60.8) 0.95 0.44 0.27

0.2 90 (69.2) 0.86 0.61 0.22

0.3 98 (75.4) 0.81 0.72 0.19

0.4 98 (75.4) 0.70 0.78 0.13

0.5 101 (77.7) 0.60 0.86 0.11

0.6 97 (74.6) 0.40 0.92 0.05

0.7 99 (76.2) 0.35 0.97 0.06

0.8 93 (71.5) 0.19 0.98 0.00

0.9 91 (70.0) 0.12 0.99 −0.03

1.0 87 (66.9) 0.00 1.00 –

AUC 0.835

Robust Probability Concordance Sensi- Speci- Net

cut-off N (%) tivity ficity benefit

0.0 43 (33.1) 1.00 0.00 0.33

0.1 82 (63.1) 0.88 0.51 0.26

0.2 97 (74.6) 0.86 0.69 0.23

0.3 99 (76.2) 0.81 0.74 0.19

0.4 102 (78.5) 0.72 0.82 0.16

0.5 107 (82.3) 0.67 0.90 0.15

0.6 102 (78.5) 0.51 0.92 0.09

0.7 100 (76.9) 0.42 0.94 0.05

0.8 97 (74.6) 0.30 0.97 0.01

0.9 93 (71.5) 0.19 0.98 −0.08

1.0 87 (66.9) 0.00 1.00 –

AUC 0.830
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4.1 Standard versus existing robust regression methods

4.1.3 Influence of genotyping errors on estimates in simulated

data

Figure 16 represents the investigation of the genotyping error influence on odds

ratios (OR). The OR dependence on genotyping error rate was large for rare variants

(causal allele frequency of 0.005) and much smaller for common variants (causal

allele frequency of 0.13). Differences existed between the model M1 (model with

genotyping errors) and the error free model M0 as well as in the effect of genotyping

errors on standard and robust estimates. For a 0.05 causal allele frequency and

0.005 genotyping error rate, the effect of genotyping errors was smaller for standard

than for robust logistic regression. This contrasted the results considering larger

genotyping error rates where the effect of mis-genotyping was smaller for robust

estimates. The results of standard and robust logistic regression were practically

identical for rare and common variants.

Genotyping  
error rate 0.005 0.010 0.025 0.050 

Causal allele  
frequency 0.005 0.05 0.13 

H0: ΔORrob = 0 
H0: ΔORstand = 0 

ΔO
R 

[%
] 

0.005 0.010 0.025 0.050 0.005 0.010 0.025 0.050 

Figure 16: Influence of different genotyping error rates on odds ratios for different
causal allele frequencies estimated by standard (dark grey) and robust
logistic regression (light grey). Median estimates are indicated by points
and their 95% confidence intervals by vertical bars.
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4 Results of method application

As seen before for the causal allele frequency of 0.05, there is a value of the genotyp-

ing error rate where the benefit of standard logistic regression changes to a benefit

of robust logistic regression. Figure 17 shows the result of the genotyping error rate

screen to identify the point of benefit change between standard and robust logistic

regression. With current genotyping platforms, genotyping error rates around 0.005

are plausible (Kennedy et al., 2003; Montgomery et al., 2005; Hong et al., 2012). It

can bee seen that considering a genotyping error rate of 0.005 the benefit of robust

logistic regression is small though about 0.25h. In general, it can be observed that

the advantage of robust logistic regression increases with increasing genotyping er-

ror rates. For almost every genotyping error rate there is an advantage for robust

logistic regression.

Genotyping error rate 
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O
R s
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nd

| 
─ 

|Δ
O
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0.00 0.01 0.02 0.03 0.04 0.05 

Figure 17: Differences between the effects of genotyping errors on standard and
robust estimates for several genotyping error rates. Median estimates
are indicated by points and their 95% confidence intervals by vertical
bars.
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4.2 Statistical properties of robust logistic regression applying the Hampel function

4.2 Statistical properties of robust logistic regression

applying the Hampel function

Computer simulations

Type I error rates did not exceed the nominal 0.05 level in the simulated null

scenarios (table S1 on page 124). For example, the type I error rate was 0.044

(95% CI: 0.038− 0.050) when a standard recessive penetrance model was fitted to

null data. The corresponding type I error rate for robust logistic regression with

the Huber function was 0.046 (0.040− 0.052). Robust logistic regression using the

Hampel function resulted in type I error rates equal to 0.045 (0.039 − 0.051) for

tuning constants (1.5, 3.5, 8) · 0.9, and equal to 0.044 (0.038 − 0.050) for tuning

constants (2, 4, 8) · 0.7.

Simulation results revealed appreciable differences between standard and robust

GRR estimates. In the reference scenario, the median of the standard GRR esti-

mates was 1.44, slightly higher than robust counterparts, which were around 1.43

(figure 18). Standard GRR estimates were also higher than robust estimates when

a recessive penetrance model was fitted to data generated under the reference sce-

nario (median standard (robust) GRR estimate: 1.40 (1.32), figure S1 on page 144)

as well as for rare variants (MAF= 0.001: median standard (robust) GRR estimate

= 1.50 (1.38); MAF= 0.005: 1.41 (1.39), figure S2 on page 145). Age-dependent

GRRs constituted an exception with higher estimates for robust than standard

methods (median standard (robust) GRR estimate 2.28 (2.42), figure S4 on page

147). Boxplots of the estimated genotype relative risk (GRR) for all scenarios are

given in the figures S1-S9 on pages 144-152.
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4 Results of method application
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Figure 18: Boxplots of the estimated genotype relative risk (GRR) under the ref-
erence scenario. Settings for the reference scenario were minor al-
lele frequency (MAF) = 0.05, simulated dominant GRR = 1.43 age-
independent, D

′
= 1, r2 = 1, no genotyping errors, 400 simulated stud-

ies with 1000 cases and 1000 controls and a fitted dominant penetrance
model. Tuning constants for the robust logistic regression models are
given in brackets in the legend. The dotted line indicates the simulated
true effect.
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4.2 Statistical properties of robust logistic regression applying the Hampel function

Tables S2-S5 on pages 125-131 presents the bias, variance, MSE and statistical

power of standard and robust GRR estimates for all simulation scenarios. Under the

reference simulation scenario, the bias amounted +0.010 for standard compared to

+0.002 to +0.006 for robust GRR estimates. The GRR overestimation by standard

logistic regression translated into a larger statistical power than for robust logistic

regression – in spite to the fact that the variance was higher for standard than for

robust GRR estimates. In practically all simulated scenarios, the statistical power

was higher for standard than for robust logistic regression. For age-dependent

GRRs and in the presence of genotyping errors, biases and variances were higher

for robust compared to standard GRR estimates. By contrast, rare variants and

recessive fitted models showed markedly smaller biases and variances for robust

than for standard GRR estimates. For example, for a variant with MAF equal

to 0.001, the variance was 23.5 for the standard compared to 1.0 for robust GRR

estimates and for a fitted recessive penetrance model 19.3 compared to 1.0 to 1.2.

Figure 19 shows the MSE of standard and robust GRR estimates according to the

penetrance model fitted to the data and the MAF of the associated variant. The

large bias, variance and MSE differences motivated a closer comparison of standard

and robust methods for rare and recessive variants to exclude the possibility of

spurious observations due to a lack of statistical power. Tables S6-S13 on pages

133-140 present results consistent with a statistical power of approximately 0.6 for

standard logistic regression in the absence of genotyping errors for rare variants

and recessively simulated data. The left panel of figure 20 represents standard and

robust GRR estimates for rare variants with MAFs equal to 0.001 and 0.005, with

corresponding median standard (robust) estimates of 2.6 (2.5). The two right panels

of figure 20 depict standard and robust GRR estimates for a recessive variant with

corresponding median standard (robust) estimates equal to 7.0 (5.5). In general,

standard GRR estimates showed higher biases and higher variances resulting in a

higher MSE than their robust counterparts – consistent with the previous results

for rare variants and for a fitted recessive penetrance model. Tables S6-S13 on

pages 133-140 show complete results for increasing genotyping error rates and for

different penetrance models fitted to recessively simulated data.
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4 Results of method application
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4 Results of method application

Real data application

The investigated real data set included 245 genetic variants and 144 individuals

with a median body height of 175 cm (Q1-Q3: 170− 181 cm) and a median age of

45 years (Q1-Q3: 37-54 years). Genetic variant and individual identifiers are given

in the tables S14 and S15 on pages 141 and 142.

The smallest p-value (p = 0.004) was reached for variant rs7519458 (MAF = 0.50).

The estimated GRR for this variant was 1.2 according to both standard and robust

methods (no outlying observation: left panel of figure 21). Figure 22 represents p-

values and estimated GRRs for the 245 investigated variants. Differences between

standard and robust results were apparent regarding p-values (left panels) and

in particular estimated GRRs (right panels, please note the different scale of the

y-axis for standard GRR estimates). All robust GRR estimates were below 12.

By contrast, 22 variants resulted in standard GRRs over 12. Interestingly, robust

methods did not converge for 21 out of these 22 variants. Variant rs2500262 (MAF

= 0.34) was the only exception (standard results: p-value = 0.014, GRR = 13.7;

robust results: p-values = 0.019 to 0.021, GRRs = 11.0 to 12.0). One strongly

influential observation was identified for this variant (Cooks distance about 0.4;

right panel of figure 21).
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Figure 21: Cooks distances for the single nucleotide polymorphisms (SNPs)
rs7519458 and rs2500262 in the real data application. Note the different
axis scaling.
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4.2 Statistical properties of robust logistic regression applying the Hampel function
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Figure 22: Manhattan plots (− log10(p-value)) and estimated genotype relative
risks (GRR) of the real data application. Robust tuning constants are
given in brackets behind the influence function on the left side of the
plots. The horizontal lines indicate − log10(0.05) in the Manhattan plots
(left column) and exp(0) for the estimated GRRs (right column). Note
the different axis scaling for the estimated GRRs.
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5 Discussion

The presented results delivered insight that remains to be discussed. Section 5.1

provides the discussion of the comparison of standard and existing robust regres-

sion approaches and section 5.2 the comparison of standard and robust logistic

regression applying both the Huber and the Hampel function. Since the R package

robustbase was updated in the meantime, the improvement is presented in section

5.3. A final conclusion and a perspective complete this chapter in section 5.4. The

final conclusion also includes an overall summary of the important results of this

thesis and overall strengths and limitations.

5.1 Standard versus existing robust regression

methods

The structure is the same as in the previous chapters. Section 5.1.1 treats model

selection consistency and prediction accuracy, section 5.1.2 deals with the influence

of one single outlier on estimated odds ratios and section 5.1.3 is about the influence

of genotyping errors on estimates.

5.1.1 Consistency of model selection and prediction accuracy in

real data

Genomic instability was defined by using available methylation data and aCGH

information. Relying on instability and its relationship to methylation, model se-

lection and prediction accuracy was analysed and compared within the already

existing standard and robust logistic regression frameworks. The models built by

standard and by robust linear regression coincided in the included single gene and

this gene was incorporated in every selected Poisson model. Prediction accuracy
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5 Discussion

was best supported by robust Poisson regression models. The median difference

between observed and predicted counts of instability was about 10%.

It is known that the Poisson distribution tends to the normal distribution with

increasing mean (Ramsey and Schafer, 2002). Under these conditions, a linear

regression is an alternative to Poisson regression. In this real data application,

however, linear and Poisson regression built different models to predict the insta-

bility. Interestingly, the variable of the linear models was always included in the

Poisson models but these models were extended by one or two additional variables.

Hence, their is some consistency between the methods in model selection. Based

on the selected prediction models, differences in prediction accuracy between linear

and Poisson regression could not be identified.

The aim of robust statistics is to handle outliers so that the result is valid for

the majority of the data. This handling is without a priori exclusion of departing

observations but with assignment of different weights depending on their location

in relation to the bulk of data. This weighting led to different regression models in

case of Poisson regression.

Real data applications are normally characterised by a set of independent variables.

The goal is to find a subset that describes the current data and also predicts fu-

ture observations well. For predictions, overfitting must be avoided as it leads to

a small mean squared error (MSE) in the current data set but to large MSEs in

future data sets (James et al., 2015). Hence, model selection is required. There

are several different approaches. In this analysis, a subset of variables was searched

for the prediction model. When applying the procedure that is called “best subset

selection”, all possible models are fitted to the data and the best model is chosen.

In high-dimensional data, computational costs are important but the issue “over-

fitting” is essential. Both are concerns in view of best subset selection. Hence,

forward stepwise selection was applied, although this model selection technique

does not guarantee to find the best model. However, this algorithm is a computa-

tionally efficient alternative and can be applied for high-dimensional data (James

et al., 2015).

For the assessment of the differences in method performance and model selection,

the resampling method leave-one-out cross-validation was applied. In general, the

investigated data set is divided for cross-validation randomly into a training and

into a validation data set. Based on the training data set, the regression model
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5.1 Standard versus existing robust regression methods

is built. This model is then used to predict the response based on the validation

data set to assess the model fit on an independent data set. If the training and

the validation data sets are of comparable size, the model performance measure

can vary depending on the split of the observations because the distributions in the

training and in the validation data sets do not need to correspond to each other.

Additionally, the distribution used for model fitting can differ from the distribution

of the complete data set resulting in an inappropriate model. Furthermore, the

sample size in the training data set is drastically reduced (James et al., 2015).

To overcome these limitations, leave-one-out cross-validation was applied. There,

the validation data set only comprises one observation and all other observations

belong to the training data set. This splitting is repeated until every observation

once built the validation data set. This results in less bias and avoids randomness

in the data set selection (James et al., 2015).

There was a linear relationship between chromosomal instability and methylation

of GNS (Glucosamine (N-acetyl)-6-sulfatase) leading to the high consistency in

model selection. Surprisingly, the chromosomal instability decreased with increas-

ing methylation of GNS and there was no correlation with the corresponding gene

expression. A literature search did not help to identify a biological/medical back-

ground. This gene occurs in every cell. The deficiency of GNS causes Sanfilippo

Syndrome Type D (Mucopolysaccharidosis type IIID). Progressive neurodegenera-

tion is the clinical feature of this disorder (Elçioglu et al., 2009).

Instability is related to DNA changes. It is known that cancer can originate from

such changes. During cancer progression, these changes proliferate (van Wieringen

et al., 2013). Because cancer development is a process of DNA aberrations, it

seems reasonable that genomic instability is relatively independent of the size of

the investigated region. This assumption was supported by the findings on the

region size being practically identical for 500 kb and 1000 kb.

This investigation has strengths but also some limitations. As this was a real

data application, the underlying truth was unknown. Hence, the methods could

be investigated for differences and similarities in their results but a decision on

the more appropriate method was not possible. The investigation was limited

by a small sample size. Hence, only 600 selected genes were investigated for an

association between chromosomal instability and DNA methylation. Furthermore,

the chromosomal instability had to be deduced from the aCGH data. This required
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5 Discussion

a definition of a threshold to define a chromosome arm as instable. However, it was

observed that the chromosomal instability measure was relatively independent from

this threshold. Overall, two different regression models and their robustifications

could be compared to each other on a real data set with a genetically plausible

question.

In summary and based on this real data application, the choice of the methods

might depend on the aim of the analysis. There were differences between linear

and Poisson regression with respect of the selected models but these models did

not notably differ in their prediction accuracy. Hence, besides modelling accuracy,

computation time should also be considered. The use of robust regression can be

more expensive than standard approaches. Furthermore, the handling of numerical

instabilities of robust Poisson regression is challenging.

5.1.2 Influence of one single outlier in real data

The influence of one single outlier on standard and robust logistic regression relying

on the Huber function were compared investigating the relationship between hyper-

tension and the explaining variables genotype and age. Present results confirmed

that single individuals (1/130 = 0.8% of the observations) with a departing risk

of hypertension may substantially affect the overall risk estimates in the baseline

model causing up to 11.2% change in the estimated excess risk of hypertension per

year according to standard logistic regression in the present exercise.

To investigate the influence of outliers on standard logistic regression estimates

and to compare it to the handling by the robustification, one must identify the

observations which influence standard estimates. Relying on residuals for outlier

identification is one possibility. But there, the goal can be hampered by masking

and swamping effects when residuals are used within standard logistic regression.

Consequently, Cook’s distances were used for this purpose. These distances directly

quantify the magnitude of impact of each single observation on the estimated re-

sponse variable when applying standard logistic regression. Furthermore, they si-

multaneously consider both observations in the independent and in the dependent

variables. This identification of outliers was found to be relatively straightforward

using the routine diagnostic plot for Cook’s distances.

Once identified, outliers must be managed and this management is extremely chal-
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lenging. Robust statistics aim at generating estimates that hold for the majority

of the population using complete data sets. The unequal weighting of outliers by

standard and robust regression resulted in prediction models containing different

genetic variants.

When building a prediction model, there must be a measure to assess model perfor-

mance (accuracy). Established techniques are the related measures concordance,

sensitivity and specificity as well as AUCs. The AUC can be seen as a weighted

average across all threshold values (Pencina et al., 2008). Pencina et al. (2008)

proposed another weighted average measure: the integrated discrimination im-

provement (IDI). With respect to the mean predicted probability, this measure

also quantifies an increase in sensitivity and specificity by relying on the group

difference (e.g., cases versus controls). A disadvantage for clinical application of

these measures is that they do not address clinical implications. To address clini-

cal consequences, Vickers and Elkin (2006) proposed a decision curve analysis. In

terminology of the analysis in this thesis, they assume that the logistic regression

probability estimate is informative on balancing the impact of false negative and

false positive predictions. Then, the clinical net benefit is calculated across a grid

of threshold values to allocate an individual to the cases to get the decision curve

considering the clinical consequences. As AUC and IDI average across the range

of threshold values, it is not surprising that the cross-validation AUC and the IDI

did not differ between standard and robust approaches in this analysis, whereas the

non-averaging measures showed differences between the regression approaches.

The standard logistic regression model selected one variant in the ULK4 gene. It

has previously been shown that variants in this gene are associated with hyperten-

sion (Levy et al., 2009; Ho et al., 2011). Among others, four variants (rs2272007,

rs3774372, rs1716975, rs1052501) mentioned in the two publications were also geno-

typed in the GAW 18 collective and found to be in linkage disequilibrium (r2 values

0.83, 0.73, 0.83 and 0.83) with the associated SNP rs3934103. In contrast, a litera-

ture search for the variant in the RP11-408H1.3 gene that was selected by robust

logistic regression did not reveal an association with hypertension or blood pressure

– neither for the variant nor for the gene.

In view of these results, one must consider strengths and limitations of this inves-

tigation. Common as well as not generally applied model performance measures

were used to provide a sound basis for the method comparison. Nevertheless, it is
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important to keep in mind that the results are limited by moderate sample size,

genetic effect sizes and proportion of outliers.

In summary, although robust estimates of age effects and AUCs for age-genotype

models were less sensitive to outliers than standard estimates, cross-validation

AUCs based on standard and robust logistic regression as well as IDIs were al-

most identical. The other investigated performance characteristics (concordance,

sensitivity, specificity and clinical net benefit) were better for robust logistic regres-

sion around the probability that reflects the case-control-ratio. These preliminary

findings indicated some advantage of robust statistics in the context of genetic

association studies.

5.1.3 Influence of genotyping errors on estimates in simulated

data

In simulated case-control data describing the relation between a disease status and

a genotype as well as age, the influence strength of genotyping errors on standard

and robust logistic regression estimates was investigated. The OR dependence on

the genotyping error rate was large for rare variants and decreased with increasing

causal allele frequency. Standard and robust estimates were similar for causal

allele frequencies of 0.005 and 0.13 in this simulation. However, for a causal allele

frequency of 0.05 the differences of the effects of genotyping errors on estimated

ORs of standard and robust logistic regression increased with increasing genotyping

error rate. In the latter case, robust estimates took advantage of the increasing rate.

Depending on the investigated data (e.g. its distribution, outlier characteristics),

Alamgir et al. (2013) showed that there are situations where the use of the Huber

function is advantageous compared to standard techniques. This is in close accor-

dance with the simulation results – both for similar and for different strong impact

of genotyping error rates on standard and robust estimates. The simulation results

confirmed that the dependence of estimated ORs on genotyping errors decreased

with the allele frequency (Powers et al., 2011).

This analysis has strengths but also limitations. Two parameters playing an impor-

tant role in genetic association analyses, namely minor allele frequency and geno-

typing error rate, were varied over a wide range of values. But there are further

population and genetic parameters that differ between, e.g., individuals, diseases
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and lifestyles (e.g. linkage disequilibrium, genotype relative risk, genetic penetrance

model) and which also might have an impact on the analysis. Furthermore, only

the OR change due to the genotyping errors were investigated but not statistical

power, type I error rate or mean squared error.

In summary, this small simulation study indicated a possible benefit of robust logis-

tic regression in genetic studies. However, the importance of genotyping accuracy

in genetic association studies is accentuated.

5.2 Statistical properties of robust logistic regression

applying the Hampel function

The aim of the present study was to investigate the benefits and limitations of

robust logistic regression using the Huber and Hampel functions to down-weight

outliers. After adapting the R package robustbase to accommodate the Ham-

pel function, computer simulations, complemented with the analysis of a real data

set, were conducted to assess the type I error rate, statistical power and MSE of

standard and robust GRR estimates according to study characteristics as well as

properties of the investigated markers. Both standard and robust methods con-

trolled the type I error rates. Standard logistic regression consistently showed the

highest statistical power, which was often attributable to an increased GRR overes-

timation in comparison to robust estimates. For rare and recessive variants, robust

GRR estimates presented markedly lower biases and variances than standard GRR

estimates. These results suggest that, after identification of novel susceptibility

variants, robust regression may represent an interesting alternative to standard

maximum likelihood estimation when the focus lies on accurate risk prediction.

As proof of concept, the simulation results confirmed that power depended on

the fitted penetrance model, MAF, correlation between causal allele and marker

locus, genotyping accuracy and sample size (Chen et al., 2011; Hein et al., 2008).

In more detail, Hong and Park (2012) reported that the required sample size to

achieve a power of 0.80 is smaller under a dominant penetrance model compared

to other genetic models. Whether the indirect approach to detect a causal variant

is successful depends heavily on the linkage between this variant and its marker

(LD as well as correlation) (Howey and Cordell, 2014; Kraft et al., 2005). Power
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for this detection increases with increasing causal allele frequency and increasing

linkage between marker and causal allele locus (Hein et al., 2008; Lin and Schaid,

2009). Even small genotyping error rates can seriously reduce power which can be

further amplified if the MAF decreases (Powers et al., 2011).

Results from computer simulations revealed a power-variance paradox in standard

versus robust GRR estimation. Often, the smaller the variance of a parameter

estimate the larger the statistical power to reject the null hypothesis given the

alternative hypothesis. This is, however, only the case for unbiased or equally

biased parameter estimators. In general, and in particular for rare and recessive

variants, it was found that larger variances usually came along with larger positive

biases resulting in a higher statistical power for standard than for robust logistic

regression. This situation was especially evident for the simulated recessive variant

with a MAF equal to 0.05 and a true GRR equal to 6.32. The biases were +1.2 for

standard compared to −0.1 (12 times lower) for Huber GRR estimates. Variances

were 15 for standard compared with 0.5 (30 times lower) for Huber GRR estimates.

In contrast, the statistical power was 0.6 for standard versus only 0.51 when the

Huber function was used to constrain outlier influence in a study with 1000 cases

and 1000 controls.

In agreement with computer simulations, the analysis of real data confirmed that

standard logistic regression can be strongly influenced by single or few outliers,

which may inflate estimated genetic effects. For example, the GRR estimated

by standard logistic regression for SNP rs2500262 was 13.7 and, thus, 1.7 to 2.7

larger than the corresponding robust estimates – likely due to the influence of

one outlier (Cooks distance about 0.4). This strong impact of few or even one

outlier on standard logistic regression and their handling by robust approaches are

in close accordance with observations from real data applications – Hosseinian and

Morgenthaler (2011) as well as the investigation of the influence of a single outlier

in this thesis. Large differences between estimated standard and robust GRRs as

well as non-convergence of robust procedures may be indicative of the presence of

departing observations. A practical recommendation of this study is to thoroughly

inspect diagnostic plots when this happens.

Present results are relevant to genome-wide association studies (GWASs) where the

“winner’s curse” is a major issue (Göring et al., 2001; Hirschhorn et al., 2002; Zöllner

and Pritchard, 2007). GWAS results can be strongly affected by ascertainment
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bias leading to effect overestimation. Since sample size calculation for adequately

powered replication studies relies on possibly biased initial findings, the necessary

sample size can be underestimated causing replication failure. In a simulation

study, Zöllner and Pritchard (2007) observed that genetic effects were overestimated

by about 20% in the absence of correction for ascertainment bias. Investigations

revealed that ascertainment bias is particularly large when the power is small and

ascertainment bias disappears when the statistical power approaches one (Xiao

and Boehnke, 2009; Garner, 2007). Several methods have been proposed to deal

with the winner’s curse in linkage analysis, some of which could be extended to

association studies. Göring et al. (2001) concluded that large, population-based

samples of persons recruited independently of their phenotype would alleviate this

issue. However, it is not clear if this is also true for association analysis (Zöllner

and Pritchard, 2007). Based on a maximum likelihood which explicitly considers

genome-wide scans, Zöllner and Pritchard (2007) proposed an ascertainment bias

correction that tends to underestimate the true effect addressing the winner’s curse.

Two different conditional likelihood approaches have been proposed for point and

interval estimators in GWAS (Zhong and Prentice, 2008; Ghosh et al., 2008). In

this context, it is of special interest that the MSE of robust GRR estimates was

smaller than of standard estimates in the simulations. So, robust logistic regression

might be beneficial, especially for rare and recessive susceptibility variants as well

as for variants with low penetrances narrowing down the winner’s curse. This might

translate into an increased replication rate of initial findings.

The bias-variance trade-off is another important aspect to consider in close relation

to the MSE. Estimators are constructed in a way to describe the target variable

best. One accuracy measure is the MSE which is the sum of the squared bias and

the variance. The bias indicates how closely the estimator determines the target

variable on average. A small variance accompanies an estimator that is stable

against sampling variations (Friedman, 1997). Hence, it is desirable to have both

a small bias and a small variance causing a small MSE. But in most situations, a

bias decrease often results in an increased variance (Friedman, 1997; Geman et al.,

1992). Hence, it is not clear whether an unbiased estimator is really the major

aim because this does not guarantee minimisation of the estimation error (Kohavi

and Wolpert, 1996). The variance decreases with increasing sample size so that the

bias is the major component of the MSE for common genetic variants (Friedman,

1997). If the sample size is relatively small, a balance between small bias and
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small variance has to be found when building estimators to get a minimal (or small

enough) MSE. In the simulation study, robust logistic regression controlled better

the bias-variance trade-off than standard logistic regression for rare and recessive

variants.

Building a phenotype prediction model relying on GWAS results is often used to

identify persons at a high risk of a given disease. There are many limitations and

pitfalls when building such a prediction model. Most limitations relate to avail-

ability of data and background knowledge, e.g. data sets with many genotyped

markers possibly in LD with causal variants, data sets with cryptic relationships

and differences in stratification between discovery/validation and target population

as well as environmental factors resulting in stochastic events (Burga et al., 2011).

A special issue are rare variants whose contributions might not be tagged by geno-

typed SNPs (Yang et al., 2010; Visscher et al., 2012). However, this has changed

with advances in whole-genome sequencing. Once detected, rare variants can be

included in prediction models in the same way as common variants and in sum their

contribution might be relevant (Wray et al., 2013). The effects of rare and common

variants on a phenotype can only be estimated with an error. This plays a more

important role if effect sizes are small because large sample sizes are needed for suf-

ficient accuracy. In this context, robust logistic regression might be relevant. It was

found that robust GRR estimates were more accurate than standard counterparts

in this simulation study.

While robust logistic regression might be beneficial regarding prediction based on

rare and recessive variants, with respect to the winner’s curse and the bias-variance

trade-off, the advantage over standard GRR estimates depends on study charac-

teristics as well as on the properties of associated variants. This conclusion is in

close accordance with Çetin and Erar (2006) which considered variable selection in

robust linear regression. Within this context it is of interest that the method per-

formance can be influenced by sample size as well as by the outlier distribution and

proportion, as reported by Wen et al. (2013) in their investigation of outlier impact

on net-benefit regression models in cost-effectiveness analysis. Alamgir et al. (2013)

and Muthukrishnan and Radha (2010) also reported that the comparative perfor-

mance of the Hampel and the Huber function depend on investigated data and

outlier characteristics. As the simulations and the illustrative example in section

3.3 showed, robust approaches might be even more useful in rare variant settings. In
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the illustrative example, a clear advantage was observed for robust logistic regres-

sion and especially for the use of the Hampel function when extreme outliers were

present. This is in agreement with literature on the use of re-descending weighting

functions (Müller, 2004; Shevlyakov et al., 2008). Several re-descending influence

functions are available, such as the three-part Hampel, the biweight Tukey and the

sine-wave Andrews function (Hampel et al., 1986; Beaton and Tukey, 1974; An-

drews et al., 1972). Among them, the Hampel function seems to perform well in

most situations (Alamgir et al., 2013; Andrews et al., 1972).

Another issue are the computational costs. Standard logistic regression needed

on average about 9.5 ns for one model estimation as it is applied in the reference

scenario of the simulation study (source: function microbenchmark of the R package

microbenchmark (Mersmann, 2014)). The robust logistic regression approaches

needed several times longer (Huber: about 3 times, Hampel: about 6 times).

A literature search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) on body

height and rs7519458 as well as the corresponding gene symbols (LINC01346,

LOC105376672) did not reveal any findings. There were no results in “Genope-

dia” of the HuGE Navigator (Yu et al., 2008), neither. Both were accessed at

2016/06/21.

The present study has strengths but also limitations. It was made an effort to

simulate realistic data. Age and disease prevalence were based on real demographic

data. To verify the bias and variance advantage of robust logistic regression for rare

and recessive variants, the effect and sample sizes were varied. One limitation was

the use of just one weight function and two bounded influence functions. Different

combination could be investigated in future studies. But with respect to the similar

results for the bounded Huber and the re-descending Hampel function in case of

probably no extreme outlier, the main task is the decision whether extreme outliers

are expected in the data. Furthermore, tuning constants were used that assure

95% asymptotic efficiency in linear models. The application of tuning constants

that assure this efficiency for logistic regression models might be worth to consider.

Here, it was focused on logistic regression but the generalisation of current results to

other analytical approaches in statistical genetics, for example collapsing methods,

is straightforward.

In conclusion and based on these analyses, the potential advantage of robust GRR

estimates depends on the study aim – identification or characterisation of genetic
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effects. To achieve a large power, standard logistic regression is the best choice. For

sufficiently large sample sizes, the use of robust logistic regression is recommended

with regard to small bias, variance and MSE alleviating effect overestimation – es-

pecially when analysing rare variants and assuming a recessive penetrance model.

Robust GRR estimation is computationally demanding, in particular for the Ham-

pel function. On the other hand, the Hampel function may minimise biases when

strongly departing outliers are present. An added value of the present study rests

on demonstrating the use of an alternative influence function in the logistic regres-

sion framework proposed by Cantoni and Ronchetti to narrow down the winner’s

curse of rare and recessive susceptibility variants.

5.3 Recent updates of the R package robustbase

Meanwhile, the R package robustbase has been updated with version 0.92-6 (date:

2016/05/28) by 2016/06/19. Additional influence functions have been added to

the function glmrob which was applied for both robust Poisson and robust logistic

regression models as dealt within this thesis.

Additionally, the unweighted and weighted Bianco-Yohai estimators were available

(Croux and Haesbroeck, 2003). The ψ-function of the unweighted Bianco-Yohai

estimator (Bianco and Yohai, 1996) is defined as

ψBianco−Y ohai(r) =

1− r
c

if r ≤ c

0 otherwise

with c > 0. This estimator is consistent and asymptotically normal. To get the

weighted Bianco-Yohai estimator, an additional weighting function based on a ro-

bust distance measure is integrated into the algorithm. According to Croux and

Haesbroeck (2003), an established choice for this weight function W is

W (r) =

1 if r2 ≤ χ2
p,0.975

0 otherwise

with the number of independent variables p. The “M Estimator based on Transfor-

mation” was currently (2016/06/19) only available for Poisson regression (Valdora
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and Yohai, 2014).

Among the newly implemented influence functions for logistic regression, only the

unweighted Bianco-Yohai estimator would be applicable for logistic regression in-

vestigating the association between a binary outcome and a non-continuous inde-

pendent variable (e.g. a genotype). The reason was that the weighted Bianco-Yohai

estimator was calculated based on the Mahalanobis distance in this package. This

distance is defined for individual i (i = 1, . . . , n) as√
(xi − µ)S−1 (xi − µ)T

where xi ∈ Rp is a row of the (n× p)-dimensional matrix X, p denotes the number

of measured variables, µ ∈ Rp describes the mean values across the individuals and

S is the covariance matrix (De Maesschalck et al., 2000). The application of this

distance is only reasonable for continuous variables (Heritier et al., 2009).

For a short illustration of the unweighted Bianco-Yohai estimator of the robustbase

package, the analysis of simulated data underlying figure 7 on page 76 was extended

by the application of this estimator (figure 23). There, the disease status was

regressed on age and the genotype of a rare variant in a dominant penetrance model.

Hence, the second independent variable is binary. The Bianco-Yohai estimator was

compared to the application of the Huber and the Hampel function as well as to

standard logistic regression. In this small simulation study, the results of the robust

logistic regression applying the unweighted Bianco-Yohai estimator were relatively

similar to the results of standard logistic regression but they clearly differed for

extreme outliers from the results when applying the Huber or the Hampel function.

Both the Hampel and the Huber function better controlled the outlier impact.

The similarity between the unweighted Bianco-Yohai estimator and the standard

logistic regression might result from the characteristic that the ψ-function of the

Bianco-Yohai estimator is bounded but still returns large values for outliers (Croux

and Haesbroeck, 2003). Hence, only the influence of very extreme outliers are

bounded by this estimator. This observation is also in accordance with the report

by Hauser and Booth (2011) who compared the unweighted Bianco-Yohai estimator

to the maximum likelihood estimator using a logistic regression analysis to predict

bankruptcy based on five financial ratios (Altman, 1968). They concluded that the

robust estimator could improve prediction and classification and produced at worst

similar results as achieved by the maximum likelihood estimator. Consequently,
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they suggested to use the Bianco-Yohai estimator in logistic regression analysis

as robustness check. Based on the small simulation exercise, the Huber and the

Hampel function should be favoured if outliers are expected in the data.
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Figure 23: Influence of outliers on standard and robust estimates of the genotype
relative risk (GRR). The influence was examined by including single
cases and controls that carried the high-risk variant to the baseline data
set with 1000 cases and 1000 controls, a dominant GRR of about 2 and
a minor allele frequency (MAF) of 0.0075. The fitted logistic regression
model was disease status (case/control) explained by genotype and age.
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5.4 Final conclusion and perspective

Overall summary

The aim of this thesis was threefold. First, the comparison of standard and exist-

ing robust regression methods should provide theoretical and practical insight into

the capabilities of these methods. For this purpose, different analysis aims were

pursued in simulated and in real data. The second aim was to adapt the already

existing framework for robust logistic and Poisson regression proposed by Cantoni

and Ronchetti (2001) to practically apply it with the Hampel function for outlier

weighting in addition to the Huber function. The resulting algorithms were success-

fully checked on plausibility. Then, the extended approach should be compared to

standard and existing robust regression applying the Huber function. For logistic

regression, this was done on simulated data and in a real data application. In brief,

the main observations were:

• Model selection is influenced by the different observation weighting in stan-

dard and robust regression methods.

• Already one single outlier can have a large impact on estimates, especially on

standard estimates.

• The statistical power of standard logistic regression is larger than the power

of robust logistic regression.

• Estimates of robust logistic regression were less biased and had smaller vari-

ances causing smaller MSEs. This especially applied to rare variants and to

a fitted recessive penetrance model.

These results demonstrated that robust generalised linear models can be advanta-

geous as compared to standard generalised linear models but it always depended on

the analysis’ aim (e.g., identification or characterisation) and the underlying data

structure (e.g., MAF or penetrance model). Çetin and Erar (2006) and Wen et al.

(2013) stated this in similar circumstances.

Overall strengths and limitations

Overall, this work has several strengths but also some limitations. The capabilities

of the several different robust regression models were investigated and related to the
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performance of the corresponding standard regression methods leading to a complex

knowledge about advantages and disadvantages of robust regression. Furthermore,

the effect of different influence functions on the robust estimation process could be

compared within one theoretical framework because a second function for outlier

weighting (namely the Hampel function) was implemented into an already existing

robust logistic regression framework applying the Huber function. Additionally,

the different regression models were inspected with respect to their reaction on

different influence sources (only one outlier, genotyping errors, population and ge-

netic characteristics) as well as applied with different analysis aims (identification,

characterisation and prediction). Due to time constraints, robust Poisson regres-

sion applying the Hampel function has not been compared to standard and robust

Poisson regression applying the Huber function, yet.

Perspective

For the Hampel function in robust Poisson regression, a first plausibility check

already suggested an adequate functionality of this influence function in Poisson

regression. As a future step, it is of interest to investigate the Hampel function

in the context of Poisson regression in more detail on simulated data with respect

to mean squared error, statistical power and type I error rate as well as in real

data applications. Poisson regression is used to test for association of a countable

response variable with explanatory variables, e.g. the relationship between the

number of variants within one gene and the left ventricle ejection fraction in patients

with dilated cardiomyopathy (DCM), the chromosomal instability depending on

DNA methylation or length of hospital stay (in days) in relation to the disease

severity and patient’s age. To decide on simulation scenarios, real data has to be

examined to get realistic explanatory values and Poisson parameter (λ) for the

count variable depending on the explanatory value.

Subsequent to realisation of the performance of robust logistic and robust Poisson

regression, the combination of these two regression types leads to hurdle models

which are an example for two-part models. These models can be used for zero-

inflated data, e.g. methylation data (Mullahy, 1986; Zeileis et al., 2007). Depicting

the idea of such a model by an example leads to a decision making process. In the

first step, the decision is taken whether to do something or not. Then in case of

a positive decision, it is decided on how often. Logistic regression is used in the
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first step, i.e. to check whether an event has a zero or a positive outcome. If the

value is positive, the truncated Poisson model estimates the positive count value

(Duan et al., 1983; Min and Agresti, 2002; Cantoni and Zedini, 2011). Cantoni and

Zedini (2011) proposed a robust version of the hurdle model based on the results

of Cantoni and Ronchetti (2001). This method was again explicitly applied by

using the Huber function to weight outliers in the response. Regarding the results

of this thesis, it would be interesting to investigate this concept relying on the

Hampel function. Therefore, the truncated Poisson part remains to be derived in

close analogy to Cantoni and Zedini (2011). For the calculation see appendix A on

page 119. To compare this method with existing methods, one must implement it

in a functional language, for example in R (R Core Team, 2013). Thereafter, this

method should again be tested on simulated data and in a real data application.

Besides binomial and Poisson distributions, the investigation of further distribu-

tions (e.g. Gamma with parameters ν and λi) would be of great interest. For a

calculation example see Appendix A of Cantoni and Ronchetti (2006). Gamma

distribution can be used in situations with a positive outcome where the data is

highly skewed and the outcome belongs to the exponential family. The expectation

µi is given by ν
λi

and the variance σ2 is equal to 1
ν
. Cantoni and Ronchetti (2006)

used the Gamma distribution in generalised linear models with the logarithmic link

function to model the cost of staying in a hospital considering different explanatory

variables (e.g. length of stay, insurance, sex or age).

Compared to the Hampel and the Huber function in some circumstances, Çetin and

Erar (2006) already showed some advantage for Andrews’ M-estimator in variable

selection for linear regression models and Wen et al. (2013) for Tukey’s M-estimator

in net-benefit regression models. Furthermore, Alamgir et al. (2013) stated that the

Hampel function has the disadvantage not to be differentiable and a smooth dif-

ferentiable influence function might be desired. Thus, the theoretical development

and practical implementation for additional weighting functions such as Andrews’

sine wave or Tukey’s biweight function would be desirable although the benefit

is unclear due to the observed small differences between the use of the Hampel

and the Huber function. The small difference is in accordance with Alamgir et al.

(2013). But one should take this effort to probably increase statistical power with-

out decreasing the prediction accuracy. The incorporation of the Tukey and the

Andrews function into the framework proposed by Cantoni and Ronchetti (2001)
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will be challenging due to the weighting function structures. Calculations for the

Tukey function are extensive due to several squared expressions. But feasibility

increases by using polynomial long division to get a similar device as in equation

(3.6). The Andrews function probably provides a different kind of time consuming

task caused by the sine function. This function can be written as infinite sum but

this approach just transfers the problem arising during calculation of expectations.

If this infinite sum could be well approximated by a finite sum, the calculation

would be manageable.

Obviously, robust generalised linear models are not only of interest as stand-alone

approaches. Many algorithms rely on standard generalised linear models. There,

the extension by the robustification might be beneficial. An example could be the

approaches proposed by Houseman et al. (2014) and Zou et al. (2014) to analyse

high-throughput DNA methylation data accounting for the cell type distribution

in the sample tissues. This cell type distribution consideration is necessary because

the cell type distribution is a possible confounder in such an association analysis

due to its possible association with both DNA methylation and the trait of interest.

In real data applications, one observed that there was an excess of small p-values

when using the approach by Houseman et al. (2014) and that there was only a

small overlap in the results of these two approaches (Kesselmeier et al., accepted;

Kesselmeier and Scherag, in preparation). This can be caused by extreme observa-

tions that are expected in high-dimensional data. Hence, the use of a robust linear

(mixed) model might be worth to consider for more consistent results.

In conclusion, the successful implementation and application of the Hampel func-

tion into the robust logistic regression framework proposed by Cantoni and Ronchetti

(2001) suggests further research on this topic with respect to, e.g., different distri-

butions and weighting functions for a broader application range and the chance of

a power superiority for robust regression methods compared to standard regression

approaches.
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6 Summary

In genetic studies, data under investigation exhibit a high-dimensionality, i.e.,

there are many more independent variables than measured individuals. In high-

dimensional data, one expects observations departing from the majority of the data

(so-called outliers). Such outliers can seriously affect statistical results because ap-

plied approaches using maximum likelihood estimation can be strongly biased by

outliers. Robust approaches account for such outliers by assigning a weight to each

observation, thus controlling their impact. However, these approaches are only

rarely used in genetic studies.

In this thesis, benefits and limitations of robust (generalised) linear models in com-

parison to the standard maximum likelihood approaches were investigated. For this

purpose, an existing robust generalised linear model framework was generalised to

incorporate another weighting function.

In a first set of analyses, several already existing standard and robust approaches

for linear, Poisson as well as logistic regression were compared. There, the attention

was drawn to model selection consistency and prediction accuracy, the influence of

a single outlier and the influence of genotyping errors on estimates. The prediction

accuracy was similar for (robust) linear and (robust) Poisson regression models in

a real data application. In view of model selection consistency, Poisson regression

selected two or three independent variables whereas linear regression always in-

cluded the same single independent variable, which was, however, in common for

all regression methods. These results were complemented by an inclusion of differ-

ent independent variables into the standard and robust logistic regression models

in a second real data application. Within this application, it was observed that ro-

bust logistic regression better controlled the outlier influence. A simulation study

revealed a decreasing influence of genotyping errors on estimates with increasing

causal allele carrier frequencies. Furthermore, there was an indication of a possible

benefit of robust logistic regression.
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6 Summary

At the time of method application, the robust generalised linear model framework

only provided the bounded Huber function for observation weighting. In this the-

sis, the re-descending Hampel function was incorporated into this framework for

logistic and Poisson regression by explicit calculations for the Fisher consistency

correction and for the asymptotic variance as well as by adaptation of the existing

source code. In a second set of analyses, the developed approach for robust logistic

regression was compared against the standard and the existing robust logistic re-

gression methods based on simulated and real data – both dealing with an (indirect)

association analysis. In the simulation study, several populations were simulated

assuming different penetrance models, minor allele frequencies, genotyping error

rates and linkage between causal and marker allele locus. In the analysis, the at-

tention was drawn to several statistical properties comprising mean squared error

of the estimates, statistical power and type I error rate. In the simulation study, all

approaches controlled the type I error rate. Based on the results of the statistical

properties investigation, a method recommendation must depend on the aim of the

analysis. To reach a large power for variant identification, standard logistic regres-

sion would be an adequate choice. If a small mean squared error probably avoiding

a strong effect overestimation was the goal, robust logistic regression represented a

valuable alternative to the standard approach. This especially held when analysing

rare variants or assuming a recessive penetrance model both leading to a low prob-

ability to observe the causal genotype. If extreme outliers are expected in the data,

the re-descending Hampel function should be favoured.

The aim for future work should be the examination of statistical properties (mean

squared error, statistical power, type I error rate) of robust Poisson regression

and of the robust hurdle model arising by the combination of the logistic and the

truncated Poisson model – both applying the Hampel function. Additionally, an

inclusion of further weighting functions as well as additional distributions would be

of great interest for a broader application range and the chance of a power gain for

robust regression methods.

Summarising, the coincidence of expected outliers and observed rare events in high-

dimensional data challenges the analysis of genetic data. The results of this thesis

indicate that these analyses can benefit from the application of robust logistic

regression models to narrow down the winner’s curse of rare and recessive suscep-

tibility variants.
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A On calculations to adapt the

robust hurdle model to the use of

the Hampel function

To build the logistic regression part of the hurdle model based on the Hampel

function, one applies the formulas for the logistic regression developed in section

3.1.1. For the truncated Poisson regression part, one must calculate the three

expectations needed to weight observations in the truncated Poisson model similarly

to the Poisson model in section 3.1.2.

For the purpose of deducing the truncated Poisson part, let ui be the covariate

vector used within the truncated Poisson model. This vector can equal the covariate

vector of the logistic regression part but it is not mandatory. Then, it holds for

the expectation of the truncated-Poisson distributed random variable Yi given the

covariate vector ui that

E[Yi|ui] = µi =
λi

1− e−λi

with Poisson parameter λi (Cantoni and Zedini, 2011). Note that

j P[Yi = j|j > 0] =
λi

1− e−λi
P[Ỹi = j − 1]

= µi P[Ỹi = j − 1]

and

j(j − 1) P[Yi = j|j > 0] = λi
λi

1− e−λi
P[Ỹi = j − 2]

= λi µi P[Ỹi = j − 2]

with Yi ∼ Poitrunc(λi) (truncated Poisson distribution) and Ỹi ∼ Poi(λi). Then, the
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A On calculations to adapt the robust hurdle model to the use of the Hampel function

expectation for the Fisher consistency correction equals

E

[
ψHampel

(
Yi − µi
V 1/2(µi)

)]
=

µi
V 1/2(µi)

(
P
[
ja1 ≤ Ỹi ≤ ja2 − 1

]
− P [ja1 + 1 ≤ Yi ≤ ja2 ]

)
+ a (P [ja2 + 1 ≤ Yi ≤ jb2 ]− P [jb1 + 1 ≤ Yi ≤ ja1 ])

+
a

c− b

{
c (P [jb2 + 1 ≤ Yi ≤ jc2 ]− P [jc1 + 1 ≤ Yi ≤ jb1 ])

− µi
V 1/2(µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
− P [jb2 + 1 ≤ Yi ≤ jc2 ]

+ P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]
− P [jc1 + 1 ≤ Yi ≤ jb1 ]

)}
Besides Fisher consistency correction, one needs the two expectations for the asymp-

totic variance. They equal

E

[
ψ2
Hampel

(
Yi − µi
V 1/2(µi)

)]
=

µi
V (µi)

(
µi P [ja1 + 1 ≤ Yi ≤ ja2 ] + λi P

[
ja1 − 1 ≤ Ỹi ≤ ja2 − 2

]
+(1− 2µi) P

[
ja1 ≤ Ỹi ≤ ja2 − 1

])
+ a2 (P [ja2 + 1 ≤ Yi ≤ jb2 ] + P [jb1 + 1 ≤ Yi ≤ ja1 ])

+
a2

(c− b)2
{
c2 (P [jb2 + 1 ≤ Yi ≤ jc2 ] + P [jc1 + 1 ≤ Yi ≤ jb1 ])

− 2cµi
V 1/2(µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
− P [jb2 + 1 ≤ Yi ≤ jc2 ]

−P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]
+ P [jc1 + 1 ≤ Yi ≤ jb1 ]

)
+

µi
V (µi)

[
µi (P [jb2 + 1 ≤ Yi ≤ jc2 ] + P [jc1 + 1 ≤ Yi ≤ jb1 ])

+ λi

(
P
[
jb2 − 1 ≤ Ỹi ≤ jc2 − 2

]
+ P

[
jc1 − 1 ≤ Ỹi ≤ jb1 − 2

])
+(1− 2µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
+ P

[
jc1 ≤ Ỹi ≤ jb1 − 1

])]}
and

120



E

[
ψHampel

(
Yi − µi
V 1/2(µi)

)
Yi − µi
V (µi)

]
=

µi
V 3/2(µi)

{
µi P [ja1 + 1 ≤ Yi ≤ ja2 ] + λi P

[
ja1 − 1 ≤ Ỹi ≤ ja2 − 2

]
+(1− 2µi) P

[
ja1 ≤ Ỹi ≤ ja2 − 1

]}
+

aµi
V (µi)

(
P
[
ja2 ≤ Ỹi ≤ jb2 − 1

]
− P [ja2 + 1 ≤ Yi ≤ jb2 ]

−P
[
jb1 ≤ Ỹi ≤ ja1 − 1

]
+ P [jb1 + 1 ≤ Yi ≤ ja1 ]

)
+

aµi
(c− b)V (µi)

{
c
(

P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
− P [jb2 + 1 ≤ Yi ≤ jc2 ]

−P
[
jc1 ≤ Ỹi ≤ jb1 − 1

]
+ P [jc1 + 1 ≤ Yi ≤ jb1 ]

)
− µi
V 1/2(µi)

[
µi (P [jb2 + 1 ≤ Yi ≤ jc2 ]− P [jc1 + 1 ≤ Yi ≤ jb1 ])

+ λi

(
P
[
jb2 − 1 ≤ Ỹi ≤ jc2 − 2

]
− P

[
jc1 − 1 ≤ Ỹi ≤ jb1 − 2

])
+(1− 2µi)

(
P
[
jb2 ≤ Ỹi ≤ jc2 − 1

]
− P

[
jc1 ≤ Ỹi ≤ jb1 − 1

])]}
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A On calculations to adapt the robust hurdle model to the use of the Hampel function
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B Supplemental tables

This chapter provides supplemental tables of the investigation of the statistical

properties with standard and robust logistic regression methods with both influence

functions. The following tables are provided:

• Type I error rates (table S1 on page 124)

• Bias, variance, MSE and statistical power . . .

– . . . of the main scenarios – one table per method and tuning constant

(tables S2-S5 on pages 125-131)

– . . . of the additional scenario “rare variants” – one table per method

and tuning constant (tables S6-S9 on pages 133-136)

– . . . of the additional scenario “underlying recessive penetrance model”

– one table per method and tuning constant (tables S10-S13 on pages

137-140)

• SNP and sample identifier of the real data application (table S14 on page 141

and table S15 on page 142)

123



B Supplemental tables

T
ab

le
S
1:

T
y
p

e
I

er
ro

r
ra

te
s

fr
om

st
an

d
ar

d
an

d
ro

b
u
st

lo
gi

st
ic

re
gr

es
si

on
an

al
y
se

s
ap

p
ly

in
g

th
e

H
u
b

er
as

w
el

l
as

th
e

H
am

p
el

fu
n
ct

io
n

fo
r

ob
se

rv
at

io
n

w
ei

gh
ti

n
g

u
n
d
er

th
e

n
u
ll
.

T
h
e

as
su

m
ed

p
ar

am
et

er
s

w
er

e
u
n
if

or
m

ly
d
is

tr
ib

u
te

d
m

in
or

al
le

le
fr

eq
u
en

cy
b

et
w

ee
n

0.
05

an
d

0.
50

an
d

a
d
om

in
an

t
ge

n
ot

y
p

e
re

la
ti

ve
ri

sk
of

1.
In

th
e

re
fe

re
n
ce

si
m

u
la

ti
on

sc
en

ar
io

,
a

fi
tt

ed
d
om

in
an

t
p

en
et

ra
n
ce

m
o
d
el

w
as

u
se

d
to

ev
al

u
at

e
40

0
si

m
u
la

te
d

st
u
d
ie

s
w

it
h

10
00

ca
se

s
an

d
10

00
co

n
tr

ol
s.

T
u
n
in

g
co

n
st

an
ts

fo
r

ro
b
u
st

m
et

h
o
d
s

ar
e

sh
ow

n
in

b
ra

ck
et

s
in

th
e

ta
b
le

h
ea

d
er

.

In
ve

st
ig

at
ed

P
ar

am
et

er
S
ta

n
d
ar

d
H

u
b

er
H

am
p

el
H

am
p

el
sc

en
ar

io
ch

an
ge

d
[−

]
[1
.3

45
]

[(
1.

5,
3.

5,
8)
·0
.9

]
[(

2,
4,

8)
·0
.7

]
R

ef
er

en
ce

−
0.

05
4

(0
.0

47
,0
.0

61
)

0.
05

1
(0
.0

44
,0
.0

58
)

0.
05

0
(0
.0

43
,0
.0

57
)

0.
04

8
(0
.0

41
,0
.0

55
)

F
it

te
d

p
en

et
ra

n
ce

A
d
d
it

iv
e

0.
05

3
(0
.0

46
,0
.0

60
)

0.
05

2
(0
.0

45
,0
.0

59
)

0.
05

1
(0
.0

44
,0
.0

58
)

0.
04

9
(0
.0

42
,0
.0

56
)

m
o
d
el

R
ec

es
si

ve
0.

04
4

(0
.0

38
,0
.0

50
)

0.
04

6
(0
.0

40
,0
.0

52
)

0.
04

5
(0
.0

39
,0
.0

51
)

0.
04

4
(0
.0

38
,0
.0

50
)

N
u
m

b
er

of
10

0
0.

04
8

(0
.0

35
,0
.0

61
)

0.
05

1
(0
.0

37
,0
.0

65
)

0.
04

9
(0
.0

36
,0
.0

62
)

0.
04

6
(0
.0

33
,0
.0

59
)

si
m

u
la

te
d

st
u
d
ie

s
20

0
0.

05
3

(0
.0

43
,0
.0

63
)

0.
05

5
(0
.0

45
,0
.0

65
)

0.
05

3
(0
.0

43
,0
.0

63
)

0.
05

0
(0
.0

40
,0
.0

60
)

30
0

0.
05

5
(0
.0

47
,0
.0

63
)

0.
05

3
(0
.0

45
,0
.0

61
)

0.
05

2
(0
.0

44
,0
.0

60
)

0.
05

0
(0
.0

42
,0
.0

58
)

50
0

0.
05

3
(0
.0

47
,0
.0

59
)

0.
05

0
(0
.0

44
,0
.0

56
)

0.
04

9
(0
.0

43
,0
.0

55
)

0.
04

8
(0
.0

42
,0
.0

54
)

60
0

0.
05

1
(0
.0

45
,0
.0

57
)

0.
05

0
(0
.0

44
,0
.0

56
)

0.
04

9
(0
.0

44
,0
.0

54
)

0.
04

7
(0
.0

42
,0
.0

52
)

70
0

0.
05

1
(0
.0

46
,0
.0

56
)

0.
05

1
(0
.0

46
,0
.0

56
)

0.
05

0
(0
.0

45
,0
.0

55
)

0.
04

8
(0
.0

43
,0
.0

53
)

80
0

0.
05

1
(0
.0

46
,0
.0

56
)

0.
05

0
(0
.0

45
,0
.0

55
)

0.
04

9
(0
.0

44
,0
.0

54
)

0.
04

7
(0
.0

42
,0
.0

52
)

90
0

0.
05

1
(0
.0

46
,0
.0

56
)

0.
05

0
(0
.0

45
,0
.0

55
)

0.
04

9
(0
.0

45
,0
.0

53
)

0.
04

7
(0
.0

43
,0
.0

51
)

10
00

0.
05

1
(0
.0

47
,0
.0

55
)

0.
05

0
(0
.0

46
,0
.0

54
)

0.
04

9
(0
.0

45
,0
.0

53
)

0.
04

7
(0
.0

43
,0
.0

51
)

S
tu

d
y

si
ze

?
20

0
0.

05
7

(0
.0

50
,0
.0

64
)

0.
05

6
(0
.0

49
,0
.0

63
)

0.
05

5
(0
.0

48
,0
.0

62
)

0.
05

4
(0
.0

47
,0
.0

61
)

40
0

0.
05

5
(0
.0

48
,0
.0

62
)

0.
05

0
(0
.0

43
,0
.0

57
)

0.
04

9
(0
.0

42
,0
.0

56
)

0.
04

9
(0
.0

42
,0
.0

56
)

60
0

0.
05

0
(0
.0

43
,0
.0

57
)

0.
05

2
(0
.0

45
,0
.0

59
)

0.
05

1
(0
.0

44
,0
.0

58
)

0.
05

0
(0
.0

43
,0
.0

57
)

80
0

0.
04

8
(0
.0

41
,0
.0

55
)

0.
04

8
(0
.0

41
,0
.0

55
)

0.
04

7
(0
.0

40
,0
.0

54
)

0.
04

7
(0
.0

40
,0
.0

54
)

10
00

0.
04

3
(0
.0

37
,0
.0

49
)

0.
04

3
(0
.0

37
,0
.0

49
)

0.
04

2
(0
.0

36
,0
.0

48
)

0.
04

2
(0
.0

36
,0
.0

48
)

12
00

0.
05

0
(0
.0

43
,0
.0

57
)

0.
04

5
(0
.0

39
,0
.0

51
)

0.
04

4
(0
.0

38
,0
.0

50
)

0.
04

3
(0
.0

37
,0
.0

49
)

14
00

0.
04

9
(0
.0

42
,0
.0

56
)

0.
05

0
(0
.0

43
,0
.0

57
)

0.
04

9
(0
.0

42
,0
.0

56
)

0.
04

8
(0
.0

41
,0
.0

55
)

16
00

0.
05

3
(0
.0

46
,0
.0

60
)

0.
05

1
(0
.0

44
,0
.0

58
)

0.
05

0
(0
.0

43
,0
.0

57
)

0.
04

9
(0
.0

42
,0
.0

56
)

18
00

0.
05

3
(0
.0

46
,0
.0

60
)

0.
05

0
(0
.0

43
,0
.0

57
)

0.
04

9
(0
.0

42
,0
.0

56
)

0.
04

8
(0
.0

41
,0
.0

55
)

?
S
tu

d
y

si
ze

=
n
u
m

b
er

of
ca

se
s

+
n
u
m

b
er

of
co

n
tr

ol
s

(b
al

an
ce

d
gr

ou
p
s)

124



Table S2: Standard logistic regression: Bias, variance and mean squared error
(MSE) of estimated genotype relative risk (GRR) and statistical power.
The assumed parameters under the reference simulation scenario were
minor allele frequency (MAF) = 0.05, dominant GRR = 1.43 age-
independent, D′ = 1, r2 = 1, no genotyping errors, 400 simulated stud-
ies with 1000 cases and 1000 controls and a fitted dominant penetrance
model.

Investigated Parameter
Bias Variance MSE Power

scenario changed

Reference − 0.0095 0.0307 0.0308 0.598

Fitted penetrance Additive −0.0089 0.0292 0.0293 0.578

model Recessive 0.4635 19.2920 19.5068 0.020

MAF 0.001 0.4688 23.521 23.7408 0.018

0.005 0.0113 0.2342 0.2343 0.090

0.010 0.0148 0.1299 0.1301 0.162

0.100 0.0124 0.0183 0.0185 0.800

0.150 0.0030 0.0122 0.0122 0.890

0.200 0.0093 0.0114 0.0115 0.932

0.250 0.0109 0.0109 0.0110 0.928

r2 0.9 −0.0153 0.0279 0.0281 0.548

0.8 −0.0470 0.0252 0.0274 0.495

0.7 −0.0803 0.0265 0.0329 0.438

0.6 −0.1107 0.0192 0.0315 0.435

GRR Age-dependent? 0.4667 0.0372 0.2550 0.992

Genotyping error 0.01 −0.0180 0.0297 0.0300 0.548

rate 0.02 −0.0399 0.0280 0.0296 0.478

0.03 −0.0609 0.0246 0.0283 0.488

0.04 −0.0799 0.0236 0.0300 0.445

0.05 −0.0957 0.0233 0.0325 0.422

Number of 100 0.0060 0.0377 0.0377 0.580

simulated studies 200 0.0119 0.0313 0.0314 0.590

300 0.0128 0.0313 0.0315 0.597

500 0.0057 0.0305 0.0305 0.580

600 0.0100 0.0308 0.0309 0.583

700 0.0110 0.0299 0.0300 0.584
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B Supplemental tables

800 0.0093 0.0304 0.0305 0.585

900 0.0108 0.0312 0.0313 0.586

1000 0.0089 0.0309 0.0310 0.585

Study size?? 200 0.0068 0.2965 0.2965 0.068

400 −0.0215 0.1446 0.1451 0.128

600 −0.0175 0.0948 0.0951 0.185

800 −0.0132 0.0726 0.0728 0.242

1000 −0.0026 0.0562 0.0562 0.300

1200 −0.0030 0.0485 0.0485 0.358

1400 −0.0031 0.0426 0.0426 0.400

1600 −0.0027 0.0387 0.0387 0.465

1800 0.0014 0.0350 0.0350 51.7

? Age-dependent dominant GRR as given by the tuples (age [years], GRR):

(35, 20), (40, 15), (45, 10), (50, 5), (55, 1.57), (60, 1), (65, 1), (70, 1), (75, 1),

reflecting decreasing genetics effects with increasing age in agreement

with an overall dominant GRR of 1.43 (reference scenario).
?? Study size = number of cases + number of controls (balanced groups)
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Table S3: Robust logistic regression with the Huber function [c = 1.345]: Bias,
variance and mean squared error (MSE) of estimated genotype relative
risk (GRR) and statistical power. The assumed parameters under the
reference simulation scenario were minor allele frequency (MAF) = 0.05,
dominant GRR = 1.43 age-independent, D′ = 1, r2 = 1, no genotyping
errors, 400 simulated studies with 1000 cases and 1000 controls and a
fitted dominant penetrance model.

Investigated Parameter
Bias Variance MSE Power

scenario changed

Reference − 0.0055 0.0304 0.0304 0.568

Fitted penetrance Additive −0.0119 0.0289 0.0290 0.562

model Recessive −0.1200 0.9000 0.9144 0.020

MAF 0.001 −0.0856 0.9631 0.9704 0.012

0.005 0.0035 0.2327 0.2327 0.072

0.010 0.0051 0.1293 0.1293 0.145

0.100 0.0117 0.0186 0.0187 0.792

0.150 0.0033 0.0123 0.0123 0.895

0.200 0.0096 0.0120 0.0121 0.920

0.250 0.0116 0.0116 0.0117 0.930

r2 0.9 −0.0173 0.0276 0.0279 0.528

0.8 −0.0503 0.0247 0.0272 0.480

0.7 −0.0817 0.0265 0.0332 0.412

0.6 −0.1130 0.0192 0.0320 0.385

GRR Age-dependent? 0.5176 0.0501 0.3180 0.990

Genotyping error 0.01 −0.0206 0.0298 0.0302 0.528

rate 0.02 −0.0432 0.0279 0.0298 0.465

0.03 −0.0635 0.0249 0.0289 0.445

0.04 −0.0820 0.0234 0.0301 0.410

0.05 −0.0969 0.0234 0.0328 0.392

Number of 100 0.0036 0.0370 0.0370 0.500

simulated studies 200 0.0086 0.0309 0.0310 0.545

300 0.0095 0.0313 0.0314 0.567

500 0.0018 0.0301 0.0301 0.556

600 0.0064 0.0308 0.0308 0.562

700 0.0072 0.0298 0.0299 0.564
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800 0.0055 0.0303 0.0303 0.564

900 0.0065 0.0314 0.0314 0.566

1000 0.0049 0.0310 0.0310 0.562

Study size?? 200 0.0042 0.3061 0.3061 0.072

400 −0.0166 0.1509 0.1512 0.122

600 −0.0157 0.0971 0.0973 0.182

800 −0.0130 0.0736 0.0738 0.225

1000 −0.0043 0.0569 0.0569 0.287

1200 −0.0049 0.0491 0.0491 0.358

1400 −0.0048 0.0428 0.0428 0.382

1600 −0.0049 0.0387 0.0387 0.445

1800 −0.0017 0.0346 0.0346 0.498

? Age-dependent dominant GRR as given by the tuples (age [years], GRR):

(35, 20), (40, 15), (45, 10), (50, 5), (55, 1.57), (60, 1), (65, 1), (70, 1), (75, 1),

reflecting decreasing genetics effects with increasing age in agreement

with an overall dominant GRR of 1.43 (reference scenario).
?? Study size = number of cases + number of controls (balanced groups)
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Table S4: Robust logistic regression with the Hampel function [(a, b, c) =
(1.5, 3.5, 8) · 0.9]: Bias, variance and mean squared error (MSE) of esti-
mated genotype relative risk (GRR) and statistical power. The assumed
parameters under the reference simulation scenario were minor allele fre-
quency (MAF) = 0.05, dominant GRR = 1.43 age-independent, D′ = 1,
r2 = 1, no genotyping errors, 400 simulated studies with 1000 cases and
1000 controls and a fitted dominant penetrance model.

Investigated Parameter
Bias Variance MSE Power

scenario changed

Reference − 0.0040 0.0302 0.0302 0.565

Fitted penetrance Additive −0.0132 0.0287 0.0289 0.555

model Recessive −0.1032 1.2416 1.2523 0.020

MAF 0.001 −0.0767 1.5965 1.6024 0.014

0.005 0.0045 0.2352 0.2352 0.072

0.010 0.0047 0.1294 0.1294 0.145

0.100 0.0100 0.0185 0.0186 0.790

0.150 0.0015 0.0122 0.0122 0.895

0.200 0.0077 0.0119 0.0120 0.918

0.250 0.0097 0.0114 0.0115 0.930

r2 0.9 −0.0187 0.0274 0.0277 0.528

0.8 −0.0517 0.0245 0.0272 0.478

0.7 −0.0829 0.0262 0.0331 0.412

0.6 −0.1142 0.0190 0.0320 0.380

GRR Age-dependent? 0.5196 0.0520 0.3220 0.990

Genotyping error 0.01 −0.0220 0.0295 0.0300 0.528

rate 0.02 −0.0446 0.0277 0.0297 0.465

0.03 −0.0648 0.0247 0.0289 0.442

0.04 −0.0833 0.0232 0.0301 0.410

0.05 −0.0981 0.0232 0.0328 0.388

Number of 100 0.0020 0.0367 0.0367 0.500

simulated studies 200 0.0071 0.0306 0.0307 0.545

300 0.0080 0.0311 0.0312 0.563

500 0.0002 0.0299 0.0299 0.554

600 0.0049 0.0306 0.0306 0.560

700 0.0057 0.0296 0.0296 0.563
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800 0.0040 0.0301 0.0301 0.562

900 0.0050 0.0312 0.0312 0.564

1000 0.0034 0.0308 0.0308 0.560

Study size?? 200 0.0064 0.3123 0.3123 0.070

400 −0.0171 0.1512 0.1515 0.120

600 −0.0167 0.0965 0.0968 0.180

800 −0.0142 0.0730 0.0732 0.225

1000 −0.0056 0.0565 0.0565 0.287

1200 −0.0063 0.0488 0.0488 0.358

1400 −0.0062 0.0425 0.0425 0.382

1600 −0.0064 0.0384 0.0384 0.442

1800 −0.0032 0.0343 0.0343 0.495

? Age-dependent dominant GRR as given by the tuples (age [years], GRR):

(35, 20), (40, 15), (45, 10), (50, 5), (55, 1.57), (60, 1), (65, 1), (70, 1), (75, 1),

reflecting decreasing genetics effects with increasing age in agreement

with an overall dominant GRR of 1.43 (reference scenario).
?? Study size = number of cases + number of controls (balanced groups)
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Table S5: Robust logistic regression with the Hampel function [(a, b, c) = (2, 4, 8) ·
0.7]: Bias, variance and mean squared error (MSE) of estimated genotype
relative risk (GRR) and statistical power. The assumed parameters un-
der the reference simulation scenario were minor allele frequency (MAF)
= 0.05, dominant GRR = 1.43 age-independent, D′ = 1, r2 = 1, no geno-
typing errors, 400 simulated studies with 1000 cases and 1000 controls
and a fitted dominant penetrance model.

Investigated Parameter
Bias Variance MSE Power

scenario changed

Reference − 0.0024 0.0299 0.0299 0.565

Fitted penetrance Additive −0.0146 0.0285 0.0287 0.552

model Recessive −0.0846 1.2028 1.2100 0.022

MAF 0.001 −0.0506 1.4955 1.4981 0.014

0.005 0.0047 0.2364 0.2364 0.070

0.010 0.0044 0.1294 0.1294 0.145

0.100 0.0084 0.0182 0.0183 0.790

0.150 −0.0003 0.0121 0.0121 0.890

0.200 0.0059 0.0117 0.0117 0.918

0.250 0.0077 0.0113 0.0114 0.928

r2 0.9 −0.0202 0.0271 0.0275 0.525

0.8 −0.0530 0.0243 0.0271 0.472

0.7 −0.0841 0.0259 0.0330 0.410

0.6 −0.1153 0.0188 0.0321 0.378

GRR Age-dependent? 0.5241 0.0536 0.3283 0.992

Genotyping error 0.01 −0.0235 0.0292 0.0298 0.522

rate 0.02 −0.0459 0.0274 0.0295 0.465

0.03 −0.0661 0.0244 0.0288 0.438

0.04 −0.0847 0.0229 0.0301 0.410

0.05 −0.0994 0.0230 0.0329 0.390

Number of 100 0.0002 0.0363 0.0363 0.510

simulated studies 200 0.0056 0.0303 0.0303 0.545

300 0.0065 0.0308 0.0308 0.563

500 −0.0014 0.0296 0.0296 0.554

600 0.0033 0.0303 0.0303 0.558

700 0.0041 0.0293 0.0293 0.561
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800 0.0024 0.0298 0.0298 0.560

900 0.0035 0.0309 0.0309 0.560

1000 0.0019 0.0305 0.0305 0.556

Study size?? 200 0.0098 0.3228 0.2339 0.072

400 −0.0168 0.1528 0.1531 0.112

600 −0.0176 0.0960 0.0963 0.182

800 −0.0155 0.0724 0.0726 0.220

1000 −0.0068 0.0561 0.0561 0.282

1200 −0.0076 0.0484 0.0485 0.350

1400 −0.0076 0.0422 0.0423 0.385

1600 −0.0078 0.0380 0.0381 0.442

1800 −0.0048 0.0340 0.0340 0.490

? Age-dependent dominant GRR as given by the tuples (age [years], GRR):

(35, 20), (40, 15), (45, 10), (50, 5), (55, 1.57), (60, 1), (65, 1), (70, 1), (75, 1),

reflecting decreasing genetics effects with increasing age in agreement

with an overall dominant GRR of 1.43 (reference scenario).
?? Study size = number of cases + number of controls (balanced groups)
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Table S6: Standard logistic regression: Bias, variance and mean squared error
(MSE) of estimated genotype relative risk (GRR) and statistical power
of the additional scenario “rare variants”. The fixed simulation param-
eters were D′ = 1, r2 = 1, 400 simulated studies with a fitted dominant
penetrance model. MAF = minor allele frequency. # = number of.

MAF Genotyping

Bias Variance MSE Power# Cases / # Controls Error

Dominant GRR Rate

0.010 0.00 0.0156 0.1072 0.1074 0.602

1000/1000 0.01 −0.0888 0.0934 0.1013 0.540

2.07 0.02 −0.1803 0.0792 0.1117 0.492

0.03 −0.2469 0.0731 0.1341 0.455

0.04 −0.3038 0.0646 0.1569 0.395

0.05 −0.3486 0.0564 0.1779 0.348

0.005 0.00 0.0229 0.1926 0.1931 0.598

1000/1000 0.01 −0.2077 0.1499 0.1930 0.512

2.65 0.02 −0.3665 0.1181 0.2524 0.410

0.03 −0.4731 0.0977 0.3215 0.368

0.04 −0.5486 0.0858 0.3868 0.305

0.05 −0.6064 0.0729 0.4406 0.260

0.001 0.00 0.0563 0.2047 0.2079 0.598

5000/5000 0.01 −0.7111 0.0461 0.5518 0.175

2.53 0.02 −0.7957 0.0257 0.6588 0.142

0.03 −0.8318 0.0164 0.7083 0.100

0.04 −0.8543 0.0129 0.7427 0.092

0.05 −0.8703 0.0108 0.7682 0.058
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Table S7: Robust logistic regression with the Huber function [c = 1.345]: Bias, vari-
ance and mean squared error (MSE) of estimated genotype relative risk
(GRR) and statistical power of the additional scenario “rare variants”.
The fixed simulation parameters were D′ = 1, r2 = 1, 400 simulated
studies with a fitted dominant penetrance model. MAF = minor allele
frequency. # = number of.

MAF Genotyping

Bias Variance MSE Power# Cases / # Controls Error

Dominant GRR Rate

0.010 0.00 −0.0058 0.1038 0.1038 0.555

1000/1000 0.01 −0.1054 0.0898 0.1009 0.488

2.07 0.02 −0.1934 0.0790 0.1164 0.435

0.03 −0.2580 0.0696 0.1362 0.422

0.04 −0.3122 0.0650 0.1625 0.365

0.05 −0.3533 0.0558 0.1806 0.310

0.005 0.00 −0.0101 0.1829 0.1830 0.528

1000/1000 0.01 −0.2288 0.1403 0.1926 0.465

2.65 0.02 −0.3803 0.1197 0.2643 0.385

0.03 −0.4842 0.0930 0.3274 0.322

0.04 −0.5566 0.0866 0.3964 0.270

0.05 −0.6084 0.0725 0.4427 0.235

0.001 0.00 0.0175 0.1900 0.1903 0.538

5000/5000 0.01 −0.7115 0.0466 0.5528 0.190

2.53 0.02 −0.7970 0.0262 0.6614 0.130

0.03 −0.8348 0.0171 0.7140 0.092

0.04 −0.8563 0.0131 0.7463 0.082

0.05 −0.8715 0.0111 0.7706 0.055
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Table S8: Robust logistic regression with the Hampel function [(a, b, c) =
(1.5, 3.5, 8) · 0.9]: Bias, variance and mean squared error (MSE) of es-
timated genotype relative risk (GRR) and statistical power of the ad-
ditional scenario “rare variants”. The fixed simulation parameters were
D′ = 1, r2 = 1, 400 simulated studies with a fitted dominant penetrance
model. MAF = minor allele frequency. # = number of.

MAF Genotyping

Bias Variance MSE Power# Cases / # Controls Error

Dominant GRR Rate

0.010 0.00 −0.0063 0.1045 0.1045 0.555

1000/1000 0.01 −0.1063 0.0901 0.1014 0.488

2.07 0.02 −0.1945 0.0790 0.1168 0.430

0.03 −0.2593 0.0694 0.1366 0.422

0.04 −0.3134 0.0649 0.1631 0.362

0.05 −0.3544 0.0555 0.1811 0.308

0.005 0.00 −0.0083 0.1875 0.1876 0.525

1000/1000 0.01 −0.2286 0.1420 0.1943 0.465

2.65 0.02 −0.3809 0.1205 0.2656 0.382

0.03 −0.4853 0.0930 0.3285 0.320

0.04 −0.5576 0.0864 0.3973 0.270

0.05 −0.6095 0.0723 0.4438 0.235

0.001 0.00 0.0194 0.1948 0.1952 0.535

5000/5000 0.01 −0.7125 0.0462 0.5539 0.190

2.53 0.02 −0.7977 0.0259 0.6622 0.130

0.03 −0.8353 0.0169 0.7146 0.092

0.04 −0.8567 0.0129 0.7468 0.080

0.05 −0.8718 0.0110 0.7710 0.055
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Table S9: Robust logistic regression with the Hampel function [(a, b, c) = (2, 4, 8) ·
0.7]: Bias, variance and mean squared error (MSE) of estimated genotype
relative risk (GRR) and statistical power of the additional scenario “rare
variants”. The fixed simulation parameters were D′ = 1, r2 = 1, 400
simulated studies with a fitted dominant penetrance model. MAF =
minor allele frequency. # = number of.

MAF Genotyping

Bias Variance MSE Power# Cases / # Controls Error

Dominant GRR Rate

0.010 0.00 −0.0076 0.1049 0.1050 0.555

1000/1000 0.01 −0.1079 0.0901 0.1017 0.480

2.07 0.02 −0.1959 0.0787 0.1171 0.425

0.03 −0.2608 0.0690 0.1370 0.415

0.04 −0.3146 0.0646 0.1636 0.365

0.05 −0.3556 0.0553 0.1818 0.305

0.005 0.00 −0.0086 0.1901 0.1902 0.522

1000/1000 0.01 −0.2296 0.1429 0.1956 0.468

2.65 0.02 −0.3817 0.1210 0.2667 0.378

0.03 −0.4868 0.0928 0.3298 0.320

0.04 −0.5588 0.0861 0.3984 0.273

0.05 −0.6104 0.0721 0.4447 0.235

0.001 0.00 0.0210 0.2021 0.2025 0.530

5000/5000 0.01 −0.7135 0.0456 0.5547 0.188

2.53 0.02 −0.7982 0.0256 0.6627 0.128

0.03 −0.8356 0.0167 0.7149 0.092

0.04 −0.8569 0.0127 0.7470 0.080

0.05 −0.8719 0.0109 0.7711 0.052
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Table S10: Standard logistic regression: Bias, variance and mean squared error
(MSE) of estimated genotype relative risk (GRR) and statistical power
of the additional scenario “underlying recessive penetrance model”. The
fixed simulation parameters were minor allele frequency (MAF) = 0.05,
recessive GRR = 6.32 age-independent, D′ = 1, r2 = 1 and 400 simu-
lated studies with 1000 cases and 1000 controls.

Fitted Penetrance Genotyping
Bias Variance MSE Power

Model Error Rate

Recessive 0.00 1.1856 15.0893 16.4949 0.600

0.01 −0.8478 0.2540 0.9728 0.470

0.02 −1.1460 0.1697 1.4830 0.370

0.03 −1.3053 0.1180 1.8218 0.290

0.04 −1.4043 0.1083 2.0804 0.235

0.05 −1.4564 0.0963 2.2174 0.238

Additive 0.00 −1.8377 0.0356 3.4127 0.055

0.01 −1.8359 0.0356 3.4061 0.055

0.02 −1.8345 0.0338 3.3992 0.062

0.03 −1.8345 0.0320 3.3974 0.065

0.04 −1.8365 0.0313 3.4040 0.065

0.05 −1.8395 0.0313 3.4151 0.062

Dominant 0.00 −1.7147 0.0335 2.9737 0.108

0.01 −1.7261 0.0325 3.0119 0.128

0.02 −1.7328 0.0305 3.0331 0.108

0.03 −1.7412 0.0268 3.0586 0.088

0.04 −1.7493 0.0254 3.0855 0.090

0.05 −1.7538 0.0246 3.1004 0.090
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Table S11: Robust logistic regression with the Huber function [c = 1.345]: Bias,
variance and mean squared error (MSE) of estimated genotype rela-
tive risk (GRR) and statistical power of the additional scenario “un-
derlying recessive penetrance model”. The fixed simulation parameters
were minor allele frequency (MAF) = 0.05, recessive GRR = 6.32 age-
independent, D′ = 1, r2 = 1 and 400 simulated studies with 1000 cases
and 1000 controls.

Fitted Penetrance Genotyping
Bias Variance MSE Power

Model Error Rate

Recessive 0.00 −0.1074 0.5232 0.5347 0.510

0.01 −0.8649 0.2315 0.9796 0.420

0.02 −1.1434 0.1717 1.4791 0.328

0.03 −1.3000 0.1267 1.8167 0.278

0.04 −1.4341 0.1054 2.1620 0.210

0.05 −1.4901 0.0902 2.3106 0.160

Additive 0.00 −1.8434 0.0367 3.4348 0.050

0.01 −1.8378 0.0351 3.4126 0.045

0.02 −1.8381 0.0329 3.4115 0.048

0.03 −1.8392 0.0327 3.4154 0.052

0.04 −1.8355 0.0315 3.4006 0.050

0.05 −1.8358 0.0293 3.3995 0.035

Dominant 0.00 −1.7153 0.0335 2.9758 0.105

0.01 −1.7248 0.0321 3.0070 0.102

0.02 −1.7344 0.0286 3.0367 0.095

0.03 −1.7431 0.0274 3.0658 0.098

0.04 −1.7530 0.0272 3.1002 0.108

0.05 −1.7567 0.0220 3.1080 0.075
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Table S12: Robust logistic regression with the Hampel function [(a, b, c) =
(1.5, 3.5, 8) · 0.9]: Bias, variance and mean squared error (MSE) of es-
timated genotype relative risk (GRR) and statistical power of the ad-
ditional scenario “underlying recessive penetrance model”. The fixed
simulation parameters were minor allele frequency (MAF) = 0.05, re-
cessive GRR = 6.32 age-independent, D′ = 1, r2 = 1 and 400 simulated
studies with 1000 cases and 1000 controls.

Fitted Penetrance Genotyping
Bias Variance MSE Power

Model Error Rate

Recessive 0.00 0.0624 1.2398 1.2437 0.438

0.01 −0.8267 0.3113 0.9947 0.405

0.02 −1.1349 0.1795 1.4675 0.330

0.03 −1.3159 0.1390 1.8706 0.268

0.04 −1.3999 0.0986 2.0583 0.232

0.05 −1.4560 0.0883 2.2082 0.225

Additive 0.00 −1.8436 0.0364 3.4353 0.047

0.01 −1.8383 0.0339 3.4132 0.052

0.02 −1.8417 0.0344 3.4263 0.058

0.03 −1.8338 0.0328 3.3956 0.055

0.04 −1.8390 0.0313 3.4132 0.038

0.05 −1.8379 0.0297 3.4076 0.038

Dominant 0.00 −1.7160 0.0331 2.9778 0.105

0.01 −1.7242 0.0306 3.0035 0.098

0.02 −1.7361 0.0296 3.0436 0.100

0.03 −1.7412 0.0285 3.0603 0.108

0.04 −1.7478 0.0254 3.0802 0.088

0.05 −1.7508 0.0229 3.0882 0.080

139



B Supplemental tables

Table S13: Robust logistic regression with the Hampel function [(a, b, c) = (2, 4, 8) ·
0.7]: Bias, variance and mean squared error (MSE) of estimated geno-
type relative risk (GRR) and statistical power of the additional scenario
“underlying recessive penetrance model”. The fixed simulation param-
eters were minor allele frequency (MAF) = 0.05, recessive GRR = 6.32
age-independent, D′ = 1, r2 = 1 and 400 simulated studies with 1000
cases and 1000 controls.

Fitted Penetrance Genotyping
Bias Variance MSE Power

Model Error Rate

Recessive 0.00 0.0543 1.1527 1.1556 0.399

0.01 −0.8214 0.3313 1.0060 0.408

0.02 −1.1342 0.1822 1.4686 0.328

0.03 −1.3175 0.1383 1.8741 0.262

0.04 −1.4007 0.0993 2.0613 0.232

0.05 −1.4575 0.0876 2.2119 0.228

Additive 0.00 −1.8436 0.0359 3.4348 0.044

0.01 −1.8383 0.0335 3.4128 0.052

0.02 −1.8417 0.0340 3.4259 0.058

0.03 −1.8338 0.0324 3.3952 0.052

0.04 −1.8390 0.0310 3.4129 0.038

0.05 −1.8379 0.0294 3.4073 0.038

Dominant 0.00 −1.7166 0.0327 2.9794 0.105

0.01 −1.7249 0.0303 3.0056 0.092

0.02 −1.7367 0.0293 3.0454 0.098

0.03 −1.7417 0.0281 3.0616 0.105

0.04 −1.7483 0.0251 3.0817 0.088

0.05 −1.7512 0.0226 3.0893 0.080
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Table S14: SNP identifiers.

rs3934834, rs6687776, rs9442373, rs2298217, rs9442380, rs11260549, rs2887286,
rs3813199, rs7515488, rs6675798, rs6685064, rs2649588, rs819980, rs2031709,
rs880051, rs2296716, rs6603811, rs7531583, rs16825336, rs6681938, rs10907192,
rs4648592, rs7525092, rs2474460, rs2459994, rs884080, rs908742, rs4648808,
rs3107151, rs3128291, rs3753242, rs424079, rs2257182, rs2460000, rs263526,
rs10797417, rs10910047, rs12119470, rs2017143, rs903919, rs884940, rs10910050,
rs903916, rs2279702, rs2173049, rs2645065, rs903904, rs2843143, rs2843142,
rs2055204, rs7527871, rs4648831, rs2840528, rs903914, rs2643891, rs2840538,
rs10910061, rs2279703, rs7519807, rs2843160, rs903901, rs2643901, rs2843127,
rs903903, rs1123571, rs3736330, rs2840532, rs3001336, rs2494428, rs12022929,
rs4531246, rs4648843, rs6659405, rs10910078, rs2494626, rs13376356, rs11588930,
rs12049628, rs17373634, rs2477703, rs3762444, rs7535528, rs6667605, rs734999,
rs3748816, rs12138909, rs11590198, rs3890745, rs2377041, rs10909890, rs4648482,
rs10797342, rs897634, rs2045331, rs2045332, rs2606411, rs4648441, rs10797368,
rs10909845, rs11583804, rs878201, rs2485945, rs12046158, rs1572657, rs10909852,
rs12562637, rs7534897, rs3795263, rs7412983, rs2142569, rs2297829, rs1569419,
rs926244, rs2993493, rs1890336, rs4648453, rs2817178, rs10797380, rs7538096,
rs2817185, rs731031, rs2651899, rs10752733, rs10737190, rs10909901, rs12124147,
rs2651906, rs16823542, rs6424069, rs2455118, rs10797386, rs3002685, rs3002686,
rs10492940, rs16823802, rs905135, rs12562988, rs10909918, rs12757342, rs1553291,
rs4648377, rs2455144, rs2483260, rs16824089, rs1108600, rs2483274, rs6683273,
rs4415513, rs4648380, rs946758, rs12748963, rs2500286, rs12073172, rs17399569,
rs2500262, rs4648487, rs4648489, rs2493310, rs12085231, rs868688, rs10492938,
rs17399998, rs2493275, rs871822, rs6424074, rs11578011, rs12024847, rs870124,
rs2493292, rs2493285, rs1984069, rs870171, rs2493272, rs2487670, rs2487680,
rs12562167, rs2493314, rs4648505, rs2821040, rs947344, rs4648392, rs12119711,
rs4648524, rs10737192, rs878063, rs9628616, rs2821063, rs947354, rs4648527,
rs6697749, rs7544357, rs2821025, rs2821023, rs4648398, rs4276857, rs2821007,
rs7528494, rs4648545, rs7523732, rs3765703, rs3765705, rs3765731, rs3765736,
rs3765761, rs3765766, rs747827, rs12731705, rs12117836, rs3737589, rs1181888,
rs1181883, rs1181877, rs1181875, rs10910025, rs2275819, rs1175549, rs2799182,
rs6663840, rs2275831, rs4648426, rs10797348, rs7367066, rs4131373, rs12082157,
rs11589102, rs6695346, rs12724233, rs11583257, rs7519349, rs7519458, rs4654479,
rs4654480, rs6661168, rs4654482, rs11590912, rs10799202, rs12119556, rs10915433,
rs6681347, rs7522140, rs12031557, rs11587331, rs6691155, rs12135298, rs12749761

141



B Supplemental tables

Table S15: Sample identifiers.

hu00147A, hu002B3C, hu016B28, hu0199C8, hu019BBA, hu025CEA, hu0515BA,
hu05FD49, hu066C78, hu11603C, hu14ECAE, hu155D20, hu16360E, hu16A1B3,
hu1712BC, hu19C09F, hu1AF744, hu1BD549, hu1BDBA5, hu2331A5, hu25BD97,
hu27FD1F, hu297562, hu2BC187, hu2D53F2, hu2DEBA7, hu2E413D, hu2FEC01,
hu30888B, hu30F119, hu345185, hu3458D8, hu34D5B9, hu35071E, hu352868,
hu35389E, hu363FD6, hu3696DA, hu394092, hu3B89BD, hu3D355A, hu3F864B,
hu41D90F, hu44DCFF, hu459AD0, hu4753BA, hu48C4EB, hu499ED5, hu4AEB32,
hu4B07B3, hu4B11A3, hu4BE378, hu4BE6F2, hu4CA5B9, hu4D2239, hu4E03BC,
hu524B5B, hu56B3B6, hu57C8BE, hu589D0B, hu59141C, hu594129, hu5A2074,
hu5D9DE3, hu5F0DCB, hu5FCE15, hu5FF6B0, hu60AB7C, hu619F51, hu63A000,
hu63DA55, hu654B61, hu67B84E, hu6D1115, hu6E37AB, hu6ED94A, hu72110E,
hu75BE2C, hu775356, hu77AB33, hu77CC58, hu781EE2, hu787E67, hu7DE7FD,
hu82436A, hu84B706, hu8602F1, hu868880, hu8A5FBF, hu8B4E43, hu8D99F6,
hu90B053, hu91BD69, hu925B56, hu939B7C, hu96713F, hu993257, hu9A0F06,
huA35014, huA4F281, huA5FD8B, huA720D3, huAC827A, huAD719C, huAF3C63,
huB2C416, huB59C05, huB5A0DF, huB63C0C, huB7EC37, huBAA265,
huBC03A7, huBD9C9B, huBE28C7, huBFEDCE, huC1C7D0, huC92BC9,
huCCA261, huD0449C, huD0D79A, huD3E181, huD4F7DB, huD50D1C, huD52556,
huD57BBF, huD58ABC, huD7960A, huD87BFC, huD9D625, huDB1635,
huDD6E7A, huDDEC1D, huE31062, huE4CA90, huE9E777, huEAA57B,
huEBD467, huED0F40, huF06AD0, huF7E042, huF9E138, huFE71F3, huFF6AB4,
huFFAD8
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C Supplemental figures

This chapter provides supplemental figures of the investigation of the statistical

properties with standard and robust logistic regression methods with both influence

functions. These figures are the boxplots of the estimates . . .

• . . . of the main scenarios – one figure per changed parameter (figures S1-S7

on pages 144-150)

• . . . of the additional scenario “rare variants” (figure S8 on page 151)

• . . . of the additional scenario “underlying recessive penetrance model” (figure

S9 on page 152)
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Figure S1: Boxplots of estimated genotype relative risk (GRR) according to dif-
ferent penetrance models fitted to the simulated data (minor allele fre-
quency (MAF) = 0.05, dominant GRR = 1.43 age-independent, D′ = 1,
r2 = 1, no genotyping errors, 400 simulated studies with 1000 cases and
1000 controls). The left panel displays the complete domain of estimated
GRRs. The y-axis is limited to 0− 2.75 in the right panel. Tuning con-
stants for the robust logistic regression models are shown in brackets in
the legend.
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Figure S3: Boxplots of the estimated genotype relative risk (GRR) according to dif-
ferent r2 (minor allele frequency (MAF) = 0.05, dominant GRR = 1.43
age-independent, D′ = 1, no genotyping errors, 400 simulated studies
with 1000 cases and 1000 controls and a fitted dominant penetrance
model). The tuning constants for the robust logistic regression methods
are given in brackets in the legend.

146



●●
●●
●●

●

●

●

●●

●●
●
●●●

●

●

●

●
●
●● ●●

●
●

●

●

●

●
●
●● ●●

●
●

●

●

●

●●
●
●●

●

●●●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

0
2

4
6

8

E
st

im
at

ed
 G

R
R

constant age−dep.

GRR

Standard
Huber [1.345]
Hampel [(1.5,3.5,8)x0.9]
Hampel [(2,4,8)x0.7]

Figure S4: Boxplots of the estimated genotype relative risk (GRR) according to an
age-independent dominant GRR and age-dependent dominant GRRs.
The age-dependent GRRs are given by the tuples (age [years], GRR):
(35, 20), (40, 15), (45, 10), (50, 5), (55, 1.57), (60, 1), (65, 1), (70, 1),
(75, 1), reflecting decreasing genetics effects with increasing age in agree-
ment with an overall dominant GRR of 1.43 (age-independent reference
scenario). The fixed simulation parameters are minor allele frequency
(MAF) = 0.05, D′ = 1, r2 = 1, no genotyping errors and 400 simulated
studies with 1000 cases and 1000 controls and a fitted dominant pen-
etrance model. The tuning constants for the robust logistic regression
methods are given in brackets in the legend.
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Figure S5: Boxplots of the estimated genotype relative risk (GRR) according to
different genotyping error rates (minor allele frequency (MAF) = 0.05,
dominant GRR = 1.43 age-independent, D′ = 1, r2 = 1, 400 simulated
studies with 1000 cases and 1000 controls and a fitted dominant pene-
trance model). The tuning constants for the robust logistic regression
methods are given in brackets in the legend.
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Figure S8: Boxplots of the estimated genotype relative risk (GRR) according to
different minor allele frequencies (MAFs) for rare variants (0.001, 0.005,
0.010). The fixed simulation parameters were D′ = 1, r2 = 1, 400 sim-
ulated studies with a fitted dominant penetrance model. The simulated
age-independent dominant GRR and the study size depended on the
MAF: MAF = 0.001 with GRR = 2.53 and 5000 cases/5000 controls,
MAF = 0.005 with GRR = 2.65 and 1000 cases/1000 controls, MAF
= 0.010 with GRR = 2.05 and 1000 cases/1000 controls. The tuning
constants for the robust logistic regression methods are given in brackets
in the legend. The MAF is given on the plot area.
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Figure S9: Boxplots of the estimated genotype relative risk (GRR) according to the
fitted penetrance model to recessive simulated data. The fixed simula-
tion parameters were minor allele frequency (MAF) = 0.05, recessive
GRR = 6.32 age-independent, D′ = 1, r2 = 1, 400 simulated studies
with 1000 cases and 1000 controls. The tuning constants for the robust
logistic regression methods are given in brackets in the legend. The fit-
ted penetrance model is given on the plot area. Note the two top panels
for a fitted recessive penetrance model with different axis scaling (left:
complete domain, right: limited to 0− 10).
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D Supplemental source code

This section provides installation instructions for the extended R package, example

source code for the simulation study in the reference scenario including the calcu-

lation of the statistical properties and the source code for the real data application.

Proper working directory definitions in each R script are mandatory. Be aware of

expensive calculations.

D.1 Installation of the extended R package

The instructions are exactly orientated on the glmrobMqle.R file of the package

robustbase version 0.9-8 (Date: 14/06/2013). All code sections have to be placed

exactly where they can be found in the original file for the Huber function. After-

wards, the package has again to be installed as a whole under a modified name,

e.g. robustbaseAdj.

Installation: With respect to the considered R version, the installation of the

32-bit version only is mandatory. Otherwise the installation will not work. Then:

1. Open the command line.

2. Go to directory R/bin.

3. Write into command line R CMD INSTALL path with path indicating the path

to folder “robustbaseAdj” containing the R package.
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D Supplemental source code

D.2 Simulation study for statistical properties

evaluation

This section provides code examples for the reference scenario of the simulation

study comprising

• the random number generation to sample individuals from the population

(section D.2.1),

• the calculation of allele frequencies in the population (section D.2.2),

• the population simulation (sections D.2.3 (marker locus) and D.2.4 (null

marker loci),

• the standard and robust logistic regression analysis and the calculation of the

statistical properties (type I error rate, bias, variance, MSE, statistical power)

– section D.2.5 for the marker locus and section D.2.6 for the null marker loci.

D.2.1 Random samples

Random numbers to draw 1000 cases and 1000 controls from the population com-

prising 3,500,000 cases and 3,500,000 controls for 400 studies

# Working directories

dir.save <- "Directory to save results"

# Settings

set.seed (12061950)

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

no.controls <- 1000

# Define 400 samples

stichprobe <- data.frame(reps =1: repetitions ,

probe=matrix(NA, ncol=(no.cases+no.controls),

nrow=repetitions ))

# Draw samples

for (i in 1: repetitions ){

sample.ca <- sample (1: pop.size , no.cases)

sample.co <- sample ((pop.size +1):(2*pop.size), no.controls)
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D.2 Simulation study for statistical properties evaluation

stichprobe[i, 2:(no.cases +1)] <- sort(sample.ca)

stichprobe[i, (no.cases +2):( no.cases+no.controls +1)] <-

sort(sample.co)

}

# Save the results

setwd(dir.save)

write.csv2(stichprobe , "Stichprobe_Daten_JenaFinal.csv",

row.names=FALSE)

D.2.2 Allele frequencies

Structure:

1. Preparations

2. Marker

a) Read data and prepare it

b) Function definitions

c) Calculate allele frequencies

3. Null marker

a) Calculate allele frequencies

# -------------------------------------------- #

# -------------------------------------------- #

# 1. Preparations

# -------------------------------------------- #

# -------------------------------------------- #

# Working directory

dir.read <- "Directory to read data"

dir.save <- "Directory to save results"

# Constant values

# Study

no.cases <- 1000

no.controls <- 1000

repetition <- 400

# Marker

p.c <- 0.05
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D Supplemental source code

penetrance.model <- " d o m i n a n t

Dp.r2 <- data.frame(dp=1, r2=1)

# Null marker

no.null <- 10

GRR1 <- 1

GRR2 <- 1

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Marker

# -------------------------------------------- #

# -------------------------------------------- #

# -------------------------------------------- #

# a. Read data and prepare it

# -------------------------------------------- #

# Read data: Incidence rates and age distribution

setwd(dir.read)

alter.inzidenz <- read.table("Globocan_Inzidenz.txt",

header=TRUE , sep="\t")

alter.distr <- read.table("EU25Pop.txt", header=TRUE ,

sep=" ")

# Select colorectal cancer for incidence rates

alter.inzidenz <- alter.inzidenz[alter.inzidenz$Cancer ==

"Colorectum", 4:12]

rownames(alter.inzidenz) <- "inzidenz"

alter.inzidenz <- t(alter.inzidenz)

inzidenz <- data.frame(alter=seq(35, 75, 5),

inzidenz=alter.inzidenz)

rownames(inzidenz) <- 1:nrow(inzidenz)

# Select age intervals

alter.distr <- alter.distr[, 9:17]

alter.distr <- t(alter.distr)

alter <- data.frame(alter=seq(35, 75, 5), distr=alter.distr)

rownames(alter) <- 1:nrow(alter)

# GRR

grr.c.hom.mat <- data.frame(age.int=alter[, 1], grr.parts =1.43)

156



D.2 Simulation study for statistical properties evaluation

# Combine age and incidence rates , calculate cummulative

# incidence

inzidenz <- data.frame(inzidenz , kumm=cumsum(inzidenz$inzidenz ))

# Calculate percentages incidence

inzidenz <- data.frame(inzidenz , proz=inzidenz$kumm*5/100000)

# Incidence according to case -control status

inzidenz <- data.frame(inzidenz , fall=alter$distr*inzidenz$proz ,

kontrolle=alter$distr*(1-inzidenz$proz))

# Scaling within cases and controls to 100%

inzidenz <- data.frame(inzidenz ,

fall.proz=inzidenz$fall/sum(inzidenz$fall),

kontrolle.proz=inzidenz$kontrolle/

sum(inzidenz$kontrolle ))

# Define age categories

inzidenz <- data.frame(inzidenz ,

fall.int=cumsum(inzidenz$fall.proz),

kontrolle.int=cumsum(inzidenz$kontrolle.proz))

# Prevalence matrix

prevalence <- inzidenz[, c(1, 4)]

colnames(prevalence) <- c("age.int", "prev.parts")

# -------------------------------------------- #

# b. Function definitions

# -------------------------------------------- #

# Calculate heterozygotic GRR

grr.c.het.expr <- expression ({

grr.c.het <- ifelse(pen.mod=="dominant", grr.c.hom ,

ifelse(pen.mod == "recessive", 1,

0.5*(grr.c.hom +1)

)

)

})

# Calculate kappe_0

kappa .0. expr <- expression ({

kappa .0 <- prev/(pc*pc*grr.c.hom + 2*pc*(1-pc)*grr.c.het +

(1-pc)*(1-pc))

})

# Calculate p_M
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D Supplemental source code

p.m.expr <- expression ({

pm <- 1/(korr*(1-pc)/pc/dp/dp + 1)

d <- dp*(1-pm)*pc

})

# Calculate GRR according to Lorenzo Bermejo et al. (2011)

grr.m.expr <- expression ({

PrCM <- pm*pc+d

PrCm <- (1-pm)*pc -d

PrcM <- pm*(1-pc)-d

Prcm <- (1-pm)*(1-pc)+d

PrGCMgCM <- grr.c.hom*PrCM*PrCM

PrGCMgCm <- grr.c.hom*2*PrCM*PrCm

PrGCmgCm <- grr.c.hom*PrCm*PrCm

PrGCMgcM <- grr.c.het*2*PrCM*PrcM

PrGCMgcm <- grr.c.het*2*PrCM*Prcm

PrGCmgcM <- grr.c.het*2*PrCm*PrcM

PrGCmgcm <- grr.c.het*2*PrCm*Prcm

PrGcMgcM <- PrcM*PrcM

PrGcMgcm <- 2*PrcM*Prcm

PrGcmgcm <- Prcm*Prcm

kMMnum <- PrGCMgCM+PrGCMgcM+PrGcMgcM

kMMden <- PrCM*PrCM+2*PrCM*PrcM+PrcM*PrcM

kMM <- kMMnum/kMMden

kMmnum <- PrGCMgCm+PrGCMgcm+PrGCmgcM+PrGcMgcm

kMmden <- 2*PrCM*PrCm+2*PrCM*Prcm+2*PrCm*PrcM+2*PrcM*Prcm

kMm <- kMmnum/kMmden

kmmnum <- PrGCmgCm+PrGCmgcm+PrGcmgcm

kmmden <- PrCm*PrCm+2*PrCm*Prcm+Prcm*Prcm

kmm <- kmmnum/kmmden

grr.m.hom <- kMM/kmm

grr.m.het <- kMm/kmm

})

# GRR age -dependent

# pA = P(M)
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D.2 Simulation study for statistical properties evaluation

# Result as dataframe

# Allele frequency within cases and controls

# based on script by Justo Lorenzo Bermejo

allelfrequenz <- function(pA, GRR1 , GRR2 , prev){

ausgabe <- data.frame(geno=c("aa", "Aa", "AA"), fall=NA ,

kontrolle=NA)

k <- prev

enda=0

f=0.00001

while (enda ==0){

f=f+0.00001;

#Genotypes among cases

uno1=(1-pA)*(1-pA)*f;

uno2=2*pA*(1-pA)*f*GRR2;

uno3=pA*pA*f*GRR1;

den=uno1+uno2+uno3;

kp=den;

pAA_case=uno1/den;

pAB_case=uno2/den;

pBB_case=uno3/den;

#Genotypes among controls

dos1=(1-pA)*(1-pA)*(1-f);

dos2=2*pA*(1-pA)*(1-f*GRR2);

dos3=pA*pA*(1-f*GRR1);

den=dos1+dos2+dos3;

pAA_cont=dos1/den;

pAB_cont=dos2/den;

pBB_cont=dos3/den;

if (k <= kp) {enda =1};

}

ausgabe$fall <- matrix(c(pAA_case , pAB_case , pBB_case),

ncol =1)

ausgabe$kontrolle <- matrix(c(pAA_cont , pAB_cont , pBB_cont),

ncol =1)

return(ausgabe)
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}

vergleich <- function(geno){

geno.new <- ifelse(rn.gte <0.5 & geno!="MM", "MM",

ifelse(rn.gte >=0.5 & geno!="mm", "mm", "Mm"))

return(geno.new)

}

# -------------------------------------------- #

# c. Calculate allele frequencies

# -------------------------------------------- #

rownumber <- nrow(grr.c.hom.mat)*length(p.c)*

length(penetrance.model)*nrow(Dp.r2)*3

allelfrequenzen <- data.frame(alter=rep(NA, rownumber),

prev=rep(NA , rownumber),

grr=rep(NA , rownumber),

pen.mod=rep(NA , rownumber),

pc=rep(NA, rownumber),

dp=rep(NA, rownumber),

r2=rep(NA, rownumber),

geno=rep(NA , rownumber),

fall=rep(NA , rownumber),

kontrolle=rep(NA, rownumber ))

idx <- 1

for (dpr2 in 1:nrow(Dp.r2)){

dp <- Dp.r2$dp[dpr2]

korr <- Dp.r2$r2[dpr2]

for(pen.mod in penetrance.model){

for (pc in p.c){

eval(p.m.expr)

for (i in 1: length(grr.c.hom.mat$grr.parts )){

grr.c.hom <- grr.c.hom.mat$grr.parts[i]

eval(grr.c.het.expr)

eval(grr.m.expr)

prev <- prevalence$prev.parts[i]

eval(kappa .0. expr)

z1 <- allelfrequenz(pA=pm , GRR1=grr.m.hom , GRR2=grr.m.het ,

prev=prev)

allelfrequenzen[idx:(idx+2),

(length(allelfrequenzen ) -1):( length(allelfrequenzen ))] <-

z1[, 2:3]
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allelfrequenzen$geno[idx:(idx +2)] <- c(0,1,2)

allelfrequenzen$prev[idx:(idx +2)] <- prev

allelfrequenzen$alter[idx:(idx +2)] <- prevalence$age.int[i]

allelfrequenzen$grr[idx:(idx +2)] <- grr.c.hom

allelfrequenzen$pen.mod[idx:(idx +2)] <- pen.mod

allelfrequenzen$pc[idx:(idx +2)] <- pc

allelfrequenzen$dp[idx:(idx +2)] <- dp

allelfrequenzen$r2[idx:(idx +2)] <- korr

idx <- idx+3

}

}

}

}

setwd(dir.save)

titel <- "Allelfrequenzen_Grundlage_Fall_Kontrolle_EU.csv"

write.csv2(allelfrequenzen , titel)

# -------------------------------------------- #

# -------------------------------------------- #

# 3. NULL MARKER

# -------------------------------------------- #

# -------------------------------------------- #

set.seed (687541)

# MAF at locus j, j=1, ..., no.null

p0 <- runif(no.null , 0.05, 0.5)

# -------------------------------------------- #

# a. Calculate allele frequencies

# -------------------------------------------- #

rownumber <- length(p0)*nrow(prevalence)*3

allelfrequenzen <- data.frame(prev=rep(NA, rownumber),

p0=rep(NA , rownumber),

id=rep(NA , rownumber),

geno=rep(NA , rownumber),

fall=rep(NA , rownumber),

kontrolle=rep(NA, rownumber ))

idx <- 1

idx.p0 <- 0

for (pc in p0){
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idx.p0 <- idx.p0+1

for(prev in prevalence$prev.parts){

z1 <- allelfrequenz(pA=pc , GRR1=GRR1 , GRR2=GRR2 , prev=prev)

allelfrequenzen[idx:(idx+2),

(length(allelfrequenzen ) -1):( length(allelfrequenzen ))] <-

z1[, 2:3]

allelfrequenzen$geno[idx:(idx +2)] <- z1$geno

allelfrequenzen$prev[idx:(idx +2)] <- prev

allelfrequenzen$p0[idx:(idx +2)] <- pc

allelfrequenzen$id[idx:(idx +2)] <- idx.p0

idx <- idx+3

}

}

setwd(dir.save)

titel <- "Allelfrequenzen_Grundlage_Fall_Kontrolle_Nullmarker_EU.csv"

write.csv2(allelfrequenzen , titel)

D.2.3 Populations at marker locus

Structure:

1. Preparations

2. Marker

a) Read data and prepare it

b) Function definitions

c) Age, GRR and genotypes

# -------------------------------------------- #

# -------------------------------------------- #

# 1. Preparations

# -------------------------------------------- #

# -------------------------------------------- #

# Working directories

dir.read <- "Directory to read data"

dir.save <- "Directory to save results"

# Constant values

# Number cases and controls

no.cases <- 3500000
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no.controls <- 3500000

# Marker

pc <- 0.05

Dp.r2 <- data.frame(dp=1, r2=1)

pen.mod <- "dominant"

# Seed

set.seed (341950)

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Marker

# -------------------------------------------- #

# -------------------------------------------- #

# -------------------------------------------- #

# a. Read data and prepare it

# -------------------------------------------- #

# Read data: Incidence rates and age distribution

setwd(dir.read)

alter.inzidenz <- read.table("Globocan_Inzidenz.txt",

header=TRUE , sep="\t")

alter.distr <- read.table("EU25Pop.txt", header=TRUE , sep=" ")

# Select colorectal cancer for incidence rates

alter.inzidenz <- alter.inzidenz[alter.inzidenz$Cancer ==

"Colorectum", 4:12]

rownames(alter.inzidenz) <- "inzidenz"

alter.inzidenz <- t(alter.inzidenz)

inzidenz <- data.frame(alter=seq(35, 75, 5),

inzidenz=alter.inzidenz)

rownames(inzidenz) <- 1:nrow(inzidenz)

# Select age intervals

alter.distr <- alter.distr[, 9:17]

alter.distr <- t(alter.distr)

alter <- data.frame(alter=seq(35, 75, 5), distr=alter.distr)

rownames(alter) <- 1:nrow(alter)

# Combine age and incidence rates , calculate cummulative

# incidence
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inzidenz <- data.frame(inzidenz , kumm=cumsum(inzidenz$inzidenz ))

# Calculate percentages incidence

inzidenz <- data.frame(inzidenz , proz=inzidenz$kumm*5/100000)

# Incidence according to case -control status

inzidenz <- data.frame(inzidenz ,

fall=alter$distr*inzidenz$proz ,

kontrolle=alter$distr*(1-inzidenz$proz))

# Scaling within cases and controls to 100%

inzidenz <- data.frame(inzidenz ,

fall.proz=inzidenz$fall/sum(inzidenz$fall),

kontrolle.proz=inzidenz$kontrolle/sum(inzidenz$kontrolle ))

# Define age categories

inzidenz <- data.frame(inzidenz , fall.int=cumsum(inzidenz$fall.proz),

kontrolle.int=cumsum(inzidenz$kontrolle.proz))

# Prevalence matrix

prevalence <- inzidenz[, c(1, 4)]

colnames(prevalence) <- c("age.int", "prev.parts")

# GRR

grr.c.hom.mat <- data.frame(age.int=alter[, 1], grr.parts =1.43)

# Allele frequencies

allelfrequenzen <-

read.csv2("Allelfrequenzen_Grundlage_Fall_Kontrolle_EU.csv")

allelfrequenzen <- allelfrequenzen[, 2: length(allelfrequenzen )]

# -------------------------------------------- #

# b. Function definitions

# -------------------------------------------- #

# Age calculation

alter.func <- function(zufall ){

if (zufall [2]=="control"){

if (as.numeric(zufall [1])<min(inzidenz$kontrolle.int )){

alter.aus <- min(inzidenz$alter)

}

if (as.numeric(zufall [1])>min(inzidenz$kontrolle.int )){

alter.aus <- inzidenz$alter[max(which(inzidenz$kontrolle.int <

as.numeric(zufall [1])))+1]

}

if (as.numeric(zufall [1])==1){

164



D.2 Simulation study for statistical properties evaluation

alter.aus <- max(inzidenz$alter)

}

}

if (zufall [2]=="case"){

if (as.numeric(zufall [1])<min(inzidenz$fall.int )){

alter.aus <- min(inzidenz$alter)

}

if (as.numeric(zufall [1])>min(inzidenz$fall.int) &

as.numeric(zufall [1]) <1){

alter.aus <- inzidenz$alter[max(which(inzidenz$fall.int <

as.numeric(zufall [1])))+1]

}

if (as.numeric(zufall [1])==1){

alter.aus <- max(inzidenz$alter)

}

}

return(alter.aus)

}

# Calculate heterozygotic GRR

grr.c.het.expr <- expression ({

grr.c.het <- ifelse(rep(pen.mod , no.cases+no.controls) ==

"dominant", grr.c.hom ,

ifelse(rep(pen.mod , no.cases+no.controls) == "recessive",

rep(1, no.cases+no.controls), 0.5*(grr.c.hom+1)

)

)

})

# Calculate kappe_0

kappa .0. expr <- expression ({

kappa .0 <- prev .1000/(pc*pc*grr.c.hom + 2*pc*(1-pc)*grr.c.het +

(1-pc)*(1-pc))

})

# Calculate p_M

p.m.expr <- expression ({

pm <- 1/(korr*(1-pc)/pc/dp/dp + 1)

d <- dp*(1-pm)*pc

})

# Calculate GRR according to Lorenzo Bermejo et al. (2011)
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grr.m.expr <- expression ({

PrCM <- pm*pc+d

PrCm <- (1-pm)*pc -d

PrcM <- pm*(1-pc)-d

Prcm <- (1-pm)*(1-pc)+d

PrGCMgCM <- grr.c.hom*PrCM*PrCM

PrGCMgCm <- grr.c.hom*2*PrCM*PrCm

PrGCmgCm <- grr.c.hom*PrCm*PrCm

PrGCMgcM <- grr.c.het*2*PrCM*PrcM

PrGCMgcm <- grr.c.het*2*PrCM*Prcm

PrGCmgcM <- grr.c.het*2*PrCm*PrcM

PrGCmgcm <- grr.c.het*2*PrCm*Prcm

PrGcMgcM <- PrcM*PrcM

PrGcMgcm <- 2*PrcM*Prcm

PrGcmgcm <- Prcm*Prcm

kMMnum <- PrGCMgCM+PrGCMgcM+PrGcMgcM

kMMden <- PrCM*PrCM+2*PrCM*PrcM+PrcM*PrcM

kMM <- kMMnum/kMMden

kMmnum <- PrGCMgCm+PrGCMgcm+PrGCmgcM+PrGcMgcm

kMmden <- 2*PrCM*PrCm+2*PrCM*Prcm+2*PrCm*PrcM+2*PrcM*Prcm

kMm <- kMmnum/kMmden

kmmnum <- PrGCmgCm+PrGCmgcm+PrGcmgcm

kmmden <- PrCm*PrCm+2*PrCm*Prcm+Prcm*Prcm

kmm <- kmmnum/kmmden

grr.m.hom <- kMM/kmm

grr.m.het <- kMm/kmm

})

# -------------------------------------------- #

# c. Age , GRR and genotypes

# -------------------------------------------- #

# Age

zufallszahlen <- data.frame(zahl=runif ((no.cases+no.controls), 0, 1),

status=c(rep("case", no.cases),

rep("control", no.controls )))
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alter <- apply(as.matrix(zufallszahlen), 1, alter.func)

daten <- data.frame(ca.co=c(rep(1, no.cases), rep(0, no.controls)),

alter=alter , geno=NA)

# GRR

prev .1000 <- numeric(no.cases+no.controls)

for (prev.age in 1: length(alter )){

prev .1000[ prev.age] <- prevalence$prev.parts[

prevalence$age.int == alter[prev.age]]

}

grr.c.hom <- numeric(no.cases+no.controls)

for (grr.age in 1: length(alter )){

grr.c.hom[grr.age] <- grr.c.hom.mat$grr.parts[

grr.c.hom.mat$age.int == alter[grr.age]]

}

eval(grr.c.het.expr)

eval(kappa .0. expr)

# Remove objects that are not needed anymore

rm("inzidenz")

rm("vergleich")

rm("zufallszahlen")

# Genotypes

for (dp.r2 in 1:nrow(Dp.r2)){

daten <- data.frame(ca.co=c(rep(1, no.cases),

rep(0, no.controls)), alter=alter , geno=NA)

dp <- Dp.r2$dp[dp.r2]

korr <- Dp.r2$r2[dp.r2]

eval(p.m.expr) # p_M, d

eval(grr.m.expr) # GRR_M,hom , GRR_M,het

rn <- runif(no.cases+no.controls , 0, 1)

referenz <- data.frame(alter=alter , aa=NA, Aa=NA, AA=NA)

bed01 <- allelfrequenzen$pen.mod==pen.mod &

as.character(allelfrequenzen$pc)==as.character(pc) &

as.character(allelfrequenzen$dp)==as.character(dp) &

as.character(allelfrequenzen$r2)==as.character(korr)

referenz.ca <- referenz [1:no.cases , ]

for (a.schleife in prevalence$age.int){

if (dim(referenz.ca[referenz.ca$alter==a.schleife , 2:4])[1]

>0){

referenz.ca[referenz.ca$alter ==a.schleife , 2:4] <-
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data.frame(matrix(rep(allelfrequenzen$fall[bed01 &

allelfrequenzen$grr ==

grr.c.hom.mat$grr.parts[grr.c.hom.mat$age.int==

a.schleife] &

as.character(allelfrequenzen$prev) ==

as.character(prevalence$prev.parts[

prevalence$age.int == a.schleife ])],

nrow(referenz.ca[referenz.ca$alter ==

a.schleife , 2:4])) ,

nrow=nrow(referenz.ca[referenz.ca$alter ==

a.schleife , 2:4]) , byrow=TRUE))

}

}

referenz.co <- referenz [(no.cases +1):( no.cases+no.controls), ]

for (a.schleife in prevalence$age.int){

if(dim(referenz.co[referenz.co$alter==a.schleife , 2:4])[1]

>0){

referenz.co[referenz.co$alter ==a.schleife , 2:4] <-

data.frame(matrix(rep(allelfrequenzen$kontrolle[bed01 &

allelfrequenzen$grr ==

grr.c.hom.mat$grr.parts[grr.c.hom.mat$age.int==

a.schleife] &

as.character(allelfrequenzen$prev) ==

as.character(prevalence$prev.parts[

prevalence$age.int == a.schleife ])],

nrow(referenz.co[referenz.co$alter ==

a.schleife , 2:4])) ,

nrow=nrow(referenz.co[referenz.co$alter ==

a.schleife , 2:4]) , byrow=TRUE))

}

}

referenz <- rbind(referenz.ca, referenz.co)

rm("referenz.co")

rm("referenz.ca")

z01 <- which(rn < referenz$AA)

daten$geno[z01] <- "MM"

z01 <- which((rn >= referenz$AA) & (rn < referenz$Aa + referenz$AA))

daten$geno[z01] <- "Mm"

z01 <- which(rn >= referenz$Aa + referenz$AA)

daten$geno[z01] <- "mm"

rm("referenz")

rm("rn")
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rm("z01")

# Numerical genotypes according to a dominant penetrance model

daten$geno[daten$geno=="MM"] <- 1

daten$geno[daten$geno=="Mm"] <- 1

daten$geno[daten$geno=="mm"] <- 0

setwd(dir.save)

titel <- "Daten_Bevoelkerung_EU_Geno_7Mio.csv"

write.csv2(daten , titel , row.names=FALSE)

rm("daten")

rm("titel")

gc()

print(dp.r2)

}

D.2.4 Populations at null marker loci

Structure:

1. Preparations

2. Null marker

a) Read data and prepare it

b) Function definitions

c) Age, GRR and genotypes

# -------------------------------------------- #

# -------------------------------------------- #

# 1. Preparations

# -------------------------------------------- #

# -------------------------------------------- #

# Working directories

dir.read <- "Directory to read data"

dir.save <- "Directory to save results"

# Constant values

# Number cases and controls

no.cases <- 3500000

no.controls <- 3500000
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# Null marker

no.null <- 10

pen.mod <- "dominant"

# Seed

set.seed (687541)

# MAF at locus j, j=1, ..., no.null

p0 <- runif(no.null , 0.05, 0.5)

# Seed

set.seed (18041985)

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Null marker

# -------------------------------------------- #

# -------------------------------------------- #

# -------------------------------------------- #

# a. Read data and prepare it

# -------------------------------------------- #

# Read data: Incidence rates and age distribution

setwd(dir.read)

alter.inzidenz <- read.table("Globocan_Inzidenz.txt", header=TRUE ,

sep="\t")

alter.distr <- read.table("EU25Pop.txt", header=TRUE ,

sep=" ")

# Select colorectal cancer for incidence rates

alter.inzidenz <- alter.inzidenz[alter.inzidenz$Cancer =="Colorectum",

4:12]

rownames(alter.inzidenz) <- "inzidenz"

alter.inzidenz <- t(alter.inzidenz)

inzidenz <- data.frame(alter=seq(35, 75, 5),

inzidenz=alter.inzidenz)

rownames(inzidenz) <- 1:nrow(inzidenz)

# Select age intervals

alter.distr <- alter.distr[, 9:17]

alter.distr <- t(alter.distr)
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alter <- data.frame(alter=seq(35, 75, 5), distr=alter.distr)

rownames(alter) <- 1:nrow(alter)

# GRR

grr.c.hom.mat <- data.frame(age.int=alter[, 1], grr.parts=a.)

# Combine age and incidence rates , calculate cummulative incidence

inzidenz <- data.frame(inzidenz , kumm=cumsum(inzidenz$inzidenz ))

# Calculate percentages incidence

inzidenz <- data.frame(inzidenz , proz=inzidenz$kumm*5/100000)

# Incidence according to case -control status

inzidenz <- data.frame(inzidenz , fall=alter$distr*inzidenz$proz ,

kontrolle=alter$distr*(1-inzidenz$proz))

# Scaling within cases and controls to 100%

inzidenz <- data.frame(inzidenz ,

fall.proz=inzidenz$fall/sum(inzidenz$fall),

kontrolle.proz=inzidenz$kontrolle/

sum(inzidenz$kontrolle ))

# Define age categories

inzidenz <- data.frame(inzidenz ,

fall.int=cumsum(inzidenz$fall.proz),

kontrolle.int=cumsum(inzidenz$kontrolle.proz))

# Prevalence matrix

prevalence <- inzidenz[, c(1, 4)]

colnames(prevalence) <- c("age.int", "prev.parts")

# Allele frequencies

allelfrequenzen <-

read.csv2(

"Allelfrequenzen_Grundlage_Fall_Kontrolle_Nullmarker_EU.csv")

allelfrequenzen <- allelfrequenzen[, 2: length(allelfrequenzen )]

# -------------------------------------------- #

# b. Function definitions

# -------------------------------------------- #

# Age calculation

alter.func <- function(zufall ){

if (zufall [2]=="control"){

if (as.numeric(zufall [1])<min(inzidenz$kontrolle.int )){

alter.aus <- min(inzidenz$alter)
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}

if (as.numeric(zufall [1])>min(inzidenz$kontrolle.int )){

alter.aus <- inzidenz$alter[max(which(inzidenz$kontrolle.int <

as.numeric(zufall [1])))+1]

}

if (as.numeric(zufall [1])==1){

alter.aus <- max(inzidenz$alter)

}

}

if (zufall [2]=="case"){

if (as.numeric(zufall [1])<min(inzidenz$fall.int )){

alter.aus <- min(inzidenz$alter)

}

if (as.numeric(zufall [1])>min(inzidenz$fall.int) &

as.numeric(zufall [1]) <1){

alter.aus <- inzidenz$alter[max(which(inzidenz$fall.int <

as.numeric(zufall [1])))+1]

}

if (as.numeric(zufall [1])==1){

alter.aus <- max(inzidenz$alter)

}

}

return(alter.aus)

}

# -------------------------------------------- #

# c. Age , GRR and genotypes

# -------------------------------------------- #

# Age

zufallszahlen <- data.frame(zahl=runif ((no.cases+no.controls), 0, 1),

status=c(rep("case", no.cases),

rep("control", no.controls )))

alter <- apply(as.matrix(zufallszahlen), 1, alter.func)

rm("alter.distr")

rm("alter.func")

rm("alter.inzidenz")

# Prevalence

prev .1000 <- numeric(no.cases+no.controls)

for (prev.age in 1: length(alter )){

prev .1000[ prev.age] <- prevalence$prev.parts[prevalence$age.int ==
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alter[prev.age]]

}

rm("inzidenz")

rm("zufallszahlen")

# Genotypes

daten <- data.frame(ca.co=c(rep(1, no.cases), rep(0, no.controls)),

alter=alter , geno=matrix(NA, ncol=no.null ,

nrow=(no.cases+no.controls )))

idx <- 0

for (pc in p0){

idx <- idx+1

rn <- runif(no.cases+no.controls , 0, 1)

referenz <- data.frame(alter=alter , aa=NA, Aa=NA, AA=NA)

bed01 <- as.character(allelfrequenzen$p0)==as.character(pc)

referenz.ca <- referenz [1:no.cases , ]

for (a.schleife in prevalence$age.int){

if (dim(referenz.ca[referenz.ca$alter==a.schleife , 2:4])[1]

>0){

referenz.ca[referenz.ca$alter ==a.schleife , 2:4] <-

data.frame(matrix(rep(allelfrequenzen$fall[bed01 &

as.character(allelfrequenzen$prev) ==

as.character(prevalence$prev.parts[prevalence$age.int ==

a.schleife ])],

nrow(referenz.ca[referenz.ca$alter==a.schleife , 2:4])) ,

nrow=nrow(referenz.ca[referenz.ca$alter==a.schleife , 2:4]),

byrow=TRUE))

}

}

referenz.co <- referenz [(no.cases +1):( no.cases+no.controls), ]

for (a.schleife in prevalence$age.int){

if(dim(referenz.co[referenz.co$alter==a.schleife , 2:4])[1]

>0){

referenz.co[referenz.co$alter ==a.schleife , 2:4] <-

data.frame(matrix(rep(allelfrequenzen$kontrolle[bed01 &

as.character(allelfrequenzen$prev) ==

as.character(prevalence$prev.parts[prevalence$age.int ==

a.schleife ])], nrow(referenz.co[referenz.co$alter ==

a.schleife , 2:4])) ,

nrow=nrow(referenz.co[referenz.co$alter==a.schleife , 2:4]),

byrow=TRUE))

}
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}

referenz <- rbind(referenz.ca, referenz.co)

z01 <- which(rn < referenz$AA)

daten[z01 , idx+2] <- "MM"

z01 <- which((rn >= referenz$AA) & (rn < referenz$Aa + referenz$AA))

daten[z01 , idx+2] <- "Mm"

z01 <- which(rn >= referenz$Aa + referenz$AA)

daten[z01 , idx+2] <- "mm"

# Numerical genotypes according to a dominant penetrance model

daten[daten[, idx +2]=="MM", idx+2] <- 1

daten[daten[, idx +2]=="Mm", idx+2] <- 1

daten[daten[, idx +2]=="mm", idx+2] <- 0

print(idx)

}

# Save results

setwd(dir.save)

titel <- paste("Daten_Bevoelkerung_EU_Geno_7Mio_Nullmarker.csv", sep="")

write.csv2(daten , titel , row.names=FALSE)

D.2.5 Logistic regression at the marker locus and the statistical

properties bias, variance, mean squared error and

statistical power

Structure:

1. Preparations

2. Logistic regression

a) Standard

b) Huber

c) Hampel

3. Statistical properties

a) Power

b) MSE
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# -------------------------------------------- #

# -------------------------------------------- #

# 1. Preparations

# -------------------------------------------- #

# -------------------------------------------- #

# Working directory

dir.read <- "Directory to read data"

dir.save <- "Directory to save results"

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Logistic regression

# -------------------------------------------- #

# -------------------------------------------- #

# -------------------------------------------- #

# a. Standard

# -------------------------------------------- #

# Read data

setwd(dir.read)

dominant <- read.csv2("Daten_Bevoelkerung_EU_Geno_7Mio.csv ")

# Read matrix with randomly drawn individuals from the population

stichprobe <- read.csv2("Stichprobe_Daten_JenaFinal.csv")

# Settings

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

no.controls <- 1000

speicher.stand <- data.frame(reps =1: repetitions , pVal.dom=NA,

koeff.dom=NA, se.dom=NA, ci.low.dom=NA,

ci.up.dom=NA)

for (i in 1: repetitions ){

# Get case control status for sample i

ca.co <- dominant$ca.co[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Get age for sample i

alter <- dominant$alter[as.vector(unlist(stichprobe[i,
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2: length(stichprobe )]))]

# Genotype for sample i

geno.dom <- dominant$geno[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Regression

zwischen1 <- glm(ca.co ~ geno.dom + alter ,

family=binomial(link = "logit"))

# Saving

speicher.stand$pVal.dom[i] <-

summary(zwischen1)$coefficients [2,4]

speicher.stand$koeff.dom[i] <-

summary(zwischen1)$coefficients [2,1]

speicher.stand$se.dom[i] <- summary(zwischen1)$coefficients [2,2]

speicher.stand$ci.low.dom[i] <- speicher.stand$koeff.dom[i] -

1.96*speicher.stand$se.dom[i]

speicher.stand$ci.up.dom[i] <- speicher.stand$koeff.dom[i] +

1.96*speicher.stand$se.dom[i]

cat(paste("Rep ", i, "\n", sep=""))

}

# Save results

setwd(dir.save)

write.csv2(speicher.stand , "Standard_DomSimu.csv", row.names=FALSE)

# -------------------------------------------- #

# b. Huber

# -------------------------------------------- #

# Read data

setwd(dir.read)

dominant <- read.csv2(

"Daten_Bevoelkerung_EU_7Mio_341950_domRef_domNum.csv")

# Read matrix with randomly drawn individuals from the population

stichprobe <- read.csv2("Stichprobe_Daten_JenaFinal.csv")

# Settings

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

176



D.2 Simulation study for statistical properties evaluation

no.controls <- 1000

library(robustbase)

tun.huber <- 1.345

speicher.huber <- data.frame(reps =1: repetitions , pVal.dom=NA,

koeff.dom=NA, se.dom=NA, ci.low.dom=NA, ci.up.dom=NA)

for (i in 1: repetitions ){

# Get case control status for sample i

ca.co <- dominant$ca.co[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Get age for sample i

alter <- dominant$alter[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Genotype for sample i

geno.dom <- dominant$geno[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Regression

zwischen1 <- try(glmrob(ca.co ~ geno.dom + alter ,

family=binomial("logit"), weights.on.x = "hat",

tcc=tun.huber),

silent=TRUE)

# Saving

if (sum(class(zwischen1 )=="try -error")==0){

speicher.huber$pVal.dom[i] <-

summary(zwischen1)$coefficients [2,4]

speicher.huber$koeff.dom[i] <-

summary(zwischen1)$coefficients [2,1]

speicher.huber$se.dom[i] <-

summary(zwischen1)$coefficients [2,2]

speicher.huber$ci.low.dom[i] <-

speicher.huber$koeff.dom[i] - 1.96*speicher.huber$se.dom[i]

speicher.huber$ci.up.dom[i] <-

speicher.huber$koeff.dom[i] + 1.96*speicher.huber$se.dom[i]

}

cat(paste("Rep ", i, "\n", sep=""))

}

# Save results

setwd(dir.save)

write.csv2(speicher.huber , "Huber_DomSimu.csv", row.names=FALSE)
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detach("package:robustbase")

# -------------------------------------------- #

# c. Hampel

# -------------------------------------------- #

# Read data

setwd(dir.read)

dominant <- read.csv2(

"Daten_Bevoelkerung_EU_7Mio_341950_domRef_domNum.csv")

# Read matrix with randomly drawn individuals from the population

stichprobe <- read.csv2("Stichprobe_Daten_JenaFinal.csv")

# Settings

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

no.controls <- 1000

library(robustbaseAdj)

tun.hampel1 <- c(1.5, 3.5, 8)*0.9016085

tun.hampel2 <- c(2, 4, 8)*0.690794

speicher.hampel <- data.frame(reps =1: repetitions , pVal.dom .09=NA,

koeff.dom .09=NA ,

se.dom .09=NA ,

ci.low.dom .09=NA ,

ci.up.dom .09=NA ,

pVal.dom .69=NA ,

koeff.dom .69=NA ,

se.dom .69=NA ,

ci.low.dom .69=NA ,

ci.up.dom .69=NA)

for (i in 1: repetitions ){

# Get case control status for sample i

ca.co <- dominant$ca.co[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Get age for sample i

alter <- dominant$alter[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Genotype for sample i
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geno.dom <- dominant$geno[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Regression with 1st tuning constant

zwischen1 <- try(glmrob(ca.co ~ geno.dom + alter ,

family=binomial("logit"),

weights.on.x = "hat", tcc=tun.hampel1), silent=TRUE)

# Saving

if (sum(class(zwischen1 )=="try -error")==0){

speicher.hampel$pVal.dom .09[i] <-

summary(zwischen1)$coefficients [2,4]

speicher.hampel$koeff.dom .09[i] <-

summary(zwischen1)$coefficients [2,1]

speicher.hampel$se.dom .09[i] <-

summary(zwischen1)$coefficients [2,2]

speicher.hampel$ci.low.dom .09[i] <-

speicher.hampel$koeff.dom .09[i] -

1.96*speicher.hampel$se.dom .09[i]

speicher.hampel$ci.up.dom .09[i] <-

speicher.hampel$koeff.dom .09[i] +

1.96*speicher.hampel$se.dom .09[i]

}

# Regression with 2nd tuning constant

zwischen1 <- try(glmrob(ca.co ~ geno.dom + alter ,

family=binomial("logit"),

weights.on.x = "hat", tcc=tun.hampel2), silent=TRUE)

# Saving

if (sum(class(zwischen1 )=="try -error")==0){

speicher.hampel$pVal.dom .69[i] <-

summary(zwischen1)$coefficients [2,4]

speicher.hampel$koeff.dom .69[i] <-

summary(zwischen1)$coefficients [2,1]

speicher.hampel$se.dom .69[i] <-

summary(zwischen1)$coefficients [2,2]

speicher.hampel$ci.low.dom .69[i] <-

speicher.hampel$koeff.dom .69[i] -

1.96*speicher.hampel$se.dom .69[i]

speicher.hampel$ci.up.dom .69[i] <-

speicher.hampel$koeff.dom .69[i] +
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1.96*speicher.hampel$se.dom .69[i]

}

cat(paste("Rep ", i, "\n", sep=""))

}

# Save results

setwd(dir.save)

write.csv2(speicher.hampel , "Hampel_DomSimu.csv", row.names=FALSE)

detach("package:robustbaseAdj")

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Statistical properties

# -------------------------------------------- #

# -------------------------------------------- #

rm(list=ls())

# -------------------------------------------- #

# a. Power

# -------------------------------------------- #

setwd(dir.save)

speicher.stand <- read.csv2("Standard_DomSimu.csv")

speicher.huber <- read.csv2("Huber_DomSimu.csv")

speicher.hampel <- read.csv2("Hampel_DomSimu.csv")

# Standard

power.speicher <- data.frame(Method=c("Standard", "Huber",

"Hampel", ""),

Tuning=c("none", "1.345", "(1.5 ,3.5 ,8)*0.9016085",

"(2,4,8)*0.690794"), Dominant=NA)

power.speicher$Dominant [1] <-

round(length(speicher.stand$pVal.dom[

is.na(speicher.stand$pVal.dom )==F &

speicher.stand$pVal.dom <0.05]) /

length(speicher.stand$pVal.dom[

is.na(speicher.stand$pVal.dom )==F])*100,

digits =1)

# Huber
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power.speicher$Dominant [2] <-

round(length(speicher.huber$pVal.dom[

is.na(speicher.huber$pVal.dom )==F &

speicher.huber$pVal.dom <0.05]) /

length(speicher.huber$pVal.dom[

is.na(speicher.huber$pVal.dom )==F])*100,

digits =1)

# Hampel with 1st tuning constant

power.speicher$Dominant [3] <-

round(length(speicher.hampel$pVal.dom .09[

is.na(speicher.hampel$pVal.dom .09)==F &

speicher.hampel$pVal.dom .09 <0.05]) /

length(speicher.hampel$pVal.dom .09[

is.na(speicher.hampel$pVal.dom .09)==F])*100,

digits =1)

# Hampel with 2nd tuning constant

power.speicher$Dominant [4] <-

round(length(speicher.hampel$pVal.dom .69[

is.na(speicher.hampel$pVal.dom .69)==F &

speicher.hampel$pVal.dom .69 <0.05]) /

length(speicher.hampel$pVal.dom .69[

is.na(speicher.hampel$pVal.dom .69)==F])*100,

digits =1)

# Save results

write.table(power.speicher , "Power_SimuDom.txt",

row.names=F, quote=F, sep=";", dec=".")

# -------------------------------------------- #

# b. MSE

# -------------------------------------------- #

ref <- log (1.43)

mse.speicher <- data.frame(Method=c("Standard", "Huber",

"Hampel", ""),

Tuning=c("none", "1.345", "(1.5 ,3.5 ,8)*0.9016085",

"(2,4,8)*0.690794"),

Dominant.MeanBias=NA, Dominant.Variance=NA,

Dominant.MeanSE=NA)
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# Mean bias

mse.speicher$Dominant.MeanBias [1] <-

round(mean(speicher.stand$koeff.dom)-ref ,

digits =4)

mse.speicher$Dominant.MeanBias [2] <-

round(mean(speicher.huber$koeff.dom)-ref ,

digits =4)

mse.speicher$Dominant.MeanBias [3] <-

round(mean(speicher.hampel$koeff.dom.09)-ref ,

digits =4)

mse.speicher$Dominant.MeanBias [4] <-

round(mean(speicher.hampel$koeff.dom.69)-ref ,

digits =4)

# Variance

mse.speicher$Dominant.Variance [1] <-

round(var(speicher.stand$koeff.dom),

digits =4)

mse.speicher$Dominant.Variance [2] <-

round(var(speicher.huber$koeff.dom),

digits =4)

mse.speicher$Dominant.Variance [3] <-

round(var(speicher.hampel$koeff.dom.09),

digits =4)

mse.speicher$Dominant.Variance [4] <-

round(var(speicher.hampel$koeff.dom.69),

digits =4)

# Mean squared error

mse.speicher$Dominant.MeanSE [1] <-

round ((mse.speicher$Dominant.MeanBias [1])^2 +

mse.speicher$Dominant.Variance [1],

digits =4)

mse.speicher$Dominant.MeanSE [2] <-

round ((mse.speicher$Dominant.MeanBias [2])^2 +

mse.speicher$Dominant.Variance [2],

digits =4)

mse.speicher$Dominant.MeanSE [3] <-

round ((mse.speicher$Dominant.MeanBias [3])^2 +

mse.speicher$Dominant.Variance [3],

digits =4)

mse.speicher$Dominant.MeanSE [4] <-
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round ((mse.speicher$Dominant.MeanBias [4])^2 +

mse.speicher$Dominant.Variance [4],

digits =4)

# Save results

write.table(mse.speicher , "MSE_SimuDom.txt", row.names=F,

quote=F, sep=";", dec=".")

D.2.6 Logistic regression at the null marker loci and the type I

error rate

Structure:

1. Preparations

2. Logistic regression

a) Standard

b) Huber

c) Hampel

3. Statistical properties

a) Type I error rate

# -------------------------------------------- #

# -------------------------------------------- #

# 1. Preparations

# -------------------------------------------- #

# -------------------------------------------- #

# Working directory

dir.read <- "Directory to read data"

dir.save <- "Directory to save results"

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Logistic regression

# -------------------------------------------- #

# -------------------------------------------- #

# -------------------------------------------- #

183



D Supplemental source code

# a. Standard

# -------------------------------------------- #

# Read data

setwd(dir.read)

daten <- read.csv2(

"Daten_Bevoelkerung_EU_Geno_7Mio_Nullmarker.csv")

# Read matrix with randomly drawn individuals from the population

stichprobe <- read.csv2("Stichprobe_Daten_JenaFinal.csv")

# Settings

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

no.controls <- 1000

speicher.stand <- data.frame(reps=rep(1: repetitions , 10),

p0=sort(rep (1:10, 400)), pVal.dom=NA , koeff.dom=NA ,

se.dom=NA, ci.low.dom=NA , ci.up.dom=NA)

idx <- 0

for (pc in 1:10){

for (i in 1: repetitions ){

idx <- idx+1

# Get case control status for sample i

ca.co <- daten$ca.co[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Get age for sample i

alter <- daten$alter[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Genotype for sample i

geno <- daten[as.vector(unlist(stichprobe[i,

2: length(stichprobe )])), pc+2]

geno <- as.character(geno)

geno.dom <- geno

geno.dom[geno.dom=="MM"] <- "1"

geno.dom[geno.dom=="Mm"] <- "1"

geno.dom[geno.dom=="mm"] <- "0"

geno.dom <- as.numeric(geno.dom)

# Regression

zwischen1 <- glm(ca.co ~ geno.dom + alter ,
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family=binomial(link = "logit"))

# Saving

speicher.stand$pVal.dom[idx] <-

summary(zwischen1)$coefficients [2,4]

speicher.stand$koeff.dom[idx] <-

summary(zwischen1)$coefficients [2,1]

speicher.stand$se.dom[idx] <-

summary(zwischen1)$coefficients [2,2]

speicher.stand$ci.low.dom[idx] <-

speicher.stand$koeff.dom[idx] -

1.96*speicher.stand$se.dom[idx]

speicher.stand$ci.up.dom[idx] <-

speicher.stand$koeff.dom[idx] +

1.96*speicher.stand$se.dom[idx]

}

print(pc)

}

# Save results

setwd(dir.save)

write.csv2(speicher.stand , "Standard_DomSimu_Nullmarker.csv",

row.names=FALSE)

# -------------------------------------------- #

# b. Huber

# -------------------------------------------- #

# Read data

setwd(dir.read)

daten <- read.csv2("Daten_Bevoelkerung_EU_Geno_7Mio_Nullmarker.csv")

# Read matrix with randomly drawn individuals from the population

stichprobe <- read.csv2("Stichprobe_Daten_JenaFinal.csv")

# Settings

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

no.controls <- 1000

library(robustbase)

tun.huber <- 1.345
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speicher.huber <- data.frame(reps=rep(1: repetitions , 10),

p0=sort(rep (1:10, 400)), pVal.dom=NA , koeff.dom=NA ,

se.dom=NA, ci.low.dom=NA , ci.up.dom=NA)

idx <- 0

for (pc in 1:10){

for (i in 1: repetitions ){

idx <- idx+1

# Get case control status for sample i

ca.co <- daten$ca.co[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Get age for sample i

alter <- daten$alter[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Genotype for sample i

geno <- daten[as.vector(unlist(stichprobe[i,

2: length(stichprobe )])), pc+2]

geno <- as.character(geno)

geno.dom <- geno

geno.dom[geno.dom=="MM"] <- "1"

geno.dom[geno.dom=="Mm"] <- "1"

geno.dom[geno.dom=="mm"] <- "0"

geno.dom <- as.numeric(geno.dom)

# Regression

zwischen1 <- try(glmrob(ca.co ~ geno.dom + alter ,

family=binomial("logit"),

weights.on.x = "hat",tcc=tun.huber),

silent=TRUE)

# Saving

if (sum(class(zwischen1 )=="try -error")==0){

speicher.huber$pVal.dom[idx] <-

summary(zwischen1)$coefficients [2,4]

speicher.huber$koeff.dom[idx] <-

summary(zwischen1)$coefficients [2,1]

speicher.huber$se.dom[idx] <-

summary(zwischen1)$coefficients [2,2]

speicher.huber$ci.low.dom[idx] <-

speicher.huber$koeff.dom[idx] -

1.96*speicher.huber$se.dom[idx]

speicher.huber$ci.up.dom[idx] <-

speicher.huber$koeff.dom[idx] +
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1.96*speicher.huber$se.dom[idx]

}

}

print(pc)

}

# Save results

setwd(dir.save)

write.csv2(speicher.huber , "Huber_DomSimu_Nullmarker.csv",

row.names=FALSE)

detach("package:robustbase")

# -------------------------------------------- #

# c. Hampel

# -------------------------------------------- #

# Read data

setwd(dir.read)

daten <- read.csv2("Daten_Bevoelkerung_EU_Geno_7Mio_Nullmarker.csv")

# Read matrix with randomly drawn individuals from the population

stichprobe <- read.csv2("Stichprobe_Daten_JenaFinal.csv")

# Settings

repetitions <- 400

pop.size <- 3500000

no.cases <- 1000

no.controls <- 1000

library(robustbaseAdj)

tun.hampel1 <- c(1.5, 3.5, 8)*0.9016085

tun.hampel2 <- c(2, 4, 8)*0.690794

speicher.hampel <- data.frame(reps=rep (1: repetitions , 10),

p0=sort(rep (1:10, 400)), pVal.dom .09=NA , koeff.dom .09=NA ,

se.dom .09=NA, ci.low.dom .09=NA , ci.up.dom .09=NA ,

pVal.dom .69=NA , koeff.dom .69=NA ,

se.dom .69=NA, ci.low.dom .69=NA , ci.up.dom .69=NA)

idx <- 0

for (pc in 1:10){

for (i in 1: repetitions ){

idx <- idx+1

# Get case control status for sample i
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ca.co <- daten$ca.co[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Get age for sample i

alter <- daten$alter[as.vector(unlist(stichprobe[i,

2: length(stichprobe )]))]

# Genotype for sample i

geno <- daten[as.vector(unlist(stichprobe[i,

2: length(stichprobe )])), pc+2]

geno <- as.character(geno)

geno.dom <- geno

geno.dom[geno.dom=="MM"] <- "1"

geno.dom[geno.dom=="Mm"] <- "1"

geno.dom[geno.dom=="mm"] <- "0"

geno.dom <- as.numeric(geno.dom)

# Regression with 1st tuning constant

zwischen1 <- try(glmrob(ca.co ~ geno.dom + alter ,

family=binomial("logit"), weights.on.x = "hat",

tcc=tun.hampel1), silent=TRUE)

# Saving

if (sum(class(zwischen1 )=="try -error")==0){

speicher.hampel$pVal.dom .09[ idx] <-

summary(zwischen1)$coefficients [2,4]

speicher.hampel$koeff.dom .09[ idx] <-

summary(zwischen1)$coefficients [2,1]

speicher.hampel$se.dom .09[ idx] <-

summary(zwischen1)$coefficients [2,2]

speicher.hampel$ci.low.dom .09[ idx] <-

speicher.hampel$koeff.dom .09[ idx] -

1.96*speicher.hampel$se.dom .09[ idx]

speicher.hampel$ci.up.dom .09[ idx] <-

speicher.hampel$koeff.dom .09[ idx] +

1.96*speicher.hampel$se.dom .09[ idx]

}

# Regression with 2nd tuning constant

zwischen1 <- try(glmrob(ca.co ~ geno.dom + alter ,

family=binomial("logit"), weights.on.x = "hat",

tcc=tun.hampel2), silent=TRUE)

# Saving
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if (sum(class(zwischen1 )=="try -error")==0){

speicher.hampel$pVal.dom .69[ idx] <-

summary(zwischen1)$coefficients [2,4]

speicher.hampel$koeff.dom .69[ idx] <-

summary(zwischen1)$coefficients [2,1]

speicher.hampel$se.dom .69[ idx] <-

summary(zwischen1)$coefficients [2,2]

speicher.hampel$ci.low.dom .69[ idx] <-

speicher.hampel$koeff.dom .69[ idx] -

1.96*speicher.hampel$se.dom .69[ idx]

speicher.hampel$ci.up.dom .69[ idx] <-

speicher.hampel$koeff.dom .69[ idx] +

1.96*speicher.hampel$se.dom .69[ idx]

}

}

print(pc)

}

# Save results

setwd(dir.save)

write.csv2(speicher.hampel , "Hampel_DomSimu_Nullmarker.csv",

row.names=FALSE)

detach("package:robustbaseAdj")

# -------------------------------------------- #

# -------------------------------------------- #

# 3. Statistical properties

# -------------------------------------------- #

# -------------------------------------------- #

rm(list=ls())

# -------------------------------------------- #

# a. Type I error rate

# -------------------------------------------- #

setwd(dir.save)

speicher.stand <- read.csv2("Standard_DomSimu_Nullmarker.csv")

speicher.huber <- read.csv2("Huber_DomSimu_Nullmarker.csv")

speicher.hampel <- read.csv2("Hampel_DomSimu_Nullmarker.csv")

fpr.speicher <- data.frame(Method=c("Standard", "Huber",
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"Hampel", ""),

Tuning=c("none", "1.345", "(1.5 ,3.5 ,8)*0.9016085",

"(2,4,8)*0.690794"),

FPR.dom=NA)

# Standard

fpr <- round(length(speicher.stand$pVal.dom[

is.na(speicher.stand$pVal.dom )==F &

speicher.stand$pVal.dom <0.05]) /

length(speicher.stand$pVal.dom[

is.na(speicher.stand$pVal.dom )==F])*100,

digits =1)

low <- round((fpr/100 -1.96*sqrt(fpr/100*(1-fpr/100)/4000))*100,

digits =1)

up <- round ((fpr/100+1.96*sqrt(fpr/100*(1-fpr/100)/4000) )*100,

digits =1)

fpr.speicher$FPR.dom[1] <- paste(fpr , " (", low , ", ", up , ")",

sep="")

# Huber

fpr <- round(length(speicher.huber$pVal.dom[

is.na(speicher.huber$pVal.dom )==F &

speicher.huber$pVal.dom <0.05]) /

length(speicher.huber$pVal.dom[

is.na(speicher.huber$pVal.dom )==F])*100,

digits =1)

low <- round((fpr/100 -1.96*sqrt(fpr/100*(1-fpr/100)/4000))*100,

digits =1)

up <- round((fpr/100+1.96*sqrt(fpr/100*(1-fpr/100)/4000) )*100,

digits =1)

fpr.speicher$FPR.dom[2] <- paste(fpr , " (", low , ", ", up , ")",

sep="")

# Hampel with 1st tuning constant

fpr <- round(length(speicher.hampel$pVal.dom .09[

is.na(speicher.hampel$pVal.dom .09)==F &

speicher.hampel$pVal.dom .09 <0.05]) /

length(speicher.hampel$pVal.dom .09[

is.na(speicher.hampel$pVal.dom .09)==F])*100,

digits =1)

low <- round((fpr/100 -1.96*sqrt(fpr/100*(1-fpr/100)/4000))*100,

digits =1)

up <- round((fpr/100+1.96*sqrt(fpr/100*(1-fpr/100)/4000) )*100,

digits =1)
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fpr.speicher$FPR.dom[3] <- paste(fpr , " (", low , ", ", up , ")",

sep="")

# Hampel with 2nd tuning constant

fpr <- round(length(speicher.hampel$pVal.dom .69[

is.na(speicher.hampel$pVal.dom .69)==F &

speicher.hampel$pVal.dom .69 <0.05]) /

length(speicher.hampel$pVal.dom .69[

is.na(speicher.hampel$pVal.dom .69)==F])*100,

digits =1)

low <- round((fpr/100 -1.96*sqrt(fpr/100*(1-fpr/100)/4000))*100,

digits =1)

up <- round((fpr/100+1.96*sqrt(fpr/100*(1-fpr/100)/4000) )*100,

digits =1)

fpr.speicher$FPR.dom[4] <- paste(fpr , " (", low , ", ", up , ")",

sep="")

# Save results

write.table(fpr.speicher , "FPR_SimuDom_Nullmarker.txt", row.names=F,

quote=F, sep=";", dec=".")

D.3 Real data application for statistical properties

evaluation

Code for the analysis of the real data (section D.3.1) as well as the visualisation of

their results (section D.3.2)

D.3.1 Analysis of the real data

Structure:

1. Input formats

2. Settings

3. Preparations

4. Logistic regression

# -------------------------------------------- #

# -------------------------------------------- #
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# 1. Input formats

# -------------------------------------------- #

# -------------------------------------------- #

# Genotype data:

# .csv -file

# as given by PGP

# Demographic data:

# .csv -file

# column names:

# id : given PGP

# age.yrs : age in years

# height.cm : height in cm

# DataAvailable : is genotype data available?

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Settings

# -------------------------------------------- #

# -------------------------------------------- #

genotype.dir <- "Directory of genotype data"

demographic.dir <- "Directory of demographic information"

save.dir <- "Directory to save analysis results"

# Number of SNPs to read

no.snps <- 1000

# -------------------------------------------- #

# -------------------------------------------- #

# 3. Preparations

# -------------------------------------------- #

# -------------------------------------------- #

# Get a list of genotype files

setwd(genotype.dir)

dateien <- dir()

# If there is more than one file for an individual ,
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# take the latest one

# Which individuals do have several?

personen <- substr(dateien , start=1, stop =8)

mehrere <- which(duplicated(personen )==T)

mehrere <- unique(personen[mehrere ])

# Manual exclusion

dateien.auswahl <- dateien[dateien !=

"hu11603C_genome_Angela_Harris_Full_20120618075158. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu2A4D22_genome_Stephan_George_Full_20130210221109. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu394092_genome_Paul_Conroy_Full_20110111011125. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu3D355A_20110727023010. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu459AD0_genome_Bernard_Moscia_Full_20110116053218. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu5A1D5F_genome_Matthew_Kelty_Mito_20110331040943. txt"]

# no mitochondrial or Y chromosome

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu5A1D5F_genome_Matthew_Kelty_Y_20110331040918. txt"]

# no mitochondrial or Y chromosome

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu6ED94A_genome_Norman_Megill_Full_20100527043516. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu6FECE9_genome_jim_berry_Full_20110112103611. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"hu840B0B_genome_Brandon_Galbraith_Full_20110124131334. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huAC827A_genome_Jim_Turner_Full_20110324084155. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huBC03A7_genome_Debra_Patek_Full_20110107081441. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huC4A276_genome_Anastasia_Webber_Full_20110910195237. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huC92BC9_genome_William_Ramey_Mito_20120508065539. txt"]

# no mitochondrial or Y chromosome

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huC92BC9_genome_William_Ramey_Y_20120508065802. txt"]

# no mitochondrial or Y chromosome

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huD57BBF_genome_James_Vick_Full_20101216062019. txt"]
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dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huDB1635_20110727031252. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huDD1522_genome_Ken_Mortimer_Full_20140223140859. txt"]

dateien.auswahl <- dateien.auswahl[dateien.auswahl !=

"huF06AD0_genome_Beau_Gunderson_Full_20110307220402. txt"]

# Read clinical data and exclude individuals without

# information about age , genotype or height

# Read

setwd(demographic.dir)

klin <- read.csv2(

"KlinischeDaten_perHandAusgelesen_23anMe_Verwendet.csv")

# Exclusion: no age or no genotype data

klin <- klin[is.na(klin$age.yrs )==F, ]

ausschluss <- grep("no", klin$DataAvailable)

klin <- klin[-ausschluss , ]

# Exclusion: no height

probanden <- klin$id[is.na(klin$height.cm)==F]

# Create genotype matrix

setwd(paste(basedir , "23andMe/Text", sep=""))

daten <- data.frame(snp="rs", chr=0, pos=0, geno="XY", pers="hu")

for (i in probanden ){

datei <- grep(i, dateien.auswahl)

# Exclusion of individuals with inconsistent files

if (!(i %in% c("hu52E130", "huD00199", "huBB5257"))){

daten.pers <- read.table(dateien.auswahl[datei], sep="\t",

nrows=no.snps , header=F)

colnames(daten.pers) <- c("snp", "chr", "pos", "geno")

daten.pers <- data.frame(daten.pers , pers=i)

daten <- rbind(daten , daten.pers)

}

}

# Delete first row that was created for initialisation

daten <- daten [2: nrow(daten), ]

# Drop unused levels in the genotype matrix

library(gdata)

daten <- drop.levels(daten)

# SNPs that were represented by 208 individuals

snps.max <- c("rs10492938", "rs10492940", "rs10737190",
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"rs10737192", "rs10752733", "rs10797342", "rs10797348",

"rs10797368", "rs10797380", "rs10797386", "rs10797417",

"rs10799202", "rs10907192", "rs10909845", "rs10909852",

"rs10909890", "rs10909901", "rs10909918", "rs10910025",

"rs10910047", "rs10910050", "rs10910061", "rs10910078",

"rs10915433", "rs1108600", "rs1123571", "rs11260549",

"rs11578011", "rs11583257", "rs11583804", "rs11587331",

"rs11588930", "rs11589102", "rs11590198", "rs11590912",

"rs1175549", "rs1181875", "rs1181877", "rs1181883",

"rs1181888", "rs12022929", "rs12024847", "rs12031557",

"rs12046158", "rs12049628", "rs12073172", "rs12082157",

"rs12085231", "rs12117836", "rs12119470", "rs12119556",

"rs12119711", "rs12124147", "rs12135298", "rs12138909",

"rs12562167", "rs12562637", "rs12562988", "rs12724233",

"rs12731705", "rs12748963", "rs12749761", "rs12757342",

"rs13376356", "rs1553291", "rs1569419", "rs1572657",

"rs16823542", "rs16823802", "rs16824089", "rs16825336",

"rs17373634", "rs17399569", "rs17399998", "rs1890336",

"rs1984069", "rs2017143", "rs2031709", "rs2045331",

"rs2045332", "rs2055204", "rs2142569", "rs2173049",

"rs2257182", "rs2275819", "rs2275831", "rs2279702",

"rs2279703", "rs2296716", "rs2297829", "rs2298217",

"rs2377041", "rs2455118", "rs2455144", "rs2459994",

"rs2460000", "rs2474460", "rs2477703", "rs2483260",

"rs2483274", "rs2485945", "rs2487670", "rs2487680",

"rs2493272", "rs2493275", "rs2493285", "rs2493292",

"rs2493310", "rs2493314", "rs2494428", "rs2494626",

"rs2500262", "rs2500286", "rs2606411", "rs263526",

"rs2643891", "rs2643901", "rs2645065", "rs2649588",

"rs2651899", "rs2651906", "rs2799182", "rs2817178",

"rs2817185", "rs2821007", "rs2821023", "rs2821025",

"rs2821040", "rs2821063", "rs2840528", "rs2840532",

"rs2840538", "rs2843127", "rs2843142", "rs2843143",

"rs2843160", "rs2887286", "rs2993493", "rs3001336",

"rs3002685", "rs3002686", "rs3107151", "rs3128291",

"rs3736330", "rs3737589", "rs3748816", "rs3753242",

"rs3762444", "rs3765703", "rs3765705", "rs3765731",

"rs3765736", "rs3765761", "rs3765766", "rs3795263",

"rs3813199", "rs3890745", "rs3934834", "rs4131373",

"rs424079", "rs4276857", "rs4415513", "rs4531246",

"rs4648377", "rs4648380", "s4648381", "rs4648392",

"rs4648398", "rs4648426", "rs4648441", "rs4648453",
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"rs4648482", "rs4648487", "rs4648489", "rs4648505",

"rs4648524", "rs4648527", "rs4648545", "rs4648592",

"rs4648808", "rs4648831", "rs4648843", "rs4654479",

"rs4654480", "rs4654482", "rs6424069", "rs6424074",

"rs6603811", "rs6659405", "rs6661168", "rs6663840",

"rs6667605", "rs6675798", "rs6681347", "rs6681938",

"rs6683273", "rs6685064", "rs6687776", "rs6691155",

"rs6695346", "rs6697749", "rs731031", "rs734999",

"rs7367066", "rs7412983", "rs747827", "rs7515488",

"rs7519349", "rs7519458", "rs7519807", "rs7522140",

"rs7523732", "rs7525092", "rs7527871", "rs7528494",

"rs7531583", "rs7534897", "rs7535528", "rs7538096",

"rs7544357", "rs819980", "rs868688", "rs870124",

"rs870171", "rs871822", "rs878063", "rs878201",

"rs880051","rs884080", "rs884940", "rs897634",

"rs903901", "rs903903", "rs903904", "rs903914",

"rs903916", "rs903919", "rs905135", "rs908742",

"rs926244", "rs9442373", "rs9442380", "rs946758",

"rs947344", "rs947354", "rs9628616")

# Reduce genotype matrix to the needed SNPs

daten.max.snps <- daten[daten$snp %in% snps.max , ]

# Drop unused levels

library(gdata)

daten.max.snps <- drop.levels(daten.max.snps)

# 208 individuals with 245 SNPs

# Genotype coding according to MAF: identification of the

# minor allele

# Matrix

# 1 Individual per row , 1 SNP per column , 1 column per

# clinical information

# ID of individuals and SNPs

personen.unique <- as.character(unique(daten.max.snps$pers))

snps.unique <- as.character(unique(daten.max.snps$snp))

# Initialisation

daten.matrix <- matrix(NA, ncol=( length(snps.unique )+2),

nrow=length(personen.unique ))
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daten.matrix <- data.frame(daten.matrix)

colnames(daten.matrix) <- c("age", "height",

sort(snps.unique ))

rownames(daten.matrix) <- personen.unique

# Fill matrix

for (i in 1:nrow(daten.matrix )){

id <- rownames(daten.matrix )[i]

daten.matrix$age[i] <- klin$age.yrs[klin$id==id]

daten.matrix$height[i] <-

klin$height.cm[klin$id==id]

inter <- data.frame(rs=colnames(daten.matrix )[

3:ncol(daten.matrix )])

inter.2 <- merge(inter ,

daten.max.snps[daten.max.snps$pers==id,

c("snp", "geno")], by.x="rs", by.y="snp",

all.x=T, all.y=F)

inter.2 <- inter .2[ order(inter .2$rs),]

daten.matrix[i, 3:ncol(daten.matrix )] <- inter .2$geno

}

# Code "--" as NA

for (i in 3:ncol(daten.matrix )){

daten.matrix[daten.matrix[, i]=="--", i] <- NA

}

# Delete individuals with missing values

daten.matrix .2 <- na.omit(daten.matrix)

daten.matrix <- daten.matrix .2

# Calculate MAF per SNP

# Create table with rs, chromosome , position , minor allele ,

# MAF and genotype frequency

tab.snps <- data.frame(snp=rep(NA , length(snps.unique)),

chr=NA , pos=NA , min.allel=NA , maf=NA , maf.min.allel=NA ,

geno.min.allel=NA , geno.hetero=NA , geno.max.allel=NA)

# Preparation step: matrix with rs, chromosome and position

tab.inter <- data.frame(snp=snps.unique , chr=NA , pos=NA)

for (i in 1:nrow(tab.inter )){

tab.inter$chr[i] <- as.numeric(daten$chr[daten$snp ==

as.character(tab.inter$snp[i])][1])

tab.inter$pos[i] <- as.numeric(daten$pos[daten$snp ==
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as.character(tab.inter$snp[i])][1])

}

tab.inter <- tab.inter[order(tab.inter$pos), ]

tab.snps[, 1:3] <- tab.inter

# Main step: MAF calculation

for (i in 1:nrow(tab.snps )){

vektor <- daten.matrix[, colnames(daten.matrix) ==

as.character(tab.snps$snp[i])]

summ <- summary(as.factor(vektor ))

# 3 different genotypes

if (length(names(summ ))==3){

maf.1 <- (2*summ [[1]]+ summ [[2]])/(2*sum(summ))

maf.2 <- (2*summ [[3]]+ summ [[2]])/(2*sum(summ))

selten <- ifelse(maf.1 <= maf.2, 1, 2)

minor.allel <- ifelse(selten ==1,

substr(names(summ )[1], start=1, stop=1),

substr(names(summ )[3], start=1, stop =1))

genoFrequ.min.allel <- ifelse(selten ==1,

paste(round (100*summ [[1]]/sum(summ), digits =0),

" (", names(summ )[1], ")", sep=""),

paste(round (100*summ [[3]]/sum(summ), digits =0),

" (", names(summ )[3], ")", sep=""))

genoFrequ.hetero <- paste(round (100*summ [[2]]/sum(summ),

digits =0), " (", names(summ )[2], ")", sep="")

genoFrequ.max.allel <- ifelse(selten ==1,

paste(round (100*summ [[3]]/sum(summ), digits =0),

" (", names(summ )[3], ")", sep=""),

paste(round (100*summ [[1]]/sum(summ), digits =0),

" (", names(summ )[1], ")", sep=""))

# 2 different genotypes

} else if (length(names(summ ))==2){

print(paste("2 genotypes: ", i, ". ", sep=""))

if (substr(names(summ )[1], start=1, stop =1) ==

substr(names(summ )[1], start=2, stop =2)){

if (substr(names(summ )[2], start=1, stop =1) !=

substr(names(summ )[2], start=2, stop =2)){

maf.1 <- (2*summ [[1]]+ summ [[2]])/(2*sum(summ))

maf.2 <- summ [[2]]/(2*sum(summ))

selten <- ifelse(maf.1 <= maf.2, 1, 2)

if (selten ==1){

minor.allel <- substr(names(summ )[1],

start=1, stop =1)
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a <- substr(names(summ )[2], start=1, stop =1)

b <- substr(names(summ )[2], start=2, stop =2)

major.allel <- c(a, b)[which(!(c(a,b))

%in% minor.allel )]

} else if (selten ==2){

major.allel <- substr(names(summ )[1],

start=1, stop =1)

a <- substr(names(summ )[2], start=1, stop =1)

b <- substr(names(summ )[2], start=2, stop =2)

minor.allel <- c(a, b)[which(!(c(a,b))

%in% major.allel )]

}

genoFrequ.min.allel <- ifelse(selten ==1,

paste(round (100*summ [[1]]/sum(summ), digits =0),

" (", names(summ )[1], ")", sep=""),

paste("0 (", minor.allel , minor.allel , ")",

sep=""))

genoFrequ.hetero <- paste(round (100*summ [[2]]/sum(summ),

digits =0), " (", names(summ )[2], ")", sep="")

genoFrequ.max.allel <- ifelse(selten ==1,

paste("0 (", major.allel , major.allel , ")", sep=""),

paste(round (100*summ [[1]]/sum(summ), digits =0),

" (", names(summ )[1], ")", sep=""))

} else if (substr(names(summ )[2], start=1, stop =1) ==

substr(names(summ )[2], start=2, stop =2)){

maf.1 <- (2*summ [[1]])/(2*sum(summ))

maf.2 <- (2*summ [[2]])/(2*sum(summ))

selten <- ifelse(maf.1 <= maf.2, 1, 2)

if (selten ==1){

minor.allel <- substr(names(summ )[1], start=1, stop =1)

} else if (selten ==2){

minor.allel <- substr(names(summ )[2], start=1, stop =1)

}

genoFrequ.min.allel <- ifelse(selten ==1,

paste(round (100*summ [[1]]/sum(summ), digits =0),

" (", names(summ )[1], ")", sep=""),

paste(round (100*summ [[2]]/sum(summ), digits =0),

" (", names(summ )[2], ")", sep=""))

genoFrequ.hetero <- paste("0 (",

substr(names(summ )[1], start=1, stop=1),

substr(names(summ )[2], start=1, stop=1), ")", sep="")

genoFrequ.max.allel <- ifelse(selten ==1,
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paste(round (100*summ [[2]]/sum(summ), digits =0),

" (", names(summ )[2], ")", sep=""),

paste(round (100*summ [[1]]/sum(summ), digits =0),

" (", names(summ )[1], ")", sep=""))

}

} else if (substr(names(summ )[1], start=1, stop =1) !=

substr(names(summ )[1], start=2, stop =2)){

maf.1 <- summ [[1]]/(2*sum(summ))

maf.2 <- (summ [[1]]+2*summ [[2]])/(2*sum(summ))

selten <- ifelse(maf.1 <= maf.2, 1, 2)

if (selten ==2){

minor.allel <- substr(names(summ )[2], start=1,

stop =1)

a <- substr(names(summ )[2], start=1, stop =1)

b <- substr(names(summ )[2], start=2, stop =2)

major.allel <- c(a, b)[ which(!(c(a,b)) %in% minor.allel )]

} else if (selten ==1){

a <- substr(names(summ )[1], start=1, stop =1)

b <- substr(names(summ )[1], start=2, stop =2)

minor.allel <- c(a, b)[ which(!(c(a,b)) %in%

substr(names(summ )[2], start=1, stop =1))]

major.allel <- c(a, b)[ which(!(c(a,b)) %in% minor.allel )]

}

genoFrequ.min.allel <- ifelse(selten ==1,

paste("0 (", minor.allel , minor.allel , ")", sep=""),

paste(round (100*summ [[2]]/sum(summ), digits =0),

" (", names(summ )[2], ")", sep=""))

genoFrequ.hetero <- paste(round (100*summ [[1]]/sum(summ),

digits =0), " (", names(summ )[1], ")", sep="")

genoFrequ.max.allel <- ifelse(selten ==1,

paste(round (100*summ [[2]]/sum(summ), digits =0),

" (", names(summ )[2], ")", sep=""),

paste("0 (", major.allel , major.allel , ")", sep=""))

}

# 1 genotype

} else if (length(names(summ ))==1){

print(paste("1 genoytpe: ", i, ". ", sep=""))

if (substr(names(summ )[1], start=1, stop =1) ==

substr(names(summ )[1], start=2, stop =2)){

maf.1 <- summ [[1]]/(sum(summ))

maf.2 <- 0

selten <- ifelse(maf.1 <= maf.2, 1, 2)
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minor.allel <- "-"

genoFrequ.min.allel <- "0 (--)"

genoFrequ.hetero <- "0 (--)"

genoFrequ.max.allel <- paste(round (100*summ [[1]]/sum(summ),

digits =0), " (", names(summ )[1], ")", sep="")

} else if (substr(names(summ )[1], start=1, stop =1) !=

substr(names(summ )[1], start=2, stop =2)){

maf.1 <- summ [[1]]/(2*sum(summ))

maf.2 <- summ [[1]]/(2*sum(summ))

selten <- 1

minor.allel <- substr(names(summ )[1], start=1, stop =1)

genoFrequ.min.allel <- paste("0 (", minor.allel ,

minor.allel , ")", sep="")

genoFrequ.hetero <- paste(round (100*summ [[1]]/sum(summ),

digits =0), " (", names(summ )[1], ")", sep="")

genoFrequ.max.allel <- paste("0 (", substr(names(summ )[1],

start=2, stop=2), substr(names(summ )[1], start=2,

stop=2), sep="")

}

}

frequ <- ifelse(selten ==1, round(maf.1*100, digits =0),

round(maf.2*100, digits =0))

minor.allel.frequ <- paste(frequ , " (", minor.allel , ")",

sep="")

tab.snps$min.allel[i] <- as.character(minor.allel)

tab.snps$maf[i] <- frequ

tab.snps$maf.min.allel[i] <- minor.allel.frequ

tab.snps$geno.min.allel[i] <- genoFrequ.min.allel

tab.snps$geno.hetero[i] <- genoFrequ.hetero

tab.snps$geno.max.allel[i] <- genoFrequ.max.allel

}

# Save results

titel <- paste(save.dir , "/SNPs_Uebersicht.csv", sep="")

write.csv2(tab.snps , titel , row.names=F)

# Function for numerical coding of SNPs

kodierung <- function(vektor , rs.no){

minor <- tab.snps$min.allel[tab.snps$snp==rs.no]

geno <- paste(minor , minor , sep="")

vektor <- as.character(vektor)

vektor[vektor ==geno] <- "2"
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vektor[grep(minor , vektor )] <- "1"

vektor[!(vektor %in% c("1", "2"))] <- "0"

return(vektor)

}

# Coding

for (i in 3:ncol(daten.matrix )){

daten.matrix[, i] <- as.numeric(kodierung(daten.matrix[, i],

colnames(daten.matrix )[i]))

}

# Response - median -dichotomised

med <- median(daten.matrix$height)

daten.matrix <- data.frame(response=rep(NA, nrow(daten.matrix)),

daten.matrix)

daten.matrix$response[daten.matrix$height <= med] <- 0

daten.matrix$response[daten.matrix$height > med] <- 1

# Overview table clinical data

tab.klin <- data.frame(vari=c("No. Persons", "Height [cm]",

"Median (Q1, Q3)", "Age [years]", "Median (Q1, Q3)",

"No. SNPs", "MAF [%]", "Median (Q1, Q3)"), value=NA)

idx <- 1

tab.klin$value[idx] <- nrow(daten.matrix)

idx <- idx+1

tab.klin$value[idx] <- ""

idx <- idx+1

tab.klin$value[idx] <- paste(median(daten.matrix$height),

" (", quantile(daten.matrix$height , probs =0.25) ,

", ", quantile(daten.matrix$height , probs =0.75) , ")",

sep="")

idx <- idx+1

tab.klin$value[idx] <- ""

idx <- idx+1

tab.klin$value[idx] <- paste(median(daten.matrix$age),

" (", quantile(daten.matrix$age , probs =0.25) ,

", ", quantile(daten.matrix$age , probs =0.75) , ")",

sep="")

idx <- idx+1

tab.klin$value[idx] <- ncol(daten.matrix)-3

idx <- idx+1
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tab.klin$value[idx] <- ""

idx <- idx+1

tab.klin$value[idx] <- paste(median(tab.snps$maf),

" (", quantile(tab.snps$maf , probs =0.25) , ", ",

quantile(tab.snps$maf , probs =0.75) , ")", sep="")

titel <- paste(save.dir , "/Datenuebersicht.csv", sep="")

write.csv2(tab.klin , titel , row.names=F)

# -------------------------------------------- #

# -------------------------------------------- #

# 4. Logistic regression

# -------------------------------------------- #

# -------------------------------------------- #

# Regression - for a fitted recessive penetrance

# model

tab.rezessiv <- data.frame(snp=tab.snps$snp ,

chr=tab.snps$chr , pos=tab.snps$pos ,

p.stand=NA, koeff.stand=NA, p.huber=NA,

koeff.huber=NA, p.hampel .09=NA,

koeff.hampel .09=NA, p.hampel .06=NA,

koeff.hampel .06=NA)

# Standard

for (i in 1:nrow(tab.rezessiv )){

response <- daten.matrix$response

alter <- daten.matrix$age

geno <- daten.matrix[, colnames(daten.matrix) ==

as.character(tab.rezessiv$snp[i])]

geno[geno ==1] <- 0

geno[geno ==2] <- 1

zwischen1 <- glm(response ~ geno + alter ,

family=binomial(link = "logit"))

if (sum(dim(summary(zwischen1)$coeff )==c(3 ,4))==2){

est <- summary(zwischen1)$coeff["geno", ]

tab.rezessiv$p.stand[i] <- est [[4]]

tab.rezessiv$koeff.stand[i] <- est [[1]]

}

}

# Huber

library(robustbase)
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tun.huber <- 1.345

for (i in 1:nrow(tab.rezessiv )){

response <- daten.matrix$response

alter <- daten.matrix$age

geno <- daten.matrix[, colnames(daten.matrix) ==

as.character(tab.rezessiv$snp[i])]

geno[geno ==1] <- 0

geno[geno ==2] <- 1

zwischen1 <- try(glmrob(response ~ geno + alter ,

family=binomial("logit"), weights.on.x = "hat",

tcc=tun.huber), silent=TRUE)

if (sum(class(zwischen1 )=="try -error")==0){

if (sum(dim(summary(zwischen1)$coeff )==c(3 ,4))==2){

est <- summary(zwischen1)$coeff["geno", ]

tab.rezessiv$p.huber[i] <- est [[4]]

tab.rezessiv$koeff.huber[i] <- est [[1]]

}

}

}

detach("package:robustbase")

# Hampel

library(robustbaseAdj)

tun.hampel1 <- c(1.5, 3.5, 8)*0.9016085

tun.hampel2 <- c(2, 4, 8)*0.690794

for (i in 1:nrow(tab.rezessiv )){

response <- daten.matrix$response

alter <- daten.matrix$age

# 1st tuning constant

geno <- daten.matrix[, colnames(daten.matrix) ==

as.character(tab.rezessiv$snp[i])]

geno[geno ==1] <- 0

geno[geno ==2] <- 1

zwischen1 <- try(glmrob(response ~ geno + alter ,

family=binomial("logit"), weights.on.x = "hat",

tcc=tun.hampel1), silent=TRUE)

if (sum(class(zwischen1 )=="try -error")==0){

if (sum(dim(summary(zwischen1)$coeff )==c(3 ,4))==2){

est <- summary(zwischen1)$coeff["geno", ]

tab.rezessiv$p.hampel .09[i] <- est [[4]]

tab.rezessiv$koeff.hampel .09[i] <- est [[1]]
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}

}

# 2nd tuning constant

geno <- daten.matrix[, colnames(daten.matrix) ==

as.character(tab.rezessiv$snp[i])]

geno[geno ==1] <- 0

geno[geno ==2] <- 1

zwischen1 <- try(glmrob(response ~ geno + alter ,

family=binomial("logit"), weights.on.x = "hat",

tcc=tun.hampel2), silent=TRUE)

if (sum(class(zwischen1 )=="try -error")==0){

if (sum(dim(summary(zwischen1)$coeff )==c(3 ,4))==2){

est <- summary(zwischen1)$coeff["geno", ]

tab.rezessiv$p.hampel .06[i] <- est [[4]]

tab.rezessiv$koeff.hampel .06[i] <- est [[1]]

}

}

}

detach("package:robustbaseAdj")

# Save results

titel <- paste(save.dir , "/Ergebnisse/Regression_komplErg_Rez.csv",

sep="")

write.csv2(tab.rezessiv , titel , row.names=F)

D.3.2 Visualisation of the real data analysis results

Structure:

1. Settings

2. Input

3. Manhattan and OR plots

4. Diagnostic plots

# -------------------------------------------- #

# -------------------------------------------- #

# 1. Settings

# -------------------------------------------- #

# -------------------------------------------- #
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data.dir <- "Directory to analysis results"

save.dir <- "Directory to save plot"

# -------------------------------------------- #

# -------------------------------------------- #

# 2. Input

# -------------------------------------------- #

# -------------------------------------------- #

# Read results

titel <- paste(data.dir , "/Regression_komplErg_Rez.csv",

sep="")

tab.rezessiv <- read.csv2(titel)

# Titles to save plots

titel.manhattan.or <- paste(save.dir ,

"/Manhattan_OR_Plots_Rezessiv.png", sep="")

titel.diagnostics <- paste(save.dir ,

"/Cook_rs7519458_rs2500262_Rezessiv.png", sep="")

# -------------------------------------------- #

# -------------------------------------------- #

# 3. Manhattan and OR plots

# -------------------------------------------- #

# -------------------------------------------- #

# Create plot as .png with resolution equal to 300dpi

# Open graphic device

bitmap(titel.manhattan.or , res=300, width=25, height =40)

# Layout of plot

par(mar=c(5,5.5,5,1))

layout(mat=matrix(c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,

10,10,11,11,12,12), ncol=6, byrow=T), widths=rep(4, 6),

heights=rep(10, 4))

#1: Row name

plot(1,1, bty="n", col="white", xaxt="n", yaxt="n", xlab="",
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ylab="", main="", ylim=c(0,3))

text (1,1.5,"Standard", cex =2)

#2: Manhattan

plot (1: nrow(tab.rezessiv), -log10(tab.rezessiv$p.stand),

pch=19, col="black", cex=2, ylim=c(0,3), xlab="SNP",

ylab=expression(-log [10]~"(p-value)"), main="",

cex.lab=2, cex.axis =1.8, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(-log10 (0.05) , 2),

col="black", lwd=4, type="l", lty="dotted")

axis(2, at=c(0,1,2,3), labels=c(0,1,2,3), cex.axis =1.8)

#3: estimated ORs

plot (1: nrow(tab.rezessiv), exp(tab.rezessiv$koeff.stand),

pch=19, col="black", cex=2, xlab="SNP",

ylab=expression("Estimated OR ["~10^7~"]"),

main="", cex.lab=2, cex.axis =1.8, xaxt="n",

yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(1, 2), col="black",

lwd=4, type="l", lty="dotted")

axis(2, at=c(0 ,0.5 ,1 ,1.5)*10000000 , labels=c(0 ,0.5 ,1.0 ,1.5) ,

cex.axis =1.8)

#4: Row name

plot(1,1, bty="n", col="white", xaxt="n", yaxt="n", xlab="",

ylab="", main="", ylim=c(0,3))

text(1,2,"Huber", cex =2)

text(1,1,"[1.345]", cex =2)

#5: Manhattan

plot (1: nrow(tab.rezessiv), -log10(tab.rezessiv$p.huber),

pch=19, col="darkgrey", cex=2, ylim=c(0,3), xlab="SNP",

ylab=expression(-log [10]~"(p-value)"), main="", cex.lab=2,

cex.axis =1.8, cex.main =2.5, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(-log10 (0.05) , 2),

col="black", lwd=4, type="l", lty="dotted")

axis(2, at=c(0,1,2,3), labels=c(0,1,2,3), cex.axis =1.8)

#6: estimated ORs

plot (1: nrow(tab.rezessiv), exp(tab.rezessiv$koeff.huber), pch=19,

col="darkgrey", cex=2, ylim=c(0,12), xlab="SNP",

ylab="Estimated OR", main="", cex.lab=2, cex.axis =1.8,
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cex.main =2.5, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(1, 2), col="black",

lwd=4, type="l", lty="dotted")

axis(2, at=c(0,4,8,12), labels=c(0,4,8,12), cex.axis =1.8)

#7: Row name

plot(1,1, bty="n", col="white", xaxt="n", yaxt="n", xlab="",

ylab="", main="", ylim=c(0,3))

text(1,2,"Hampel", cex =2)

text(1,1,"[(1.5, 3.5, 8)x0.9]", cex =2)

#8: Manhattan

plot (1: nrow(tab.rezessiv), -log10(tab.rezessiv$p.hampel .09),

pch=19, col="grey", cex=2, ylim=c(0,3), xlab="SNP",

ylab=expression(-log [10]~"(p-value)"), main="", cex.lab=2,

cex.axis =1.8, cex.main =2.5, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(-log10 (0.05) , 2),

col="black", lwd=4, type="l", lty="dotted")

axis(2, at=c(0,1,2,3), labels=c(0,1,2,3), cex.axis =1.8)

#9: estimated ORs

plot (1: nrow(tab.rezessiv), exp(tab.rezessiv$koeff.hampel .09),

pch=19, col="grey", cex=2, ylim=c(0,12), xlab="SNP",

ylab="Estimated OR", main="", cex.lab=2, cex.axis =1.8,

cex.main =2.5, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(1, 2),

col="black", lwd=4, type="l", lty="dotted")

axis(2, at=c(0,4,8,12), labels=c(0,4,8,12), cex.axis =1.8)

#10: Row name

plot(1,1, bty="n", col="white", xaxt="n", yaxt="n", xlab="",

ylab="", main="", ylim=c(0,3))

text(1,2,"Hampel", cex =2)

text(1,1,"[(2, 4, 8)x0.7]", cex =2)

#11: Manhattan

plot (1: nrow(tab.rezessiv), -log10(tab.rezessiv$p.hampel .06),

pch=19, col="lightgrey", cex=2, ylim=c(0,3), xlab="SNP",

ylab=expression(-log [10]~"(p-value)"), main="", cex.lab=2,

cex.axis =1.8, cex.main =2.5, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(-log10 (0.05) , 2),

col="black", lwd=4, type="l", lty="dotted")
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axis(2, at=c(0,1,2,3), labels=c(0,1,2,3), cex.axis =1.8)

#11: estimated ORs

plot (1: nrow(tab.rezessiv), exp(tab.rezessiv$koeff.hampel .06),

pch=19, col="lightgrey", cex=2, ylim=c(0,12), xlab="SNP",

ylab="Estimated OR", main="", cex.lab=2, cex.axis =1.8,

cex.main =2.5, xaxt="n", yaxt="n")

lines(x=c(0, nrow(tab.rezessiv )+1), y=rep(1, 2), col="black",

lwd=4, type="l", lty="dotted")

axis(2, at=c(0,4,8,12), labels=c(0,4,8,12), cex.axis =1.8)

# close graphic device

dev.off()

# -------------------------------------------- #

# -------------------------------------------- #

# 4. Diagnostic plots

# -------------------------------------------- #

# -------------------------------------------- #

# for rs2500262 and rs2500262

# Indices of these SNPs in the analysis loop

# rs2500262

i <- 155

# rs7519458

i <- 230

# Save the standard logistic regression models for these SNPs

zwischen.rs7519458 <-

"standard logistic regression model for SNP rs7519458"

zwischen.rs2500262 <-

"standard logistic regression model for SNP rs2500262"

# Create plot as .png with resolution equal to 300dpi

# Open graphic device

bitmap(titel.diagnostics , res=300, width=10, height =5)

# Layout
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par(mfrow=c(1,2), mar=c(5,7,5,1))

# Plots

plot(zwischen.rs7519458 , which=4, main="rs7519458",

caption=’Observation number ’, sub.caption = "",

lwd=2, cex=2, cex.axis =1.8, cex.lab=2, cex.main =2.5)

plot(zwischen.rs2500262 , which=4, main="rs2500262",

caption=’Observation number ’, sub.caption = "", lwd=2,

cex=2, cex.axis =1.8, cex.lab=2, cex.main =2.5)

# Close device

dev.off()
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Çetin, M. and Erar, A. (2006). A simulation study on classic and robust variable

selection in linear regression. Applied Mathematics and Computation, 175:1629–

1643.

CHEK2 Breast Cancer Case-Control Consortium (2004). CHEK2*1100delC and

susceptibility to breast cancer: A collaborative analysis involving 10,860 breast

cancer cases and 9,065 controls from 10 studies. American Journal of Human

Genetics, 74:1175–1182.

Chen, L., Yu, G., Langefeld, C. D., Miller, D. J., Guy, R. T., Raghuram, J., Yuan,

X., Herrington, D. M., and Wang, Y. (2011). Comparative analysis of methods

212



Bibliography

for detecting interacting loci. BMC Genomics, 12:344.

Church, G. M. (2005). The Personal Genome Project. Molecular Systems Biology,

1.

Croux, C. and Haesbroeck, G. (2003). Implementing the Bianco and Yohai estima-

tor for logistic regression. Computational Statistics and Data Analysis, 44:273–

295.

de Lope, C. R., Tremosini, S., Forner, A., Reig, M., and Bruix, J. (2012). Manage-

ment of HCC. Journal of Hepatology, 56 (Suppl. 1):S75–S87.

De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L. (2000). The Maha-

lanobis distance. Chemometrics and Intelligent Laboratory Systems, 50:1–18.

Dixon, W. J. (1950). Analysis of extreme values. Annals of Mathematical Statistics,

21:488–506.

Duan, N., Manning Jr., W. G., Morris, C. N., and Newhouse, J. P. (1983). A

comparison of alternative models for the demand for medical care. Journal of

Business and Economic Statistics, 1:115–126.

Duggirala, R., Blangero, J., Almasy, L., Dyer, T. D., Williams, K. L., Leach, R. J.,

O’Connell, P., and Stern, M. P. (1999). Linkage of type 2 diabetes mellitus and

of age at onset to a genetic location on chromosome 10q in Mexican Americans.

American Journal of Human Genetics, 64:1127–1140.

Ehret, G. B. (2010). Genome-wide association studies: Contribution of genomics to

understanding blood pressure and essential hypertension. Current Hypertension

Reports, 12:17–25.

El-Serag, H. B. and Rudolph, K. I. (2007). Hepatocellular carcinoma: Epidemiology

and molecular carcinogenesis. Gastroenterology, 132:2557–2576.
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