DISSERTATION

submitted to the
Combined Faculty of Natural Sciences and Mathematics
of the
Ruprecht-Karls University
Heidelberg
for the degree of

Doctor of Natural Sciences

put forward by
Tommaso Colombo, MSc
from

Merate, Italy

Date of oral exam:

Optimising the data-collection time of a

large-scale data-acquisition system

Advisor: Prof. Dr. Holger Froning

Abstract

Data-acquisition systems are a fundamental component of modern scientific experi-
ments. Large-scale experiments, particularly in the field of particle physics, comprise
millions of sensors and produce petabytes of data per day. Their data-acquisition sys-
tems digitise, collect, filter, and store experimental signals for later analysis. The per-
formance and reliability of these systems are critical to the operation of the experiment:

insufficient performance and failures result in the loss of valuable scientific data.

By its very nature, data acquisition is a synchronous many-to-one operation: every time
a phenomenon is observed by the experiment, data from its various sensors must be as-
sembled into a single coherent dataset. This characteristic yields a particularly challen-
ging traffic pattern for computer networks dedicated to data acquisition. If no corrective
measures are taken, this pattern, known as incast, results in a significant underutilisation
of the network resources, with a direct impact on a data-acquisition systems’ through-

put.

This thesis presents effective and feasible approaches to maximising network utilisation
in data-acquisition systems, avoiding the incast problem without sacrificing throughput.
Rather than using abstract models, it focuses on an existing large-scale experiment, used
as a case-study: the ATLAS detector at the Large Hadron Collider.

First, the impact of incast on data-acquisition performance is characterised through
a series of measurements performed on the actual data-acquisition system of the AT-
LAS experiment. As the size of the data sent synchronously by multiple sources to
the same destination grows past the size of the network buffers, the throughput falls.
A simple but effective mitigation is proposed and tested: at the application-layer, the
data-collection receivers can limit the number of senders they simultaneously collect
data from. This solution recovers a large part of the throughput lost to incast, but intro-

duces some performance losses of its own.

Further investigations are enabled by the development of a complete packet-level model
of the ATLAS data-acquisition network in an event-based simulation framework. Com-
paring real-world measurements and simulation results, the model is shown to be accur-

ate enough to be used for studying the incast phenomenon in a data-acquisition system.

Leveraging the simulation model, various optimisations are analysed. The focus is kept
on practical software changes, that can realistically be deployed on otherwise unmod-
ified existing systems. Receiver-side traffic-shaping, incast- and traffic-shaping-aware
work scheduling policies, tuning of TCP’s timeouts, and centralised network packet in-
jection scheduling are evaluated alone and in combination. Used together, the first three
techniques result in a very significant increase of the system’s throughput, which gets

within 10% of the ideal maximum performance, even with a high network traffic load.

Zusammenfassung

Datenerfassungssysteme sind fundamentale Komponenten moderner wissenschaftlich-
er Experimente. Grofiexperimente der Elementarteilchenphysik nutzen Millionen von
Sensoren und erzeugen Petabyte Daten pro Tag. Deren Datenerfassungssysteme digi-
talisieren, sammeln, filtern und speichern die Daten zur spateren Analyse. Die Funkti-
on und Zuverlassigkeit dieser Systeme sind kritisch fiir den Betrieb des Experiments.

Schlechte Funktionalitat fiihrt zum Verlust von wertvollen wissenschaftlichen Daten.

Bei Datenerfassungssystemen kommunizieren viele Systeme synchron mit einem ein-
zelnen System: so werden bei interessanten Ereignissen die Daten vieler Sensoren zu
einem kohdrenten Datensatz zusammengefiigt. Diese Charakteristik fiihrt zu einem her-
ausfordernden Datentransferschema fiir Computer Netzwerke, die an Datenerfassungs-
systemen angeschlossen sind. Werden keine geeigneten Mafsnahmen ergriffen, kommt
es zum Incast. Was zu einer Unterauslastung des Netzwerkes fiihrt, welche den Daten-

durchsatz im Datenerfassungssystem reduziert.

Diese Arbeit prasentiert effektive und machbare Ansdtze die Netzwerkausnutzung in
Datenerfassungssystemen zu maximieren, indem der Incast reduziert wird bei gleich-
zeitiger Erhaltung des Datendurchsatzes. Anstatt an abstrakten Modellen dies zu be-
schreiben, wird die Studie an dem existierenden ATLAS Detektor am Large Hadron
Collider durchgefiihrt.

Erst wird der Einfluss vom Incast auf die Datenerfassungsleistung durch eine Reihe
von Messungen an dem Datenerfassungssystem des ATLAS-Experiments charakteri-
siert. Wenn die Grof3e der Daten, welche synchron von mehreren Quellen an das gleiche
Ziel gesendet werden, wichst, so sinkt der Datendurchsatz abhéangig von der Grofse der
Netzwerkpuffer. Eine einfache aber wirksame Verbesserung wird vorgeschlagen und
getestet: auf der Anwendungsebene konnen die Empfanger die Anzahl der Absender

beschranken, von denen sie gleichzeitig Daten sammeln. Diese Losung kann einen Grof3-

teil des durch Incast verloren gegangenen Datendurchsatzes wiederherstellen, fiihrt je-

doch auch zu eigenen Leistungseinbufien.

Weitere Untersuchungen wurden durch die Entwicklung eines vollstandigen Paket-Le-
vel-Modells des ATLAS-Datenerfassungsnetzwerkes in einem ereignisbasierten Simula-
tionsframeworks ermoglicht. Vergleiche von realen Messungen und Simulationsergeb-
nissen zeigen, dass das Modell genau genug ist, um zur Untersuchung des Incast-Pha-

nomens in einem Datenerfassungssystem verwendet zu werden.

Mithilfe des Simulationsmodells werden verschiedene Optimierungen analysiert. Der
Fokus liegt auf praktischen Softwarednderungen, die realistisch auf ansonst unmodi-
fiziert bestehenden Systemen implementiert werden konnen. Dazu gehdren empfang-
erseitigen Traffic-Shaping, Incast- und Traffic-Shaping-bewusste Arbeitsplanung, Ab-
stimmung der Timeouts von TCP und zentralisierte Netzwerkpaket Injektionsplanung.
Diese werden alleine und in Kombination ausgewertet. Zusammen benutzt ergeben die
ersten drei Techniken, selbst bei hoher Netzwerkauslastung, eine sehr signifikante Er-
hoéhung des Datendurchsatzes, der innerhalb von 10% um den Idealwert nahe der ma-

ximalen Leistung liegt.

Contents

1 Introduction

2 Background: data-acquisition networks

2.1

2.2

2.3
24

Data-acquisitionsystems L.
2.1.1 Performancetargets
212 Trafficpattern L L
Common network technologies in data acquisition
221 EthernetandIP
2.2.2 The Transmission Control Protocol (TCP)
The incast pathology

Related works: incast avoidance and mitigation

3 The ATLAS experiment at the Large Hadron Collider

3.1
3.2

3.3

3.4

3.5
3.6

High-energy physics
The Large Hadron Collider
32.1 Construction
3.22 Physics performance Lo
The ATLAS Experiment
3.3.1 Detectorlayout L.
332 Innerdetector
333 Calorimeters. e
334 Muonspectrometer. oL

The ATLAS trigger and data-acquisition system

First-level trigger

3.6.1 Calorimetertrigger

Contents

13

17
17
18
19
19
20
28
32
33

9

362 Muontrigger 56

3.7 Data-Acquisition and High-Level Trigger 57
371 Dataformat 59

372 ReadoutSystem 59

3.73 High-Level Trigger 60

3.74 Data-Collection Manager 60

375 DataLogger 62

376 Network 62

3.8 The ATLAS Data-Acquisition messaging system 63
381 Requirements 00 L. 63

3.82 Existingsolutions L. 65

3.8.3 Implementation 66

384 Benchmarks 67

4 Static traffic shaping for current data-acquisition systems 73
4.1 Performance issues in data-acquisition networks 73

4.2 Evaluation of the impact of the incast pathology on data-acquisition per-

formance e e e e 74

421 Measurementset-up L 75

422 Results e 79

43 Request-side trafficshaping 86
43.1 Incastmitigation 87

4.3.2 Effectivenessevaluation 88

5 Simulation model 93
51 Modeldevelopment. 93
511 Hosts o e e e 94

512 Applications Lo 95

5.1.3 Networkswitches 97

514 Completemodel 98

515 Parameters. e 98

516 Runtime e e 101

5.2 Model validation 102
521 Goals e 102

5.2.2 Analysis and comparison of measured and simulated results . . 103

10 Contents

6 Enhancements for next-generation data-acquisition systems 113

6.1 Work assignment policies 113

6.2 Variable fragmentsizes L L oL 115

6.3 Reducing TCP’s minimum retransmission time-out 120

6.4 Centralised trafficscheduling 123
6.4.1 Schedulertiming, 129

6.4.2 Clock synchronisation 131

6.4.3 Scheduler granularity 132

6.5 Switchbufferspace L. 135

6.6 Discussion e e 138

7 Conclusion 141
Acknowledgements 145
Bibliography 147

Contents 11

Introduction

Contemporary particle physics experiments consist of tens of millions of sensors, produ-
cing very large amounts of data (up to tens of petabytes per day). In these experiments,
the data-acquisition (DAQ) system is responsible for gathering the data from the various
sensors of the experiment, collating the data fragments into coherent sets, reducing the
data volume by compressing and discarding redundant and non-interesting informa-
tion, and safely storing the relevant data for subsequent analysis. The performance and
reliability of data-acquisition systems are critical to the functioning of the experiment:
failures and poor performance result in the permanent loss of extremely valuable exper-

imental data.

Data-acquisition systems usually comprise two stages. The first stage interfaces directly
with the experiment’s sensors to perform signal treatment and digitisation. The second
stage aggregates all the data sources into one coherent output and selects scientifically
interesting data for permanent storage. Naturally, the first stage is tightly coupled to the
experiment’s sensors. Accordingly, it usually consists of custom electronics and point-
to-point links specifically designed for the experiment in question. On the other hand,
for cost, flexibility, and maintainability reasons, the second stage consists of software
running on a distributed computer cluster, which can be built with commercial off-the-
shelf (COTS) components.

The performance of a data-acquisition system depends on two main quantities:

¢ the data-processing time, i.e. the time used for signal treatment, digitisation, and

data selection;

¢ the data-collection time, i.e. the time used for gathering, collating, and transferring

data in the system.

13

14

A reduction of either of these time intervals directly translates to an increase of the sys-
tem’s throughput. The data-processing time depends on factors that are usually specific
to a particular experiment. The data-collection time, instead, is essentially determined

by the design of the data-acquisition system alone.

By its very nature, data acquisition is a synchronous many-to-one operation: for each
phenomenon observed by the experiment, signals from all the experiment’s sensors
must be assembled into a single coherent dataset. This requirement is particularly chal-
lenging for networks in data-acquisition clusters. If no corrective measures are taken,
this communication pattern, known as incast, causes a severely inefficient utilisation of
the network, which in turn leads to large data-collection times.

This thesis presents effective and feasible approaches to minimising the data-collection
time in data-acquisition clusters, avoiding the incast problem without sacrificing through-
put. Rather than using abstract models, it focuses on an existing experiment, used as
a case-study: the ATLAS detector at the Large Hadron Collider. Due to the mission-
critical nature of data-acquisition systems, a systematic study of their performance en-
velope is often impeded by operational constraints, such as system availability require-
ments or limited opportunities of performing hardware or system software modifica-
tions. Therefore, a two-pronged strategy is employed: the results of a measurement
campaign on the existing ATLAS data-acquisition system are used to validate an event-
based simulation model of the system itself. Once the simulation model is proven to be
accurate enough to reliably reproduce the key traits of the system, it is used to evaluate

possible strategies to reduce the the system’s data-collection time.
This work makes the following contributions:

¢ Design and development of the ATLAS data-acquisition messaging library and
applications — In order to operate, data-acquisition systems require a simple but
high-performance communication layer providing reliable, in-order, point-to-point
message delivery. Many existing solutions such as message brokers, remote pro-
cedure call middleware, or high-performance computing middleware would sat-
isfy the requirements, but they come at the price of additional, unnecessary com-
plexity. Aleaner custom solution can provide easier troubleshooting and increased
control over the network usage patterns. The ATLAS messaging library and data-
collection software were developed as a preliminary part of this thesis work. They
have been successfully used in production since 2015. Their requirements, design,

and implementation are discussed in section 3.8.

¢ Characterisation of the impact of incast on data-acquisition performance and

Chapter 1 Introduction

its mitigation with receiver-side traffic shaping — The effects of the synchron-
ous many-to-one nature of data acquisition are explained and characterised us-
ing measurements performed on the actual data-acquisition system of the ATLAS
experiment. The measurements also show that the incast problem can be mit-
igated at the application layer: the data-collection receivers can limit the num-
ber of senders they simultaneously collect data from. Assuming that the senders
have enough buffering capacity available, this simple receiver-side traffic-shaping
strategy is shown to be effective in spreading the many-to-one communication
over a larger time interval, increasing the network usage efficiency. This work is

shown in chapter 4 and was published in [24].

¢ Development and validation of a simulation model of the ATLAS data-acquisi-
tion network — An event-based packet-level simulation model is developed, with
the goal of investigating additional solutions to the incast problem in data acquisi-
tion. Comparing the simulation results with real-world measurements, the model
is shown to reproduce the behaviour of the system accurately. The model and its

validation tests are described in detail in chapter 5 and were presented in [23].

¢ Practical and effective mitigation of incast in data acquisition - The simulation
model is leveraged to test the impact of various other solutions aimed at further re-
ducing the system’s data-collection time. Many kinds of technical modifications
to a data-acquisition cluster can potentially result in a reduction or elimination
of the incast problem. This contribution focuses on practical software changes,
that can be realistically deployed on existing systems. The considered modific-
ations are: receiver-side traffic-shaping (already mentioned above), incast- and
traffic-shaping-aware work scheduling policies, reduction of TCP’s minimum re-
transmission timeout, and centralised network packet injection scheduling. The
results obtained show that a combination of the first three techniques yields a very
significant reduction of the data-collection time, coming close to the ideal system
performance. This evaluation is discussed in chapter 6 and some of its results were
published in [25].

This thesis is organised as follows. In chapter 2, the building blocks of a data acquisition
system are introduced, with special attention given to the most common network tech-
nologies and traffic patterns in data acquisition clusters. Since most of this thesis deals
with data acquisition networks based on TCP/IP over Ethernet, a brief introduction to
these protocols is given, highlighting the features that are most relevant in this context.

Finally, the incast pattern is introduced, and related works that like this thesis aim at

15

16

eliminating or mitigating incast are discussed. In chapter 3 the main components of
the ATLAS experiment are outlined, and the data acquisition system is described in de-
tail. The ATLAS messaging layer and data-collection software, which were developed
as a preliminary part of this thesis work, are highlighted. The series of measurements
aimed at characterising the impact of incast on data-acquisition performance is shown
in chapter 4. In the same chapter, a simple receiver-side traffic-shaping strategy is eval-
uated and shown to successfully mitigate the effects of the incast problem. However,
even with this improvement, the data-collection time of the system is still suboptimal.
Further solutions are investigated using an event-based packet-level simulation model,
described and validated in chapter 5. In chapter 6, the model is used to evaluate the
impact of incast-mitigation solutions that can be deployed on existing data-acquisition
systems. The merits of each solution are discussed in the same chapter, followed by the

conclusion in chapter 7.

Chapter 1 Introduction

Background: data-acquisition
networks

Most modern scientific experiments rely on data-acquisition systems to digitise, collect,
and store experimental signals for later analysis. This chapter provides an introduction
to the basic functions of a data-acquisition system, specially focusing on the computer
networks that are a key part of medium- and large-scale data-acquisition systems. In
particular, the typical data-acquisition traffic pattern is defined, and the network pro-
tocols used in most data-acquisition systems are briefly discussed. The so-called incast
pathology brought about by data-collection operations is described, and related works
that offer incast mitigation or avoidance solutions are discussed. Their limits are also
evidenced.

2.1 Data-acquisition systems

The data-acquisition process consists of the following consecutive operations:

¢ Analogue signal treatment

Signal digitisation

Digital signal treatment

Data collection

Data selection

¢ Data storage

17

18

While, the signal treatment, digitisation, and data-storage operations are self-explana-
tory, the meanings of “data collection” and “data selection” are worth specifying. Most
experiments do not consist of a single sensor. Instead, multiple sensors measure dif-
ferent quantities of the same phenomenon. In such cases, the data-acquisition system
must include one or more data-collection steps: i.e., it must gather all the different meas-
urements from their sources and ensure that they all refer to the same observation. In
some experiments, the amount of data produced is often so large that it is impractical
to store all of it for later analysis. In such cases, the data-acquisition system is also used
as a data-selection system: after a fast analysis, only measurements that are considered
scientifically interesting are stored.

Just like the experiments they support, data-acquisition systems range from small and
simple, consisting of a single computer with a single data-acquisition device, to large
and complex, comprising many racks of electronics, computers, and network equip-
ment. Naturally, the concrete implementation of the data-acquisition operations listed
above depends on the experiment’s requirements. Analogue signal treatment and di-
gitisation are normally handled with specialised electronics interfacing a sensor and a
computer. Digital signal treatment, data collection, and data storage are implemented
with a mix of specialised hardware and software running on commercial off-the-shelf

(COTS) computers and networks.

Generally speaking, specialised hardware is more expensive and less flexible than a
combination of software and COTS hardware, so the latter is preferred if it can guarantee
sufficient performance. Especially for large-scale experiments, this preference results in
data-acquisition systems that include large computer networks. This thesis focuses on
these COTS data-acquisition networks.

2.1.1 Performance targets

Data-acquisition systems operate under strong latency and throughput constraints. As
a general rule, the average throughput of the system must match the output rate of the
experiment. The system’s buffers must be large enough to absorb both output bursts
from the experiment and spikes in the system’s own latency. If any of this conditions
is not respected, potentially interesting and valuable experimental data is lost. Even
worse, if the violation of the conditions corresponds to a specific situation of the exper-
iment, the data loss might introduce a bias in the experimental results. For example, if

a certain phenomenon measured by the experiment causes the experiment’s sensors to

Chapter 2 Background: data-acquisition networks

produce data at a higher throughput than the data-acquisition system can handle, the

acquired dataset will under-represent that phenomenon with respect to others.
Data-acquisition throughput and latencies depend on two main factors:

¢ the data-processing time, i.e. the time spent formatting, analysing and selecting
the data;

¢ the data-collection time, i.e. the time spent gathering and moving data in the sys-

tem.

Obviously, a reduction in either of these two quantities leads to a corresponding in-
crease in the average data-acquisition throughput. The data-processing time is normally
dictated by the complexity and efficiency of the algorithms specific to the experiment.
No general solutions can be applied to reduce it. The data-collection time, instead, is

largely determined by the design and effectiveness of the data-acquisition system itself.

2.1.2 Traffic pattern

Data-acquisition networks have to deal with a particularly problematic traffic pattern:
¢ The communication pattern is many-to-one.
¢ Data fragments are transmitted in small bursts, rather than a smooth flow.

¢ The data transmission bursts happen synchronously, i.e. all data sources transmit

data at the same time.

These three characteristics do not reflect a design error, but rather the nature of data
acquisition itself. The purpose of a data-acquisition system is to gather together data
fragments from the different sensors that make up an experiment. Therefore, at least
in one stage of the system, the traffic pattern will be necessarily many-to-one. The tim-
ings of the data transfers are also normally driven by the experiment itself, which in
general does not produce a continuous flow of data. Instead frequent bursts of data are
generated in correspondence with the experiment detecting and measuring a certain

phenomenon.

2.2 Common network technologies in data acquisition

Unless special requirements dictate otherwise, data-acquisition networks are usually

based on the industry-standard protocol stack made up of: Transport Control Protocol

2.2 Common network technologies in data acquisition

20

(TCP) on the transport layer, Internet Protocol (IP) on the network layer, and Ethernet on
the data-link and physical layers. All the protocols in the stack are open standards sup-
ported by a multitude of hardware and software vendors. Although data-acquisition
networks based on different protocols, such as InfiniBand, exist, the “standard” stack
is usually preferred due to cost and availability of expertise to design and maintain the

system.

In the following sections, some of the aspects of this protocol stack that are most relevant
to data acquisition are briefly presented. This is in no way meant to be a comprehensive
overview of these complex protocols. In-depth presentations are available for example
in [61] for Ethernet and [28] for the whole stack.

2.2.1 Ethernet and IP

The Ethernet family of technologies were introduced commercially in the 1980s and
adopted by the IEEE as standard number 802.3 [34]. At the time, Ethernet was a local-
area network (LAN) technology that connected computers with a shared transmission
medium (a single coaxial cable attached to all computers in the network). The defining
trait of Ethernet was its distributed media access control scheme, known as Carrier Sense
Multiple Access with Collision Detection (CSMA/CD). With continuous updates and
extensions, the standard has not only kept the pace of technological evolution, but also
expanded towards other areas of application such as metropolitan-area and wide-area
networks (MANs and WANSs). Thanks to this continued evolution, Ethernet became the

dominant data-link technology in use today.

Modern Ethernet does away with the performance, scalability, and reliability limita-
tions of a shared-medium protocol in favour of full-duplex point-to-point links and a
switched architecture. The most commonly used transmission media are now inexpens-
ive twisted copper pair and high-performance optical fibres. Currently commercially
available link speeds range from 1 to 100 Gb/s over transmission distances ranging from

a few centimetres on a circuit board to tens of kilometres on long-distance fibres.

In practically all deployments, Ethernet is used in conjunction with IP [37] on the net-
work layer. In principle, Ethernet, as a data-link-layer technology, should only be con-
cerned with moving packets from one end of a link to the other. On the other hand,
IP, as a network-layer protocol, is responsible for moving packets from their source to
their destination, if necessary routing them via intermediate nodes. In practice, this dis-

tinction is not so sharp: as explained in the following sections, the IEEE 802 family of

Chapter 2 Background: data-acquisition networks

Preamble 7 bytes

Start-of-frame delimiter 1 byte
Destination address 6 bytes
Source address 6 bytes
Payload type/length 2 bytes
Payload

46-1500 bytes
Padding (if needed)

Frame check sequence (CRC) 4 bytes

Gap 12 byte

Figure 2.1 Ethernet physical layer data format: preamble, start-of-frame delimiter,
frame, and inter-frame gap.

standards also defines a device known as a network bridge, which, fundamentally, can
be seen as a simple router for data-link-layer packets.

Frames and datagrams

The basic unit of data on an Ethernet link is called a frame and is represented in figure 2.1.
A frame consists of a 14-byte header, the payload, and a 4-byte trailer. The header con-
tains the destination address, the source address, and, depending on the frame variant,
an indication of either the network-layer protocol of the payload or its size. An Ethernet
address is a 6-bytes-long globally-unique identifier assigned to each network interface
by its manufacturer. The trailer contains a cyclic redundancy check (CRC) sequence for
the header and payload. The maximum payload size, called maximum transfer unit
(MTU), is 1500 bytes.

The minimum frame size is 64 bytes; if the payload is too small it is padded with zeros
so that the minimum frame size is reached. At the physical layer, an Ethernet frame
is preceded by two fixed bit sequences: a 7-bytes sequence of alternating 1 and 0 bits,
called preamble, and a 1-byte start-of-frame delimiter. Each transmission is followed
by a mandatory gap of 12 bytes. Therefore, the total overhead is 38 bytes per frame.

The frame’s payload normally consists of an IP data unit, called datagram, represented
in figure 2.2. Normally, the length of an IP datagram header is 20 bytes, unless optional

2.2 Common network technologies in data acquisition

21

22

~ 32 bits -

0 |1 |2 |3 4 |5 |s |7 8 |9 |1o |11 |12 |13 14 |15 16 |17 |18 |19 |2o |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31
Version | Hdr length Diff services ECN Datagram length
Identification Flags | Fragment offset
Time to live | Payload type Header checksum
Source address Destination address

Options (if needed, up to 40-bytes)

Payload

Figure 2.2 Structure of an IPv4 datagram.

fields are present, which is rare. The header begins with the version number field. The
differences between the two IP versions currently in use (IPv4 and IPv6) are not relev-
ant in the context of data-acquisition systems, so, for simplicity, only IPv4 is described
here. Following the version field, are the header length, the so-called “differentiated
services” and “explicit congestion notification” (ECN) fields, and the total length of the
datagram. The differentiated services field can be used to specify the datagram’s classi-
fication for quality-of-service purposes. The ECN [57] field is optionally used for mark-
ing a datagram that passed through an intermediate node with a high amount of intern-
ally queued traffic. When the packet is received by the destination, an ECN-compatible
transport-layer protocol (such as TCP) can then use this indication to ask the source to
reduce its sending rate. An IP datagram cannot exceed the MTU of the data-link that
transports it. Since different links can have different MTUs, IP routers can fragment
a datagram into smaller datagrams. An endpoint receiving these datagrams must be
able to re-assemble the original datagram. The identification, flags, and fragment offset
fields are used for this purpose. This feature is not particularly relevant for IP over Eth-
ernet: the MTU is fixed to 1500 bytes. The time-to-live field is used to prevent infinite
routing loops. The remaining fields are rather self-explanatory. The header includes:
an indication of transport-layer protocol of the payload, a checksum of itself, and the
source and destination addresses. IPv4 addresses are 4-bytes long and are assigned to
network interfaces by the network administrator. As already mentioned, the optional
fields are rarely included, so they are not described here (see [28] for a comprehensive
description). The normal IP header adds another 20 bytes of overhead, which, together
with Ethernet’s, adds up to a total of 58 bytes.

Chapter 2 Background: data-acquisition networks

Bridging

Ethernet switches are a specific implementation of the network bridges defined by IEEE
standard number 802.1Q [35] (formerly 802.1D). Bridges maintain a forwarding table,
i.e,, a mapping associating a device’s address to the port the device is connected to
(either directly or through other bridges). The forwarding table is populated by ad-
dress learning: when a bridge receives a frame on a certain port, it reads the source
address of the frame. In this way, the bridge learns that the device with that address
is connected to that port. The forwarding operation relies on this information: when a
bridge receives a frame, it reads its destination address and looks up the corresponding
port in the forwarding table. If a match is found, the frame is sent out on the matching
port. Naturally, it is possible that the forwarding table does not contain an entry for
the destination address yet. In that case, the bridge sends out a copy of the frame on all
ports, except for the port it came from. This operation, known as “flooding”, ensures

that the frame reaches its destination even when the forwarding tables are incomplete.

The forwarding algorithm described above, achieves two important results. It is trans-
parent, i.e., it does not require the source or destination nodes to be aware of the exist-
ence of bridges in the network. It is also distributed, i.e., it does not require a centralised
entity with knowledge of the network topology in order to work. However, due to the
flooding mechanism, it imposes a constraint on the network topology: no loops are al-
lowed, i.e., the bridges must be organised in a tree structure, so that a single path exists
between any two nodes in the network. If a network contains aloop, flooded frames will
circulate endlessly around it, eventually saturating the links. To prevent this situation,
the standard includes a protocol with the purpose of automatically suppressing loops.
Under this Spanning Tree Protocol (STP), the bridges exchange informations about the
links and paths interconnecting them. Based on this data, a root bridge is elected and
non-root bridges select a single path to communicate with it. Bridge ports correspond-
ing to alternative paths to the root are blocked, thus breaking all possible forwarding
loops. If one of the selected paths becomes unavailable, for example because of link

failure, the ports corresponding to an alternative path are re-activated.

Bridges are appealing because of their simplicity and their self-configuring nature. How-
ever, this simplicity comes at the expense of both scalability an flexibility. The scalability
issue stems from the fact that, for correct network operation, a bridge’s forwarding table
must contain, after address learning, an entry for each node in the bridged network.
Since the forwarding table is consulted every time a frame arrives at the bridge, fast

lookups are crucial. For this reason, forwarding tables are usually implemented with ex-

2.2 Common network technologies in data acquisition

23

24

pensive specialised memory. Therefore, a trade-off exists between the bridges’ cost and
the maximum number of nodes supported by the network. With topology constrained
to a tree, bridged networks are not particularly flexible. STP ensures that the network
can continue to operate correctly even in the presence of loops and makes designing
redundant networks topologies possible. However, the resulting “logical” tree topo-
logy might lead to inefficient network usage. For example, a direct path between two
bridges might be blocked in favour of the path passing through the root bridge and, nat-
urally, alternative paths between two bridges cannot be used at the same time because
that would create a loop [54]. Both these issues are solved by the more sophisticated IP

routing.

Routing

IP overcomes the scalability limitations of bridging by using topological addressing.
Roughly speaking, this means that network administrators configure nodes that are
“near” each other in the network topology with IP addresses that begin with the same
prefix. In this way, it is possible to refer to groups of nodes or to entire networks just
by specifying their common address prefix, rather than by enumerating the addresses

of all the nodes. Groups of nodes sharing the same address prefix are called “subnets”.

In IP routing [58], decisions are taken by each node independently. Before sending a
datagram, a node consults its configured routing table. Each entry in the routing table
associates a subnet prefix to the address of one or more intermediate nodes that can de-
liver the datagram to destinations in that subnet. The intermediate nodes (called routers
or IP switches) will consult their own routing table to choose the next node, and so on.
The process continues until the datagram arrives at a router in the same subnet as the
destination, which can then directly deliver the datagram via the appropriate data link.
Thanks to the topological addressing scheme, routing tables do not need to contain the
address of every host in the network: it is sufficient that they list which router can be
used to reach which subnets. Nothing guarantees that misconfigured routing tables will
not result in a routing loop. To prevent network saturation caused by routing loops, the
time-to-live counter in the IP datagram header is initialised to a positive value by the
source node. Every router the packet goes through decrements the counter. When the
counter reaches zero, the packet is dropped instead of being forwarded.

In general, routing tables are not self-configuring. The network administrators can

either populate them manually, or they can rely on routers communicating with each

Chapter 2 Background: data-acquisition networks

Routing unit | ~—————————- > Arbiter

]
I
A l '
| | Y
I : Switch fabric
Port 1)$ Buffer),# — » » »
Input | |
| |
l l
Port 2
[—)?— Buffer —)1.’:: » » » "
| |
l l
Port 3
e —)?— Buffer —)1.’:: » » » "
| |
l l
nput [Buffer —>— t ! !
\ 4 \ 4 \ 4 \ 4
Buffer Buffer Buffer Buffer
Port 1 Port 2 Port 3 Port 4
Output Output Output Output

Figure 2.3 Logical building blocks of a network switch.

other using a routing protocol. With a routing protocol, routers learn about the topo-
logy of the whole network by exchanging information about the subnets they are part of.
The topology information is used, together with link cost parameters set either by the
protocol itself or by the network administrators, to choose the best paths to reach each
subnet. A specific routing protocol might require a specific network topology to work,
but this is not true in general for IP networks: the administrators are free to choose the
topology they deem more suitable. Finally, a node’s routing table can indicate more
than one router for the same subnet prefix. The node can then choose among multiple

paths to reach the same destination, enabling redundancy and load-balancing.

Switches

The logical architecture of network switches, including Ethernet bridges and IP routers,

is shown in figure 2.3.

2.2 Common network technologies in data acquisition

25

26

Switches” network interfaces are commonly referred to as ports. Ports are logically di-
vided into an input and output port. When a packet arrives through a link at one of
the switch’s input ports, its headers are sent to the routing unit, which determines the
packet’s output port(s). The full packet is stored in the port’s input buffer. The switch
fabric interconnects all input ports to all output ports. Packets cannot always cross the
fabric instantly: for example, with the very common crossbar fabrics, two packets with
the same output port cannot traverse the fabric at the same time. Therefore, an arbitra-
tion unit decides when and which input ports are allowed to access the fabric. Packets
crossing the fabric are stored in their output port’s buffer until they can be sent on the

port’s link.

Input and output buffers serve two different purposes: input buffers store packets until
the fabric is available to forward them, output buffers allow packets to cross the fabric
even if their destination port is busy sending out other packets. Switch implementations
differ in how they allocate space in buffers. The simplest allocation scheme is input
queuing. As the name implies, only input buffers are used in this scheme: packets are
queued at each input port, in order of arrival, until their output ports are free to accept
them. This scheme is cheap and easy to implement, but it suffers from a huge drawback
known as head-of-line blocking: if the packet in front of the queue is destined to a busy
output port, packets behind it in the queue will have to wait until it can be forwarded,

even if their output ports are free. For this reason it is very rarely used.

On the other side of the spectrum is the output queuing scheme, which avoids head-of-
line blocking completely. In this scheme, input buffers are not present. Therefore, the
switch fabric is required to be fast enough to handle all possible combinations of packets
as soon as they arrive at the switch. This requirement is rather burdensome: for example
it can be shown that an output-queued switch with N ports and a crossbar fabric would
need to operate N times faster than the port speed. The continuous progression of link

speeds made this architecture less and less feasible.

Most switch implementations use more sophisticated queuing schemes, combined with
a suitable arbitration algorithm, to achieve performance close to or equivalent to output-
queued switches while avoiding their burdensome fabric speed requirement. A com-
mon trait of these schemes is the use of virtual output queues (VOQs): each input port
maintains a separate queue for each output port, instead of keeping all the arriving
packets in a single queue. For each input port, the arbitration unit can then choose
which virtual output queue is served first. Thus, a well-designed arbitration algorithm

can avoid head-of-line blocking. See [29] for an example of such an algorithm and for

Chapter 2 Background: data-acquisition networks

references to others.

Service model and flow control

Both Ethernet and IP offer best-effort (i.e., unreliable) packet delivery: the network does
not guarantee that all packets will reach their destination. Furthermore, there are no
ordering guarantees: packets might reach their destination in a different sequence than
when they were sent. This is common in topologies where multiple paths to the same
destination are available. In case of problems packets are simply discarded. Besides the
obvious case in which a route to the destination cannot be found (for example because
of a severed network link), there are two other scenarios in which packets are discarded:

transmission errors and network congestion.

Ethernet senders compute the CRC checksum of each frame and store it in the frame’s
trailer. Ethernet network interfaces can detect transmission errors by verifying that re-
ceived frames still match their checksums. Similarly, IP datagrams also contain a check-
sum which however only protects the integrity of the header (but not the payload). If
either one of these checks fails, the packet is discarded by the receiving interface. Dis-

cards are silent: no notification whatsoever is sent to the packet’s source.

Network congestion occurs when an intermediate node, i.e., a switch, receives more
packets than it can send out. This can happen with a switch that has two ports of dif-
fering bandwidths: a flow of packets arriving at full speed on the faster port cannot be
sent out on the slower port at the same rate. Another source of congestion are multiple
flows of packets arriving on different input ports to be sent out on the same output port.
In case of congestion, packets will accumulate in the switch’s buffers waiting to be sent
out, increasing the latency. If the congestion persists, the buffer space is exhausted and
additional packets are discarded. Source nodes detecting increased latency or discarded
packets might use this information to infer that a network path is congested and try to

remedy the problem by lowering the throughput of the data flow(s).

As an alternative to discarding packets, the Ethernet standard allows a congested switch
to send a special “pause frame” to request that the node at the other end of a link stop
sending data for a period of time specified in the frame. This mechanism suffers from
a major drawback: when a link is paused, all data flows on that link are stopped, even
if they were not contributing to the congestion. As a consequence, this feature is very

rarely used.

2.2 Common network technologies in data acquisition

27

28

2.2.2 The Transmission Control Protocol (TCP)

Given the best-effort nature of IP networks, an application that requires the reliable

delivery of a stream of data to its destination must, at least:
¢ detect packet losses and retry sending the discarded packets;

¢ implement a mechanism that permits reconstructing the original order of packets

in case of out-of-order delivery.

TCP [63] offers a standardised way to do this: it provides applications with a connection-
oriented, reliable, byte stream service on top of the unreliable IP services. To maximise

reliability, TCP implements the following additional features:

¢ Multiplexing: TCP enables different applications on the same host to share the
same IP network.

¢ Protection against data corruption (i.e., checksums).

¢ Flow control: TCP tries to avoid sending more data than the receiver is prepared
to handle.

¢ Congestion control: as explained in section 2.2.1, network congestion can lead to
packet loss. Therefore, TCP tries to detect and avoid congestion.

Reliability is implemented using acknowledgements (ACKs) and retransmissions: in
basic terms, the receiver confirms the arrival of packets by sending an explicit confirm-
ation message (the ACK) to the sender. If the sender does not receive an ACK within a
certain timeout, it assumes that either the packet or the ACK were discarded and sends
another copy of the packet.

Segments

TCP receives a stream of data from the application and subdivides it in units, called
segments, that are suitable for encapsulation in an IP datagram. Segments, represented
in figure 2.4, consist of a header containing information needed for TCP to work and
a payload containing the application data. A TCP sender tags every unique segment
that it transmits with a sequence number that identifies its position in the data stream.
The receiver can use this sequence number to detect duplicate segments or to re-order

segments that were received out-of-order.

Normally, the length of a TCP segment header is 20 bytes, unless optional fields are
present. The header begins with the source port and destination port fields. These two

Chapter 2 Background: data-acquisition networks

~ 32 bits -
0 |1 |2 |3 |4 |5 |6 |7 |8 Ig |10|11|12|13|14|15 16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31

Source port Destination port

Sequence number

Acknowledgment number
Hdr length Flags Window size
Checksum Urgent pointer (mostly unused)

Options (if needed)

Payload (variable length)

Figure 2.4 Structure of a TCP segment.

16-bit integers are used to implement multiplexing: a TCP port number uniquely identi-
fies an application within an end-node. As explained above, the sequence number field
contains the position in the data stream from the sender to the receiver of the first byte in
the segment’s payload. The acknowledgement number field contains the next sequence
number that the receiver expects. In other words, this is the position in the data stream
of the last correctly received byte plus 1. The header length field is self-explanatory.
The flags field contains a series of boolean values. The first two values are used to im-
plement the explicit congestion notification (ECN) mechanism already mentioned in
section 2.2.1. The rest are used during connection establishment and termination. The
window size field is used to implement flow control: it specifies the number of bytes
that the receiver can accept. The checksum field is peculiar, in that it covers not only
the TCP segment, but also some fields of the IP header. The urgent pointer field was
designed as a way to send “specially” marked data. It is almost never used in practice.

As mentioned in section 2.2.1, Ethernet specifies a maximum payload (MTU) of 1500
bytes. Of those, assuming that no optional header fields are present, 20 are occupied
by the IP header and 20 by the TCP header. Therefore the maximum TCP payload size,
called maximum segment size (MSS) is 1460 bytes of application data. Adding the TCP
header size to the overhead of Ethernet and IP, the total protocol overhead is 78 bytes,
i.e. ~5.3% of the MSS.

2.2 Common network technologies in data acquisition

29

30

Retransmissions

Modern TCP implementations have both an active and a passive packet-loss detection
mechanism [13].

The basic idea behind the active mechanism, called fast retransmit, is outlined here. If
a receiver observes a “hole” in the flow of segments that it is receiving, there are two
possibilities:

¢ the network did not preserve the order of the segments but the missing ones will
eventually arrive, or

¢ the missing segments were discarded.

The more segments after the hole are correctly received, the likelier it is that the missing
segments were really discarded and not simply arriving out-of-order. The fast retrans-
mit mechanism requires that a receiver generate an ACK of the last correctly received
segment (i.e., the last fragment received before the hole) for every out-of-order segment
received. This duplicated ACKSs can be used by the sender to infer that there are seg-
ments that must be retransmitted: if the sender observes more than a certain threshold
of duplicated ACKs it immediately start resending the segments that it presumes were
discarded.

Unfortunately, the fast retransmit mechanism only works if the discarded segments are
followed by some correctly delivered segments. All other scenarios are covered by the
passive mechanism, which is based on retransmission time-outs (RTO) on the sender
side. If the sender does not receive an ACK before the RTO expires, it starts resending
the unacknowledged segment(s). To prevent spurious retransmissions, the RTO should
always be higher than the round-trip time of the TCP connection!. To do this, TCP
calculates the RTO as follows:

RTO = SRTT +4x RTTVAR

where SRTT and RTTV AR are TCP’s smoothed estimations of the round-trip time and
its variation (see [60] for more details). However, to protect against spurious retrans-
missions caused by interference with other TCP features such as delayed acknowledge-
ments, the RTO has a fixed minimum, specified as 1 s in [60], with lower values used in

actual implementations (200 ms in Linux, 30 ms in FreeBSD).

In TCP, the round-trip time is defined as the total interval between the time a segment is sent and its
corresponding acknowledgement is received.

Chapter 2 Background: data-acquisition networks

Congestion control

To avoid congesting the network, TCP limits the number of unacknowledged segments
in transit through the network. This limit is called congestion window (CWND). The effect

of the congestion control mechanism is to limit the throughput to:

CWND
RTT

where CWND is the size of the congestion window in bytes and RTT is the round-trip

Throughput =

time. Therefore, with too small a window TCP will not be able to fully utilise the avail-
able network bandwidth. On the other hand, with too large a window, TCP will over-
whelm the network, causing congestion. If the congestion gets so high that segments
are discarded, they will have to be retransmitted, resulting in lower throughput and
wasted network resources.

TCP tries to adapt the congestion window size to the network’s conditions. Generally
speaking, connections start with a small congestion window, which is progressively
increased as long as TCP does not observe some evidence of network congestion. When
congestion is detected, the window size is reduced to try to alleviate the congestion. The
most common TCP variants assume that the network is congested when they detect that
segments are discarded: the sender increases the size of its congestion window as long
as it receives ACKs for sent segments, and reduces the window size every time it has
to retransmit a segment with the mechanisms described in the previous section. This
mechanism is used for example by the “NewReno” [30] variant, used by default by the
Windows and BSD operating systems, and the “CUBIC” [32, 31] variant, used by default
by the Linux operating system. Some very rarely used variants (e.g. TCP “Vegas” [14]
and TCP “FAST” [66]) try to be more proactive and, instead of waiting for segments to be
discarded, they interpret an increase in the round-trip-time as evidence of congestion.
The two approaches can be combined: this is done for example by the “Compound”
variant [62]. A third class of TCP variants requires that routers support the explicit
congestion notification mechanism described in section 2.2.1. With ECN, routers are
asked to evaluate if they are experiencing congestion, i.e., if some of their buffers are
too full (this estimation can be as simple as a buffer occupancy threshold). The router
then sets a flag in the header of the IP datagrams that are contributing to the congestion
(e.g., the datagrams at the tail of the queues). When the destination receives a datagram
marked in this way, it informs the sender by setting a flag in the TCP header of the

corresponding ACK. The sender can then use this information to reduce its congestion

2.2 Common network technologies in data acquisition

31

32

window.

TCP variants also differ in how they calculate the amount of bytes by which the con-
gestion window is increased in the absence of congestion or decreased in response to
congestion. Generally speaking, except for the variants using round-trip-time as a con-
gestion signal, an additive-increase/multiplicative-decrease (AIMD) algorithm is used

[38]. The congestion window is calculated starting from its previous value:

CWND(t — 1) +a(t) if no congestion is detected
CWND(t) =
CWND(t — 1) x B(t) if congestion is detected
where the parameter « (¢ > 0) is the addictive increase parameter and g (0 < B <
1) is the multiplicative decrease parameter. Each TCP variant defines a different way
to calculate these parameters with the goal of: fully utilising the available bandwidth,
fairly sharing the network with other TCP flows, and quickly adapting to changes in

the network conditions.

2.3 The incast pathology

The combination of a many-to-one traffic pattern and TCP over a best-effort network
is subject to a well-known pathology called incast: first observed in data-centre storage
networks, it occurs “when a client simultaneously receives a short burst of data from
multiple sources, overloading the switch buffers associated with its network link such

that all original packets from some sources are dropped” [53].

When many sources send packets at the same time to the same destination, it is reason-
able to assume that eventually the packets from the various sources will end up in the
same queue in a switch’s buffer. If the collective size of the data sent from all sources is
larger than the available buffer space, some packets will obviously be discarded. This
is not a problem per se: the TCP senders that realise that their packets were discarded
will reduce their congestion window to avoid overflowing the buffers; eventually the
situation should stabilise. However, this works well only if the data flows are relatively

long-lived and the number of sources is not too high.

With many short bursts, consisting of just a few packets, it is possible that all of the
packets sent by certain senders are discarded, while all of the packets sent by other
senders are delivered. If this happens, the unaffected senders will certainly not re-

duce their congestion window, so the problem will repeat itself. Worse, since all of

Chapter 2 Background: data-acquisition networks

their packets are discarded, the affected senders will not trigger the fast retransmission
mechanism described in section 2.2.2. The discarded packets will eventually be re-sent
after a retransmission timeout (RTO). In many cases, waiting for a RTO dramatically
lowers the throughput of the affected TCP flows. The problem is particularly evident in
networks with low round-trip times: modern data-centre networks, for example, have
sub-millisecond round-trip times. The minimum TCP RTO is normally orders of mag-
nitude larger than that (see section 2.2.2). A flow that is subjected to incast therefore
experiences what is widely described as “throughput collapse”. Note that, while this
description focused on the inability of TCP to react sensibly to incast, the same patho-
logy essentially affects all protocols that use timeouts to retransmit packets discarded
by a best-effort network.

In many cases, data-acquisition networks suffer from the incast pathology, due to the

typical bursty, many-to-one traffic pattern described in section 2.1.2.

2.4 Related works: incast avoidance and mitigation

The incast pathology is well-known in literature. While no studies have focused on
data-acquisition networks, many solutions have been proposed for the general case of
low-latency high-bandwidth networks.

Data center TCP (DCTCP) [4, 3] leverages the explicit congestion notification (ECN)
mechanism described in section 2.2.1 and section 2.2.2 to measure the amount of con-
gestion in the network. It adjusts the TCP congestion window based on that measure-
ment, rather than relying on packet drops as a congestion signal. With this faster, finer-
grained reaction to congestion, it is able to outperform standard TCP in incast scenarios.
However, it can only do so if the number of concurrent senders is not too high (the
threshold depends on the available switch buffer space). Unlike many other propos-
als, DCTCP is being developed from a research work into a well-defined standard [12],
and a production-quality implementation of DCTCP is available in recent Linux kernels.
Besides the limited scalability to many concurrent senders, DCTCP’s main drawback is
its reliance on the ECN mechanism, which must be reliably supported by all switches
in the network, limiting the purchasing choices and raising the total price of the data-
acquisition system.

TIMELY [45] and DX [42] are two alternative congestion control protocols that aim at

minimising queuing in the switches. They rely on increases in round-trip-time to detect

2.4 Related works: incast avoidance and mitigation

33

34

queue growth and react accordingly. The round-trip-time measurement must be very
precise to detect queue length changes in high-bandwidth networks: a 100 kB queue on
a10 Gb/s link adds a delay of just 8 us. Round-trip-time measurements of such precision
are not possible in the operating system: the noise added by the time it takes to transfer
a packet from the network interface card to the operating system is too high. Instead
these proposals rely on special network interface cards that can measure the round-trip
time directly on packet arrival. Naturally, the cost of these cards significantly drives
up the total cost of the system. Moreover, references [45] and [42] only report on the
performance of these schemes in incast scenarios with up to 40 senders. It is safe to
assume that, like DCTCP, higher sender counts would not be handled as effectively.

In [46] the authors suggest purposely lowering the TCP receive window on the destin-
ations of incast flows. This is an easy solution, but it is only effective in scenarios with
a small number of senders: the sum of the sizes of the receive windows on the receiver
should be lower than the smallest buffer in the network path from the senders. With
a large number of senders, this might require receive windows so small that the con-
cerned TCP connections would be unable to exploit the available network bandwidth

during non-incast operation.

ICTCP [67] turns the approach suggested in [46] into a proposed modification of TCP re-
ceivers. The receive windows of TCP connections are jointly adjusted to control through-
put on incast congestion. ICTCP bases that adjustment on an estimate of the available
input bandwidth of the receiving node. As such, it can only prevent incast if the incast
congestion occurs at the last switch before the destination node. This is a frequent occur-
rence, but not necessarily the sole incast scenario in data-acquisition networks. At large
scale, these networks usually have more than one aggregation stage (see section 4.1 for
the ATLAS case). Only the last aggregation step would be protected with ICTCP.

IEEE 802.1Q [35] congestion notification (QCN) is an optional part of the IEEE stand-
ard that defines network bridges (see section 2.2.1). It defines a congestion control
mechanism that can be implemented by Ethernet network interface cards and switches:
switches identify the flows contributing to congestion and ask the relevant network in-
terface cards to limit the sending rate of those flows. By design, it is targeted towards
long-lived traffic flows. Simulation results [26] reinforce this consideration and show
that in many cases QCN can actually worsen the network performance in incast scen-
arios. Moreover, it requires specific hardware support in both switches and network

cards.

As section 6.5 will show, switches with large buffers can prevent incast altogether. Ob-

Chapter 2 Background: data-acquisition networks

viously, the necessary buffer space depends on the specific data-acquisition workload.
Commercially available switches with buffers larger than a few hundreds of kilobytes
per port are few and obviously more expensive than their shallow-buffered counter-
parts. Software-defined switches based on commodity general-purpose PCs are a pos-
sible alternative. The proposed system in [40] uses the main system memory as a very
large packet buffer. The scalability of this approach is however limited by the band-
width between the network interface cards and the main memory.

Due to the impracticality of these general solutions, this thesis focuses instead on appli-
cation-specific options, that can be deployed on existing or future systems without major
changes to their hardware or base operating system software.

2.4 Related works: incast avoidance and mitigation

35

The ATLAS experiment at the

Large Hadron Collider

Throughout this thesis, the data-acquisition system of the ATLAS experiment will serve
as a case study. ATLAS is a particle physics experiment observing collisions delivered
by the LHC proton accelerator at CERN. Both ATLAS and the LHC are among the
largest, most complex experimental facilities ever built. This chapter contains some
background information on the accelerator and on the experiment. The building blocks
of the ATLAS data-acquisition system are described in detail. Particular focus is given
to the messaging subsystem and to the data-collection software which were both de-

veloped as a preliminary part of this work.

3.1 High-energy physics

Particle physics is the branch of physics that studies the elementary constituents of mat-
ter and radiation. Colliding particles at higher and higher energies has proven to be
a fruitful avenue to expand our knowledge of nature. Hence, particle physics is often
referred to as high-energy physics.

Results from high-energy physics experiments have led to the formulation of the Stand-
ard Model of particle physics, which has been strikingly successful in predicting and de-
scribing the currently known fundamental particles and the interactions between them.
It covers three of the four known fundamental interactions: electromagnetic force, weak
nuclear force, strong nuclear force.

Nevertheless, the Standard Model is necessarily an incomplete theory as it does neither

account for the fourth known force, gravity, nor provide an explanation to cosmological

37

38

problems like the apparent existence of dark matter and the observed matter-antimatter
asymmetry. New phenomena, beyond those described by the Standard Model, could
be discovered by further increasing the energy of high-energy physics experiments.

3.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator and collider at the European
Organization for Nuclear Research (CERN) near Geneva, Switzerland. The LHC is de-
signed to accelerate beams of either protons or lead nuclei and bring them to collision
at the centres of four particle detectors with a centre-of-mass energy of up to 14 TeV'.
Protons (and the neutrons in the lead nuclei) belong to a class of particles known as
hadrons: composite particles made of quarks held together by the strong nuclear force.

Hence, the name Large Hadron Collider.

The LHC physics programme is broad and diverse, ranging from more precise meas-
urements of the Standard Model fundamental constants to the search for new physics
phenomena. One of its main goals is finding evidence for one particularly important
feature of the Standard Model which was not previously verified: the so-called elec-
troweak symmetry breaking mechanism. Without this mechanism the Standard Model is
incomplete: it cannot consistently account for the mass of the elementary particles. The
verification of the electroweak symmetry breaking mechanism hinges on the existence
of a particular particle called the Higgs boson. A particle that is consistent with the Stand-
ard Model Higgs boson was indeed observed in 2012 [9, 20]. The discovery crowned an
enormous effort that spanned almost 30 years from the research and development in
the early 1990s to the initial operation in 2008.

The LHC is thoroughly described in [27]. This section attempts to provide the reader

with some insight into the design and operation of the machine.

3.2.1 Construction

The LHC is a circular accelerator. It uses powerful electromagnetic fields to accelerate
and steer two counter-rotating beams of protons. The circular layout enables continu-

ous acceleration, as the particles can be indefinitely recirculated through the accelerat-

IThe electronvolt (eV) is a unit of energy commonly used in particle physics. It corresponds to the energy
gained by an electron moving across a potential difference of 1 volt. 1eV =~ 1.602 x 10~1°]. Due to the
mass—energy equivalence (E = mc?), the eV can also be used as a unit of mass. 1eV ~ 1.782x1073¢ kg.

Chapter 3 The ATLAS experiment at the Large Hadron Collider

\
Injection :
Jallation shaft

Figure 3.1 Layout of the LHC tunnel [18]. The red parts are new underground
buildings built specifically for LHC. The grey parts represent existing
LEP infrastructure.

ing sections, thus enabling to reach very high energies in a relatively compact design.
It is currently the largest and most powerful particle collider in the world. The high-
energy accelerators that preceded the LHC, the Large Electron—Positron collider (LEP)
and the Tevatron collider were both circular accelerators. The LEP collided electrons
with positrons at a centre-of-mass energy of up to 209 GeV, while the Tevatron collided
protons with antiprotons at a centre-of-mass energy of up to 1.96 TeV.

The LHC is housed in the 26.7 km long tunnel represented in figure 3.1. The tunnel
straddles the French-Swiss border near Geneva, lying between 45 m and 170 m under-
ground. It has four interaction points where the two counter-rotating proton beams are
guided to collide. Four different physics experiments are built around the four inter-
action points, reconstructing the collision events to perform detailed studies of known
physics processes and search for evidence of new physics. Two of them, ATLAS [10] and
CMS [21], are general purpose detectors; ALICE [2] is dedicated to the study of a partic-

ular state of matter, the quark-gluon plasma, which is postulated to have existed during

3.2 The Large Hadron Collider

39

40

the early universe; LHCDb [43] is targeted towards studying the decays of a specific class
of particles, the B hadrons, in order to better understand the asymmetry between matter

and antimatter in the universe.

3.2.2 Physics performance

Each of the two proton beams of the LHC are subdivided in groups of particles called
bunches. When two bunches are driven to collision, the protons in the bunches will scat-
ter due to the interactions with the other protons. Most of the protons will experience
elastic scattering, i.e. their kinetic energy will not change due to the interaction, so the
centre-of-mass energy of the two colliding protons is zero. A small fraction of them,
however, will experience inelastic scattering, losing some or all of their energy due to
the interaction. The experiments around the interaction points observe the results of

these inelastic collisions.

The rate of interactions generated in a collider via a specific physical process is given

by:
R=Lo

o is the so-called cross section: a quantity that is characteristic of the process under study.
It expresses the probability that two particles (two protons in the LHC) interact in a
specific way. Among other parameters, ¢ is a function of the centre-of-mass energy of

the particle interaction.

L is the luminosity: a quantity that depends only on the physical parameters of the
beams in the collider. Among many factors, the luminosity of a collider is proportional
to the frequency f at which the bunches of particles collide with each other (bunch-
crossing frequency) and to the average number y of inelastic particle collisions per bunch
crossing:

L o uf

The luminosity also depends on the shape of the particle bunches and on the geometry

of the collisions.

In order to pursue the goals of the LHC physics programme, extremely rare processes
need to be studied. Figure 3.2 helps quantify what “extremely rare processes” means,
showing the cross sections of various processes at a proton collider. In that figure, 7;,;

refers to the total proton-proton inelastic cross section, which expresses the probability that

Chapter 3 The ATLAS experiment at the Large Hadron Collider

proton-(anti)proton cross-sections

109 %I T III T T T LI III T T T LI III | T T T % 1010

10" F 6y — 110

10 F LHC {10

10° : 410
10° E : < 10° -
E Gb : E (\']m
. 10'F : E 10° g
N = ! 3 Q
g 3 [; 40t
R | e =
% 10° ;_ Gjet(ETJet > \/s/20) / _; 10° PE

— F =

~ u '] —
s 10F w : 3100 &
8 0 E Gz E 3 1 8
100 F o ' g 10 %
2 = 5 (E*> 100 GeV) ; 3 =
(}; » jet\ T 4 [

1 A] 0
2 10"k . 10 O
= F , 3 o
° 10° = E 10" g
E E =
10° F o, 110" T

10°F (B> Vs/4) 410’

10° é_cHiggS(MH =150 GeV) 3 10°

10° F 1100

3 csHiggS(l\/lH =500 GeV) 3
1077_||||| 1 Lol 1 1 |_ 10’6
0.1 1

centre-of-mass energy (TeV)

Figure 3.2 Various Standard Model proton-proton cross-sections (and expected in-
teraction rates at the LHC design luminosity) as a function of the centre-
of-mass energies. Adapted from [17].

3.2 The Large Hadron Collider 41

42

two protons will interact in any kind of inelastic scattering process. At the LHC centre-
of-mass energy (14 Tev), the cross section 040 for a Standard Model Higgs boson
(with mass My = 150 GeV) is 10 orders of magnitude smaller than ¢;,;. Thus, with the
luminosity being constant, on average, the rate of production of the highly sought-after
Higgs boson will be 1/10'9 of the total proton-proton collision rate. Similar considera-
tions apply to most of the physical processes that are considered interesting for the LHC
research programme.

The goal of the LHC project is producing a high enough luminosity to make this research
programme possible. It is designed to operate at bunch crossing frequency of up to
f = 40MHz, with an average pile-up of 25 high-energy particle collisions per bunch
crossing, i.e. up to 10° high-energy proton-proton collisions per second.

3.3 The ATLAS Experiment

ATLAS (A Toroidal LHC ApparatuS) [10] is a general-purpose particle detector de-
signed with the objective of undertaking a wide range of different physics analyses.
These include high-precision measurements of Standard Model parameters, searches
for the Standard Model Higgs boson and for so-called supersymmetric particles, and
probes for exotic new physics such as heavy gauge bosons, technicolor particles, or extra
dimensions.

In order to perform all of these measurements, the detector must be able to identify the
tull range of particles which may be produced by these processes and measure their
momentum and energy. This is complicated by the difficult experimental conditions at
the LHC: as mentioned in section 3.2.2, the formidable luminosity comes at the price
of high pile-up, with every bunch crossing producing an average of 25 superimposed
inelastic interactions in design conditions. Therefore, high spatial resolution is needed
throughout the detector to properly distinguish particles from overlapping interactions.
Maximum coverage must be achieved as well, minimising the amount of particles that

escape the experiment undetected.

The high collision rate also has the unfortunate consequence of creating a difficult ex-
perimental environment in terms of radiation dose, rendering radiation-hardness an
unavoidable requirement for the detector. A certain amount of built-in redundancy
is also necessary to ensure that data-taking is not impacted significantly by failures in

some parts of the detector.

Chapter 3 The ATLAS experiment at the Large Hadron Collider

3.3.1 Detector layout

Figure 3.3 shows a view of the detector with part of it removed to expose components
otherwise hidden. The experiment is organised in a cylindrical shape around the beam
line. The central part of the cylinder is referred to as the barrel, while the terminal parts
are known as endcaps. The two proton beams enter the experiment at the centres of
the endcaps and collide in the middle of the barrel. The experiment is made up of a
combination of several layers utilising different particle detection technologies. Each is

referred to as sub-detector.

Going from the interaction point to the outside of the detector the sub-detectors first
encountered are those forming the inner detector. These are enclosed by a superconduct-
ing solenoid magnet. The magnetic field bends the trajectories of the charged particles
produced by the collisions, with the curvature radius and direction depending on the
charge and velocity of the particle. Thus reconstructing the trajectory of the charged
particles enables the determination of their charge and momentum.

Outside of the solenoid one finds the two calorimeters, which, in high-energy physics
parlance, are detectors that measure the energy of particles. This measure is normally
destructive: the particles deposit all their energy in the calorimeter and are absorbed.

A specifickind of particles, the muons, are able to escape the calorimeters without losing
much energy. Another tracking system, the muon spectrometer, is used to supplement the
inner detector in measuring their momentum. The magnet system of the spectrometer
consists of 8 large superconducting magnet coils in the barrel region that generate a tor-
oidal magnetic field in air, complemented by two smaller end-caps consisting of 8 coils
each in the forward region. Layers of different particle detectors register the passage of

muons.

Locations in the detector are defined by a set of coordinates with origin at the beam
interaction point. The proton beams are defined as travelling in the z-direction and the
x-y plane transverse to that. The x-axis points towards the centre of the LHC ring and
the y-axis points upwards, away from the centre of the earth. The distance from the
z-axis is called R. The angular coordinates are defined as follows. The azimuthal angle,
¢, is measured in the x-y plane from the y-axis, and the polar angle, 6, is measured from

the z-axis. For a particle of momentum p, this gives the relations:

Px)
= arctan | —
? (Py

3.3 The ATLAS Experiment

43

19204} JOJONPUODIWDS

1932014 UoybIPLI UoYISUDIL

SI9JOUILIOIDD DYBUBDUIOLDD|D 1]

SI9JOUWILIOIDD PIDMIOY
pup d2-PUd dIUCIPDY V]

S19j2WILoIDD 9|11

/‘_otﬁw_o [9XId

Joubpuw plous|os

sjoubpwl pIoIo]

sioquubyd uonw

wee

Figure 3.3 Cut-away view of the whole ATLAS detector [48].

The ATLAS experiment at the Large Hadron Collider

Chapter 3

44

End-cap semiconductor tracker

Figure 3.4 Cut-away view of the ATLAS inner detector [49].

¢ = arctan (p—T)
z
where pr = |/p% +p7 = |p|sin 0 is called transverse momentum. Similarly the transverse
energy is defined as E; = Esin 6.

The ATLAS experiment is described at length in [10]. The following brief descriptions
are largely based on that reference.

3.3.2 Inner detector

The inner detector (ID), shown in figure 3.4, is designed for high-precision momentum
and vertex measurements of charged particles in the dense particle environment around
the interaction point. It is enclosed by a niobium-titanium superconducting solenoid,
operated at 4.5 K, that produces a magnetic field of 2 T in its centre. Charged particles
induce a signal in different parts of the ID as they traverse it. These signals, called hits,
can be joined to reconstruct the path of the particle, from which the momentum and

origin of the particle can be calculated. The inner detector can reconstruct tracks with

3.3 The ATLAS Experiment

45

46

Figure 3.5 Cut-away view of the ATLAS pixel detector [51].

a precision of O(10 yum). Correct operation in the harsh environment in the vicinity of

the interaction point requires all sensors and readout electronics to be radiation-hard.

The sub-detector with the highest granularity is the silicon pixel detector. It consists
of 1744 modules containing 47232 pixels each, organised in three concentric cylinders
parallel to the beam in the barrel region (from R = 5cm to R = 12 cm) and three discs
perpendicular to the beam in each end-cap (see figure 3.5). When a charged particle
traverses a pixel, electron-hole pairs proportional to the energy loss are created. A 150
V voltage prevents the pairs from recombining, inducing a signal that is read out and
translated to a hit. The intrinsic accuracies of a pixel module are 10 ym (in R¢) and
115 ym (in z for the barrel part, in R for the end-caps). The pixel detector is the most
exposed to radiation, so much so that in 2014, after three years of high-luminosity oper-
ation, a fourth cylinder was inserted between the the beam pipe and the rest of the pixel
detector. This new layer is needed to supplement the radiation damaged innermost

layer of the existing detector.

Immediately outside the pixel sub-detector lies the semiconductor tracker (SCT). It con-
sists of 16352 modules containing two layers of silicon micro-strips with a pitch of 80 ym.
The two layers are at a stereo angle of 40 mrad from each other, enabling the determina-
tion of two spatial coordinates. The modules form 4 cylinders in the barrel region (from
R = 30cm to R = 51 cm), where the strips of one of the two layers are oriented in the
beam direction, and 9 discs in each end-cap, where the strips of one of the two layers
are in the radial direction. Each module has an intrinsic accuracy of 17 ym (in R¢) and
580 um (in z for the barrel part, in R for the end-caps), with the latter being sacrificed by

the small stereo angle chosen, which is needed to keep the amount of ghost hits due to

Chapter 3 The ATLAS experiment at the Large Hadron Collider

combinatorial effects small. Both the pixel and the SCT sub-detectors cover the region
with [6] > 9°.

The outermost component of the inner detector is the transition radiation tracker (TRT).
It consists of some 420,000 cylindrical drift tubes, a type of gaseous ionisation detector.
These detectors consist of two electrodes (anode and cathode) separated by a gas. A
particle traversing the detector will hit some of the gas molecules, creating ion pairs
consisting of an electron and a positive ion. The two electrodes are kept at an electric
potential difference, so that the ionisation electrons will drift towards the anode and
the positive ions will drift towards the cathode, producing an electrical current, which
is measured to detect the passage of the particle. In drift tubes, the sides of the tube are
the cathode; the anode is a wire in the centre of the tube. In the TRT, each tube (called
straw) has a diameter of 4 mm and contains a mixture of xenon, tetrafluoromethane and
carbon dioxide. The straws are oriented parallel to the beam direction in the barrel and
radially in the end-caps, therefore the TRT only provides information in R¢p. A straw’s
intrinsic accuracy is 130 ym which is an order of magnitude larger than the pixel and
SCT sub-detectors, but is compensated by the larger number of hits which is typically
36 per track. The TRT sub-detector covers the region with 6] > 15°.

3.3.3 Calorimeters

The calorimetry system, shown in figure 3.6, is divided into the electromagnetic calor-
imeter in the region |6] > 5° the hadronic barrel calorimeter covering |6] > 20°, the
two hadronic end-cap calorimeters at 5° < 6| < 25° and the two forward calorimeters
at 1° < |8] < 5°. All the calorimeters in ATLAS are sampling calorimeters. In sampling
calorimeters, layers of a dense material alternate with layers of an active component.
Incoming particles interact with the dense material producing a cascade of secondary
particles known as shower. The active material emits a signal that is proportional to the
energy of the shower that traverses it. Showers produced by photons, electrons and
positrons are contained in the electromagnetic calorimeters. Hadronic showers, which

start in the electromagnetic calorimeters, are absorbed in the hadronic calorimeters.

The electromagnetic calorimeter uses liquid argon as active medium, with accordion-
shaped absorber plates interleaved with readout electrodes. It is divided into a barrel
part (16| > 25°) and two end-caps (5° < |6] < 28°). Each end-cap calorimeter is further
divided into two coaxial wheels: an outer wheel that overlaps with the inner detector
(9° < 16l < 28°) and an inner wheel (5° < [0] < 9°). The readout electrodes are seg-

3.3 The ATLAS Experiment

47

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr eleciromagnetic 7
end-cap (EMEC)

LAr eleciromagnetic
barrel

LAr forward (FCal)

Figure 3.6 Cut-away view of the ATLAS calorimeters [48].

Cells in Layer 3
AdxAn = 0.0245x0.05

4
N ’/~
3 ﬁ
. N A
' /ﬁ VAN AN N Square cells in
J\ ﬁ NN' Layer 2
) \‘”\ /'» \‘| 29=0034s
37_5mm/ _ An = 0!;\
An § ~4.69 mm 3
= 0003 Strip cells in Layer 1
n

Figure 3.7 Electromagnetic calorimeter granularities [10]. NB: 7 = —In[tan (6/2)].

48 Chapter 3 The ATLAS experiment at the Large Hadron Collider

mented into three longitudinal sections, except for the inner wheel, which is segmented
into only two sections and has a coarser lateral granularity than the remaining parts.
The granularities of each section are detailed in figure 3.7. The design resolution of the
electromagnetic calorimeter is g /E = 10%/ \/E ® 30%/E & 0.7%, with E in GeV.

The hadronic barrel calorimeter uses scintillating tiles as active medium and steel as
absorber. Two sides of the tiles are read out by wavelength shifting fibres into pho-
tomultiplier tubes. It is azimuthally segmented in 256 modules. Each module is further
split into three layers along the radial coordinate.

The hadronic end-cap calorimeters (HEC) use liquid argon as active medium and flat
copper plates as absorber. Each end-cap consist of two independent wheels, which are
in turn divided into two segments in depth, for a total of four layers per end-cap, with
the inner layers having a higher sampling frequency than the outer. The design resolu-
tion of the combined barrel and end-cap hadronic calorimeters is o /E = 50%/ \/E @ 5%,
with E in GeV.

The Forward Calorimeter (FCal) consists of three modules, where the first module uses
copper as passive medium and is optimised for electromagnetic measurements, while
the second and third are made of tungsten and dedicated to hadronic energy meas-
urements. Each module consists of a metal matrix, with regularly spaced longitudinal
channels filled with the electrode structure consisting of concentric rods and tubes par-
allel to the beam axis. Liquid argon in the gap between the rod and the tube is the active
medium. The design resolution of the FCal is o /E = 100%/ \/E @ 10%, with E in GeV.

3.3.4 Muon spectrometer

The muon spectrometer, shown in figure 3.8, is characterised by the experiment’s name-
sake: the toroidal air-core superconducting magnet system. It consists of 8 huge coils in
the barrel region (each in a separate cryostat) and two end-caps with eight smaller coils
each (in common cryostats). With a toroidal configuration for both the barrel and the
end-cap magnets, the magnetic field lines roughly assume the shape of circles centred
in the z-axis. Therefore, the particles will cross the detector almost perpendicularly to
the field in a wide 60 range, keeping the bending power high even in the endcap regions.
The barrel toroid provides a peak field of 3.9 T and the end-cap toroids 4.1 T. Muon
tracks are measured in the bending magnetic field in the range 0] > 8°.

In the barrel region (/0] > 39°) tracks are measured in chambers arranged in three cyl-

indrical layers, enabling the measurement of their momentum from their sagitta. The

3.3 The ATLAS Experiment

49

Thin-gap chambers (T&GC)

Cathode strip chambers (CSC)

Barrel toroid

’ Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)

Figure 3.8 Cut-away view of the ATLAS muon spectrometer [50].

50 Chapter 3 The ATLAS experiment at the Large Hadron Collider

end-cap chambers cover the range 40° < |0| < 8° and are organised in one small wheel
and two big wheels per end-cap. Four different gaseous ionisation detector technologies
are employed, with the first two (MDT and CSC) being used for precision measurements
and the other two (RPC and TGC) for their fast reaction times.

Monitored drift tubes (MDTs) are used in most regions of the spectrometer. MDT cham-
bers are based on single-wire drift tubes of 30 mm diameter operated with a mixture of
argon and carbon dioxide. The precision coordinate is obtained measuring the ionization-
electrons drift time. The chamber spatial resolution is 35 ym, with the single-wire in-
trinsic resolution being 80 ym. The MDT chambers only measure one coordinate (z in
the barrel region and R in the end-caps). Their measurements are complemented in the

orthogonal coordinate by the fast chambers.

Cathode Strip Chambers (CSCs) are multi-wire proportional chambers with cathode-strip
readout operated with a carbon dioxide, argon and tetrafluoromethane gas mixture.
The precision coordinate is obtained by measuring the charge induced on the segmen-
ted cathode by the avalanche formed on the anode wire. Spatial resolutions of 40 ym
(in R) and 5mm (in R¢) are achieved by segmentation of the cathode and by charge in-
terpolation between contiguous strips. The CSCs are particularly suited to operation in
high particle flux regions having small electron drift time (30 ns), good time resolution
(7 ns) and low neutron sensitivity. They are therefore employed instead of MDTs in the

innermost ring of the small wheels.

Resistive Plate Chambers (RPCs) are gaseous detectors providing an excellent time res-
olution of 1ns, at the cost of a typical spatial resolution of 1 cm (in R and R¢). The basic
RPC unit is a narrow gas gap formed by two parallel resistive bakelite plates separated
by insulating spacers and operated with tetrafluoroethane mixed with small amounts
of sulphur hexafluoride. Primary ionisation electrons are multiplied by a high, uniform
electric field and the signal is readout via capacitive coupling of metal strips on both

sides of the detector.

Thin Gap Chambers (TGCs) are multi-wire proportional chambers in which the anode
wires provide a fast signal while the readout strips, orthogonally arranged with respect
to the wires, are used to measure the second coordinate. They are operated with a gas
mixture of carbon dioxide and n-penthane. The chamber time resolution is 4 ns, while

their spatial resolution varies from 2 mm to 6 mm (in R) and from 3 mm to 7 mm (in R¢).

3.3 The ATLAS Experiment 51

52

Trigger

DAQ

Event rates [Muon] [Calo] [Track] Data rates
and latencies
40 MHz =l ~1.6 MBI25 ns
©
| Q009 S
Custom [FE][FE][FE] &
Hardware —— = . S
<2.5ps Level 1 f:j
Decision| (RoDJ (ROD] (ROD] [
V Level 1| Result V
100 kHz ~160 GBIs
A 4 ~100
- [[[Readout System]
g Y
D
-g’ ~50 GBIs
~250 ms () Event %
3 fragments o
i Data e
= > Network S
= Accepted V
v events l ~1.6 GBIs
1 kHz 10
[[Data Logger]
|
________) A

I CERN
1
1

Figure 3.9 Logical view of the components of the trigger and data acquisition sys-

tem. The trigger path is
output event rates and

sketched on the left, along with the input and
event processing latencies. The data path is

sketched on the right, along with the expected input and output data
rates, assuming an event size of 1.6 MB.

3.4 The ATLAS trigger an

d data-acquisition system

In design conditions, the LHC will collide proton bunches in the centre of ATLAS at a

rate of 40 MHz. Each bunch crossing and the resulting interactions are referred to as

an event. A fully acquired event corresponds to 1-2 MB of data. If all events were per-

manently stored, a storage bandwidth of up to 80 TB/s would be required. However,

as discussed in section 3.2.2, most events only result in well-known physical processes

that do not merit further analysis. Therefore it is not necessary to save data correspond-

ing to all events. Instead, real-time event selection is used. This selection mechanism

is known as trigger: the trigger “fires

” only when an event with potentially interesting

Chapter 3 The ATLAS experiment at the Large Hadron Collider

interaction is observed.

The ATLAS Trigger and Data-Acquisition (TDAQ) system is outlined in figure 3.9. It is
organised in two levels of event selection, with the second trigger level refining the de-
cisions made at the previous level and, where necessary, applying additional selection
criteria. Starting from the nominal bunch crossing rate of 40 MHz, the rate of selected
events must be reduced to a budgeted average rate of a few kHz for permanent stor-
age. In terms of orders of magnitude, this means that only one out of 10* events can be
recorded, i.e. the trigger system must deliver a total rejection factor of O.(10*) against

uninteresting events, while retaining rare new physics processes.

The first trigger level (L1) is implemented in custom-built electronics which analyse the
information coming from the fast muon chambers and the calorimeters to operate a
coarse event selection with a rejection factor of 0(102%). The second level (High-Level
Trigger, HLT) is a distributed software system which access to the detector data at full
granularity. The HLT refines the selection of the L1, delivering a further rejection factor
of O(10%) and sends the finally accepted events to the data-logging system.

3.5 Front-end

In total, the ATLAS sub-detectors provide close to 100 million analogue or digital out-

puts, called readout channels.

Although each sub-detector handles its signals using custom electronics, known as front-
end, whose detailed description is outside the scope of this thesis, these components are
built from standardised blocks and are subject to common requirements. The front-end

electronics include different functional elements [10]:
¢ analogue or analogue-to-digital signal processors,

¢ interfaces to the L1 system for receiving beam timing and trigger signals via the
Timing Trigger and Control (TTC) system [11],

¢ L1 pipelines (analogue or digital) in which the information is retained for a time

long enough to wait for the L1 trigger decision,

¢ derandomising buffers in which the data accepted by the L1 trigger are stored
before being sent to the following level,

¢ dedicated links or buses which are used to transmit the front-end data stream to

the next stage.

3.5 Front-end

53

54

Analog sums

L1Calo

L1Muon

EM Hadronic
Hits

Hits

Digitiser & Hit coincidence Hit coincidence
Preprocessor processors processors
Cluster Jet / energy-sum .
[processor] [processor] LIS

Regions
of interest

/ Processing
results

Y
Central trigger
processor

TTC
Sub-detector
front-ends

Figure 3.10 Outline of the level-1 trigger system

If an event is accepted by the L1 trigger, its data is moved from the detector front-end
pipelines to the Readout Drivers (RODs) electronics boards. The RODs serve as an initial
data aggregation step, combining fragments from several front-end data streams. They
also implement specific error-detection mechanisms and format the sub-detector data
according to a format common to ATLAS. The aggregated bits, called event fragments,
are then pushed to the Data-Acquisition system (DAQ) via special-purpose point-to-
point optical Readout Links (ROLs).

3.6 First-level trigger

The L1 trigger system, represented in figure 3.10, is designed to reduce the event rate
to a maximum of 100 kHz with a latency of less than 2.5 us. The limiting factor that
imposes these maximum thresholds is the performance of the sub-detector front-end
electronics.

Most of the interactions that are considered interesting for the research programme,

Chapter 3 The ATLAS experiment at the Large Hadron Collider

Local maximum/
Region-of-interest

Vertical sums
/ Horizontal sums
[

| || Electromagnetic

/] isolation ring
=2 Hadronic inner core
é ;)(and isolation ring

) t
== 7' Hadronic

calorimeter

/ Electromagnetic
calorimeter

Trigger towers (4n x Ap = 0.1 x 0.1)

Figure 3.11 Building blocks of the Level-1 cluster processor algorithms

result in the production of one or more isolated particle with high transverse momentum
(pr, see section 3.3.1). The L1 trigger is therefore designed to find the signals left by these
particles and use them to quickly decide whether an event is to be sent to the HLT or
rejected.

The L1 trigger decision is formed by the Central Trigger Processor (CTP) [8] based on
coarse information from the L1 Calorimeter Trigger system (L1Calo) and from the fast
muon spectrometer chambers (RPCs and TGCs). The L1 does not use information from
the inner detector trackers: reconstructing tracks from hits is a combinatorial problem
and given the huge amount of particles traversing the inner detector, doing so would

cause the L1 to exceed its strict latency bounds.

The CTP distributes the trigger decision, together with timing signals from the LHC, to
the front-end electronics of all the sub-detectors. Following an accept decision, the CTP
introduces dead-time, by preventing further triggers for a specified number of bunch
crossings. This gives the front-ends the time they need to store the event data in their
pipelines. The CTP also restricts the total number of accept decisions allowed in a given
period to prevent the front-end pipelines from overflowing.

3.6.1 Calorimeter trigger

In order to be fast, the L1Calo [1] does not make use of the full granularity of the calor-
imeter data. Instead, it operates on analogue sums from calorimeter elements within

coarser regions, called trigger towers. Electromagnetic and hadronic calorimeters have

3.6 First-level trigger

55

56

TGC2 TGC3

TGC1
10 m — | l |
RPC3 T Barrel foroid \
/// High p;
RPC2
RPC1 //ﬂ -’/j? Low p;
7/ Low p; Bl 5
57
High p,
End-cap toroid
Shielding
\ \ |
0 5 10 15 m

Figure 3.12 Representation of the level-1 muon hit coincidence logic.

separate trigger towers. The analogue inputs are first digitised and associated to a par-
ticular LHC bunch crossing. The data is then processed in parallel by two processing
systems. The cluster processor searches for small localised clusters of towers with high
energy deposition, typical of electrons, photons and tauons. The jet and energy-sum pro-
cessor uses 2 x 2 sums of trigger towers, to identify sprays of hadrons (called jets) and to
calculate global energy sums. The magnitude of the objects and sums are compared to

programmable thresholds to form the trigger decision.

The building blocks of the cluster processor algorithms are shown in figure 3.11: a2 x 2
region-of-interest is identified in the electromagnetic calorimeter for which the energy
sum from at least one of the four possible pairs of nearest neighbour towers exceeds
a pre-defined threshold. A maximum energy threshold can be set for the towers sur-
rounding the region-of-interest, to require that the energy deposition is isolated from

others. A similar approach is used in the jet and energy processor.

3.6.2 Muon trigger

The muon trigger logic searches for muons with transverse momentum (pr) over con-
figurable thresholds. It is directly implemented by the fast muon sub-detectors, RPCs

Chapter 3 The ATLAS experiment at the Large Hadron Collider

and TGCs, both using similar algorithms [7]. As highlighted in figure 3.12, the detector
chambers are arranged in three planes in both the barrel region and the end-caps. They
are grouped into sectors that share common trigger electronics. In each sector, up to
two muon candidates are identified by searching for coincidences of hits among the
planes. In order to form a coincidence, hits are required to lie within parametrised geo-
metrical regions called muon roads (the yellow and green areas in the figure). A road
represents the envelope containing the trajectories from the interaction point of muons
(or antimuons) with a transverse momentum greater than a chosen threshold (the faster
a muon, the larger the curvature radius of its trajectory in the magnetic field). As an
example, in figure 3.12 the (anti)muon tracks in the barrel region lie in the “low-pr”
muon road, but do not fit into the “high-pr” road. Such a track would therefore only
fire the “low-py” muon trigger. A track with a lower curvature radius would not fire

any trigger.

For each bunch crossing, the sector logic sends to the muon-to-CTP interface (MuCTPi)
the information about the position and transverse momentum of the muon candidates.
The MuCTPi combines the information from all the sources, resolving possible double

counting of muon candidate tracks that traverse more than one sector.

3.7 Data-Acquisition and High-Level Trigger

The Data-Acquisition (DAQ) system interfaces with the detector readout and the L1 trig-
ger on the input side, with the High-Level Trigger for event selection, and with the mass
storage in the CERN computing centre on the output side. Together, the DAQ and HLT
systems form a distributed software system running on around 2000 Linux PCs. Two
independent Ethernet networks interconnect all the nodes in the system. One network,
called control network, provides infrastructure and operational services. A second, called
data network, is used exclusively for transferring event data. The network layout is de-

scribed in more detail in section 3.7.6.

The data flow in the DAQ and HLT systems is shown in figure 3.13. Once an event is
accepted at the L1 trigger, its fragments are pushed into the Readout System, which
acts as the interface between the readout and the DAQ. An available HLT Processing
Unit incrementally retrieves and analyses the fragments, until a trigger decision can
be taken. Fragments of rejected events are deleted from the readout systems buffers,
while accepted events are transferred to one of the Data Logger nodes for storage and
asynchronous transfer to the CERN central data storage facility. The DAQ input event

3.7 Data-Acquisition and High-Level Trigger

57

Event fragments

L1 decision L1 result
Full events ~1800 boards _ .
Readout drivers Region-of-interest
builder
~100 PCs
[Readout systems]
L1
: Event result
~2000 PCs | done
High-Level Trigger worker nodes i
|
|
order of 10 Y | L1 result \ 2
High-Level Trigger Data Collection High-Level Trigger
processing units f--————-— Manager 43 supervisor
HLT decision Event
done

10 PCs

[Data loggers]

Permanent
storage

Figure 3.13 Components of the Data-Acquisition and High-Level Trigger systems.

58 Chapter 3 The ATLAS experiment at the Large Hadron Collider

rate is the L1 output rate of 100 kHz, i.e. 100-200 GB/s for event sizes in the range 1-2
MB.

3.7.1 Data format

The format of the ATLAS event data [6] reflects the structure of the data-flow. The
DAQ system does not impose any fixed structure to the raw data produced by the sub-
detectors readout. The event fragments formatted by the RODs consist of a header,
the raw data received from the front-end electronics and a trailer. Among other fields,
the header specifies the source of the fragment, the L1 Identifier (L1ld) and the Bunch
Crossing Identifier (BCId), along with sub-detector-specific meta-data. The L1Id and
BCId are counters that are incremented for every L1 accept decision and bunch crossing,

respectively. The trailer contains a check sequence used to verify data integrity.

When an event is finally assembled to form a full event after being accepted by the HLT,
the fragments are concatenated and a full event event header is added, which includes
all the necessary fields to uniquely identify the event throughout the lifespan of the
ATLAS experiment.

3.7.2 Readout System

When an event is accepted by the L1 trigger, each of its fragments is pushed from its
sub-detector front-end pipeline, via a Readout Driver, into a Readout Link (ROL) that
constitutes the interface between the sub-detector specific electronics and the common
DAQ system. Each ROL delivers its event fragments to a specific Readout System (ROS)
node. There are over 1800 ROLs connecting the sub-detectors to the DAQ.

The ROS consists of around 100 Linux PCs housing two purpose-built PCle cards, called
ROBINS, and connected via four 10 Gb/s Ethernet links to the data network. The ROLs
are point-to-point optical fibre links using a custom protocol with a maximum band-
width of 160 MB/s and in-band flow control (XON/XOEFF). Each ROBIN can handle up
to 12 ROLs. It receives the incoming event fragments and stores them in the 8 GB on-
board memory, or asserts an XOFF flow-control signal if the memory is full. On each PC
a multi-threaded application handles the interaction with the rest of the DAQ system
via the data network. It receives requests for event data, forwards them to the ROBINs
and sends the corresponding fragments to the requester. The application also instructs
the ROBINSs to delete data on request from the DAQ system.

3.7 Data-Acquisition and High-Level Trigger

59

3.7.3 High-Level Trigger

The HLT system comprises the HLT Processing Units (HLTPU) and the HLT Supervisor
(HLTSV). Each HLT worker node hosts one HLTPU per CPU core and a single Data-
Collection Manager (DCM), which handles communications with the rest of the system
on behalf of the HLTPUs on the node.

At the same time as the event fragments are transferred from the front-end to the ROS,
the L1 trigger also sends some additional information about its decision to the High-
Level Trigger Supervisor (HLTSV). This information, called L1 result, comes from vari-
ous sources in the L1 trigger. A ROD-like device called Region-of-Interest builder com-
bines information from all L1-result sources into a single fragment and sends it to the

supervisor via a point-to-point link.

The HLTSV runs on a PC in a hardware configuration similar to the ROS, but its purpose
is different. Sending the L1 result to the HLTSV communicates that a certain event has
been accepted by the L1 and its data is available from the ROS. The HLTSV must then
assign the event to an available HLTPU for processing. To do so, the HLTSV sends
the L1 result to the chosen HLTPU. If no processing units are available, the supervisor
signals this condition by asserting an XOFF flow-control signal on the link from the L1.

This will cause the L1 to stop accepting events until the XOFF is cleared.

The L1 decision data contains information about the so-called regions-of-interest. A region-
of-interest is a geometrical region of ATLAS that observed signals considered interesting
by the L1 (e.g. a high-momentum muon or a big energy deposition). Using the regions-
of-interest as starting points, the processing unit incrementally retrieves and analyses
event fragments, until it has enough information to take a decision. The event can be
rejected even without analysing all its fragments, thus limiting the fraction of data to
be retrieved from the ROS and, as a consequence, lowering the total cost of the system.
Fragments of rejected events are deleted from the ROS buffers, while accepted events

are transferred to one of the Data Logger nodes for storage.

3.7.4 Data-Collection Manager

Data integrity guarantees and error detection are of the utmost importance in a DAQ
system. To this end, the DAQ and HLT systems are designed to decouple the trigger pro-
cessing of events from the DAQ operations. The rationale behind this choice is simple:

a software bug that causes data loss and is only set off by specific kinds of events would

60 Chapter 3 The ATLAS experiment at the Large Hadron Collider

irremediably introduce a bias in the data being acquired. While it is reasonably possible
to ensure that the DAQ software is not affected by such bugs, it is much more difficult

to do so with the trigger software.

The DAQ applications do not need to be aware of the specific structure of the event
data. Indeed, as far as the DAQ system is concerned, all the operations can proceed ma-
nipulating only the headers described in section 3.7.1. As the headers have a relatively
simple format, the probability of a software bug that is triggered only by specific data
patterns is greatly reduced and can be minimised by testing the software with the lim-
ited number of possible variations of the headers. Moreover, since the header format is

very stable, the data handling code on the DAQ side changes rarely.

The trigger software, on the other hand needs to interpret the raw sub-detector data
in order to be able to analyse and select the events. Furthermore, its algorithms make
up a rather large body of software and change often as they are improved or replaced
with more efficient versions. This makes it much more susceptible to bugs and crashes

caused by unexpected data.

This isolation is achieved by separating the data-flow logic and the trigger logic in two
different applications. On each HLT worker node, the Data-Collection Manager (DCM)
application handles the former, while multiple HLT Processing Units handle the latter.

Each DCM is connected to all the other applications in the DAQ system:

When the HLTPUs on its node are available, it asks the HLTSV for new L1 results
to process; it then forwards the L1 result to an available HLTPU.

¢ On behalf of a HLTPU, it requests event fragments from the ROS and makes them
available to the HLTPU.

¢ When a HLTPU decides that an event is to be accepted, it assembles all the event
fragments into a full event and ships it to one of the Data Logger for storage.

* Once an event has been either rejected or successfully stored, it asks the ROS to

delete its fragments from their buffers.

The event fragments fetched by the DCM are made available to the HLTPU via read-
only shared memory, so that no bugs on the trigger side can cause data corruption or
loss. In fact, once an event fragment is received, the DCM asks the operating system
to consider the memory that holds it read-only, even for the DCM itself, so that in the
unlikely case of a data-corrupting bug in the DCM, the application would encounter an

error and terminate rather than mangle the data. Moreover, it is possible to configure

3.7 Data-Acquisition and High-Level Trigger

61

62

the DCM so that it does not ask the ROS to delete the fragments corresponding to an
event before the Data Logger has confirmed that the event is safely on disk.

If a HLTPU crashes while processing an event, or simply takes an excessive amount of
time to come to a trigger decision, the DCM marks the event as a possible cause for
crashes, and sends it to the a Data Logger without further processing, rather than re-
assigning it to another unit. In this way, the crash can be investigated later without
risking that the offending event cause even more crashes in the system. A similar mech-
anism is implemented by the HLTSV: in case it loses contact with a DCM, be it because
the DCM itself crashed, or the more likely case of hardware failure, it will re-assign the
event to another DCM, which will send it directly to storage.

3.7.5 Data Logger

The data-logging system consists of six Linux PCs executing the Data Logger applica-
tion. Each node is equipped with three 20 TB redundant disk arrays and is connected
with two 10 Gb/s links to the data network.

The core functionality of the Data Logger application [22] is to receive event data from
the DCM and save it to the appropriate raw-data files. A separate application running
on the same machine asynchronously transfers the files to the central mass storage fa-
cility at CERN for permanent storage. The raw files are deleted from the Data Logger
nodes only once the mass storage facility confirms that the data is stored on both disk
and tape.

3.7.6 Network

The layout of the DAQ data network [55] is shown in figure 3.14. The core of the system
consists of two large network routers (Brocade MLXe-32) with a maximum capacity of
several hundred 10 Gb/s Ethernet ports.

Readout systems are directly connected to both core routers with 4 redundant 10 Gb/s
Ethernet links, while the HLT supervisor node has one 10 Gb/s going to each router.
HLT worker nodes are organised in racks of at most 40 nodes. Each node in a rack is
connected to an aggregation switch with a 1 Gb/s link. The rack switches have 10 Gb/s

uplinks to both core routers.

The two core routers are in an active-active redundant configuration: even if one of them

becomes unreachable, all nodes can still communicate, possibly at reduced bandwidth,

Chapter 3 The ATLAS experiment at the Large Hadron Collider

Readout
1 Gbps System (x 98)
10 Gbps /M\
/ HLT, \
Supervisor @

Data
i> Logger (x 6)

HLT node (x 40)
HLT rack (x 50)

-
\}E/

Figure 3.14 Network architecture of the ATLAS Data-Acquisition and High-Level
Trigger system.

via the other router. Under normal conditions, with both core routers available, the
traffic is equally distributed over the available links. More precisely, the hosts and the
switches that are connected to the core routers by two or more links choose the link
on which a packet is sent according to a hash of the packet’s data-link and network
addresses.

3.8 The ATLAS Data-Acquisition messaging system

3.8.1 Requirements

The applications in the ATLAS DAQ exchange network messages with each other in
order to accomplish their purpose. In particular:

* The HLTSV sends a message to a DCM to assign a L1 result to an available HLTPU
on the node where the DCM runs. The DCM sends a message to the HLTSV when
the HLTPU finishes processing and is thus available again. This happens for every
L1 accepted event.

3.8 The ATLAS Data-Acquisition messaging system

63

64

Peers Message rate | Message size

A B per connection | A->B | B—A
HLTSV DCM 50 Hz 1kB | 10B
ROS DCM 25 Hz 20kB | 100 B
DCM | Data Logger 0.2 Hz 1MB | 10B

Table 3.1 Typical messaging patterns between ATLAS DAQ applications.

Application | Connections Message rate Bandwidth
PP Send [Receive | Send [Receive
HLTSV 100 kHz | 100 kHz | 100 MB/s | 1 MB/s
ROS 2000 50kHz | 50kHz | 1GB/s | 50 MB/s
Data Logger 500Hz | 500 Hz | 500B/s | 250 MB/s
DCM 110 25kHz | 25kHz | 250kB/s | 50 MB/s

Table 3.2 Messaging requirements of ATLAS DAQ applications in ordinary condi-
tions.

¢ The DCM sends requests for data fragments to the appropriate ROS nodes on be-
half of the HLTPUs on its node; the ROS nodes reply with the data. This happens
several times per each L1 accepted event.

* The DCM asks a Data Logger if it can receive an event for storage. The Data Logger
requests the event from the DCM. The DCM sends the event and the Data Logger
acknowledges.

In essence, each DCM in the system exchanges messages with the HLTSV, all the ROS
nodes, and all the Data Logger nodes. The main features of these messaging patterns
are summarised in table 3.1. These are typical quantities estimated on the basis of a 100
kHz L1 output rate, a 2 MB average event size, and 2000 nodes in the HLT farm.

The messaging patterns impose relatively different requirements on the different applic-
ations in the system. As shown in table 3.2, the HLTSV must handle a very high rate of
small messages; the ROS need to handle slightly bigger messages at a slightly lower rate;
the Data Loggers must handle big messages but at a low rate. All applications manage
a relatively high number of connections.

Even with these relatively disparate messaging requirements, having a messaging layer
common to all applications is desirable, for ease of maintainability. The common layer
should satisfy the following requirements:

¢ Can service the messaging patterns in table 3.2 with acceptable performance and

with margin to handle unusual conditions

Chapter 3 The ATLAS experiment at the Large Hadron Collider

¢ Reliable, in-order, point-to-point message delivery

¢ Simple recovery from connection failures

3.8.2 Existing solutions

The requirements outlined in the previous sections are relatively simple. Accordingly,
they could be satisfied by a variety of existing messaging technologies. There are three

main options to be considered for an implementation:
* message brokers such as Apache ActiveMQ and similar products,

* remote procedure call software such as the Common Object Request Broker Archi-
tecture (CORBA) standard and its implementations,

* high-performance computing middleware such as the Message Passing Infrastruc-
ture (MPI) standard and its implementations.

All of these options offer much more functionality than required by the DAQ system.

Message brokers provide complex, configurable message queuing, routing and trans-
formation. These features require every message to go through a central service, the

broker, which can then apply its configured message handling policies.

Remote procedure call systems enable invocation of routines residing in different (i.e.
remote) processes. Their goal is to provide the same interface for local and remote in-
vocations. Thus, most of their functionality is devoted to serialising function calls into

messages suitable for transmission (marshalling) and vice-versa.

High-performance computing messaging is dominated by a single standard with mul-
tiple implementations: MPI. MPI is designed with a specific use case in mind: parallel
applications running on homogeneous computer clusters. It includes features such as
process management, collective communication (one-to-many, many-to-one, many-to-

many), topology discovery.

None of the functionality described above is really needed to satisfy the requirements
of a messaging layer for the DAQ system. Advanced message queueing and routing are
not needed, given that all the communication patterns are point-to-point. The same can
be said for collective communication. MPI-like process management is rather invasive
and duplicates functionality already present in the experiment’s control system. Mes-
sage serialisation is also not necessary: most of the exchanged data is already serialised

according to the data format described in section 3.7.1. All these extra features come at

3.8 The ATLAS Data-Acquisition messaging system

65

66

Message type ID
Stream ID
Payload size (B)
Payload

Figure 3.15 Anatomy of a DAQ message

the price of significant additional complexity, which in turn makes troubleshooting and

tuning the performance of the messaging system more difficult.

3.8.3 Implementation

The considerations in the previous sections suggest that a simpler messaging layer can

reduce complexity and better suit the requirements of the DAQ system.

The first choice made in the implementation was the use of the TCP transport layer. This
choice implies relinquishing a certain degree of control over the injection of messages
in the network to the operating system. However, given the requirement for reliable,
in-order message delivery and given that messages can have sizes of up to several mega-
bytes, the alternative of using UDP is even less appealing. Using a transport layer that
does not make delivery guarantees would have required implementing data fragment-
ation and retransmission in the applications themselves. That is, re-implementing huge
parts of the TCP functionality in the applications.

As TCP is a stream-oriented protocol, a form of framing is necessary to separate the
messages in the stream. This is achieved by simply pre-pending each message with
the three 32-bit fields shown in figure 3.15. The first two fields can be freely used by the
applications. Conventionally, the first field (message type identifier) is used to identify the
class of message being sent, so that the receiving application can correctly parse it. The
second field (stream identifier) can optionally be used for multiplexing: messages with
different stream identifiers belong to logically separate data streams. The third field is
essential for the framing to work: it carries the size of the message following the header,
so that a receiver can read the correct amount of bytes from the TCP stream.

This lightweight protocol built on top of TCP is sufficient to satisfy the requirement of
reliable, in-order point-to-point message delivery and leaves the choice of messaging

pattern up to the applications.

Chapter 3 The ATLAS experiment at the Large Hadron Collider

Clearly the protocol design alone is not sufficient to satisfy the requirements outlined
in section 3.8.1. The implementation needs to reach the requisite performance. As men-
tioned, all applications in the system must manage a relatively high number of connec-
tions with a low message rate per connection (e.g. a ROS manages around 2000 con-
nections from the DCMs, but on average sends just 25 Hz of 20 kB messages on each
connection). Such a scenario is quite common in Web servers. Generally, the accepted
solution is to employ the non-blocking I/O facilities provided by the operating system
with the event-driven programming paradigm. Handling multiple connections with the
common thread-based paradigm requires having one thread per connection, waiting
for blocking I/O operations on that connection to complete. With the event-driven ap-
proach, instead, one or a few threads react to events delivered by the operating system,

such as the completion of an I/O operation.

Several existing software libraries facilitate interfacing an event-based application with
the necessary operating system facilities. The DAQ messaging layer, called AsyncMsg,
is based on the widely used and stable Boost. ASIO C++ library. AsyncMsg leaves the
management of the memory for messages under the complete control of the application.
Both Boost.ASIO and AsyncMsg are designed to avoid unnecessary data copies, which
are particularly detrimental in high-bandwidth applications, and unnecessary memory

allocations, which constitute a bottleneck for high-message-rate applications.

3.8.4 Benchmarks

A series of measurements under controlled conditions was performed in order to demon-
strate that the AsyncMsg library implementation can satisfy the performance require-
ment of the ATLAS DAQ system. The most important goal is to verify the scalability
of the implementation, in terms of message rate, bandwidth, and number of connec-
tions. Two representative benchmarks are shown here. The benchmarks try to stress
the AsyncMsg implementation with a messaging pattern that is supposed to mimic the
usage that a real DAQ application would make of the library. The ones shown here

represent two polar opposites in terms of messaging patterns:

¢ the HLTSV-DCM messaging pattern, which, as explained in section 3.8.1 is char-

acterised by small, frequent messages;

¢ the DCM-Data Logger messaging pattern, which is characterised by big, infre-

quent messages.

3.8 The ATLAS Data-Acquisition messaging system

67

68

Since these tests are aimed at evaluating AsyncMsg only, they were carried out using
mock implementations of the HLTSV, DCM, and Data Logger applications, with the
aim of introducing as little overhead as possible. A single AsyncMsg server was tasked
with handling a varying amount of connections from AsyncMsg clients configured to
to mimic the messaging patterns in the first and third lines of table 3.1. The server was
running Scientific Linux 6.7. It was equipped with two Intel Xeon E5645 processor run-
ning at 2.40 GHz, 8 GB of RAM, and four 1 Gb/s Ethernet network interfaces. This limits
the maximum throughput to 500 MB/s, not considering the overhead. The AsyncMsg
server was configured to use as many threads as the CPU hardware threads (24).

The results, for the HLSTV-DCM messaging pattern, are presented in figure 3.16. The
clients were configured to send 10 B messages at a fixed rate of 50 Hz, to which the
server replied with a 1 kB payload. The rate of request and responses handled by the
server was measured at 5 s intervals. The average of 20 measurements was then used.
As shown in the figure, the rate scales linearly with the number of clients. The rate is also
remarkably stable: the relative standard deviation was well under 1%y for all measure-
ments. The only deviation from perfect scalability is observed at 9000 client connections.
However, that is caused by the bandwidth limitation rather than by the server hitting
a bottleneck: 9000 clients correspond to a payload bandwidth of 450 MB. Taking the
AsyncMsg, TCP, IP and Etherent overheads in account, that throughput roughly corres-
ponds to the saturation of the network links. The good performance comes at a price in
terms of CPU usage. As shown in the second plot in figure 3.16, the server uses as 78%
of the available CPU cycles. However, one must take into account that this synthetic
benchmark pushes the AsyncMsg library well beyond the requirements: the operating
point for the HLTSV-DCM communication is at 100 kHz, where the server has the much
lower CPU usage of 35%. The memory usage is proportional to the number of connec-
tions, and in this case it is generally negligible. Even with this difficult workload, the

AsyncMsg library leaves abundant processing power for the application logic.

The results for the DCM-Data Logger messaging pattern are shown in figure 3.17. In
this case, the clients were configured to send 1 MB messages at a fixed rate of 0.2 Hz, to
which the server replied with a 10 B payload. Also in this scenario the server scalability
is perfect until the bandwidth saturation is reached. As expected, with bigger messages
and a lower message rate, the server does not need as many CPU cycles as in the previ-
ous scenario. Indeed, even at the network saturation, the server handles the traffic with
a CPU utilisation of 15%. With big messages, the memory usage is more significant, but

not worrying. Indeed the server needs at least 1 MB per connection to receive the mes-

Chapter 3 The ATLAS experiment at the Large Hadron Collider

4x10°]

3x10°}

2x10°}

Measured message rate (Hz)

10°}
0;1 T A T e ‘
0 2000 4000 6000 8000
Number of connections
100 r——— T 71 T T ——— — 35
| —— CPU usage
—&— Memory usage
i 30
L 125 m
€ 6o / s
g =4 B
1 =}
3 // 15 2
g 40 //' =
O (7]
207 ~/’/. /./l/ |
F 5
0

4000 6000 8000
Number of connections

0 2000

Figure 3.16 Benchmark results for the HLTSV-DCM messaging pattern.

3.8 The ATLAS Data-Acquisition messaging system

sage. Therefore it is not surprising that the memory usage is roughly 1 MB multiplied

by the number of connections.

The measurements presented prove that the AsyncMsg library is suitable for use as the
messaging layer of the ATLAS DAQ system, and that it will not represent a bottleneck

for future increases in performance requirements.

70 Chapter 3 The ATLAS experiment at the Large Hadron Collider

L D
400
N
z
£ 300
= |
()]
IS
[2)
w |
g 200
< |
g
=]
1]
@ |
2 100
0 | | | ! | | | L | ! | ! | ! | L | ! ! ! |
0 500 1000 1500 2000 2500
Number of connections
010 A B B B B N
| | —m— cpPu usage /“ |
| —&— Memory usage |
80 72000
z L E
S ol 1500 <
o 4 1 g
()] [i
S B
[%2] 1 =}
> 11000
A <)
5 © g
(V]
=
20 500
07' R V)
0 500 1000 1500 2000 2500

Number of connections

Figure 3.17 Benchmark results for the DCM-Data Logger messaging pattern.

3.8 The ATLAS Data-Acquisition messaging system

71

Static traffic shaping for current
data-acquisition systems

The effects of the incast traffic pattern described in general terms in chapter 2 are shown
here in action, using measurements performed on the current data-acquisition system of
the ATLAS experiment, introduced in the previous chapter. The measurements quantify
the impact of incast on the system’s performance metrics in with different network loads
and with two different switch buffer layouts. A simple application-layer traffic-shaping
algorithm is shown to be effective in mitigating the incast effect and thus increasing the

network usage efficiency.

4.1 Performance issues in data-acquisition networks

As explained in section 2.1.1, the throughput of a data-acquisition system is crucial to
the performance of the experiment as a whole. If the throughput is insufficient, interest-
ing and valuable experimental data is lost. Worse, if the data losses are caused by the
experiment generating more data because it is observing a particular phenomenon, a
bias in the acquired data set is introduced. Depending on the nature of the experiment

this might make all of the acquired data untrustworthy.

Data-acquisition throughput essentially depends on two quantities: the data-processing
and data-collection times. The data-processing time depends on the efficiency of al-
gorithms specific to the experiment and there is no generic approach to reducing it.
The data-collection time, instead, is largely determined by the effectiveness of the data-

acquisition infrastructure.

73

74

The typical data-acquisition traffic pattern is the bursty, many-to-one communication

described in section 2.1.2.

In the case of ATLAS, each of the HLT processing units operates exclusively on the
single event assigned to it, with the HLT selection proceeding iteratively starting from
the regions-of-interest identified by the Level-1, collecting data fragments increment-
ally as needed. A processing unit is blocked while it waits for the data fragments to be
collected, which means that the data-collection latency effectively translates to wasted
CPU time. ATLAS event data are striped over all the Readout Systems. As explained
in section 3.5 and section 3.7.2, each ROS is connected with point-to-point links (ROLs)
with RODs pushing data from a specific region of a specific sub-detector. On the other
hand, a single HLT processing unit analysing an event normally requests fragments
from multiple regions and multiple sub-detectors at the same time. Since the fragments
are already buffered there, the ROS response to a fragment request is almost immediate.
If multiple requests for fragments reach different Readout Systems at roughly the same
time (as is the case when fragments from multiple ROS nodes are requested together),
many nodes will start sending them at the same time to the same destination, thus cre-
ating instantaneous network congestion. In the ATLAS data-acquisition network this
can affect both the core, where packets with the same destination will arrive at roughly
the same time from multiple ROS links, and the rack switches, where a burst of pack-
ets arriving from the high speed link from the core needs to be sent over a slower link
to the destination HLT node (see figure 4.1). This instantaneous congestion can lead
to occurrences of the incast pathology, when all the packets in some of the bursts are
discarded due to buffer overflows. As discussed in section 2.3, the discarded packets
will only be retransmitted after their TCP retransmission timeout (RTO) expires. Given
that the RTO has a default minimum of 200 ms on Linux, and that the average per-event
processing time in ATLAS is of the order of 100 ms, waiting for just one TCP RTO can

potentially triple the time it takes to collect and process an event!

4.2 Evaluation of the impact of the incast pathology on
data-acquisition performance

The following sections present a series of measurements which demonstrate the impact

of the incast pathology in a data-acquisition network.

Detecting packet drops in an Ethernet network is a relatively simple task: most switch

Chapter 4 Static traffic shaping for current data-acquisition systems

From Readout System

V4

@ Funneling

E? Bandwidth

—— [ISWieANY mismatch
1 Gbps

10 Gbps To HLT node

Figure 4.1 Visualization of the potential network congestion issues.

models publish cumulative counts of dropped packets per port via SNMP and the Linux
kernel provides the total number of packet retransmissions that have occurred in a TCP
connection. However, in real-world scenarios, the relationship between these counts
and the overall performance of the system under study is rather complex, making it
difficult to analyse the problem in detail.

A more fruitful approach is to generate synthetic traffic patterns, which can be tightly
controlled and are known in advance. This way, it is possible to disregard packet drop
counts and instead study the consequences of incast on the main performance metric of
interest: the data-collection time.

4.2.1 Measurement set-up

The measurements were performed using some of the hardware available in the ATLAS
Data-Acquisition system. At the time of these tests, the infrastructure was still under
consolidation, so the network layout was slightly different from the one described in
section 3.7.6. In particular, Readout Systems were not directly connected with 10 Gb/s
Ethernet links to the core routers. Instead, they were connected with 1 Gb/s Ethernet

links to an intermediate aggregation switch with a 10 Gb/s Ethernet uplink to each core.

The ROS uplinks were kept under-subscribed so that no congestion could appear in the

aggregation switch.

Given these constraints, the following test set-up, shown in Figure 4.2, was chosen:

4.2 Evaluation of the impact of the incast pathology on data-acquisition performance

75

ROS group (x 10)
ROS node (x 16)

10 Gbps

=

HLT.

\a'
—

HLT node (x 39)
HLT rack (x 1)

1 Gbps

Figure 4.2 Measurement set-up.

76 Chapter 4 Static traffic shaping for current data-acquisition systems

¢ 10 Readout System groups:
- Each group consists of 16 ROS nodes connected to one switch (total: 160).

- 12 event fragments with a constant size of 1.1 kB are served by each node
(total fragments: 1920, full event size: 2112 kB).

e 1 HLT rack:
— It consists of 39 PCs connected to one switch.
— Each PC hosts 24 HLT processing units (936 total).

This configuration was chosen because it provides a realistic model of the expected net-
work buffer usage in the final system topology. The fact that just one HLT rack is in
use instead of the ~50 racks of the complete system does not prejudice the usefulness of
this set-up: since Ethernet drops packets in case of network congestion, no head-of-line
blocking is possible and congestion does not propagate from switch to switch. There-
fore, in output-queued switches, flows directed to different output ports do not affect
each other. The obtained results should scale reliably with the higher number of HLT
racks in the complete system.

All PCs were running Scientific Linux 6.5. They are equipped with two Intel Xeon X5650
processors, 24 GB of RAM, and two Intel 82576 Ethernet network interfaces. The oper-
ating system’s network stack was kept in its default configuration.

The core routers are Brocade MLXe-32 [15] modular switches with 10 Gb/s line cards.
They use input-buffering with a peculiar implementation of switch-level virtual output
queuing: input ports are grouped in modules of 8 ports at most and each module main-
tains multiple, distinct queues to every output port on the router. As these routers are
geared towards Internet Service Providers, they are equipped with very deep buffers:
each module has a packet memory of 1.5 GB.

Different models of top-of-rack switches were tested. For clarity the results using two
representative models are presented here:

¢ Switch A (HP ProCurve 6600-48G-4XG [33]): a switch with 48 1 Gb/s ports and
four 10 Gb/s ports. Each 1 Gb/s port has an output queue limited to 786 kB. Each
10 Gb/s port has an output queue limited to 4.8 MB.

¢ Switch B (Brocade VDX 6740T-1G [16]): a switch with 48 1 Gb/s ports and two 40
Gb/s ports. The first 32 1 Gb/s share an input buffer of 12.6 MB. The remaining 16
1 Gb/s ports and the two 40 Gb/s ports share an input buffer of 12.6 MB. Each port

4.2 Evaluation of the impact of the incast pathology on data-acquisition performance

77

78

also has an input queue limit of up to 8 MB and an output queue limit of up to 8
MB.

Switch A represents the class of switches with a fixed amount of buffer space dedicated
to each port. Switch B represents the class of switches with a shared memory pool from
which each port can “borrow” buffer space as needed. The bulk of the data-collection
traffic enters the switch from the two 10 Gb/s uplinks from the core routers and exits
from the 1 Gb/s ports connected to a PC in the rack. As a consequence, for Switch A, the
parameter that limits the system’s performance is the 786 kB limit on the output queues
of the 1 Gb/s ports. For switch B, instead, the limiting parameter is the 12.6 MB input
buffer shared by the 40 Gb/s ports. The switches also reserve a portion of the buffers
for internal meta-data and for quality-of-service purposes. Therefore, the actual buffer

space available for normal priority packets is lower than the limits quoted above.
In these measurements, the synthetic traffic pattern used is as follows:

¢ Events are assigned by the HLT supervisor to HLT processing units at a configur-
able constant rate.

¢ The processing units immediately collect a configurable fraction of the event’s frag-
ments, process them for a fixed amount of time (100 ms in these measurements),
and ask for a new assignment.

The total data-collection throughput is therefore given by
throughput = HLTSV rate x DC size
where the size of each data collection is

DC size = collected fraction x event size

By varying the number of collected fragments and adjusting the HLTSV rate so as to
keep their product unchanged, one can vary the traffic pattern while keeping the through-
put constant.

For both top-of-rack switch models two scenarios were tested:

* Medium throughput: the HLTSV rate x collected f raction product was chosen to
give a data-collection throughput of around 1.06 GB/s (8.45 Gb/s). Including the
overhead, the rack uplinks utilisation was 45%.

¢ High throughput: the HLTSV rate x collected f raction product was chosen to give

Chapter 4 Static traffic shaping for current data-acquisition systems

a data-collection throughput of around 2.11 GB/s (16.9 Gb/s). Including the over-

head, the rack uplinks utilisation was 90%.

4.2.2 Results

The effect of the varying traffic patterns on the data-collection time is shown in figure 4.3

for switch A and figure 4.4 for switch B.
In ideal conditions, the data-collection time would be determined by the HLTPU-ROS

round-trip time (RTT) and the data transmission delay:

DC size

DC time = RTT + W

The RTT here is the sum of two components: the actual node-to-node RTT, and the ROS
application response time. In the test system this sum is 400 us on average. For accuracy,
the data-collection size used here must take into account the overhead of the TCP, IP,
and Ethernet encapsulations, shown in section 2.2.2 to be about 5.3% of the application-
level data-collection size. Given that the bandwidth of the slowest link in the path is
1 Gb/s, the ideal data-collection time should be between 1.5 ms for the smallest data-
collection size and 18.2 ms for collecting the full event. The measurements however
reveal that these predictions are only valid for small data-collection sizes. Over a certain
size threshold, that depends on the amount of traffic and on the switch model being
used, the actual data-collection time is bigger than the ideal time by more than one
order of magnitude. This is caused by the incast phenomenon: the Readout Systems
inject fragments in bursts. The size of the burst is obviously the data-collection size. In
this test system, the huge buffers in the core routers are sufficient to absorb any kind
of congestion that might arise from having multiple inputs sending to a single output
port in the router. In the HLT top-of-rack switches, however, buffering space is more
limited. The data bursts enter the switch at a combined 20 Gb/s, but they exit through
a single 1 Gb/s port connected to the requesting HLT node. Once the switch buffers are
full, packets corresponding to entire transmissions from a ROS will be all dropped, thus
triggering the incast pathology as explained in section 2.3. This effect is clearly shown
in figure 4.3a and figure 4.3b.

In switch A, each output port has its own dedicated buffer. If the burst size is larger
than the buffer, the incast pathology will always be triggered. Indeed, the onset point
of incast does not depend on the total amount of traffic going through the switch, as

shown by the similarity between figure 4.3a and figure 4.3b.

4.2 Evaluation of the impact of the incast pathology on data-acquisition performance

79

80

1000!\\\‘\\\\‘\\\\[\\\\‘\\\\
| | —e— Switch: A; Throughput: 1.06 GB/s ‘

EE
O S At Lo
| :

J

200~ J T

07‘ -~ R P I L L L L L
250 500 750 1000 1250 1500 1750 2000

Data-collection size (kB)

F

Data-collection time (ms)

@
1000 [T T T T T T T T T T T
| | —e— switch:A; Throughput: 2.12 GB/s ‘ —(w :
800~ T
™ L - il
o |
o L 1
£ 600 «
s | Lo]
S L | i
S 400]
Q L - 4
: T
c Lo
@) r r] 1
200~ _ J

OA\A\\\\\——'*r\\\\\\\\\\\\\\\\\\\\\\
250 500 750 1000 1250 1500 1750 2000

Data-collection size (kB)
(b)

Figure 4.3 Data-collection time as a function of the data-collection size, using
switch A, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.
The test conditions are detailed in section 4.2.1. The bullets represent
the average values. The horizontal box lines represent the first quartile,
the median, and the third quartile. The box whiskers represent the first
and the 99th percentile.

Chapter 4 Static traffic shaping for current data-acquisition systems

1000!\\\‘\\\\‘\\\\[\\\\‘\\\\
| | —e— Sswitch: B; Throughput: 1.06 GB/s T

T

800

600

400 i 7

R

I il ad
200 By T

Pl AT

250 500 750 1000 1250 1500 1750 2000
Data-collection size (kB)

Data-collection time (ms)
\
|

@
1000 [T T T T T T T T T
| | —e— switch: B; Throughput: 2.12 GB/s ‘ :
800 - -+ .
’('n\ L 4
é 1
o L 1
£ 600 | T
s | of J]
3] . L
@ i o] 1
S 400 T
3] L 1
©
g | il :
200 et bl
0 7‘ =S L1 I\ L L r

250 500 750 1000 1250 1500 1750 2000
Data-collection size (kB)

(b)

Figure 4.4 Data-collection time as a function of the data-collection size, using

4.2

switch B, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.

The test conditions are detailed in section 4.2.1. The bullets represent
the average values. The horizontal box lines represent the first quartile,
the median, and the third quartile. The box whiskers represent the first
and the 99th percentile.

Evaluation of the impact of the incast pathology on data-acquisition performance

81

025+ ———
R [Switch: A; Throughput: 1.06 GB/s
0.2
c 0,15+ =
il
2 i
8 1
I i
0,1 -
0,05
0 200 400 600 800 1000
Data collection time (ms)
(a)
0,2 ———
: __ [Switch: A; Throughput: 2.11 GB/s
0,15
c i
kel 1
‘8 0,1
w]
0,05
0 200 400 600 800 1000
Data collection time (ms)
(b)

Figure 4.5 Distribution of data-collection times for a data-collection size of 792 kB,
using switch A, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12
GB/s.

82 Chapter 4 Static traffic shaping for current data-acquisition systems

0,125 - ———
[Switch: A; Throughput: 1.06 GB/s
0,1
[
il L —
‘6 — |
s
LL) -
0,05 -
0,025 | B B
0] —— i ’—I_'_‘—\ ;
0 200 400 600 800 1000
Data collection time (ms)
(a)
0,125 ———
L [Switch: A; Throughput: 2.11 GB/s
0,1
C
il |
° L
E] - | —
0,05 B
0,025 |
0] m —’_’_W R
0 200 400 600 800 1000

Data collection time (ms)
(b)

Figure 4.6 Distribution of data-collection times for a data-collection size of 1320
kB, using switch A, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12
GB/s.

4.2 Evaluation of the impact of the incast pathology on data-acquisition performance

1 L L L L L L L L L Il L L L Il
| [Switch: B; Throughput: 1.06 GB/s
0,8
< 06
2] r
*6' L
o | |
LL
0,4
0,2
0 200 400 600 800 1000
Data collection time (ms)
(a)
0,127““““‘1“‘l
p [Switch: B; Throughput: 2.11 GB/s
0,1
0,08
_ 1
R — | M -
‘8 0,06]]
AN 1 ||
0,04- -
_W
, T T e
0 200 400 600 800 1000
Data collection time (ms)
(b)

Figure 4.7 Distribution of data-collection times for a data-collection size of 792 kB,
using switch B, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12
GB/s.

84 Chapter 4 Static traffic shaping for current data-acquisition systems

| I I I |

0,15

[Switch: B; Throughput: 1.06 GB/s

0,125

0,11

Fraction

0,05

0,025

0 200 400 600 800 1000
Data collection time (ms)

(a)

| I I I |

0,06

[Switch: B; Throughput: 2.11 GB/s

0,05 -

0,04 e =

0,03 M

Fraction

0,02 =]

i Ing

0 200 400 600 800 1000
Data collection time (ms)

(b)

Figure 4.8 Distribution of data-collection times for a data-collection size of 1320
kB, using switch B, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12
GB/s.

4.2 Evaluation of the impact of the incast pathology on data-acquisition performance

86

In switch B, instead, the buffer is one order of magnitude larger than the maximum
burst size. However, it is shared among many output ports. The average buffer occu-
pancy grows with the amount of traffic passing through the switch. As a consequence,
the burst size that the buffer can handle shrinks, explaining the difference between fig-
ure 4.4a and figure 4.4b: at lower throughput, bigger bursts are necessary to cause incast
to appear. At higher throughput, the incast onset point corresponds to a significantly
lower data-collection size.

The effect of incast can be clearly seen examining the distributions of the data-collection
times at fixed data-collection sizes. Figures 4.5 and 4.6 show the data-collection times
measured using switch A for a data-collection size of 792 kB and 1320 kB respectively.
Not coincidentally, the three peaks in the distributions roughly correspond to 200, 400
and 600 ms, i.e. to multiples of the minimum TCP retransmission time-out on Linux.
With a data-collection size of 792 kB, most data-collections are affected by at least one re-
transmission. With a bigger data-collection burst of 1320 kB, a non-insignificant fraction
of the data-collections is affected by multiple retransmissions. This means that the first
batch of retransmissions is itself subject to enough packet drops to trigger incast again.
In some cases even the second and third retransmissions are affected. Figures 4.7 and
4.8 show the same data measured using switch B. In this case, when the throughput and
data-collection size are low enough, no data-collections are affected by retransmissions.
However, increasing the throughput (and hence the average occupancy of the shared
switch buffer) or the data-collection size causes enough packets to be dropped and the
incast pathology appears.

4.3 Request-side traffic shaping

The incast problem is well studied in literature, with many different solutions being
proposed (see section 2.4). In general the solutions focus on preventing the senders
from sending too many packets onto a congested path, so that the switches will not
have to resort to dropping an entire burst of packets. This is usually achieved with spe-
cial hardware support (e.g. switches with hardware flow control or explicit congestion
notification) possibly in conjunction with alterations of the TCP implementation. Al-
ternatively, solutions tailored to specific traffic patterns, such as the one described here,

can be developed, with the goal of saving on hardware cost and complexity.

Chapter 4 Static traffic shaping for current data-acquisition systems

4.3.1 Incast mitigation

A prime example of a solution to the incast problem that is easily applicable to data-
acquisition systems is application-level traffic shaping. Incast arises from the fact that
multiple sources send data at the same time to a destination, without coordinating
among themselves. In a data-acquisition system however, the destination is normally
aware of the fact that it is requesting data from multiple sources together. By spreading
the requests over time, it can therefore limit the number of simultaneous data bursts in
response. Obviously such a mechanism imposes a trade-off: excessive spreading of the
requests can increase the data-collection time by unnecessarily delaying the requests for

data, whereas insufficient smoothing will not eliminate packet drops.

In the specific case of ATLAS, the Data-Collection Manager application oversees the
traffic in and out of every worker node. No other program on the node has access to
the data network. Therefore, the DCM, thanks to its privileged position, can effectively
limit the maximum amount of concurrent data requests to the Readout System. This
is implemented with a credit-based traffic shaping algorithm [24]. Its basic rules are as

follows.

¢ Each DCM has a fixed number of credits available. All the HLT processing units

on its node share these credits.

¢ Each data request from a processing unit to a ROS consumes as many credits as

the number of data fragments it asks for.
¢ Each response from a ROS returns the credits used by the corresponding request.

e If all available credits are used, further requests are blocked until the necessary

credits become available.

The number of fragments in a request gives a rough estimation of the size of the cor-
responding response. Therefore, this algorithm effectively limits the maximum burst
size of data transfers directed to the same HLT node. However, it relies on the assump-
tions that all event fragments are similar in size, and that this size is known beforehand.
These assumptions are reasonable for ATLAS under normal operating conditions, but
not necessarily for other systems or scenarios. However, the algorithm can easily be

extended to cover more use cases.

4.3 Request-side traffic shaping

87

88

4.3.2 Effectiveness evaluation

The effectiveness of the traffic shaping algorithm outlined in the previous section was
evaluated using the test set-up described in section 4.2.1. The same two different top-
of-rack switches were used. The results presented here correspond to the following

synthetic traffic pattern:

¢ Events are assigned by the HLT supervisor to HLT processing units at a configur-
able constant rate.

¢ The processing units immediately collect all of the event’s fragments, process them
for a fixed amount of time, and ask for a new assignment.

In other terms this is the traffic pattern that corresponds to the data points in section 4.2.1
with the largest data-collection size. Obviously this pattern is the harshest in terms of
generated traffic bursts: since the data fragments corresponding to an event are collec-
ted all at once, the maximum burst size is equal to the event size. On the other hand,
the fixed-size fragments enable the simple traffic-shaping algorithm to operate without
inefficiencies caused by it lacking knowledge of the expected size of the responses. In
analogy with the tests section 4.2.1, many different throughput levels were tested: the
results reported here correspond to HLT supervisor event assignment rates of 500 Hz
and 1000 Hz, giving a rack uplink utilisation of 45% and 90% respectively.

As explained in the previous section, by varying the amount of traffic shaping credits as-
signed to the Data-Collection Managers, one can control the maximum size of the burst
of data sent by the Readout Systems. The results of such a scan are shown in figure 4.9
for switch A and figure 4.10 for switch B. The total data-collection time per event is in-
fluenced both by the network conditions and by the traffic-shaping mechanism. With
too few traffic-shaping credits available (i.e. with a small maximum allowed burst size),
the data-collection time is larger due to data-collection inefficiency: the HLT nodes can-
not fully utilise the network bandwidth. This is analogous to a TCP connection with a
congestion window smaller than the bandwidth-delay product. With too many traffic-
shaping credits the algorithm fails to prevent overflowing the buffers of the top-of-rack
switch, triggering the TCP incast pathology.

Using top-of-rack switch A the minimum data-collection latency is found with a traffic
shaping limiting the maximum burst size to 528 kB (not including overhead). As ex-
pected, this value is close to the switch’s maximum output buffer size of 786 kB and ex-

ceeding it triggers incast, regardless of the total throughput handled by the rack. Since

Chapter 4 Static traffic shaping for current data-acquisition systems

top-of-rack switch B is instead equipped with a shared buffer, the optimal traffic shaping
configuration is not so clearly defined, as it depends on the total throughput as well.

With fixed-size fragments, the traffic-shaping algorithm effectively behaves in the same
way as a window-based receiver-side congestion control. As such, its optimal window

size can be determined as follows:

window _ RTT block
pandwidth T bandwidth

where bandwidth is the data rate of the slowest link in the path, RTT is the application-
to-application round-trip time, and block is the smallest amount of data that is transmit-
ted. In this case, given that each ROS serves 12 fragments of 1.1 kB each and that the
traffic-shaping algorithm does not fragment requests to a ROS, block is equal to 13.2 kB.
As already mentioned, the measured average RTT in the test system is 400 us and the
bottleneck link runs at 1 Gb/s, yielding an optimal window size of 88.2 kB. The meas-
urements, however, paint a different picture: the optimal working point corresponds
to a much larger window. This is most likely caused by a suboptimal event assign-
ment policy. Due to performance constraints, the HLT supervisor assigns events to
HLT processing units on a first-come first-served (FCES) basis, i.e. events are assigned
to processing units in order of arrival of their assignment requests. It is therefore pos-
sible that multiple processing units running on the same node request data at the same
time, thus competing for the same pool of traffic-shaping credits. This is further con-
firmed by the observation that the data-collection time increases with the throughput:
higher throughput means higher assignment rate, which in turn increases the probabil-
ity of consecutive event assignments to the same node. Indeed, as shown in figure 4.11
and figure 4.12, the data-collection time can only reach its minimum at extremely low

throughput, with HLT nodes essentially idle.

In conclusion, while the traffic-shaping algorithm is certainly effective in mitigating the
effects of the incast pathology, it does not allow to recover the full ideal performance of
the system. For that to happen, further improvements are necessary.

4.3 Request-side traffic shaping

89

90

400 — T T 1 ‘ T T T T T
| | —e— DC size: 2.1 MB; Switch: A; Throughput: 1.06 GB/s L/]
» 300]
£ L i
p i
£ .
- L L
2 200
(8] L 4
2
S i
CT) 4
g [_— -
8 100}
100 1000
Traffic shaping: maximum burst size (kB)
(@)
400 1~ T T 1 T T T T T 1171 tj
: —— DC size: 2.1 MB; Switch: A; Throughput: 2.11 GB/s ‘ :
» 300
£ L i
P i
£ g .
- L i
2 2001
(8] L 4
@ =2
g Y :
@
g L i
0O 100
100 1000
Traffic shaping: maximum burst size (kB)
(b)

Figure 4.9 Data-collection time as a function of the maximum burst size allowed
by the traffic shaping algorithm described in section 4.3.1, using switch
A, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s. The
bullets represent the average values. The horizontal box lines represent
the first quartile, the median, and the third quartile. The box whiskers
represent the first and the 99th percentile.

Chapter 4 Static traffic shaping for current data-acquisition systems

400 — T T 1 T T T T T 1711
| | —e— DC size: 2.1 MB; Switch: B; Throughput: 1.06 GB/s _]
» 300 I
E I
Q T il
£)
c [-
2 200 L
[S] L ol
2
= i
(T) ol
g L i
8 100} 1
0 I TR I I I I S N |]
100 1000
Traffic shaping: maximum burst size (kB)
(a)
400 T~ T T 1 T T T T T 1171
| | —e— DC size: 2.1 MB; Switch: B; Throughput: 2.11 GB/s ‘ 7:
» 300 L
E B I
o i
E | L
S 200; T T I T T |
3] | i
2
5 i
[8) 4
@
g L : i
0O 100+ .
0 I T I I I T R |]
100 1000
Traffic shaping: maximum burst size (kB)
(b)

Figure 4.10 Data-collection time as a function of the maximum burst size allowed
by the traffic shaping algorithm described in section 4.3.1, using
switch B, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.
The bullets represent the average values. The horizontal box lines rep-
resent the first quartile, the median, and the third quartile. The box
whiskers represent the first and the 99th percentile.

4.3 Request-side traffic shaping 91

100\ T

/(7)\ L 4
E | w |
() r L /’! Bl
E 60 o
% I I /
Ro)
5 40 .
Q L
@
= L
D .

20 o€ L .

: —&— Max. burst size: 528 kB; Switch: A ‘
0 | | | | | | | | | | | | | | | | |
0 500 1000 1500 2000
Throughput (MB/s)

Figure 4.11 Data-collection time as a function of the rack throughput, using switch
A, with a maximum burst size limited by traffic shaping to 528 kB.

100‘ J

’(/? L
E I
) r L N
E 60 / Is
= I | |
S L]
S =] “ /
Q
S 40 T i o
Q L
] L]
g I
D |-

20 oo L . T I

—&— Max. burst size: 528 kB; Switch: B ‘

0 P I T I R I I I I
0 500 1000 1500 2000

Throughput (MB/s)

!

Figure 4.12 Data-collection time as a function of the rack throughput, using switch
B, with a maximum burst size limited by traffic shaping to 528 kB.

92 Chapter 4 Static traffic shaping for current data-acquisition systems

Simulation model

The kind of measurements presented in chapter 4 can reveal a great deal of informa-
tion on the behaviour of the data-acquisition system. However, they are not a practical
method for further research. In general, data-acquisition systems are mission-critical
components of scientific experiments. Therefore, a systematic study of their perform-
ance envelope is often impeded by operational constraints: once the design of the sys-
tems is finalised, the systems are rarely available for performance measurements and

the opportunities of performing hardware or software modifications are limited.

A simulation model can instead be a worthwhile alternative, assuming that it is accur-
ate enough to reliably reproduce the key traits of the system. The following sections
describe a model that aims at reproducing the measurements shown in chapter 4. After
establishing its accuracy, the simulation can be used to explore various factors influen-

cing the performance of the data collection.

5.1 Model development

The simulation presented in this chapter is based on the OMNeT++ discrete event sim-
ulation' framework [64]. OMNeT++ is free for non-commercial use and its source code
is available. It was chosen for two main reasons: its wide acceptance in the academic
community and its ease of use for the purpose of modelling different types of networks,
such as computer networks, wireless networks, sensor networks, interconnection net-
works of High-Performance Computing (HPC) systems, or interconnection networks

supporting massive-storage or big-data systems [36, 41, 19, 68, 47].

n this particular sentence, the word “event” refers to simulation events. To avoid confusion, throughout
the rest of the thesis, “event” will only be used as in chapter 3, i.e., to mean “collision event”.

93

94

In OMNeT++ simulations are composed of modules, defined in the declarative NED
language, which communicate exchanging messages via module-to-module channels.
So-called simple modules are the active components of the simulation and are imple-
mented in C++, leveraging the class hierarchy provided by the simulation framework.
Modules can be grouped together to form compound modules and networks. The de-
velopment of network simulations is aided by built-in support for physical channels,

with latency, transmission delay, and message loss properties.

The model described here makes use of the INET Framework for OMNeT++ [36]. INET
is a library of protocol models which includes detailed implementations of all network
layers, from the data-link layer upwards. In particular, its models of the Ethernet and

IP protocols are employed.

5.1.1 Hosts

Data-acquisition application models are implemented on top of the standard INET host
model which includes a complete network stack, from the transport layer down to the

physical layer, as shown for example in figure 5.1.

The transport layer model, i.e. the TCP model, has obviously the biggest influence on the
overall accuracy of the simulation. It is unfortunately also the most complex. As a con-
sequence, similarly to other protocol model libraries, only simplified versions of the “tra-
ditional” TCP variants (Tahoe, Reno, Vegas and New Reno) are implemented natively
in INET [59]. A useful feature of INET's TCP models is that they support a data transfer
mode that preserves application-level message boundaries: for example, if an applica-
tion sends a 10 kB message, the receiver application will receive the same message, after
TCP has completely finished simulating the transmission of 10 kB over the connection.
This greatly simplifies the modelling of message-based applications, like those in the
ATLAS data-acquisition software. Unfortunately, INET's TCP implementations are not
free of bugs and, more importantly, no implementation of the TCP flavour actually used
in Linux, TCP CUBIC [32], is available. However, INET can integrate with the Network
Simulation Cradle (NSC) [39], a wrapper for the network stacks of real-world operat-
ing systems. It is thus possible to use a real-world TCP implementation in the network
simulator. In particular, NSC supports the TCP stack from Linux 2.6.26, which is used
in this simulation. NSC does not preserve application-level message boundaries: if an
application sends a message that is bigger than TCP’s maximum segment size, the re-

ceiver application will not receive a single message, but rather multiple TCP segments.

Chapter 5 Simulation model

It is then up to the receiver application to re-assemble the original message. Moreover,
the higher accuracy of NSC comes at the price of significantly higher computational
cost. Therefore, INET’s simplified TCP models were used during the development of
the simulation. They were then replaced by NSC as the model matured.

The network layer model is composed by INET's fairly complete implementations of the
IP, ICMP and ARP protocols. This simulation does not require multicast transmission

or advanced routing, so just a small part of the network-layer models is actually needed.

The data-link layer model is subdivided, following the Ethernet standard, into an upper
layer that handles the encapsulation of packets into Ethernet frames, and a lower media
access control (MAC) layer that schedules the transmission of data on the physical link.
Given that all the links in the simulation are point-to-point and full-duplex, the MAC

layer complexity can be kept at a minimum.

No performance model for the network stack is implemented. Packet processing times
are assumed to be small enough that no significant queuing effects appear. The applica-
tion models are instead charged with including some additional delay in their response
times to simulate the host latency. This is a justifiable simplification: all the hosts in
the real systems are powerful enough to handle a throughput of several Gb/s without

performance limitations.

5.1.2 Applications

In order to simulate the test system presented in section 4.2.1, four applications need to
be modelled: the HLT supervisor, the Readout System application, the Data-Collection
Manager, and the HLT processing unit.

In the real system, the HLT supervisor, which assigns events to processing units, and
the Readout System applications, which serve event data fragments, are data-driven ap-
plications: their behaviour is dependent on what phenomena the experiment is meas-
uring and what events the Level-1 trigger is selecting. In principle, this would require
models of those applications to follow traces recorded on the real system. However,
this is not necessary when trying to reproduce the synthetic traffic patterns described in
section 4.2.1. The Readout System becomes a trivial server application, responding to
fragment requests with configurable delay and response size. The supervisor instead is
reduced to a periodic scheduler. The processing units send a message to the supervisor

when they are available, i.e. when they are ready to start processing another event. The

5.1 Model development

95

96

Processing

(=) unit

Data-collection ﬁ
manager .
= Processing

Application messages, unit

.

TCP

TCP segments liil ARP
(A tV
P04
¥
IP datagrams ICMP
g
Ethernet

encapsulation —

Queue @ Ethernet frames
Ethernet

MAC 053

Bits

Network

Figure 5.1 Example of a model a host: HLT working node with 2 processing units.

supervisor stores this information and uses it to assign events to processing units at a
configurable global rate, by sending assignment messages.

OMNeT++ models are implemented using the C++ programming language. Since the
same language is used throughout the ATLAS data-acquisition software, the application-
level code that is relevant to the simulation model can be ported to the simulation en-
vironment with minimal changes. This ensures a bug-for-bug compatible reproduction
of the applications’” behaviour within the model. This approach is used for modelling
the processing units, which generate the data requests for an event, and the per-node
data-collection managers, which act as proxies between the node’s processing units and
the readout systems. In particular, a processing unit can simulate per-event iterative col-
lection and processing of data: after it receives an event assignment, it can request data
from the Readout System with a configurable pattern, emulate processing by waiting for
a configurable amount of time, and repeat this process several times before considering
the event fully processed and asking for another one from the supervisor. Just like in
the real system, the processing units running on a HLT worker node do not interface dir-
ectly with the TCP module: their communications are mediated by the Data-Collection

Manager. Its most relevant functions in the context of this model are: the mapping of

Chapter 5 Simulation model

each data request from the HLT processing units to messages to multiple ROS nodes

and the enforcement of the traffic-shaping algorithm described in section 4.3.1.

5.1.3 Network switches

For the purposes of this simulation, the most relevant aspects of the network hardware
are packet buffering and queuing. The internal architecture of the switches is not mod-
elled in detail. It is assumed that the switch speedup is high enough to prevent input
head-of-line blocking, and to make the packetisation delay of the switch cells negligible.
This is obviously an oversimplification with respect to the actual architecture of a switch.
Unfortunately, Ethernet switch manufacturers divulge very few details on the actual
architecture of their products, so a more sophisticated model would involve a huge
amount of guesswork. Nevertheless, some mitigating factors reduce the impact of this
oversimplification. First of all, the system being modelled does not make use of quality-
of-service features: all packets have the same priority. As a consequence, a detailed
model of the switch arbitration mechanism would not have a significant effect on the
accuracy of the switch model. Moreover, a realistic model of the switch latency would
not significantly impact the overall simulation results: the most important performance
metric, the data-collection time, is dominated by the delays caused by packet drops and
retransmissions, which are several orders of magnitude larger than the typical switch

latency.

With the above assumptions, switches are modelled as follows. For each switch port,
an INET Ethernet MAC module acts as the interface between the physical transmis-
sion channel and the switch. It sends incoming frames to an ideal frame relay unit,
which maintains the switch’s MAC address table and instantaneously forwards frames
towards their destination port (or broadcasts them if the destination is not yet present in
the address table). One or more “packet droppers” intercept frames between the relay
unit and the switch output queues. These modules decide whether to forward or drop a
frame, depending on the total size of the packets stored in the queues that are connected
to their outputs, effectively defining the switch buffering scheme. Frames that are not
dropped are stored in the switch’s output queues, waiting for the Ethernet MAC to pull

them from the queue when the transmission channel is ready.

Two basic buffering schemes are considered: dedicated and shared. In the dedicated
buffers model, shown in figure 5.2a, there is a dropper for every output port, effectively

modelling tail-drop output queues. In the shared buffer model, shown in figure 5.2b, a

5.1 Model development

97

single dropper guards all the output ports, so packets are dropped when the the total
size of the queued packets reaches a set threshold. The two basic schemes can naturally
be extended to model more complex architectures, e.g. with buffer space limits both
on a per-switch basis and on a per-port basis, or with different groups of ports using

different buffer pools.

5.1.4 Complete model

The components described in the previous sections are assembled to create a model of
the test system described in section 4.2.1, with one significant difference. As explained
section 3.7.6, in the real system the two core routers are in an active-active redundant
configuration, with traffic equally distributed over the two in normal operating condi-
tions. This is possible because the core routers share some internal information, such as
forwarding tables, using a vendor-specific protocol, which is not easily reproducible in
the switch model described above. However, a closer look at the implementation of this
configuration in the real system enables to reproduce it in the simulation without addi-
tional effort. As already mentioned in section 3.7.6, hosts and switches connected to
both core routers use a hash of the packets’” data-link and network addresses to choose
to which core router the packets are sent. Therefore, the traffic between a given ROS
host and a given HLT worker node will always flow through the same core router. If
the configuration is balanced, roughly half of the ROS hosts will send data to the HLT
worker nodes via the first core router, while the other half will communicate via the
second router. Thus, the real system configuration can be approximated by splitting
each ROS group of 16 hosts into two groups of 8 hosts, with the first group connected to
just the first core router, and the second group connected to just the second core router.

Figure 5.3 shows the complete model.

5.1.5 Parameters

The model parameters are chosen with the goal of reproducing the measurements presen-
ted in chapter 4. Most parameters can simply be set to the same values of their counter-

parts in the real system, as described in section 4.2.1. These include:
¢ topology of nodes and network links (see figure 5.3),
¢ event fragment size (1.1 kB),

¢ number of event fragments (1920, each ROS node serves 12 fragments),

98 Chapter 5 Simulation model

¥ —(0y

ropper Queue Ethernet
MAC output
(¥ —{m(—{o»
Ethernet Dropper Queue Ethernet
MAC input MAC output
N e 2 s \ s ™)
»0 ¥ —{m(—0>
J \. J | . S | . J
Ethernet Dropper Queue Ethernet
MAC inp, MAC output
»0 ¥ —{m(—{0>
J \. J - J | . J
Ethernet Dropper Queue Ethernet
MAC input MAC output
@
G) s) e)
»0 m()l— 0>
ueue Ethernet
MAC output
m()— 0>
N p - J | J
Ethernet Queue Ethernet
MAC input x ’ MAC output
lay unit Droppe (e) f]
I 0>
. 7 & w
Queue Ethernet
MAC output
m(—{0>
Ethernet Queue Ethernet
MAC input MAC output
(b)

Figure 5.2 Models of output buffered switches with (a) dedicated per-port buffers
and (b) shared buffers.

5.1 Model development

ROS group (x 10) ROS group (x 10)
ROS node (x 8) ROS node (x 8)

10 Gbps Q ¢

=

> =4
e ——
\ /

\57'
—

1 Gbps

HLT

HLT node (x 39)
HLT rack (x 1)

Figure 5.3 Layout of the simulated system.

100 Chapter 5 Simulation model

e HLT supervisor event assignment rate (500 Hz and 1000 Hz for the results shown
here),

e HLT processing unit behaviour (full data collection followed by 100 ms of pro-

cessing time),
* configuration of the DCM traffic shaping algorithm.

Other parameters cannot be chosen a priori, and must be measured, either directly or

indirectly. These include:

¢ round-trip time between a data request sent by an HLT processing unit and the

corresponding response from a ROS application,
* size limits of switch queues.

The round-trip time is the sum of many components: application latency, node network
stack latency, and network latency, which cannot be easily measured independently.
However, the total application-to-application round-trip time can be measured directly
on an unloaded system. This results in an average time of 400 us, with a standard devi-
ation of 100 us. The actual size limits of switch queues are harder to determine: while
the total amount of packet buffer memory available on a switch is usually found in the
switch’s documentation, that figure alone is not sufficient to estimate the limits of packet
queues. Normally, a fraction of the packet buffer is reserved for quality-of-service pur-
poses (i.e. reserved for high-priority packets), so not all the advertised memory is actu-
ally usable by normal-priority packets. Moreover, the actual amount of memory used
by each packet while stored in the switch is also unknown: the packets traverse the
switch accompanied by some internal meta-data which is stored together with them
in the packet buffer. Therefore, the size limits of switch queues must be determined
indirectly, by analysing the switch behaviour under controlled conditions. The meas-
urements presented in chapter 4 are in fact taken under controlled conditions, so this
approach can be used without requiring additional ad-hoc measurements, as explained
in section 5.2.2.

5.1.6 Runtime

The observed simulation run-times are roughly proportional to the number of gener-
ated packets, and hence on the simulated data-collection throughput. Empirically, the
relation between simulated time t and simulation run-time T is approximately given by:
T = t-r/R, where r is the data-collection throughput, and R is a parameter that depends

5.1 Model development

101

102

on the CPU core running the simulation. As an example, R ~ 2 MB/s for an Intel Xeon
E5645 processor, and R = 1MB/s for an older Intel Xeon E5420 processor. This gives
run-times between 4 and 8 hours for simulating a configuration with a data-collection
bandwidth of ~2 GB/s for 30 s.

The component with the biggest impact on the run-time is the TCP model. Indeed, when
using INET’s simplified TCP models instead of the Linux TCP stack provided by NSC,
the run-time is reduced by ~75%.

5.2 Model validation

5.2.1 Goals

The model outlined in section 5.1 has some obvious approximations, the most important
ones being the simplified switch architecture and the lack of a performance model of the
nodes. Before the simulation is used to draw conclusions on scenarios that cannot easily
be tested in practice, it is necessary to validate the model against the known behaviour

of the system.

As explained in section 2.1.1, the key application performance metric is the average
data-collection time per event. The measurements described in section 4.2.2 demon-
strate that the data-collection time is dramatically affected by the occurrence of the TCP
incast pathology, so much so that, without countermeasures, the time spent transferring
event data can become bigger than the time needed to process that event. The aim of the
simulation model is to be a useful tool in exploring new ways to improve the perform-
ance of data-acquisition systems. Therefore, two features of the measurements need to

be reproduced with particular accuracy:

¢ the impact on the data-collection times of the incast-avoidance mechanism (i.e. the

traffic shaping algorithm described in section 4.3.1),
¢ the conditions that trigger the incast phenomenon.

The focus of this section is on comparing the measured data presented in section 4.3.2,

which includes both features mentioned above, with the simulated results.

Chapter 5 Simulation model

5.2.2 Analysis and comparison of measured and simulated results

The average measured and simulated data-collection times are shown in figure 5.4 for
Switch A, and in figure 5.4 for Switch B. As usual, both the “medium throughput” (1.06
GB/s: 45% rack uplinks utilisation) and “high throughput” (2.11 GB/s: 90% rack uplink
utilisation) scenarios are shown.

The model of the traffic-shaping algorithm benefits from the code sharing with its actual
implementation. As a consequence, the simulation is particularly accurate in the region
of the parameter space where the data-collection time is more heavily influenced by the
traffic-shaping algorithm, i.e. for maximum burst sizes lower or equal to the value that

minimises the data-collection latency.

The burst size threshold over which the incast pathology is triggered is obviously heav-
ily dependent on the sizes of the switch buffers, which, as explained above, cannot be
known with absolute certainty. Therefore, the results corresponding to two different
simulated buffer sizes are shown?. The higher size corresponds to the manufacturer-
specified buffer size, without taking into account that a fraction of it is used for purposes
other than storing packets. The lower size corresponds to the value that yields the best
reproduction of the distribution of the data-collection times when the traffic-shaping al-
gorithm is completely disabled (i.e. when the data-collection time is dominated by the
behaviour of the switches and of TCP). As expected, with the higher buffer sizes, the
simulated incast thresholds are close to but larger than the measured ones. With the
lower buffer sizes, instead, the incast thresholds are accurately reproduced.

Beyond the incast threshold, the data-collection latency is determined by a complex
interplay between the traffic shaping algorithm and the TCP retransmission mechan-
ism. Unsurprisingly, the simulation loses accuracy in this region. Nevertheless, it still
manages to reproduce the qualitative behaviour of the system. In general, reproducing
the exact values of the data-collection time in this region is not particularly important:
the interest of perfectly reproducing the pathological combination of ineffective traffic-
shaping and TCP incast is limited. Correctly predicting the conditions under which this
pathological combination occurs is a more valuable goal.

The data presented so far demonstrates that the simulation can reproduce the main per-
formance metric of a data-acquisition system in terms of average values. The accuracy
of the model can be further confirmed comparing the distributions of the data-collection

2Note that in the case of Switch A, the buffer size refers to the buffer on each individual port; in the case
of Switch B, the buffer size refers to the total amount of memory shared by all switch ports.

5.2 Model validation

103

40077
| —&— Measurement
—#— Simulation; Buffer size: 524 kB
—<@— Simulation; Buffer size: 786 kB /
w 300
(O]
£ ‘
c r /,’
2 200 f
o L /
g /
3 ¢
8 L /
fﬁ //
QO 100+
| w‘
O ! L ! L
100 1000
Traffic shaping: maximum burst size (kB)
(@
40071 T
| —@— Measurement
—#— Simulation; Buffer size: 524 kB
—@— Simulation; Buffer size: 786 kB
» 300
é L
(]
E
c r /
2 200 /
o L /
Q /
S /
o ®
g | /
© /
0 100 ;
L ‘/
0 i Lo 1 Lo
100 1000
Traffic shaping: maximum burst size (kB)

(b)

Figure 5.4 Comparison of measured and simulated average data-collection times
as a function of the maximum burst size allowed by the traffic shap-
ing algorithm described in section 4.3.1, using switch A, at a constant
bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.

104

Chapter 5 Simulation model

40077
| | —e— Measurement :
—#— Simulation; Buffer size: 9.4 MB
—<@— Simulation; Buffer size: 12.6 MB 1
w 300
é L
(0]
£
- L
2 200
o L
§o]
Ie)
Q
8 L
8 100
L \‘\\' 4
0 I | L | | | | I R | |
100 1000
Traffic shaping: maximum burst size (kB)
(@
40071 Tl
| —&— Measurement]
—#— Simulation; Buffer size: 9.4 MB
—<@— Simulation; Buffer size: 12.6 MB
» 300
é L
(]
£
- L
2 200
o L 1
Q
S 1
o 1
8 i]
]
a 100 /
,,,,777;777'77 ’// i
0 i Lo 1 1 1 1 1 1 Lo
100 1000
Traffic shaping: maximum burst size (kB)

(b)

Figure 5.5 Comparison of measured and simulated average data-collection times
as a function of the maximum burst size allowed by the traffic shap-
ing algorithm described in section 4.3.1, using switch B, at a constant
bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.

5.2 Model validation 105

106

times, rather than just their mean values. For Switch A, this comparison is shown in fig-
ure 5.6 in the “medium throughput” scenario and in figure 5.7 in the “high throughput”
scenario. The comparisons are shown for Switch B in figure 5.8 and figure 5.9. Three
settings of the traffic-shaping algorithm are shown in each figure: with a very small
maximum burst size (52.8 kB), with a maximum burst size just below the lowest incast
threshold of all scenarios (528 kB), and with no traffic-shaping at all.

The simulation-generated distributions are generally in good agreement with the meas-
ured distributions, as long as the simulation is configured with the right switch buffer
size. The histograms are useful to illustrate the effects of the traffic-shaping algorithm.
In this scenario 2.1 MB events are sent to HLT worker nodes connected via a 1 Gb/s
link. Therefore, as already shown in section 4.2.2, the minimum data-collection time is
around 18.2 ms. When the traffic-shaping algorithm is too restrictive (see figures 5.6a,
5.7a, 5.8a, and 5.9a), almost none of the events are fully collected in less than 20 ms and,
although a significant portion is collected within 40 ms, the distributions have long tails
of events that take up to 300 ms (in the “medium” throughput scenario) or even 500 ms
(in the “high” throughput scenario) to be fully collected. With a larger traffic-shaping
window (see figures 5.6b, 5.7b, 5.8b, and 5.9b), a sizeable portion of the events is fully
collected within 20 ms, which is compatible with the minimum calculated above, pre-
sumably because all their fragments were collected when no other events were compet-
ing for the same traffic-shaping credits. Other events, however, need to wait for enough
credits to become available, therefore the distribution still presents a tail.

With traffic-shaping disabled, the distributions of data-collection times show the con-
sequences of the incast pathology. In this case, when Switch A is in use (see figures 5.6¢
and 5.7¢) no events are fully collected within the first 200 ms, which means that during
most data-collections at least one data-transfer from a ROS suffers enough packet drops
to cause a TCP retransmission time-out. This is expected, given that the event size, and
hence the burst size, is 2.1 MB and the top-of-rack switch port output buffer is at best
786 kB. The majority of the events are collected between 200 ms and 700 ms, i.e. they
incur between one and three retransmission time-outs, but a non-negligible fraction of
them has an even higher data-collection time, with this fraction being higher for the
higher throughput scenario. With the shared buffer in Switch B, the distributions are
even more dependent on the total throughput. In the “medium” throughput scenario
(see figure 5.8c), some events are collected without TCP retransmission time-outs, but
the vast majority incurs one or more retransmission time-out. In the “high” throughput

scenario (see figure 5.9c), the average data-collection increases noticeably, due to higher

Chapter 5 Simulation model

occupancy of the shared buffer.

In the (a) and (b) histograms, the switch buffer size parameter has a limited impact
on the distributions. This is expected, since in those scenarios the traffic-shaping al-
gorithm is effective in ensuring that data bursts do not overrun the switch buffers, both
with the lower and higher buffer sizes. The (c) histograms, instead, highlight the differ-
ence between a too optimistic estimation of the available buffer space and a correct one.
For both switch models, the wrong choice of parameter produces a data-collection time

distribution that is significantly different from the measured one.

All the comparisons discussed in this section indicate that, with the right choice of para-
meters, the simulation model presented in section 5.1 is accurate enough to reproduce
the real-world behaviour of the system under study. The model can than be used to

simulate scenarios that could not easily be enacted in practice.

5.2 Model validation

107

03 | |
10 [Measurement |
0,25 N 1 Simulation; Buffer size: 524 kB [
1 1 Simulation; Buffer size: 786 kB +
0,2]
c]
i) 1 H [
g 0,15 1 i
I | | L
0.1 -
0,05
0 = L L |
0 200 400 600 800 1000
Data collection time (ms)
(@
05 | |
H [Measurement H
04 T [Simulation; Buffer size: 524 kB L
T [Simulation; Buffer size: 786 kB F
8039
I3}]
® 1Y
i 0,21 A=
01-411{H
0] :‘=— — — — —
0 200 400 600 800 1000
Data collection time (ms)
(b)
0,4 ‘ ‘ =
1 | == Measurement
p [Simulation; Buffer size: 524 kB
0,3~ C—1 simulation; Buffer size: 786 kB
c]]
R p
g 0.2-
LL] -
0,1 Sgeg
0 200 400 600 800 1000
Data collection time (ms)
(9]

Figure 5.6 Distributions of measured and simulated data-collection times, using
switch A, at a constant bandwidth of 1.06 GB, with the maximum burst
size limited by the traffic shaping algorithm to (a) 52.8 kB, (b) 528 kB,
(c) unlimited.

108 Chapter 5 Simulation model

0.2 I I
1/ [Measurement [
1 [Simulation; Buffer size: 524 kB L
0,15 1 simulation; Buffer size: 786 kB |-
c] L
i) d [
g 0,1+ - - I
w 1 _==f__; L
0,05 B i
0] | — —— [
0 200 400 600 800 1000
Data collection time (ms)
(@
0,35 * * I
03 [Measurement L
= [Simulation; Buffer size: 524 kB |
[Simulation; Buffer size: 786 kB
0,25 L
-] L
.g 0,2 =
% ——— L
T 0,15 L I
0,1
0,05 =
0 T . — —— —
0 200 400 600 800 1000
Data collection time (ms)
(b)
0.2 I I
] | 3 Measurement B L
1 [Simulation; Buffer size: 524 kB L
0,15 1 [Simulation; Buffer size: 786 kB M B
c] L
i) d [
g 014 § B
L 1 =0 i
0,05 PR i
0] | | FHE EES==;
0 200 400 600 800 1000

Figure 5.7 Distributions of measured and simulated data-collection times, using
switch A, at a constant bandwidth of 2.06 GB, with the maximum burst
size limited by the traffic shaping algorithm to (a) 52.8 kB, (b) 528 kB,

(c) unlimited.

Data collection time (ms)
(c)

5.2 Model validation

109

03 | |
1A [Measurement |
0,25 I [Simulation; Buffer size: 9.4 MB [
1 [Simulation; Buffer size: 12.6 MB +
0,2
c]
i)] - [
§ 0,15]
I 11 4 L
011
0,05
0 200 400 600 800 1000
Data collection time (ms)
(@
05 | |
H [Measurement
04 1] [Simulation; Buffer size: 9.4 MB L
T [Simulation; Buffer size: 12.6 MB
S 037
3 11]
® 1Y
o 027 1H
014118
0] :‘%— — — — —
0 200 400 600 800 1000
Data collection time (ms)
(b)
| |
0,08
11 M [Measurement r
1 M [Simulation; Buffer size: 9.4 MB r
1] — [Simulation; Buffer size: 12.6 MB r
0,06 -
c | L SEE L
S] » H | I
@ 0,04 e T PE B
L]] ||] _: M i
0 H | BNEa; |
0 200 400 600 800 1000
Data collection time (ms)
(9]

Figure 5.8 Distributions of measured and simulated data-collection times, using
switch B, at a constant bandwidth of 1.06 GB, with the maximum burst
size limited by the traffic shaping algorithm to (a) 52.8 kB, (b) 528 kB,
(c) unlimited.

110 Chapter 5 Simulation model

0,175 1 * ! :
0.15 1 [Measurement E
!] — S!mulat!oni Buffer s!zei 9.4 MB F
0,125 1 [Simulation; Buffer size: 12.6 MB 3
c] :
2 0,14 —
Q e
i 0,075] ScEgm_m
0,05 ; _f=
0,025 g5g
0 1 ﬁ%g‘_‘ — —
0 200 400 600 800 1000
Data collection time (ms)
(@
0,35 * * I
03 [Measurement L
! [Simulation; Buffer size: 9.4 MB |
n [Simulation; Buffer size: 12.6 MB
0,25 L
-] L
S 024|rs
g 111 H L
T 0,15 THL I
0,1]
0,05
0 ! —— — —— —
0 200 400 600 800 1000
Data collection time (ms)
(b)
0,07 7 ‘ ‘ I
0.06 - [Measurement -
! | [Simulation; Buffer size: 9.4 MB - |
[Simulation; Buffer size: 12.6 MB
0,05+~ =
-] 1R M L
2 0,04 [- FETH
g] - I || —__ L
T 0,03]] 7] T] =i
0,02+ —rf e EATEEHE SERERENSSE
0,01 HEEA HAHEH
0 || .
0 200 400 600 800 1000
Data collection time (ms)
(9

Figure 5.9 Distributions of measured and simulated data-collection times, using
switch B, at a constant bandwidth of 2.11 GB, with the maximum burst
size limited by the traffic shaping algorithm to (a) 52.8 kB, (b) 528 kB,
(c) unlimited.

5.2 Model validation 111

Enhancements for
next-generation data-acquisition

systems

The simulation model presented in chapter 5 was validated by showing that it yields
results that reproduce the behaviour of the real system. Therefore, it can be used as a
tool to evaluate the effectiveness of different solutions aimed at improving the system
performance, i.e. reducing the data-collection time. Clearly, the possible modifications
to the system that can be implemented in a simulation are almost endless. This chapter
focuses on non-invasive solutions that can be readily deployed on an existing system.
Therefore, solutions requiring specialised hardware or unsupported modifications to
the operating system are not considered. The various modifications are evaluated by
simulating their effects on the tests described in section 4.2.1 and section 4.3.1.

6.1 Work assignment policies

As mentioned in section 4.3.2, the HLT supervisor assigns events to HLT processing
units on a first-come first-served (FCFS) basis, i.e. events are assigned to processing
units in order of arrival of their assignment requests. Performance limitations in the
HLT supervisor software currently prevent event-assignment policies more complex
than FCFS from being implemented. However, it is reasonable to expect that more suit-
able policies reduce the contention for traffic-shaping credits and therefore improve the
system performance. Naturally, the simulation is not affected by the performance is-

sues mentioned above, so alternative policies can be easily implemented. Besides FCFS,

113

114

four event-assignment policies were modelled:

¢ Random: the supervisor chooses a random processing unit out of all of those that
requested an event assignment, without regard for the order in which they did so.

¢ Node round-robin: the supervisor chooses a processing unit running on the next

node in a fixed sequence of nodes.

¢ Node load-balancing: the supervisor chooses a processing unit running on the

node with the most idle units.

¢ Processing unit round-robin: the supervisor chooses the next processing unit in a
fixed sequence of units, where units running on the same worker node are consec-

utive.

The simulation reproduces the configuration described in section 4.3.2. The results are
shown in figure 6.1 for Switch A and in figure 6.2 for Switch B. As usual, both the “me-
dium throughput” (1.06 GB/s: 45% rack uplinks utilisation, figures 6.1a and 6.2a) and
“high throughput” (2.11 GB/s: 90% rack uplink utilisation, figures 6.1b and 6.2b) scen-
arios are shown. As explained in section 4.2.2, for these tests the theoretical minimum
data-collection time is around 18.2 ms. With the FCFS policy the average time is signi-
ficantly higher than that in all scenarios: at medium throughput it is never below 40 ms,
and at high throughput it is never below 60 ms.

The change in policy from FCFS to random leads to a very significant reduction of the
data-collection latency, especially in the region of the parameter space where the traffic-
shaping algorithm is most effective. The explanation for this difference lies in the map-
ping of processing units to nodes. While the traffic-shaping credits limit is enforced on
a per-node basis, events are assigned on a per-processing-unit basis. In the particular
set-up used, there are 24 units per node (see section 4.2.1). If events are assigned in quick
succession to processing units running on the same node, those units will collect data at
the same time, thus competing for the same pool of traffic-shaping credits. The random
policy reduces the probability that two or more events will be assigned in a short inter-
val to units hosted by the same node. Units on different nodes do not compete for the
same credit pool, ultimately resulting in a lower average data-collection time. While the
random event-assignment policy does enable reaching an average data-collection time
of around 20 ms at medium throughput, it does not perform as well at full throughput.

The node load-balancing policy further reduces the chance of two events being assigned
to the same node, which translates to further reductions of the data-collection time in

the region where traffic-shaping is effective. The node round-robin policy yields similar

Chapter 6 Enhancements for next-generation data-acquisition systems

results when the traffic-shaping mechanism is effective. On top of that, it performs
better than all the others when the nodes have very few credits available. It also has
a slight advantage over the others in the incast-affected region. With this policy, once
a supervisor has assigned an event to one node, it will have to assign events to all the
other nodes before coming back to the first. Thus, the overlap between data collections
initiated by different units on the same node is minimised. As a result, the policy yields
optimal results both at medium and full throughput, reaching average data-collection

times of 20 ms, close to the theoretical minimum mentioned above.

Finally, the processing unit round-robin policy is an example of the consequences of a
bad policy choice: by concentrating the data-collection on the same node at the same
time, all 24 processing units on a node compete for the same credits, resulting in abysmal

performance.

As evidenced by comparing figures 6.1a and 6.2a with figures 6.1b and 6.2b, the per-
formance differences among the event-assignment policies are higher when the data-

acquisition throughput is higher.

6.2 Variable fragment sizes

Both the measurements described in chapter 4 and the simulation results presented so
far use a single fixed size for all the data fragments (1.1 kB) of an event. This choice
was made in order to reduce the complexity of the tests so that the measurements could
be more easily interpreted. In more realistic conditions, however, the size of fragments
depends on the characteristics of the particular phenomenon observed by the detectors.
In high-energy physics, the event size distribution is generally quite asymmetric with a
long tail: “ordinary” events tend to be small and appear rather frequently; events cor-
responding to rare interesting phenomena in the detector tend to have bigger fragments.
Moreover, within an event, fragment sizes are not all identical: they depend on a multi-
tude of factors, including the observed phenomenon and the region of the detector they
correspond to. Given that the traffic-shaping algorithm uses the number of fragments in
a data request as an estimate of the size of the corresponding response, its performance

is expected to worsen when the fragment sizes are not always the same.

In order to simulate this, the fragment sizes are modelled as the sum of two components.
The first component changes for every event, while the second component changes for

every fragment of an event. The first component is determined as follows. A value

6.2 Variable fragment sizes

115

WO T T T A

| ' l l B "/////]

w 300

E ! |
(O] r]
g [—m— FCFS 1
= s —&— Random 4
o 200 —%— Node round-robin

o —@— Node load-balancing

Q [—<49— Processing unit round-robin 1
5 L 1
Q L 1
g | /]
@

O 100

T

, LI - — 1
O L L L L |
100 1000
Traffic shaping: maximum burst size (kB)
(a)
400 T
* //
| o ———o—— ¢

» 300
é L
()
§ —8— FCFS
c F —=&— Random) 1
2 200 —%— Node round-robin
k3] —— Node load-balancing
Q@ —<— Processing unit round-robin 1
g :
©
= b]

0

100 1000
Traffic shaping: maximum burst size (kB)

(b)

Figure 6.1 Average data-collection times as a function of the maximum burst size
allowed by the traffic-shaping algorithm, for different event assignment
policies, using switch A, at a constant bandwidth of (a) 1.06 GB/s and
(b) 2.12 GB/s.

116 Chapter 6 Enhancements for next-generation data-acquisition systems

400

I * o o o
——— R
300 —

—&— FCFS 1
F —&— Random -
200 —%— Node round—robin_

—@— Node load-balancing
—<@— Processing unit round-robin

Data-collection time (ms)

100
L - F —4—& | 1

17

ll/.

100 1000
Traffic shaping: maximum burst size (kB)
(a)
400 T w |
: \‘\ ,/
I G ——— D WS e, o /
» 300 d
é L]
o]
g —®— FCFS .
= 8 —&#— Random -
2 200 —3%— Node round-robin
o —@— Node load-balancing
Q@ —<— Processing unit round-robin 1
>]
?
8
@
@)

o I h\._.\.\r—ﬂ/j/f]
100 1000
Traffic shaping: maximum burst size (kB)

(b)

Figure 6.2 Average data-collection times as a function of the maximum burst size
allowed by the traffic-shaping algorithm, for different event assignment
policies, using switch B, at a constant bandwidth of (a) 1.06 GB/s and
(b) 2.12 GB/s.

6.2 Variable fragment sizes 117

400
L \\ 4
\]
\
>]
L "'—\‘ o L - & -
@ 300
é L]
®]
g —@— FCFS]
= 8 —=&#— Random -
S 200 —&%— Node round-robin
o —&— Node load-balancing
@ —<@— Processing unit round-robin 1
2 ,
& L J
]
Q 100
O Lo L L L L L L
100 1000
Traffic shaping: average burst size (kB)
(a)
400 ‘ Y
@ 300
é L
()
£ FCFS .
‘E L Random 1
2 200 Node round-robin
o Node load-balancing
Q [Processing unit round-robin 1
5]
o]
g , J
©
Q 100
0 I Lo
100 1000
Traffic shaping: average burst size (kB)
(b)

Figure 6.3 Average data-collection times as a function of the average burst size
allowed by the traffic-shaping algorithm, for different event assignment
policies, using switch A, at a constant bandwidth of (a) 1.06 GB/s and (b)
2.12 GB/s. The solid lines represent the data-collection latencies with
with variable event sizes, as described section 6.2. For comparison,
the dashed lines represent the data-collection latencies with fixed event
sizes.

118 Chapter 6 Enhancements for next-generation data-acquisition systems

400
I A\
2\
\
o
f T ¢
— o o
o 300
1S L
N—
()
E —8— FCFS
= H —#— Random
2 200 —=%— Node round-robin
o —&— Node load-balancing
@ —<@— Processing unit round-robin
©
ot
©
=
@
@)

—— - T - _—

O Lo Lo
100 1000
Traffic shaping: average burst size (kB)
@
400
| .\\"47—~~*———7‘»»~4*'“
» 300
3 |
Q
£ FCFS
= s Random
2 200 Node round-robin
o Node load-balancing
Q [Processing unit round-robin
IS
Q
8 |
8 100
O 1 Lo
100 1000
Traffic shaping: average burst size (kB)
(b)

Figure 6.4 Average data-collection times as a function of the average burst size
allowed by the traffic-shaping algorithm, for different event assignment
policies, using switch B, at a constant bandwidth of (a) 1.06 GB/s and (b)
2.12 GB/s. The solid lines represent the data-collection latencies with
with variable event sizes, as described section 6.2. For comparison,
the dashed lines represent the data-collection latencies with fixed event
sizes.

6.2 Variable fragment sizes 119

120

representing the event size is extracted from a log-normal distribution with location
parameter 0 and scale parameter 0.25, modelling the long-tail distribution described
above. The distribution is scaled so that the average event size is equal to the fixed event
size used previously (2112 kB). The extracted event size is equally subdivided among
the event fragments. The second component instead models the size variability among
the various fragments of the same event. It is extracted from a normal distribution with
mean 0 B and standard deviation 200 B.

The results are presented in figure 6.3 for the simulation using Switch A. The incast
onset point is reached with fewer available credits than with fixed-size fragments: the
traffic-shaping algorithm cannot prevent packet drops as effectively as with fixed-size
fragments. This is expected, since Switch A has a dedicated fixed-size output buffer for
each port (see section 4.2.1). With fixed-size fragments, the size of traffic bursts directed
to a worker node cannot exceed the product of the node’s traffic-shaping credits and the
fragment size. With variable fragment sizes, instead, the traffic-shaping mechanism can
only ensure that the average size of traffic bursts corresponds to that product. When the
average burst size is close to the switch’s buffer size (~500 kB), some traffic bursts might
overrun the buffer, leading to packet drops. However, an optimal operating region can
still be reached. In particular, if the chosen event assignment policy effectively spreads
the events on all the available nodes, like in the case of the node load-balancing and
round-robin policies, the minimum data-collection latency value is identical to the value

that can be reached with fixed-size fragments.

The results for Switch B are shown in figure 6.3. In this case, the variable event sizes
have little impact on the performance of the traffic-shaping algorithm. This is due to
the switch’s shared buffer architecture. Since all traffic bursts are absorbed by the same
common buffer, above-average bursts are compensated by below-average bursts. Thus,

buffer overruns are much rarer with respect to the scenario using Switch A.

Since in the real system the fragments sizes do in fact vary, all the other simulation
results presented in this chapter will be based on the fragment size model described

above.

6.3 Reducing TCP’s minimum retransmission time-out

As explained in section 2.3, one TCP parameter, the minimum retransmission time-out

(RTO), has a large impact on the system’s throughput when the traffic pattern triggers

Chapter 6 Enhancements for next-generation data-acquisition systems

the TCP incast pathology. TCP’s passive packet loss recovery mechanism retransmits
packets that were not acknowledged within the RTO. The RTO value is based on the

estimated round-trip time of the connection:

RTO = SRTT +4x RTTVAR

where SRTT and RTTVAR are TCP’s smoothed estimations of the round-trip time and
its variation (see [60] for more details). However, the TCP specification also sets a min-
imum value for the RTO. The reason for defining a minimum is to prevent spurious

retransmissions caused by [56]:
¢ RTO smaller than the operating system’s timer granularity,
¢ RTO smaller than the TCP delayed acknowledgement time-out.

Besides needlessly increasing the injected traffic, spurious retransmissions have a more
serious consequence: TCP uses dropped packets to detect network congestion and ad-
just its sending window. As a consequence, spurious retransmission time-outs cause

spurious decreases of the sending window, lowering the connection’s throughput.

Based on the analysis found in [5], the original specification sets the minimum RTOto 1 s.
In Linux, the usual timer granularity is 1 ms. However, the acknowledgement time-out
varies between 40 ms and 200 ms. Thus, to prevent spurious retransmissions, the min-
imum RTO is set to 200 ms. Data-centre networks such as ATLAS’s have typically sub-
millisecond round-trip times, meaning that the default minimum RTO is completely
inadequate. In addition, delayed acknowledgements provide little benefits in a data-
centre network: the reduction in acknowledgement packet rate is only useful when the
path from the receiver to the sender is congested; the reduction in acknowledgement-
processing overhead is insignificant given the available processing power. In Linux,
delayed acknowledgements can be explicitly disabled either by the application itself or

with a configuration parameter.

Lowering the minimum RTO was proven effective in mitigating the effects of incast
in storage networks suffering from incast [65], so it might provide the same benefits
to data-acquisition systems. In an unmodified Linux kernel, the minimum RTO can
be configured as low as the timer granularity, i.e. 1 ms. However, since also SRTT and
RTTV AR are measured with the same 1 ms granularity, the minimum is effectively 5 ms
(RTO = SRTT + 4 x RTTVAR with SRTT = RTTVAR = 1ms). This is still one order
of magnitude larger than the typical round-trip time of the ATLAS network. As shown
in [65], lower RTO values can be achieved by modifying the Linux source code to use

6.3 Reducing TCP’s minimum retransmission time-out

121

122

higher-resolution clocks to measure the round-trip time. However, these modifications
are experimental and rather invasive. Therefore, they impose a significant maintenance
burden and cannot be easily deployed on an existing system, so they are not considered
here.

The effectiveness of a lower TCP minimum RTO was evaluated first as a stand-alone
solution to the incast problem, i.e. without enabling the traffic-shaping mechanism.
The simulation was used to record the average data-collection time for values of the
minimum RTO parameter between 5 ms and 200 ms. As already mentioned, minimum
RTOs lower than 200 ms can result in unnecessary time-outs due to the delayed ac-
knowledgements mechanism. In order to evaluate the performance impact of this phe-

nomenon, the simulations were run with delayed acknowledgements both enabled and
disabled.

The results are shown in figure 6.5 for Switch A and in figure 6.6 for Switch B. In all
cases, lowering the minimum RTO successfully lowers the average data collection time.
As expected, the best results are obtained when the lowest minimum RTO (5 ms) is
configured and the “best” event-assignment policies (“node round-robin” and “node
load-balancing) are used. In particular, in the “medium throughput” scenarios (fig-
ure 6.5a and figure 6.6a), the average data-collection time is around 26 ms with Switch
A and 38 ms with Switch B. However, in the “high throughput” scenarios (figure 6.5b
and figure 6.6b), the data-collection time does not drop below 95 ms using Switch A
and 55 ms using Switch B. These times represent a huge decrease from the hundreds
of milliseconds corresponding to the default minimum RTO. Enabling or disabling the
delayed acknowledgement mechanism (refer to the dotted data series in the figures)
leads to curious results: with Switch A, data-collection times are generally lower when
delayed acknowledgements are disabled. Unexpectedly, with Switch B the opposite is

true.

The results described above show that lowering the minimum RTO does mitigate the
consequences of the incast pathology in all simulated scenarios. However, as a stand-
alone solution, it does not achieve data-collection times as low as the traffic-shaping
algorithm. As shown in section 6.2, the client-side traffic-shaping algorithm can lower
the data-collection times to 20 ms. The optimal operation of the algorithm, however,
requires that its “average burst size” parameter be in a rather narrow range. The op-
timal range depends on a multitude of factors, including: the average buffer occupancy
and round-trip time of the network path between client and servers; the variance of the

size of fragments sent by the servers. Outside of this range, the data-collection time

Chapter 6 Enhancements for next-generation data-acquisition systems

rapidly increases to hundreds of milliseconds. Combining client-side traffic shaping
with a lowered minimum RTO should mitigate this problem, thus making the system
more resilient against unforeseen operating conditions and misconfiguration. In order
to evaluate the effectiveness of this, the simulation was used to record the average data-

collection time for different average burst sizes in three different configurations:

¢ minimum RTO lowered to 5 ms, delayed acknowledgements disabled (LowRro-
QuickAck);

¢ minimum RTO lowered to 5 ms, delayed acknowledgements enabled (LowRTo-
DeLACK);

¢ minimum RTO set to the default 200 ms, delayed acknowledgements enabled

(DeFAULT).

The results are shown in figure 6.7 for Switch A and in figure 6.8 for Switch B. In all sim-
ulated scenarios, the LowRro-QuickAck configuration (refer to the solid data series in
the figures) yields the same data-collection times as the DerauLT configuration (dashed
data series) when the average burst size is lower than the incast onset threshold, i.e.
when the traffic-shaping algorithm completely prevents packet drops (average burst
size <300 kB for Switch A, <500 kB for Switch B). In the same region, the LowRro-
DEeLAck configuration (dotted data series) yields consistently higher latencies than the
DEerauLT configuration. This is due to the disruption to TCP operations caused by spuri-
ous retransmits. More importantly, in both LowRTo configurations the data-collection
times beyond the incast onset threshold are greatly improved. The optimal operating
range of the traffic-shaping algorithm is significantly extended in all scenarios and, even
where the data-collection latencies are not minimised, they are greatly reduced with re-

spect to the DEFAULT configuration.

6.4 Centralised traffic scheduling

The incast pathology is caused by the lack of coordination among the nodes sending
data to the same destination. A centralised scheduler of the data transfers would com-
pletely eliminate this problem. By guaranteeing that data transfers are only scheduled
when the whole network path from the source to the destination is available, it could
drastically reduce the use of buffers in the network devices. Naturally, this comes at
a price: a central scheduler is a single point of failure and its maximum performance

limits the scalability of the system. The consequences of failures can be mitigated or

6.4 Centralised traffic scheduling

123

5007 a .
—m— FCFS 4
—=&— Random 1
t | —%— Node round-robin 1
400+{ —@— Node load-balancing |
7 | :]
E |]
g 300 | - IR
c [1
i) J
] 1
@ F J
S 200
LI> r 4
] 1
©]
@) F 1
100
0 + ‘ ‘ ‘ i N 1
10 100
TCP minimum RTO (ms)
(@)
500 T T :
—m— FCFS 4
—&— Random 4
t | —%— Node round-robin 1
400+ —@— Node load-balancing
> s 1
E]
[+ 1
£ 300
= + 1
i) 1
'*6' 4
ko] F J
3 200
Q r 4
8]
] 1
@) F 1
100
0 + ! ‘ ‘ i N 1
10 100
TCP minimum RTO (ms)
(b)

Figure 6.5 Average data-collection times as a function of the minimum TCP retrans-
mission time-out (RTO), using Switch A, at a constant bandwidth of (a)
1.06 GB/s and (b) 2.12 GB/s. The solid lines correspond to simulations
with TCP delayed acknowledgements disabled; the dotted lines corres-
pond to simulations with TCP delayed acknowledgements enabled.

124 Chapter 6 Enhancements for next-generation data-acquisition systems

5007 a .
—m— FCFS 4
—=&— Random 1
t | —%— Node round-robin 1
400| —®— Node load-balancing
w s 1
E]
< + 1
£ 300
c + 1
i) J
] 1
@ F J
S 200
LI> r 4
] 1
©]
@) F 1
100
0 + ! ‘ ‘ i N 1
10 100
TCP minimum RTO (ms)
(@)
500 T T :
—8®— FCFS J
—&— Random 4
t | —%— Node round-robin 1
400+ —®— Node load-balancing
> s 1
E]
<) + 1
£ 300
= + 1
i) 1
'*6' 4
ko] F J
B 200
Q r 4
8]
] 1
@) F 1
100
0 + ! ‘ ‘ i N 1
10 100
TCP minimum RTO (ms)
(b)

Figure 6.6 Average data-collection times as a function of the minimum TCP retrans-
mission time-out (RTO), using Switch B, at a constant bandwidth of (a)
1.06 GB/s and (b) 2.12 GB/s. The solid lines correspond to simulations
with TCP delayed acknowledgements disabled; the dotted lines corres-
pond to simulations with TCP delayed acknowledgements enabled.

6.4 Centralised traffic scheduling 125

FCFS Random

200 T — 200
150[-2) 1 150F]
. f / z J :
0 100 } 1 100 /
e L z !m//g/IEL [e y]
N—r . ! - 4 | S 4
) L 1 it ; R
50 : - 50F - .
= S - = i o W
~ N] []
c ol L ol L
o 100 1000 100 1000
=
8 Node round-robin Node load-balancing
= 200rrrr — T — 200 —— T ‘
o) L /] [:]
) r i] L]
© 150 / - 150~ / .
i} F / 1 [! j
o] [|] [/]
@] [] [¢]
100 4 100 / .
50 4 — 50|]
[g g ’ [ot O CE it
:n* i ",H :i-\‘k o 0080 ¢
ol L PR fo L P
100 1000 100 1000

Average burst size (kB)
(@

Random

n =
S []
N— |- 4
1] = e
S r 1
~ []
c ol L L oliin L L
o 100 1000 100 1000
=]
8 Node round-robin Node load-balancing
= 200 — T — 200 TR —
o [/ s]
O s ; Fo ; 1
© 150 150—-@ =
= r : : r 8 1
© P ! r b 1
=) roo: :K . ®]
100+ : 100
Food) [
50 % / 501
:g\ﬁN B r;f F .
0 Lo Lo Ll O Lo T Ll
100 1000 100 1000

Average burst size (kB)
(b)

Figure 6.7 Average data-collection times as a function of the average burst size
allowed by the traffic-shaping algorithm, using Switch A, at a constant
bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s. The solid lines correspond
to @ minimum RTO of 5 ms and delayed acknowledgements disabled;
the dotted lines correspond to a minimum RTO of 5 ms and delayed
acknowledgements enabled; the dashed lines correspond to a minimum
RTO of 200 ms and delayed acknowledgements enabled.

126 Chapter 6 Enhancements for next-generation data-acquisition systems

FCFS Random

200 T] 200 e s T
1502 1 150F .
T 100] 1 100f /]
1S r 1 []
~ L 4 Lo, 1 4
) F — %]
50~ =1 50, i =
£ N B Ny RS, ... N
= r b r i]
c oloon i ol i
o 100 1000 100 1000
=1
8 Node round-robin Node load-balancing
= 200 — g 200 — e
@] L b] L o]
(@) r] r 1
© 150 -1 150 ’ .
© r b r b
o [] [1
100 ; 4 100 .
50 f — 50 m
R R oliiii
100 1000 100 1000
Average burst size (kB)
@
FCFS Random
200 I -) 200 T e - —
rm - / b Lo /]
150 1 150F]
r \E, 4 / [&]
— Eriii e y . r]
@ 1008 i "5 100F
B’ [1 /'EL n] C
50~ -~ 50
£ F] E
= r b r
c olion L O oliiin S L
o 100 1000 100 1000
=1
8 Node round-robin Node load-balancing
= 200 — - 200+ T -
o [/] Fr /]
(@) r] Fio ! 1
© 150F / - 150F - f i
= C '] C . i]
© r H] L ; /]
@] [!] [! 1
100 1 4 100 .
SERE »] F]
50 a', /’, M 50 /a.\t
B - : rés/] r i]
07\\\\\ . L \7 07\\\\\ Lo L \7
100 1000 100 1000

Average burst size (kB)
(b)

Figure 6.8 Average data-collection times as a function of the average burst size
allowed by the traffic-shaping algorithm, using Switch B, at a constant
bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s. The solid lines correspond
to @ minimum RTO of 5 ms and delayed acknowledgements disabled;
the dotted lines correspond to a minimum RTO of 5 ms and delayed
acknowledgements enabled; the dashed lines correspond to a minimum
RTO of 200 ms and delayed acknowledgements enabled.

6.4 Centralised traffic scheduling

127

128

avoided with a reliable failover strategy (e.g. multiple schedulers in an active-standby
set-up). The scalability limits cannot be easily worked around. Therefore, a centralised
scheduler should only be considered if it can actually handle the maximum scale of the
system in terms of number of nodes, number of connections, and total throughput. As
a consequence, discussing and simulating an abstract scheduler without referencing a
real-world implementation would be rather pointless. Instead, this section evaluates an

existing solution, called Fastpass, proposed in [52].

With Fastpass, senders delegate control of when each packet is transmitted to a central-
ised scheduler'. When a node has packets ready to send, the operating system sends
this demand in a message to the scheduler, specifying the packets” destinations and total
sizes. The scheduler decides the time when each packet can be transmitted. It operates
with the granularity of a “timeslot”. A timeslot is the time taken to transmit a single
maximum-size data-link packet (the so-called maximum transmission unit, MTU) over
the fastest link connecting a computer to the network. The scheduler is aware of the net-
work topology. For each timeslot, it selects a set of source-destination pairs that can com-
municate, ensuring that the traffic will not exceed the bandwidth of any link in the path
from the source to the destination. This minimises the length of the queues in the net-
work switches, making buffer overflows essentially impossible. The scheduler chooses
the order in which demands are processed. For fairness, it selects source-destination

pairs on a “least recently scheduled first” basis.

On the nodes, Fastpass is deployed as a plug-in to Linux’s traffic control framework?.
It queues outgoing packets before sending them to the network interface and sends
the allocation demands in a request to the scheduler. The scheduler eventually replies
with the timeslots allocated to each destination. The scheduler runs on a Linux PC, but
it is implemented on top of Intel DPDK, a framework that enables direct access to the
network interface queues, bypassing the operating system. Stress tests described in [52]
show that the scheduler implementation can handle a system with 10 Gb/s links and an
aggregate traffic of over 2 Tb/s. As reported in section 3.7, the ATLAS data-acquisition
system operates at an input throughput of up to 200 GB/s, i.e. 1.6 Tb/s. The Fastpass
scheduler is therefore suitable for handling this volume of traffic.

The simulations presented in this section are aimed at quantifying the impact of various
operational parameters of the Fastpass system on the overall data-acquisition perform-
ance. The goal is to verify that Fastpass (or a similar centralised traffic scheduler) can

Fastpass also includes centralised network path selection, which is not considered here.
ZMore specifically, a Linux traffic control queuing discipline (gdisc).

Chapter 6 Enhancements for next-generation data-acquisition systems

operate effectively in the environment of the ATLAS data-acquisition system. With cent-
ralised packet scheduling, the switch buffer occupancies are minimised and, without
packet drops, TCP’s congestion control is effectively bypassed. Therefore, in contrast
with the other sections in this chapter, simulating different switch buffer models yields
identical results. Fastpass demand and allocation messages share the same network re-
sources as the scheduled traffic. For the purposes of these simulations, it is assumed that
the network switches are configured to prioritise Fastpass packets over normal traffic.
Unless specified, the one-way delay between a sender’s traffic control plug-in and the
scheduler application is on average 100 ps with a standard deviation of 50 us. This con-
figuration is intended to be representative of a possible deployment of the centralised
scheduler within the existing ATLAS data-acquisition network.

6.4.1 Scheduler timing

Once the scheduler has decided which source-destination pairs are allowed to commu-
nicate during a given timeslot, it sends this information as network messages to the
relevant senders. Naturally these messages incur a certain delay before they reach and
are processed by the senders. Therefore, the scheduler must conclude the allocation of
a timeslot some time before that timeslot, so that the messages have time to reach the
senders while they are still valid. In practice, the deadline for scheduling the timeslot
starting at t;;,,,05101 1S taeadline = ttimesiot — Dadvance Where At,g.qc0 is a configurable time
interval. On one hand, if At,;;,,c. is too small, some scheduler messages might reach
the senders when the timeslot has already passed. On the other hand, if At ;,,,,c. is too
large, some demands that could have been satisfied in timeslot starting at t;,,,0¢;o; might
have to wait for the next timeslot because they reached the scheduler after it concluded
the allocation.

The goal of the simulation presented here is to determine the largest value of At ;,,,.ce
that can be configured without significantly increasing the average data-collection time.
The results are shown in figure 6.9. As expected, the lowest data-collection times are
obtained, in conjunction with the node round-robin and node load-balancing policies,
when the lowest At j,,.c (25 ps) is configured. For At ;,,,c. < 500 us, the data-collection
times do not significantly increase, remaining around 21 ms and 22 ms respectively in
the “medium throughput” and “high throughput” scenarios. Even with At ;,5cc =

1ms, the data-collection time only increases ~2% with respect to the minimum.

End-to-end delays in data-centre networks (and in the ATLAS data-acquisition network

6.4 Centralised traffic scheduling 129

1
F| —m— FCFS
50} —*— Random
| | —%— Node round-robin
—@— Node load-balancing
—
[%)
S
N—r'
Q
c 40
=
c 1
i)
3] /vp i
L7} L 1
8 30 i
© L
[+ L
o} | * —
20 B & —

100 1000 10*

Scheduler advance (us)
(@
T
t| —m— FCFS
50| —*— Random
| | —%— Node round-robin
—@— Node load-balancing
’g |
N F 4
2 40 /
E // 7
kel
g P‘P”"'/‘
2 T e
3 30
@
c
a)
20
100 1000 10*
Scheduler advance (us)
(b)

Figure 6.9 Average data-collection times as a function of the scheduler advance
At,gpances fOr different event assignment policies, at a constant band-
width of (a) 1.06 GB/s and (b) 2.12 GB/s.

130 Chapter 6 Enhancements for next-generation data-acquisition systems

in particular) are of the order of 100 ps. These results show that a central scheduler can

deal with those delays without a significant performance impact.

6.4.2 Clock synchronisation

A system with centralised traffic scheduling requires that nodes transmit packets exactly
at the times chosen by the scheduler. Otherwise, multiple senders might use the same
network resources at the same time, which results in queuing at the switches. Com-
puter clocks are not perfect: many factors can alter their frequency in different ways, so
that even initially synchronised clocks drift apart after some time. The well-established
network time protocol (NTP) keeps computer clocks synchronised to a reference clock.
On alocal-area network, NTP can achieve millisecond or even sub-millisecond accuracy
if the network delay jitter is small enough [44]. As already explained, with centralised
packet scheduling, the network queues are very short, so clock synchronisation with
millisecond accuracy is certainly possible. Greater accuracies (of the order of the micro-
second) can be achieved with the precision time protocol (PTP), which requires hard-
ware support in the network interface cards of the nodes and, optionally, for maximum
accuracy, in the network switches. Consequently, it cannot be readily deployed on an

existing system without invasive modifications.

In the worst case, the queue length will be g = At ;1 /Atsiesior packets, where At .,k
is the maximum difference between any two clocks and At;;,.¢10¢ is the duration of a
timeslot. A timeslot corresponds to the time needed to transmit a single maximum-size
packet over the fastest link connecting a computer to the network. For Ethernet, that
is ~12 ps if the link is 1 Gb/s or ~1.2 pus if the link is 10 Gb/s. With a 1 ms maximum
clock discrepancy, this results in large worst-case queue sizes: up to 82 packets (123 kB)
at 1 Gb/s and 820 packets (1.23 MB) at 10 Gb/s. Therefore, it would seem that high-
accuracy clock synchronization is absolutely required for the scheduling mechanism
to work as promised. However, there are a few mitigating factors. First of all, this
worst-case scenario is extremely unlikely in practice: for maximum queuing, the clock
differences must be uniformly distributed between 0 and A ;.. Natural clock drift does
not lead such a distribution. Moreover, even in the worst case, the queued packets
would not overrun the buffers of a low-end data-centre switch with shared buffers (such
as switch B): packet drops are still prevented. Finally, in data-acquisition workloads, the
number of senders is relatively small (in the ATLAS system modelled in this thesis there

are 160 ROS nodes). This also reduces the likelihood of hitting the worst-case scenario.

6.4 Centralised traffic scheduling

131

132

The simulation was used to confirm these assertions. Each sender was configured with a
fixed clock difference with respect to the scheduler. The time differences were extracted
from an uniform distribution. The width of the distribution is the maximum difference
between any two clocks At.,.. The average data-collection time was measured with
At jocr set to 10, 100, 1000, and 10000 ps. The results are shown in figure 6.10. The data-
collection time is basically unaffected by At up to 1 ms. Only when At is set
to 10 ms a significant increase is seen. However, that increase is not due to queuing,
but rather to the fact that some senders might start transmitting up to 10 ms later than
others, and the data-collection is not completed until then.

These results show that a centralised packet scheduler can be successfully deployed in
a data-acquisition system even without the added cost and complexity of a hardware-
assisted clock synchronisation solution.

6.4.3 Scheduler granularity

The Fastpass scheduler operates at the granularity of one MTU. This makes it rather ef-
ficient in utilising the available network bandwidth. The only inefficiency occurs when
nodes have less than a full MTU worth of data to send. In that case, some network
bandwidth is left unused.

The scheduler granularity determines its performance requirements: a one-MTU timeslot
lasts ~12 us with 1 Gb/s edge links or ~1.2 us with 10 Gb/s edge links. That means that,
in order to keep up with the demands, the scheduler must allocate ~81000 timeslots per
second or ~810000 timeslots per second respectively. An obvious way to reduce the
load on the scheduler is thus to define longer timeslots. For example, using two-MTUs
timeslots would halve the required allocations per second. Naturally, this increases the

inefficiency due to partially unused timeslot.

The simulation presented measures the impact of multi-MTU timeslots on the overall
system performance, i.e. on the data-collection time. The simulated timeslot durations
correspond to granularities going from one to twelve MTUs. The results are shown in
figure 6.11. The data-collection time grows roughly linearly with the timeslot duration:
a one-MTU increase of the timeslot duration corresponds to a ~4% increase of the data-
collection time with respect to the minimum.

As explained in section 6.4, the Fastpass scheduler is fast enough to handle the traffic
volume of the ATLAS data-acquisition system as it is. However, this might not be the
case for other systems or for future evolutions of the ATLAS system. If the scheduler

Chapter 6 Enhancements for next-generation data-acquisition systems

T
F| —8— FCFs
50} —*— Random
| | —%— Node round-robin
—@— Node load-balancing
m
E |
g 40
E. L
i)
3]
g L
2 a0 :
& L
g | / |
) 7 / ’
20; 8 & |
10 100 1000 10*
Maximum node clock difference (us)
(@)
T
F| —m— FCFs
50| —*— Random
| | —%— Node round-robin
—@— Node load-balancing
m
E |
g 40
& -
= / i
Q Lo 1
8 30
& L]
=]
a /]
[i
L * 4
20
10 100 1000 10*
Maximum node clock difference (us)
(b)

Figure 6.10 Average data-collection times as a function of the arbitration slot size,
for different event assignment policies, at a constant bandwidth of (a)
1.06 GB/s and (b) 2.12 GB/s.

6.4 Centralised traffic scheduling 133

| | | I I
F| —m— FCFS
50} —*— Random
|l | —%— Node round-robin
—@— Node load-balancing
m
E
g 40
=
i)
5
= r L e
8 30 /-n-/
S —— S - —
I L p—1 ———R——
) 7 ::;://
20+
1 2 3 4 5 6 7 8 9 10 11 12
Scheduer slot length (MTUSs)
(@
| | | T T
F| —m— FCFS
50| —*— Random
|l | —%— Node round-robin
—@— Node load-balancing
m
E
g 40
S T e — 1]
c R s
5 h/dlr/‘
R =
g1 =
R
20

1 2 3 4 5 6 7 8 9 10 11 12
Scheduer slot length (MTUSs)
(b)

Figure 6.11 Average data-collection times as a function of the arbitration slot size,
for different event assignment policies, at a constant bandwidth of (a)
1.06 GB/s and (b) 2.12 GB/s.

134 Chapter 6 Enhancements for next-generation data-acquisition systems

does not scale to the required performance, the available options are limited: either
the implementation is improved, or centralised traffic scheduling must be abandoned
altogether. As a work-around, increasing the timeslot duration can significantly reduce
the load on the scheduler. As shown, the price for this reduction is an increase in the
average data-collection latency. Depending on the performance objectives of the system

in question, this might be an acceptable trade-off.

6.5 Switch buffer space

While the goal of this thesis is to evaluate enhancements that can be readily deployed on
existing systems, the simulation model can also prove useful for guiding future network
hardware purchases. In particular, it can be used to determine the relation between the
size of the packet buffers in the top-of-rack switches and the data-collection time. It is
possible to determine the minimum size of the packet buffers that completely prevents
packet drops (and thus eliminates the incast phenomenon for the chosen traffic pattern)

without having to limit the maximum burst size at the application level.

The results for a switch with dedicated per-port memory are shown in figure 6.12. When
employing the FCFS assignment policy, buffers of at least 4 MB in the “medium through-
put” scenario and 5 MB in the “high throughput” scenario effectively prevent all packet
drops. The latency can then reach its lowest value (slightly lower than 20 ms, compatible
with the theoretical minimum calculated in section 5.2.2). However, with the random as-
signment policy in the high-throughput scenario, the lowest latency isn’t reached even
with 5 MB buffers. This discrepancy, and in general the better performance of FCFS in
this configuration, can be explained. If two events are consecutively assigned to two
processing units on the same worker node, the data for the second event incurs a lar-
ger delay, since the buffer of the worker node’s switch port still contains data from the
first event, leading to queuing delays or overflow. This effect changes the order of the
supervisor’'s FCFS queue: over time, entries in the queue referring to different units
on the same worker node distance themselves. The available switch buffer memory is
therefore used more efficiently, and queuing delays are avoided. As expected, the node
load-balancing and round-robin algorithms outperform both FCFS and random, reach-
ing the lowest latency with just 3 MB buffers in the medium-throughput scenario and
3.5 MB in the high-throughput scenario. As a reminder, the per-port memory of Switch
A is ~750 kB. Even with the optimal event-assignment policy, the needed buffer sizes

are 5 times larger than that.

6.5 Switch buffer space

135

T e o S

\ —®— FCFS

\ —+#— Random
—&%— Node round-robin

400 —&— Node load-balancing
L \ \ —<@— Processing unit round-robin

300 & \

SEEAN %
S

) o R

1

Lo

e SeRSEeAne

Data-collection time (ms)

0 1 2 3 4 5
Per-port buffer size (MB)
(@)
500V N T T T T T T T T T T
‘\ —m— FCFS -
\ —=&#— Random -
H \ —%— Node round-robin -
400 —— Node load-balancing —~
—~ t \ —<@— Processing unit round-robin 4
0 \
E I \ \]
L p]
Q = 4
£ 300 }\\
c [T~ i
2 e PP
© 9]
D L]
3 200
LI) . -
cu -
bS] 1
@) s]
100
07 R S I S W AN N S S S NS S S N
0 1 2 3 4 5
Per-port buffer size (MB)
(b)

Figure 6.12 Average data-collection times as a function of the size of the per-
port buffers in the top-of-rack switch, for different event assignment
policies, at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.

136 Chapter 6 Enhancements for next-generation data-acquisition systems

500

400}

Data-collection time (ms)

100}

500

400}

Data-collection time (ms)

100}

Figure 6.13 Average data-collection times as a function of the size of the shared
buffer in the top-of-rack switch, for different event assignment policies,

-

B

e

e e

300}

200}

\-\

1

—&— FCFS

—&— Random

—3%— Node round-robin

—@— Node load-balancing
—<@— Processing unit round-robin

300}

200}

I L 1 1
10 15 20 25 30
Shared buffer size (MB)
(a)
\‘// J
—m— FCFS i
\ —&#— Random]
—%— Node round-robin
\ —— Node load-balancing]
—<4@— Processing unit round-robin |
%{E]
. . . S S S . P
10 15 20 25 30

Shared buffer size (MB)
(b)

at a constant bandwidth of (a) 1.06 GB/s and (b) 2.12 GB/s.

6.5

Switch buffer space

137

138

The results for a switch with shared memory are shown in Figure figure 6.13. In the
medium-throughput scenario, both with the FCFS and random assignment policies, the
minimum data-collection time is reached with a buffer size of at least 24 MB. However,
in the high-throughput scenario a 30 MB buffer size is needed to get to the minimum
data-collection time with the FCFS policy. As with the previous simulation, the random
policy does not reach the minimum latency in the high-throughput scenario. With the
node load-balancing and round-robin policies, the minimum latency is reached with a
shared buffer of at least 20 MB in the medium-throughput scenario and 24 MB in the
high-throughput scenario. Interestingly, in the high-throughput scenario, for smaller
buffer sizes, the node round-robin policy performs better than the node load-balancing
policy. This shows the importance of spreading the traffic over all the available nodes
and therefore over all the switch’s output ports, so that it can be consumed rather than
queued. With the node round-robin policy two events are never consecutively assigned
to the same worker node. The node load-balancing policy does not offer that guarantee

and therefore can cause higher buffer occupancy.

6.6 Discussion

All the solutions examined in this chapter improve the data-collection performance to
various extents. The main findings are resumed here. By its very definition, the incast
problem can be avoided if the buffers in the network switches are large enough to absorb
the biggest bursts of data directed to a single destination, as shown in the previous
section. If that is not the case, various strategies can be employed to reduce the effects of
incast. As an alternative to the general but somewhat impractical solutions mentioned
in section 2.4, the following possibilities were evaluated:

* anetwork-aware work-assignment algorithm,

¢ the receiver-side traffic shaping algorithm discussed in chapter 4,
¢ lowering the TCP retransmission time-out,

¢ centralised packet scheduling.

A good work-assignment algorithm (such as node round-robin or node load-balancing)
spreads the traffic over all the available nodes and network links, ensuring an optimal
utilisation of the available resources. Its implementation is necessary to obtain the best

results with any of the solutions presented.

The receiver-side traffic shaping algorithm discussed in chapter 4:

Chapter 6 Enhancements for next-generation data-acquisition systems

v completely prevents network buffer overruns;

v combined with a good event-assignment policy, achieves the lowest data-collection
time (~20 ms in the simulated scenarios, close the the theoretical minimum of
18.2 ms);

X has a narrow, traffic-pattern-dependent optimal operation range;

X requires the data fragments sizes to be somewhat predictable.
Lowering the TCP minimum retransmission time-out to 5 ms:

v is effective independently of the network traffic-pattern;

X performs significantly worse than traffic-shaping, especially when the network is
heavily utilised (the lowest data-collection time achieved is ~40 ms in the high-

traffic scenarios).

Receiver-side traffic-shaping and a lowered TCP minimum RTO (with delayed acknow-
ledgements disabled) are not mutually exclusive. In fact, their combination, together
with a good event-assignment algorithm, is a very effective technique to prevent and
mitigate the consequences of the TCP incast pathology with data-acquisition traffic. The
main drawback of this combination is that obtaining the best performance requires tun-
ing the traffic-shaping algorithm to match the systems’ configuration and traffic pattern.
Given that in data-acquisition systems neither change often, this is not a serious imped-

iment to its adoption.
A completely alternative solution, centralised packet scheduling;:
v is effective independently of the network configuration and traffic-pattern;

v offers acceptable performance even if the simple FCFS policy is used for event

assignment;

X limits the scalability and reliability of the whole system due to the centralised ar-

chitecture;

X is not as effective as receiver-side traffic shaping (the lowest data-collection time
achieved is ~22 ms in the high-traffic scenarios, 10% higher than when using a
properly configured traffic-shaping).

6.6 Discussion

139

Conclusion

Large-scale data-acquisition systems must aggregate data fragments from millions of
sources into one coherent output. In the networked part of a data-acquisition system,
communications are inherently many-to-one, bursty, and synchronous. This combina-
tion triggers the well-known incast pathology, which dramatically reduces the system’s
throughput. Many-to-one bursts are a natural feature of data acquisition: when an ex-
periment observes a certain phenomenon, all its sensors produce data at the same time.
The data-acquisition system must gather and collate these data fragments in a single

location for further processing and analysis.

The goal of this work was to search for and evaluate effective ways of mitigating or
eliminating the impact of incast in data-acquisition systems. In particular, the focus
was on practical solutions, that can be deployed on existing systems without disrupting
their operation. In order to do that, a real large-scale system was studied: the ATLAS

experiment’s trigger and data-acquisition system.

The most important metric of a data-acquisition system’s performance was identified:
the data-collection time, i.e. the time spent gathering data from the sources to the pro-
cessing nodes. In systems where data is collected on-demand, a larger than necessary
data-collection time effectively means wasted CPU time. Moreover, in incast-affected

networks, resources are needlessly wasted by retransmitting dropped packets.

The measurements presented in chapter 4 showed that the ATLAS data-acquisition net-
work is indeed vulnerable to incast. With no incast-avoidance measures in place, its
data-collection time can get as high as 35 times larger than its ideal minimum. The
measurements clearly show why: as long as the total amount of collected data can fit
into the buffers of the switches between sources and receiver, the data-collection time

stays low. When the data cannot be totally buffered, it becomes possible that all of the

141

142

transmission from one source is dropped. If this happens, the source can only detect
that packets must be retransmitted by means of a relatively slow timeout mechanism.
When many sources encounter this issue, it may even become necessary to retransmit
packets a third or even a fourth time. Waiting for these timeouts and retransmissions
causes the data-collection time to explode. These observations suggest a simple but ef-
fective mitigation strategy: a receiver-side traffic-shaping mechanism that reduces the
effects of incast by only allowing a small number of senders to transmit data to the same
receiver at the same time. Effectively, this smooths the bursts of many-to-one transmis-
sions. In ATLAS this mechanism can reduce the data-collection time by a factor 10 in the
worst case mentioned above. Even so, this approach, is not, by itself, capable of return-
ing the system to its ideal performance levels, especially when the network utilisation

is close to the maximum.

To further improve on the results obtained with traffic shaping, a simulation model
was necessary: data-acquisition systems are mission-critical components of their exper-
iments. Therefore, once they are commissioned, they are rarely available for perform-
ance measurements and implementing even small hardware or software modifications
is often impossible. The discrete event simulation developed in chapter 5 models the
ATLAS data-acquisition system at the granularity of a data-link packet. Applications,
and network protocols were given the most realistic implementations. Switch and end-
node hardware latencies were not modelled in detail. The underlying assumption is
that data-collection latency is dominated by the delays caused by packet drops and re-
transmissions, which are several orders of magnitude larger than the typical switch or
end-node hardware latency. Before putting it to use, it was validated extensively by
comparing its results with measurements taken on the real system. As expected, the
crude hardware latency model did not meaningfully impact the results. On the other
hand, switch buffer sizes must be chosen carefully, as they are essential in determining
packet drops. In general, the model’s predictions were shown to be in good agreement
with the measurements mentioned above, thereby validating the model and enabling

its use to study further improvements.

The most important result of the simulations presented in chapter 6 shows that it is
possible to undo the effects of incast in data-acquisition systems with pure software
solutions, which do not require invasive and expensive hardware and operating system

modifications. In particular, a combination of:

¢ atraffic-shaping algorithm that allows only a small number of senders to transmit

data to the same receiver at the same time,

Chapter 7 Conclusion

* a work-scheduling policy that spreads the load evenly on the network, and

¢ the tuning of two TCP parameters (lowering the minimum retransmission timeout

and disabling delayed acknowledgements)

results in data-collection times that are within 10% of the ideal minimum, even with a
high network traffic load. This combination is even more effective than more sophistic-

ated approaches, like a somewhat impractical centralised packet-scheduling system.

The main drawback of that combination is that the traffic-shaping algorithm is not gen-
eric: it must be tuned to match the system configuration and traffic pattern. However,
in data-acquisition systems these are rather static and known in advance, rendering
this limitation less relevant. The simulation model developed for these studies can also
double as a tool to estimate the best configuration of the traffic-shaping algorithm and
the best work-assignment policy for a given system. Nevertheless, the development
of an automatic discovery algorithm to find the optimal traffic-shaping parameter is a
natural extension of this work.

These results enable the ATLAS data-acquisition system to operate at high efficiency,
without losing network throughput to incast. More generally, they demonstrate that it is
possible to build data-acquisition systems using low-cost best-effort networks without
necessarily incurring in the catastrophic loss of throughput brought about by incast.

More expensive lossless network technologies are not needed.

Given their negligible cost, low invasiveness, and relative ease of implementation, the
solutions presented in this thesis can be recommended to currently operating and future

data-acquisition systems based on best-effort network technologies.

143

Acknowledgements

First and foremost, I want to thank Prof. Dr. Holger Froning for his guidance and
directions as my doctoral advisor, and Prof. Dr. Pedro Javier Garcia for his precious

collaboration and his insights on computer networks.

I am grateful to the Faculty of Mathematics and Computer Science of Heidelberg Uni-

versity for the opportunity to pursue this doctorate.

I would like to thank Dr. Wainer Vandelli for his constant support and supervision
during my time as a member of the ATLAS team at CERN. I am deeply indebted to Prof.
Dr. Andrea Negri, who introduced me to the world of data acquisition, large-scale
experiments, and CERN.

I owe most of my understanding of event-based network simulations to Dr. Pedro
Yébenes Segura. His tips have been invaluable to me.

Special thanks to Eukeni Pozo Astigarraga, Dr. Giuseppe Avolio, Dr. Reiner Hauser,
and Dr. Giovanna Lehmann Miotto. Working, discussing, and designing data-acquisition

software side-by-side with them was an incredible learning experience.

I would not have ever finished writing this thesis without the constant comforting and
encouragement of the amazing Margherita Boselli. Her in-depth reviews were instru-
mental in helping me make this work much better, and I look forward to return the

favour soon.

Last but absolutely not least, I want to thank my family: my parents Alfredo and Bianca,
and my sister Camilla. I will never have enough of their unconditional support and
loving advice.

145

Bibliography

[5]

R. Achenbach et al. “The ATLAS Level-1 Calorimeter Trigger”. In: Journal of In-
strumentation 3.3 (2008), P03001. 1ssn: 1748-0221. por: 10.1088/1748-0221/3/
03/P03001.

ALICE Collaboration. “The ALICE experiment at the CERN LHC”. In: Journal of
Instrumentation 3.8 (2008), S08002. 1ssn: 1748-0221. por: 10.1088/1748-0221/3/
08/508002.

M. Alizadeh, A. Javanmard, and B. Prabhakar. “Analysis of DCTCP: Stability,
Convergence, and Fairness”. In: Proceedings of the ACM SIGMETRICS Joint Inter-
national Conference on Measurement and Modeling of Computer Systems. SIGMET-
RICS. New York: ACM, 2011, pp. 73-84. 1sBN: 978-1-4503-0814-4. por: 10. 1145/
1993744.1993753.

M. Alizadeh et al. “Data Center TCP (DCTCP)”. In: Proceedings of the ACM SIG-
COMM 2010 Conference. SIGCOMM. New York: ACM, 2010, pp. 63-74. 1sBN: 978-
1-4503-0201-2. por: 10.1145/1851182.1851192.

M. Allman and V. Paxson. “On Estimating End-to-end Network Path Properties”.
In: Proceedings of the Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication. SIGCOMM. New York: ACM, 1999, pp. 263-
274. 1sBN: 978-1-58113-135-2. por: 10.1145/316188.316230.

A. dos Anjos, H. P. Beck, and B. Gorini. The raw event format in the ATLAS Trigger &
DAQ. Engineering Specification ATL-D-ES-0019 v.4.0e. Geneva: CERN, 2011. urt:
http://edms.cern.ch/document/445840/4.0e.

F. Anulli et al. “The Level-1 Trigger Muon Barrel System of the ATLAS experiment
at CERN”. In: Journal of Instrumentation 4.4 (2009), P04010. 1ssn: 1748-0221. por:
10.1088/1748-0221/4/04/P04010.

147

[8] S.Asketal. “The ATLAS central level-1 trigger logic and TTC system”. In: Journal
of Instrumentation 3.8 (2008), P08002. 1ssN: 1748-0221. por: 10.1088/1748-0221/
3/08/P08002.

[9] ATLAS Collaboration. “Observation of a new particle in the search for the Stand-
ard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters
B 716.1 (2012), pp. 1-29. 1ssn: 0370-2693. por: 10.1016/7 .physletb.2012.08.
020.

[10] ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron Col-
lider”. In: Journal of Instrumentation 3.8 (2008), S08003. 1ssn: 1748-0221. por: 10 .
1088/1748-0221/3/08/508003.

[11] S.Baron.TTC.2012.urL:http://ttc.web.cern.ch/ttc/ (visited on03/26/2012).

[12] S.Bensley etal. Datacenter TCP (DCTCP): TCP Congestion Control for Datacenters. In-
ternet Draft draft-ietf-tcpm-dctcp-03. Internet Engineering Task Force, 2016. URL:
https://tools.ietf.org/html/draft-ietf-tcpm-dctcp-03.

[13] E. Blanton, M. Allman, and V. Paxson. TCP Congestion Control. Internet Request
for Comments 5681. RFC Editor, 2009. urt: http://www.rfc-editor.org/
rfc/rfc5681.txt (visited on 02/19/2016).

[14] L.S. Brakmo, S. W. O'Malley, and L. L. Peterson. “TCP Vegas: New Techniques
for Congestion Detection and Avoidance”. In: Proceedings of the ACM Conference on
Special Interest Group on Data Communication (SIGCOMM). SIGCOMM. New York:
ACM, 1994, pp. 24-35. 1sBN: 978-0-89791-682-0. por: 10.1145/190314.190317.

[15] Brocade Communications Systems. MLX Series Routers. urL: http://www.brocade.
com/en/products - services / routers/mlx - series . html (visited on
02/21/2016).

[16] Brocade Communications Systems. VDX 6740 Switches. urL:http://www.brocade.
com/en/products-services/switches/data-center-switches/vdx-
6740-switches.html (visited on 02/21/2016).

[17] J.M. Campbell, J. W. Huston, and W. J. Stirling. “Hard interactions of quarks and
gluons: a primer for LHC physics”. In: Reports on Progress in Physics 70.1 (2007),
pp. 89-193. 1ssn: 0034-4885, 1361-6633. por: 10 . 1088 /0034 -4885/70/1/R02.
arXiv: hep-ph/0611148.

[18]].-L. Caron. Layout of the LEP tunnel including future LHC infrastructures. 1997. urL:
http://cdsweb.cern.ch/record/841560.

148 Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Castalia Wireless Sensor Network Simulator. urL: https : / / castalia . forge.
nicta.com.au/ (visited on 03/23/2016).

CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), pp. 30-61. 1ssn:
0370-2693. por: 10.1016/7j.physletb.2012.08.021.

CMS Collaboration. “The CMS experiment at the CERN LHC”. In: Journal of In-
strumentation 3.8 (2008), S08004. 1ssn: 1748-0221. por: 10.1088/1748-0221/3/
08/508004.

T. Colombo and W. Vandelli. “Novel, highly-parallel software for the online stor-
age system of the ATLAS experiment at CERN: Design and performances”. In:
2012 18th IEEE-NPSS Real Time Conference. RT. New York: IEEE, 2012, pp. 1-6. por:
10.1109/RTC.2012.6418361.

T. Colombo et al. “Modeling a Large Data-Acquisition Network in a Simulation
Framework”. In: 2015 IEEE International Conference on Cluster Computing. CLUSTER.
New York: IEEE, 2015, pp. 809-816. por: 10.1109/CLUSTER.2015.137.

T. Colombo. “Data-flow Performance Optimisation on Unreliable Networks: the
ATLAS Data-Acquisition Case”. In: Journal of Physics: Conference Series 608.1 (2015),
p- 012005. 1ssn: 1742-6596. por: 10.1088/1742-6596/608/1/012005.

T. Colombo et al. “Optimizing the data-collection time of a large-scale data-acquisition

system through a simulation framework”. In: The Journal of Supercomputing 72.12
(2016), pp. 4546-4572. 1ssN: 0920-8542, 1573-0484. por: 10.1007/s11227-016-
1764-1.

P. Devkota and A. Reddy. “Performance of Quantized Congestion Notification
in TCP Incast Scenarios of Data Centers”. In: 2010 IEEE International Symposium
on Modeling, Analysis Simulation of Computer and Telecommunication Systems. MAS-
COTS. New York: IEEE, 2010, pp. 235-243. por: 10.1109/MASCOTS.2010.32.

“LHC Machine”. In: Journal of Instrumentation 3.8 (2008). Ed. by L. Evans and P.
Bryant, S08001. 1ssn: 1748-0221. por: 10.1088/1748-0221/3/08/508001.

K. R. Fall and W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Second.
Addison-Wesley Professional, 2011. 1056 pp. 1sBN: 978-0-13-280820-0.

A. Firoozshahian et al. “Efficient, Fully Local Algorithms for CIOQ Switches”. In:
26th IEEE International Conference on Computer Communications. INFOCOM. New
York: IEEE, 2007, pp. 2491-2495. por: 10.1109/INFCOM.2007.307.

Bibliography

149

150

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

S. Floyd et al. The NewReno Modification to TCP’s Fast Recovery Algorithm. Internet
Request for Comments 6582. RFC Editor, 2012. urL: http://www.rfc-editor.
org/rfc/rfc6582.txt (visited on 04/15/2016).

S. Ha and I. Rhee. “Taming the elephants: New TCP slow start”. In: Computer
Networks 55.9 (2011), pp. 2092-2110. 1ssn: 1389-1286. por: 10. 1016/ j . comnet .
2011.01.014.

S.Ha, I. Rhee, and L. Xu. “CUBIC: A New TCP-friendly High-speed TCP Variant”.
In: SIGOPS Oper. Syst. Rev. 42.5 (2008), pp. 64-74. 1ssN: 0163-5980. por: 10.1145/
1400097.1400105.

Hewlett-Packard Development Company. ProCurve 6600 Manuals. urL: http://
www . hp.com/rnd/support/manuals/6600dc.htm (visited on 02/21/2016).

IEEE Standard for Ethernet. IEEE Std 802.3-2015. New York: IEEE, 2016. 1sBN: 978-
1-5044-0078-7.

IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks.
IEEE Std 802.1Q-2014. New York: IEEE, 2014. 1sBN: 978-0-7381-9433-2.

INET Framework. urL: https://inet.omnetpp.org/ (visited on 03/23/2016).

Internet Protocol. Internet Request for Comments 791. RFC Editor, 1981. urL: https:
//www.rfc-editor.org/rfc/rfc791.txt.

V. Jacobson. “Congestion Avoidance and Control”. In: Symposium Proceedings on
Communications Architectures and Protocols. SIGCOMM. New York: ACM, 1988,
pp. 314-329. 1sBn: 978-0-89791-279-2. por: 10.1145/52324.52356.

S. T. Jansen. “Network Simulation Cradle”. Thesis. The University of Waikato,
2008.urL: http://researchcommons.waikato.ac.nz/handle/10289/3287
(visited on 03/23/2016).

G. Jereczek et al. “A lossless switch for data acquisition networks”. In: 2015 IEEE
40th Conference on Local Computer Networks. LCN. New York: IEEE, 2015, pp. 552—
560. por: 10.1109/LCN.2015.7366370.

A.Ko6pke et al. “Simulating Wireless and Mobile Networks in OMNeT++ the MiXiM
Vision”. In: Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops. Simutools. Brus-
sels: ICST, 2008, 71:1-71:8. 1sBN: 978-963-9799-20-2. urL: http://dl.acm.org/
citation.cfm?id=1416222.1416302 (visited on 03/23/2016).

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

C.Leeetal. “DX: Latency-Based Congestion Control for Datacenters”. In: IEEE/ACM
Transactions on Networking 25.1 (2017), pp. 335-348. 1ssn: 1063-6692. po1: 10.1109/
TNET.2016.2587286.

LHCDb Collaboration. “The LHCb Detector at the LHC”. In: Journal of Instrument-
ation 3.8 (2008), S08005. 1ssn: 1748-0221. por: 10 . 1088 / 1748 - 0221 /3 /08 /
S08005.

D. L. Mills. Executive Summary: Computer Network Time Synchronization. 2012. URL:
https://www.eecis.udel.edu/~mills/exec.html (visited on 09/12/2016).

R. Mittal et al. “TIMELY: RTT-based Congestion Control for the Datacenter”. In:
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication. SIGCOMM. New York: ACM, 2015, pp. 537-550. 1sBN: 978-1-4503-3542-3.
por: 10.1145/2785956.2787510.

D. Nagle, D. Serenyi, and A. Matthews. “The Panasas ActiveScale Storage Cluster:
Delivering Scalable High Bandwidth Storage”. In: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing. SC. Washington: IEEE Computer Society, 2004, p. 53.
1sBN: 978-0-7695-2153-4. por: 10.1109/SC.2004.57.

A. Nufez et al. “SIMCAN: A SIMulator Framework for Computer Architectures
and Storage Networks”. In: Proceedings of the 1st International Conference on Simu-
lation Tools and Techniques for Communications, Networks and Systems & Workshops.
Simutools. Brussels: ICST, 2008, 73:1-73:8. 1sBN: 978-963-9799-20-2. urL: http://
dl.acm.org/citation.cfm?id=1416222.1416304 (visited on 03/23/2016).

J. Pequenao. Computer generated image of the ATLAS calorimeter. 2008. urL: http :
//cdsweb.cern.ch/record/1095927.

J. Pequenao. Computer generated image of the ATLAS inner detector. 2008. urL: http:
//cdsweb.cern.ch/record/1095926.

J. Pequenao. Computer generated image of the ATLAS Muons subsystem. 2008. URL:
http://cdsweb.cern.ch/record/1095929.

J. Pequenao. Computer generated images of the Pixel, part of the ATLAS inner detector.
2008. urL: http://cdsweb.cern.ch/record/1095925.

J. Perry et al. “Fastpass: A Centralized ”"Zero-queue” Datacenter Network”. In:
Proceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM. New York: ACM,
2014, pp. 307-318. 1sBN: 978-1-4503-2836-4. por: 10.1145/2619239.26263009.

Bibliography

151

152

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

A. Phanishayee et al. “Measurement and Analysis of TCP Throughput Collapse
in Cluster-based Storage Systems”. In: Proceedings of the 6th USENIX Conference on
File and Storage Technologies. FAST 08. Berkeley: USENIX Association, 2008, 12:1—
12:14. vrL: http://dl.acm.org/citation.cfm?id=1364813. 1364825
(visited on 02/19/2016).

R. van der Pol. TRILL and IEEE 802.1aq Overview. LHCONE Architecture Docu-
ment. SARA, 2012.

M. E. Pozo Astigarraga. “Evolution of the ATLAS Trigger and Data Acquisition
System”. In: Journal of Physics: Conference Series 608.1 (2015), p. 012006. 1ssn: 1742-
6596. por: 10.1088/1742-6596/608/1/012006.

I. Psaras and V. Tsaoussidis. “The TCP Minimum RTO Revisited”. In: NETWORK-
ING 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet.
Ed. by I. F. Akyildiz et al. Lecture Notes in Computer Science 4479. Berlin Heidel-
berg: Springer, 2007, pp. 981-991. 1sBn: 978-3-540-72605-0 978-3-540-72606-7. por:
10.1007/978-3-540-72606-7_84.

K. K. Ramakrishnan, S. Floyd, and D. L. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. Internet Request for Comments 3168. RFC Editor, 2001.
UurL: https://www.rfc-editor.org/rfc/rfc3168. txt.

Requirements for IP Version 4 Routers. Internet Request for Comments 1812. RFC
Editor, 1995. urL: https://www.rfc-editor.org/rfc/rfc1812.txt.

T. Reschka et al. “Enhancement of the TCP module in the OMNeT++/INET frame-
work”. In: Proceedings of the 3rd International ICST Conference on Simulation Tools
and Techniques. SIMUTools "10. Brussels: ICST, 2010, 24:1-24:1. 1sBN: 978-963-9799-
87-5.por: 10.4108/ICST.SIMUTOOLS2010.8834.

M. Sargent et al. Computing TCP’s Retransmission Timer. Internet Request for Com-
ments 6298. RFC Editor, 2011. urL: http://www . rfc-editor .org/rfc/
rfc6298. txt (visited on 02/19/2016).

C. E. Spurgeon and J. Zimmerman. Ethernet: The Definitive Guide. 2nd. O’Reilly
Media, 2014. 508 pp. 1sBN: 978-1-4493-6184-6.

K. Tan et al. “A Compound TCP Approach for High-Speed and Long Distance
Networks”. In: Proceedings of the 25th IEEE International Conference on Computer
Communications. INFOCOM. 2006, pp. 1-12. por: 10.1109/INFOCOM.2006.188.

Transmission Control Protocol. Internet Request for Comments 793. RFC Editor,
1981. urL: https://www.rfc-editor.org/rfc/rfc793.

Bibliography

[64]

[65]

[66]

[67]

[68]

A. Varga. “OMNeT++”. In: Modeling and Tools for Network Simulation. Ed. by K.
Wehrle, M. Giines, and]. Gross. Berlin Heidelberg: Springer, 2010, pp. 35-59. 1sBN:
978-3-642-12330-6 978-3-642-12331-3. por: 10.1007/978-3-642-12331-3_3.

V. Vasudevan et al. “Safe and Effective Fine-grained TCP Retransmissions for
Datacenter Communication”. In: Proceedings of the ACM SIGCOMM 2009 Confer-
ence on Data Communication. SIGCOMM. New York: ACM, 2009, pp. 303-314. 1sBN:
978-1-60558-594-9. por: 10.1145/1592568.1592604.

D. X. Wei et al. “FAST TCP: Motivation, Architecture, Algorithms, Performance”.

In: IEEE/ACM Trans. Netw. 14.6 (2006), pp. 1246-1259. 1ssn: 1063-6692. por: 10 .

1109/TNET.2006.886335.

H. Wu et al. “ICTCP: Incast Congestion Control for TCP in Data-center Networks”.
In: IEEE/ACM Trans. Netw. 21.2 (2013), pp. 345-358. 1ssN: 1063-6692. po1: 10. 1109/
TNET.2012.2197411.

P. Yebenes et al. “Towards Modeling Interconnection Networks of Exascale Sys-
tems with OMNet++”. In: 2013 21st Euromicro International Conference on Parallel,
Distributed and Network-Based Processing. PDP. 2013, pp. 203-207. por: 10. 1109/
PDP.2013.36.

Bibliography

153

	1 Introduction
	2 Background: data-acquisition networks
	2.1 Data-acquisition systems
	2.1.1 Performance targets
	2.1.2 Traffic pattern

	2.2 Common network technologies in data acquisition
	2.2.1 Ethernet and IP
	2.2.2 The Transmission Control Protocol (TCP)

	2.3 The incast pathology
	2.4 Related works: incast avoidance and mitigation

	3 The ATLAS experiment at the Large Hadron Collider
	3.1 High-energy physics
	3.2 The Large Hadron Collider
	3.2.1 Construction
	3.2.2 Physics performance

	3.3 The ATLAS Experiment
	3.3.1 Detector layout
	3.3.2 Inner detector
	3.3.3 Calorimeters
	3.3.4 Muon spectrometer

	3.4 The ATLAS trigger and data-acquisition system
	3.5 Front-end
	3.6 First-level trigger
	3.6.1 Calorimeter trigger
	3.6.2 Muon trigger

	3.7 Data-Acquisition and High-Level Trigger
	3.7.1 Data format
	3.7.2 Readout System
	3.7.3 High-Level Trigger
	3.7.4 Data-Collection Manager
	3.7.5 Data Logger
	3.7.6 Network

	3.8 The ATLAS Data-Acquisition messaging system
	3.8.1 Requirements
	3.8.2 Existing solutions
	3.8.3 Implementation
	3.8.4 Benchmarks

	4 Static traffic shaping for current data-acquisition systems
	4.1 Performance issues in data-acquisition networks
	4.2 Evaluation of the impact of the incast pathology on data-acquisition performance
	4.2.1 Measurement set-up
	4.2.2 Results

	4.3 Request-side traffic shaping
	4.3.1 Incast mitigation
	4.3.2 Effectiveness evaluation

	5 Simulation model
	5.1 Model development
	5.1.1 Hosts
	5.1.2 Applications
	5.1.3 Network switches
	5.1.4 Complete model
	5.1.5 Parameters
	5.1.6 Runtime

	5.2 Model validation
	5.2.1 Goals
	5.2.2 Analysis and comparison of measured and simulated results

	6 Enhancements for next-generation data-acquisition systems
	6.1 Work assignment policies
	6.2 Variable fragment sizes
	6.3 Reducing TCP's minimum retransmission time-out
	6.4 Centralised traffic scheduling
	6.4.1 Scheduler timing
	6.4.2 Clock synchronisation
	6.4.3 Scheduler granularity

	6.5 Switch buffer space
	6.6 Discussion

	7 Conclusion
	Acknowledgements
	Bibliography

