
Representation learning in Heterogeneous Information Networks for User

Modeling and Recommendations

by

Surya Kallumadi

M.S., Kansas State University, 2010

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

Abstract

Current research in the field of recommender systems takes into consideration the inter-

action between users and items; we call this the homogeneous setting. In most real world

systems, however these interactions are heterogeneous, i.e., apart from users and items there

are other types of entities present within the system, and the interaction between the users

and items occurs in multiple contexts and scenarios. The presence of multiple types of en-

tities within a heterogeneous information network, opens up new interaction modalities for

generating recommendations to the users. The key contribution of the proposed dissertation

is representation learning in heterogeneous information networks for the recommendations

task.

Query-based information retrieval is one of the primary ways in which meaningful nuggets

of information is retrieved from large amounts of data. Here the query is represented as a

user’s information need. In a homogeneous setting, in the absence of type and contextual

side information, the retrieval context for a user boils down to the user’s preferences over

observed items. In a heterogeneous setting, information regarding entity types and prefer-

ence context is available. Thus query-based contextual recommendations are possible in a

heterogeneous network. The contextual query could be type-based (e.g., directors, actors,

movies, books etc.) or value-based (e.g., based on tag values, genre values such as “Comedy”,

“Romance”) or a combination of Types and Values. Exemplar-based information retrieval is

another technique for of filtering information, where the objective is to retrieve similar enti-

ties based on a set of examples. This dissertation proposes approaches for recommendation

tasks in heterogeneous networks, based on these retrieval mechanisms present in traditional

information retrieval domain.

Representation learning in Heterogeneous Information Networks for User

Modeling and Recommendations

by

Surya Kallumadi

M.S., Kansas State University, 2010

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

Approved by:

Major Professor
Dr. William H. Hsu

Copyright

c© Surya Kallumadi 2018.

Abstract

Current research in the field of recommender systems takes into consideration the inter-

action between users and items; we call this the homogeneous setting. In most real world

systems, however these interactions are heterogeneous, i.e., apart from users and items there

are other types of entities present within the system, and the interaction between the users

and items occurs in multiple contexts and scenarios. The presence of multiple types of en-

tities within a heterogeneous information network, opens up new interaction modalities for

generating recommendations to the users. The key contribution of the proposed dissertation

is representation learning in heterogeneous information networks for the recommendations

task.

Query-based information retrieval is one of the primary ways in which meaningful nuggets

of information is retrieved from large amounts of data. Here the query is represented as a

user’s information need. In a homogeneous setting, in the absence of type and contextual

side information, the retrieval context for a user boils down to the user’s preferences over

observed items. In a heterogeneous setting, information regarding entity types and prefer-

ence context is available. Thus query-based contextual recommendations are possible in a

heterogeneous network. The contextual query could be type-based (e.g., directors, actors,

movies, books etc.) or value-based (e.g., based on tag values, genre values such as “Comedy”,

“Romance”) or a combination of Types and Values. Exemplar-based information retrieval is

another technique for of filtering information, where the objective is to retrieve similar enti-

ties based on a set of examples. This dissertation proposes approaches for recommendation

tasks in heterogeneous networks, based on these retrieval mechanisms present in traditional

information retrieval domain.

Table of Contents

List of Figures . x

List of Tables . xii

Acknowledgements . xiii

1 Introduction . 1

1.1 Introduction . 1

1.2 Representation Learning in Heterogeneous Networks 2

1.3 Recommender Systems Challenges . 3

1.3.1 Sparsity and cold-start recommendations: 3

1.3.2 Diversity: . 3

1.3.3 Interactive recommender systems: . 3

1.3.4 Explanations to recommendations: 4

1.4 Objectives . 4

2 Recommender Systems . 6

2.1 Introduction . 6

2.2 Overview of Recommender Systems Approaches 9

2.2.1 Providing Recommendations to Users 9

2.2.2 Collaborative Filtering Approach . 10

2.2.3 Content-based Recommender Systems 13

2.2.4 Hybrid Recommender Systems . 13

2.2.5 Domain Adaptation and Cross-Domain Collaborative Filtering 14

vi

2.2.6 Deep Learning Approaches for Cross-Domain Recommendations . . . 20

2.3 Recommender Systems Evaluation, Metrics, and Measures 21

2.4 Taxonomy of Recommender Systems Metrics 22

2.4.1 Error and Accuracy metrics . 23

2.4.2 Beyond Accuracy Metrics . 29

3 Representation Learning in Networks . 31

3.1 Embeddings and Distributed Representations 31

3.2 Language Modelling . 33

3.2.1 Neural Network-Based Language Models 33

3.2.2 Word2Vec . 35

3.3 Representation Learning in Networks . 39

3.3.1 DeepWalk . 41

3.3.2 Large-scale Information Network Embedding (LINE) 42

3.3.3 Node2vec . 42

3.3.4 Deep Learning Approaches for Representation Learning in Information

Networks . 43

3.3.5 Pre-trained Embeddings and their Applications in Downstream Dis-

covery Tasks . 45

4 Representation Learning and Recommendations in Heterogeneous Networks 49

4.1 Introduction . 50

4.1.1 User-driven Interactive Recommendations 51

4.2 Problem Definition . 53

4.3 Distributed Representations and HIN embeddings 58

4.3.1 Skipgram . 59

4.3.2 Skipgram for Metapaths . 59

4.4 Experiments and Results . 61

vii

4.4.1 Dataset . 61

4.4.2 Evaluation Metrics . 63

4.4.3 Results . 63

4.5 Interactive Recommendations . 66

4.5.1 Exemplar-based Recommendations 66

4.5.2 Less Like this and More Like this . 68

5 Semantic Diversity in Top-N Recommender Systems 70

5.1 Introduction . 70

5.2 Background . 72

5.2.1 Determinantal Point Processes (DPPs) 72

5.2.2 k-DPPs . 73

5.3 HIN Embeddings over User Curated Lists 75

5.4 Data Set, Experiments and Results . 76

5.4.1 Experiments and Results . 77

5.5 Diversity Metrics and their Utility . 78

6 Music Playlist Completion and Continuation . 79

6.1 Introduction . 80

6.2 The RecSys 2018 Challenge . 82

6.3 Our approach . 85

6.3.1 Candidate generation . 87

6.3.2 Learning to Rank . 90

6.4 Results . 92

6.5 Conclusion . 93

7 Conclusions and Future work . 95

7.1 Summary and Conclusions . 95

7.1.1 Representation Learning in HIN using Constrained Random Walks . 96

viii

7.1.2 New Modalities for Interaction for Interactive Search and Recommen-

dations . 96

7.1.3 Using Representation Learning to Improve Semantic Diversity of Ranked

Lists . 97

7.1.4 Using Semantic Embeddings for Recommendation Tasks, with Appli-

cation to Playlist Completion and Continuation 98

7.2 Future work . 99

7.2.1 Deep Semantic Models that Utilize Semantic Embeddings for Informa-

tion Retrieval and Discovery . 99

7.2.2 High Accuracy Recall to Improve Performance of Search Systems . . 99

7.2.3 Cross-Domain Recommendations using Domain-Aware Metapaths . . 101

7.2.4 Retraining and Incremental Training for New Data, Users, and Items 101

Bibliography . 103

ix

List of Figures

2.1 Ratings matrix . 7

2.2 Netflix movie ratings distribution with power-law characteristics 8

2.3 Rank 3 SVD of a Matrix . 12

3.1 Neural Language Model, Bengio et al.1 . 34

3.2 Continuous Bag-Of-Words (CBOW) architecture 37

3.3 Skipgram architecture . 38

3.4 A search engine architecture - iterative refinement of results2. An example

cascade architecture. After an initial ranking function H0, each stage consists

of two sequential operations: Jt prunes the input ranked documents, then a

local ranking function Ht refines the rank order of the retained documents.

The new ranked list is passed to the next stage. The size of the shaded area

denotes the size of the candidate documents. Subscripts for each ranked list

denotes the sequence of actions applied. 45

3.5 A recommender system architecture . 47

4.1 Movie domain interaction between entities 51

4.2 Movie - Knowledge Graph Schema . 53

4.3 (a) heterogeneous information network, (b) traces of fixed-length random walks 54

4.4 Citation network Metapaths . 55

4.5 Movie Network Metapaths . 55

4.6 precision@5 and precision@10 for varying sparsity in IMDb domain 64

4.7 precision@5 and precision@10 for varying sparsity in citation network 65

x

6.1 Demographics of users who contributed to the MPD by Left: gender and

Right: age. 83

7.1 DSSM style model for playlist continuation task 100

xi

List of Tables

2.1 Popular Recommender Systems Evaluation Metrics. 23

4.1 Metapaths captured from IMDB schema . 57

4.2 Metapaths captured from Citation Network schema 57

4.3 IMDb dataset overview . 61

4.4 Citation network dataset overview . 61

4.5 Results for Precision@K with varying sparsity 63

4.6 Results for Kendall’s τ , for ranked-order comparison 63

4.7 Exemplar-based user list generation for “Bond Movies” (Left) and “Film Noir”

(Right) Movie titles in bold constitute the query set 66

4.8 Exemplar-based user refinement for the intent “newer romantic comedies”,

Movie titles in bold constitute the query set 67

5.1 Average dissimilarity measure of diversity 78

6.1 The full list of features that our learning to rank model considers. The features

are categorized based on whether they depend only on the input playlist or

the candidate track, or both. 86

6.2 Offline evaluation results for individual candidate sources and the combined

LTR model output. For the combined model, we only measured the metrics

at rank 500. The combined model achieves the best performance while QE

emerges as the best candidate source. Note that for the clicks metric a lower

value indicates a better performance. 91

xii

6.3 Recall advantage of embeddings over QE. Recall advantage indicates the ad-

ditional percentage of tracks retrieved by Embedding approaches over QE . . 91

6.4 The final RecSys 2018 spotify challenge leaderboards. Our submissions are

highlighted in bold. Only the top 10 teams from the leaderboards are shown.

The total number of participating teams was 112 and 31 for the main and the

creative tracks, respectively. For the clicks metric a lower value indicates a

better performance. 94

xiii

Acknowledgments

Firstly, I thank my advisor, Dr. William Hsu for his guidance, patience, and kindness.

Dr. Hsu has always been generous with his time and resources. I will forever be grateful

for all the opportunities he has provided me during my studies here at K-State. I owe my

deepest gratitude to him for helping me attend DSSI, Machine Learning Summer School,

and the other numerous conferences in the past few years.

I also thank my dissertation committee, Dr. Doina Caragea, Dr. David Gustafson, Dr.

Caterina Scoglio, and Dr. Chris Pinner, for their valuable feedback. Special thanks to CIS

academic advisor Sheryl Cornell, for her invaluable assistance over the years.

Bhaskar Mitra, Tereza Iofciu, Gabriel Necoechea, Andrew Trotman, and Felix Gräßer

have been wonderful research collaborators. I thank them for their time, and thoughtful

discussions.

xiv

Chapter 1

Introduction

“You cannot answer a question you cannot ask and you cannot ask a question

that you have no words for.”

- Judea Pearl, The Book of Why: The New Science of Cause and Effect

1.1 Introduction

Recommender systems play a vital role in modern day online ecosystems by surfacing relevant

item recommendations to users. These ecosystems can be as diverse as online marketplaces

such as Amazon.com, ebay.com etc. to content delivery platforms such as Netflix, Spotify

and Google. In the presence of a large amount of information, recommender systems act

as an information filtering mechanism that can predict a user’s affinity to an unseen item.

Recommender systems recommend items to a user based on a user’s explicit and implicit

preferences, the behaviour of other similar users, and user and item attributes3.

Prevalent research in the field of recommender systems takes into consideration the in-

teraction between users and items; we call this the homogeneous setting. But, in most real

world systems these interactions are heterogeneous, i.e. apart from users and items there

are other types of entities present within the system, and the interaction between the users

and items occurs in multiple contexts and scenarios. For example, in the movie domain, a

1

user can rate an item, but also a user can curate an item in a list based on a user defined

context. In addition, a user might show preferences towards items based on the attributes

associated with the items. In the movie domain, a user can like items because of the topic

of the movie, the director, actor etc. In an ecommerce scenario, one can imagine the user

preferences driven by not just the item, but attributes associated with the items. We can

model such interaction domains as heterogeneous information networks.

The presence of multiple types of entities within a heterogeneous information network,

opens up new modalities for generating recommendations to the users. The objective of this

dissertation is to develop recommendation approaches in heterogeneous information net-

works. Query-based information retrieval is one of the primary ways in which meaningful

nuggets of information are retrieved from large amounts of data. Here the query is rep-

resented by a user’s information need. In a homogeneous setting, in the absence of type

and contextual side information, the retrieval context for a user boils down to the user’s

preferences over observed items. In a heterogeneous setting, information regarding entity

types and preference context is available. Thus query-based contextual recommendations

are possible in a heterogeneous network. The contextual query could be type-based (e.g.

directors, actors, movies, books etc.) or value-based (e.g. based on tag values, genre val-

ues such as “Comedy”, “Romance”) or a combination of types and values. Exemplar-based

information retrieval is another modality of filtering information, where the objective is to

retrieve similar entities based on a set of examples.

1.2 Representation Learning in Heterogeneous Networks

Heterogeneous information networks (HINs) are networks with multi-typed nodes and edges,

which are more common in real life than homogeneous networks. In a HIN, relationships

between nodes are more complex than those in a homogeneous network, thus more difficult to

be represented. Representation learning of networks involves projecting nodes in the network

into a latent dimension such that some property/set of properties of the nodes within the

network is preserved. Classical network embedding methods like DeepWalk? and node2vec?

2

leveraged random walks to explore the structural information of the network and utilized

Skipgram4 to project the node into a low-dimensional vector. LINE represented the first-

order proximity and second-order proximity of the network so as to capture the local and

neighborhood network structures. All these models only aim to learn the representation for

homogeneous networks, and perform poorly when applied to a HIN. In this dissertation I

propose metawalk -based representation learning in HIN. The advantage of this approach is

that metawalks are domain aware i.e. we can exploit the domain specific information and

explicitly specify domain knowledge to learn representations over heterogeneous networks.

1.3 Recommender Systems Challenges

Following are some of the open research problems in recommender systems5:

1.3.1 Sparsity and cold-start recommendations:

Traditional recommender systems approaches have trouble with performance when not enough

preference data is available with respect to users or items. This is known as the cold-start

setting. Hybrid recommender systems have demonstrated their effectiveness in cold-start6.

1.3.2 Diversity:

Providing novel and diverse recommendations has become an important RecSys research

area because of the potential of current approaches resulting in filter bubbles7.

1.3.3 Interactive recommender systems:

Current interfaces in recommender systems are passive, i.e. the systems takes into consider-

ation the user, user history and the user context to provide recommendations to the users.

This leaves no scope for the user to express their needs. Interactive recommender systems

deal with the design of systems that allow the user to express their information needs8;9.

3

1.3.4 Explanations to recommendations:

There is a need for interpretable recommendations to improve user trust in the system by

making recommenders transparent. One way of achieving this objective is by providing

explanations to the recommendations provided to the user.

1.4 Objectives

In this dissertation, based on retrieval mechanisms present in traditional information retrieval

domain, we explore the following recommendation tasks in heterogeneous networks:

• Perform representation learning in heterogeneous information networks for the rec-

ommender systems domain based on implicit and explicit ratings. We learn latent

representation of nodes based on random walks to encode relationships between vari-

ous types of nodes.

• Query-based ranked recommendation of items to users, when type information is

present within the network. Explore generic and personalized list curation based on a

search query. Evaluate the performance of the approaches over implicit and explicit

feedback data sets over multiple domains.

• Exemplar-based ranked retrieval of items in a heterogeneous setting. This is similar

to the list completion task in machine learning and information retrieval. Given a set

of example items of the same type, the objective is to retrieve the top-K items that fit

with the exemplars based on latent representation of nodes in the network.

• User modeling-based on item preferences for user profile creation in heterogeneous

information networks.

• Explore approaches for integrating explicit and implicit feedback preference data in

heterogeneous networks. We focus on lists, which are a special case of implicit feedback

with user specified context.

4

• New modalities for search and recommendation in heterogeneous information networks.

Expose users to more intuitive ways of specifying user needs and context.

• Improve diversity of results of recommendation algorithms, by mapping entities in the

domain to various domain driven representations.

5

Chapter 2

Recommender Systems

2.1 Introduction

Recommender systems play a vital role in modern day e-commerce ecosystems by providing

relevant item recommendations to users. In the presence of large amounts of information,

recommender systems act as an information filtering mechanism that can predict a user’s

affinity for an item. Recommender systems recommend items to a user based on a user’s

explicit and implicit preferences, the behaviour of other similar users, and user and item

attributes3. Collaborative filtering data primarily consists of a set of users and their prefer-

ences over a set of domain items.10 The user preferences over the items can be expressed in

the form of either a rating range or a binary opinion (like/dislike) . Thus, each data point

in this domain can be represented as a <User, Item, Response> preference triple. Items

could be articles, web pages, advertisements, movies, books, etc. Items can be ephemeral or

sticky depending on the application domain. For example, in a news recommender system,

items are ephemeral and the item set is dynamically changing, whereas in a movie recom-

mendation system, items are sticky and the item set is relatively stable. The preferences

or ratings can be real valued or integer values in a predefined range. Preferences can also

be implicit or explicit; in the case of explicit ratings, the users rate the items, whereas in

the case of implicit ratings the rating score is determined based on past user behavior. For

6

Figure 2.1: Ratings matrix

example, Netflix has a 1-5 explicit discrete Likert rating scale11, whereas online e-commerce

sites like eBay and Amazon have implicit ratings based on historical user behavior. This

behavior could be user purchases, items the user has viewed previously on the site, number

of page views, clicks etc.

The set of response triples form a sparse matrix (sparsity is domain-dependent) and in

case of ratings, is called as the ratings matrix. Fig. 1 shows a sample ratings matrix. The

ratings matrix cells are filled in with the user rating for the corresponding item that cell

belongs to. The ratings matrix is usually sparse, as a user might not rate every item in

the repository. Thus, the collaborative filtering task has two primary components: a) the

prediction task b) the recommendation task. In the prediction task, the objective is to

predict the rating preference for an unseen item given a user. In the recommendation task,

the objective is to obtain a ranked list of most appropriate items that addresses a user need.

Cold-start and sparsity: A common bottle neck for recommender systems is the cold-

start 12 problem, where recommendations are required for items that no user has rated yet

or items need to be recommended to users who have not expressed any preference yet.

Traditional CF approaches are ineffective in the presence of the cold-start setting due to the

absence of item ratings and/or user preferences. For example, new users of the CF system

must have expressed very few ratings or behavioral preferences over items, and items that

7

Figure 2.2: Netflix movie ratings distribution with power-law characteristics

are newly added to the system will have sparse ratings. Another problem of CF approaches

is their sensitivity to sparsity13. Sparsity occurs when only a small subset of items are

rated by most of the users, or when only a few users constitute the item ratings. Fig.

2.2 illustrates the sparsity problem within real-world data sets which exhibit power-law

distribution characteristics. For example in Netflix data, a small set of movies have a lot of

ratings, whereas a lot of movies have very few ratings.

One way to mitigate the cold-start problem is by using content-based and hybrid rec-

ommender approaches. In content-based recommender systems, we take the content and the

meta-data associated with the items into account for the recommendations task. In hybrid

recommender systems, the user-item references and the item content are both taken into

account for the recommendations task. Another way of reducing the effects of sparsity in

recommender systems is to perform cross-domain CF (CDCF). In CDCF we can have mul-

tiple source domains for each target domain, and the objective is to transfer knowledge in

the form of user preferences from the source domains to the target domain. One central

assumption to CDCF is that there should be an inherent relationship between the domains

between which learning is performed. We can consider news, browsing activity, search and

ads as closely related domains, where the type of news we consume, the online articles we

browse, the queries we input for search and the ads we click on can be considered to be

inherently related. Thus knowledge from one or more of these domains could be used as side

information to drive recommendations within another domain.

8

2.2 Overview of Recommender Systems Approaches

Recommender systems can be viewed as a content optimization problem and the goal is to

serve items to users. The most common approaches to recommending items to users can be

broadly classified into content-based filtering (CBF) , collaborative filtering (CF) and hybrid

recommender systems. Content-based filtering approaches use the items that a user prefers in

order to recommend similar items to the user, based on item features that can be derived from

aspects such as descriptions, social tags, price, etc. CBF methods create a profile for each

user using the user’s characteristics and behaviour, then use this profile to recommend more

items to the user. Machine learning classification methods such as Naive Bayes classification

and logistic regression have been used for CBF14;15. whereas collaborative filtering looks at

the correlations between the ratings of items provided by the user10. CF is used when users

associate quality and taste ratings to content, thus the context is more than just keywords

or topics in the case of CF. Hybrid recommender systems are a combination of CBF and CF

approaches16.

2.2.1 Providing Recommendations to Users

There are two aspects to recommender systems: predicting a rating to a user-item pair, and

providing item recommendations to a user in the target domain. The recommender systems

field has moved away from the rating prediction task towards the item recommendation

task. The evaluation metrics used for evaluating the effectiveness of recommender systems

approaches reflects this shift. At any given time the user has limited bandwidth for consum-

ing items recommended to them. Thus, what matters is not how accurately we can predict

the ratings but how relevant the top-k items recommended to the user are. This shift is also

largely dictated by the constraints imposed by the system user interface.

9

2.2.2 Collaborative Filtering Approach

The primary idea behind collaborative filtering is to suggest recommendations to a user by

relying on the ratings and behavior of other similar users. The fundamental assumption

about user behavior in collaborative filtering is that similar users will have similar interests

and vice-versa. Therefore, if users agree in their opinion or ratings, then they are more likely

to agree in their preferences about other items. Various CF approaches have been developed

in previous work. Memory-based methods use nearest neighbor approaches to compute

similarity between users or items17 10. Model-based methods learn the rating preference

model for users based on training data18. Matrix factorization based methods try to find a

low rank approximation of the ratings matrix19 20.

Types of Collaborative Filtering

User-User collaborative filtering: The objective of User-User collaborative filtering17

is to find other users with ratings similar to the current user. By identifying relevant users

we can leverage their ratings on other items to model the current users’ preferences. The

item ratings for the current user are obtained by weighting the relevant user item ratings

by the level of their agreement with the current user. Pearson correlation21, Spearman

correlation21, cosine similarity are some of the similarity metrics used to measure agreement

between users. As the number of users using the system grows, User-User collaborative

filtering suffers from scalability issues. In practical applications, the number of users will

be much greater than the number of items and the user set constantly changes whereas the

item set is relatively stable.

Item-item Collaborative Filtering: Item-based collaborative filtering22 tries to over-

come the scalability drawback of user-user collaborative filtering. Item-item collaborative

filtering uses similarities between the ratings of items. The rationale behind item-based

filtering is that similar items tend to have similar ratings, then the users will have similar

predilections towards similar items. In a domain where |U| >> |I|, item-based collaborative

10

filtering has much better scalability than user-user collaborative filtering.

K-nearest neighbor approaches/Neighborhood-based Approaches are usually used

in user-user CF and item-item CF, where all the pairwise correlations of all the pairs of users

or items in the system are first calculated. These pairwise correlations provide a measure of

agreement between two entities (user/item) . For any entity, the new item recommendations

are calculated by averaging the ratings vectors for the K-closest entities. Pearson correlation

is usually used as a distance metric for calculating the neighborhood of an entity (item or

user) . Pearson correlation is defined as:

sij =
Cov[ri, rj]

Std[ri]Std[rj]
(2.1)

where sij is the similarity of entities i and j, Cov is the co-variance of two entities and Std is

the standard deviation of an entity. Similarity of two entities will be +1 if they are perfectly

correlated and -1 if they are anti-correlated.

Konstan et al.23 17 discuss the effectiveness of news recommendation in the Usenet domain

using neighborhood recommendation approaches. These approaches are shown to be effective

in the presence of sparse rating data, infrequent occurrence of news articles. Sarwar et

al.10 highlight the computational drawbacks of neighborhood exploration in user-based CF

approaches and suggest item-based CF as a viable alternative that is both scalable and

accurate for explicit data. Linden et al.22 demonstrate the viability of using item-based CF

approaches in the presence of implicit data (co-purchase information) .

Graph-based Approaches

Graph-based approaches have been proposed to exploit the user-item preference informa-

tion as a bi-partite graph. The adsorption algorithm24, proposed for a personalized video

recommendation application in the YouTube.com domain, looks at the user-video content

consumption graph. The random walk approach proposed in this work propagates preference

information of users to their neighborhood (similar to label propagation25) , and is shown

11

Figure 2.3: Rank 3 SVD of a Matrix

to be scalable in the presence of large number of users and items.

Dimensionality Reduction and Latent Factor Models

The objective of dimensionality reduction is to decompose the ratings matrix into a lower

dimensional matrix. By identifying a set of n-topics the ratings matrix can be represented as

a combination of the user’s interest in the topics and the relevance of an item to a topic. La-

tent semantic analysis (LSA)26, singular value decomposition (SVD)27, principal component

analysis (PCA)28, and probabilistic latent semantic analysis (PLSA)29 are some of the ma-

trix factorisation methods used for dimensionality reduction for collaborative filtering19 20.

Fig. 2.3 gives an illustration of SVD by decomposing a ratings matrix to Users and Items

matrices of Rank 3. Using this approach, missing values in any cell of the original matrix

can be calculated by obtaining the dot product of the corresponding row vector of the first

matrix and column vector of the second matrix. This decomposition has a rank of 3, i.e.,

the number of latent concepts of the new representation of the original matrix is 3. Since

SVD is undefined when there are missing values within a matrix, stochastic gradient descent

(SGD) is usually used to obtain the matrices in latent space19;20. Proper care must be taken

to avoid overfitting while using SGD for matrix factorisation. The SVD problem can be

converted to an optimisation problem so as to solve it using SGD. Alternating Least Squares

(ALS)30 approaches are a family of optimization based matrix factorization approaches that

try to decompose the preference matrix into a latent space.

12

2.2.3 Content-based Recommender Systems

Apart from user-item preference information, the items in the domain can also be associated

with content and side information. This content could be in the form of title, description,

meta-data, tags, user reviews etc. Content-based recommender systems aim to leverage this

item specific information to provide recommendations31. In order to match a user to an

item-based on item content, these recommender systems also maintain a profile of user’s

interests. Thus there are three main aspects to content-based recommender systems: 1)

Representing items in the system based on item properties and item content 2) Representing

users in the form of a user profile that captures the user interests 3) Matching the item repre-

sentations with the user profile so as to recommend items to the users31. CF approaches that

depend on preference information will fail to provide good recommendations in a cold-start

setting i.e., when there is not much user preference information associated with the item.

This leads to low exploration and coverage of items within the system. Content-based CF

approaches mitigate this problem by considering the content of the item. These approaches

have shown to be effective on news recommendation applications where new news articles

get published frequently and user-item preference information is not available32 33. It is im-

portant to note here that CF approaches that are based on user-item preference information

suffer from cold-start issues when a new user or a new item are introduced into the system.

Content-based CF approaches face cold-start issues when a new user is introduced into the

system34. Mooney et al.14 show the effectiveness of using item information to provide rec-

ommendations in a book recommendation setting. In music recommendation and automatic

playlist continuation applications, acoustic properties of a track are extracted from a audio

track and these properties are used for recommending new audio tracks to the users35.

2.2.4 Hybrid Recommender Systems

Hybrid recommender systems are the class of recommendation approaches that take advan-

tage of content as well as user-item preference information, effectively combining content-

based and collaborative filtering approaches36. Hybrid recommendation algorithms can be

13

broadly classified into 1) ensemble-based approaches 2) monolithic design 3) mixed sys-

tems37. In ensemble systems, the results of various approaches are combined into a single

system. In monolithic approaches, joint modeling over various data sources is performed.

In mixed systems, the results of various algorithms are shown next to each other. Mixed

systems are a presentation level approach rather than an algorithm level recommendation

approach.

2.2.5 Domain Adaptation and Cross-Domain Collaborative Filter-

ing

In this section we begin by introducing the need for domain adaptation in CF, then define

the problem and requirements for cross-domain adaptation, and then review some of the

previous efforts for cross-domain collaborative filtering. In supervised machine learning we

first train a model based on data that is available for a problem that we are interested in;

this data is known as training data. This model is then used for predicting the behavior in

the target domain by using the testing data. Machine learning methods are usually based

on the assumption that the training and the testing datasets have common features and

distribution and belong to the same domain, whereas in transfer learning, we do not assume

that the training and testing data sets have the same distribution and domain. The purpose

of domain adaptation and transfer learning in machine learning is to improve a learning task

in a target domain by using knowledge transferred from a source domain in which a related

task is known. Thus, using transfer learning, if we have insufficient data in the testing

domain then we leverage data from a related domain with sufficient data to transfer relevant

knowledge and make predictions in the testing domain.

In real-world applications, there may be dependencies and correlations between user

behavior across multiple domains. While recommender systems provide personalised recom-

mendations based on just the host domain, domain adaptation and cross-domain CF aims to

exploit knowledge gathered about user preferences from one domain and using it in the tar-

get domain. In cross-domain CF, we have a source and a target domain and the assumption

14

is that there is a natural relationship between the source and the target domains and that

source domain has an active recommender system whereas the target domain suffers from

the sparsity bottleneck. For example the books recommender and a movie recommender can

be assumed to have a natural relationship, and the assumption here is that a user interested

in a particular genre of books (say romance) will also be interested in a similar genre of

movies and vice-versa. These recommender system domains can be considered to be related

and useful knowledge can be transferred from the source recommender to the target recom-

mender. The rationale behind the domain adaptation approach to overcoming sparsity is

that related domains have a common latent space.

Requirements for Cross-domain Adaptation: A cross-domain approach should be

able to infer user preferences and suggest recommendations to the user in domain T based

on user ratings in domain S, where T is the target domain and S is the source domain.

Thus a cross-domain recommender algorithm must be able to recommend books to a user,

based on other user ratings over movies. The performance improvement in the system using

cross-domain CF can be evaluated on the rating prediction problem, in which the ground

truth exists as a set of ratings of items by users, and the objective is to predict the rating

of a user for a new item. Transferring knowledge between domains is a non-trivial task,

as it cannot be guaranteed that the knowledge obtained from one domain can be useful

within another domain. Transfer learning in CF depends on a wide variety of factors like the

dependence between domains and if the data is inherently related, the data characteristics

and the availability of side information, and whether the domains have a common subset of

resources such as items or users.

Background

The easiest and the simplest way to achieve cross-domain CF is by importing relevant data

from a source domain and then combining the transferred knowledge with the target data.

This aggregation will be simple when the domains share information on the same users.

Berkovsky et al.38 refer to this problem as cross-domain mediation and introduce several

15

methodologies for importing relevant data from target domain when there is an explicit over-

lap between the users of the domains. Li39 presents a survey of cross-domain collaborative

filtering approaches in. Li outlines three types of domains around which cross-domain CF

methodologies are structured namely, system domain, data domain, and temporal domain.

In approaches oriented towards system domain, the cross-domain methodologies are struc-

tured around the target and source datasets within which transfer learning is performed.

A system domain is further decomposed into two sub-domains: the user domain and the

item domain. Data domain approaches for cross-domain recommendations revolve around

the different representations of user preferences. Data domain representations can be im-

plicit (e.g. clicks, purchases) or explicit (e.g. ratings, likes) . In temporal domain-oriented

approaches, the domains are subsets formed by splitting the dataset based on timestamps

and the objective is to perform transfer learning across these time stamps.

Winoto and Tang proposed one of the first frameworks for domain adaptation in CF40,

whereby, they identified four primary areas of research in CDCF 1) determining the existence

of cross-domain dependence and correlation in user preferences across domains, 2) designing

methodologies that perform cross-domain collaborative filtering in order to reduce problems

arising out of sparsity in the target domain, 3) designing approaches for increasing the

diversity of recommendations in target domain by using knowledge aggregated from other

domains 4) designing evaluation methodologies for recommendations based on cross-domain

collaborative filtering. As part of this work, the authors utilise a k-nearest neighbors (k-NN)

model to predict ratings across domains. As part of verifying the existence of dependence

among domains, they proposed to verify dependence across group level and individual level.

In this work, Winoto and Tang come to the conclusion that CDCF does not increase accuracy

of recommendations over single domain CF; however, it has an added advantage of increasing

diversity of recommendations (increasing user engagement in the domain), and addressing

the cold-start and sparsity problems.

Li et al.41 introduce the notion of a bridge between domains to transfer knowledge. Thus

the cross-domain CF problem can be reduced to the problem of constructing a bridge between

domains. The bridge approach to cross-domain CF has been subsequently used in number

16

of methods42–46. Li et al. introduce the method of Codebook-Based knowledge Transfer

(CBT)41 for recommender systems, which transfers useful knowledge from the source domain

auxiliary rating matrix to remedy the sparsity of the rating matrix in a target domain. The

knowledge is transferred in the form of a codebook, which is learned from an auxiliary

rating matrix by compressing the cluster-level user-item rating patterns into a low level

representation. Li et al. introduce a Rating-Matrix Generative Model (RMGM)42 to learn

the shared latent concept-level cluster rating patterns, these learnt common concept patterns

act as bridge across domains and can be used to transfer knowledge across domains to reduce

sparsity. In subsequent work, Li et al. apply their cross-domain collaboration framework

RMGM, to capture transfer learning over time47. Li et al. try to capture user interest

drift over items across temporal domains by splitting user behavior into time slices. Moreno

et al.48 enhance the CBT framework proposed by Li et al.41, such that knowledge can be

transferred from multiple source domains to reduce sparsity in the target domain. This new

model accounts for the interactions amongst the source domains and the varying degree of

relatedness amongst the multiple source and target domains. The general framework for

CBT and RMGM is to come up with a rating pattern sharing matrix. RMGM uses the

rating pattern sharing concept into a probabilistic model that addresses multi-task learning

in collaborative filtering. The idea is to construct a shared codebook that encodes group

level User-Item sharing patterns across domains. In the rating-pattern sharing approaches

given a set of rating matrices X(d) over d-domains, the matrices are factorized such that

X(d) = U (d)B[I(d)]T , where U (d) is a user-group membership matrix and I(d) is an item-group

membership matrix. B is the group-level codebook shared by the domains. Thus B acts as

a bridge over which ratings can be transferred across domains. This approach assumes that

the users are shared across domains and the rating scales are uniform across domains.

Pan et al.43 look at ways to transform knowledge from domains which have heterogeneous

forms of user feedback. This is especially useful when there is mismatch in user feedback

across domains. For example one domain can have user feedback in terms of explicit ratings

while another domain can have user feedback in terms of implicit preference such as clicks

or dwell time. Pan et al. address this issue by discovering the principle coordinates of

17

both users and items in the auxiliary data matrices of source domains, and transfer them

to the target domain. To learn the principal coordinates, the authors propose the use of

CST (coordinate system transfer) to adapt latent features learnt from source domain to

aid recommendations in the target domain. In other work Pan et al.45 use a Transfer

by Collective Factorization (TCF) concept to transfer binary ratings from source domain

matrix to a target numerical rating matrix. Pan et al. explore ways in which knowledge about

disparate rating representations can be transferred across domains. This is an extension of

their previous work in that they take advantage of implicit user feedback in the source domain

to predict in target domain. Similarly Zhang et al.49 propose a probabilistic approach that

uses Probabilistic Matrix Factorization (PMF) to model the ratings prediction problem in

source and target domains and adaptively transfers knowledge across the domains by learning

the correlation between domains. While Zhang et al. use explicit feedback to transfer

knowledge, Tang et al.50 use implicit feedback to transfer knowledge across domains by using

Bayesian Personalized Ranking (BPR) criterion, which uses collective matrix factorisation

to optimize their cost function. In these approaches, CF is performed across domains by

latent feature sharing where given a set of rating matrices X(d) over d-domains, the matrices

are factorized such that X(d) = US(d)IT , where U and I are the User and Item latent feature

matrices and S is a scaling and rotation matrix. Here the knowledge is transferred across

the domains by using U and V as bridges across domains.

Shi et al.51 propose a tag-induced cross-domain collaborative ltering framework TagCDCF,

that uses common item tags as bridges of domain transfer for improving CDCF across do-

mains. Shi et al.52 improve upon their TagCDCF framework by addressing some of the draw-

backs of TagCDCF. Shi et al. propose a GTagCDCF framework that takes into consideration

user-item, user-tag and item-tag interactions across domains to provide recommendations.

Wang et al.53 propose a Tag Transfer Learning (TTL) approach to transfer knowledge from

a source domain with dense tags to a target domain with sparse tags. As in the earlier

works mentioned above, TTL tries to use tags as bridges for transferring knowledge across

domains. In TTL, latent topics are obtained by clustering the tags and then recommen-

dations are performed based on these transferred topics. In this work, Wang et al.53 also

18

provide preliminary insights into quantitative analysis of when to transfer tag information

across domains.

One major drawback of existing work is that the proposed approaches can only be applied

in the cases where the source and the target domain share the same set of users or items.

In many real-world applications such shared data does not exist. This drawback of current

approaches was pointed out by Fernández-Tob́ıas et al.54. In practical real-world circum-

stances, it would make sense to learn from source domain when no explicit overlap exists with

the target domain in terms of users or items. Apart from the above drawback, approaches

based on codebook-based knowledge transfer41 and rating-matrix generative model42 require

that different domains should have the same rating scale. This is not a practical restriction

in a real-world application, as different domains have diverse ratings scales and varying user

feedback mechanisms.

Taxonomy of Domain Adaptation Approaches in Recommender Systems

Cross-domain collaborative filtering raises two important questions: 1) is transfer of knowl-

edge feasible between source and target domains and how do we determine the closeness and

dependence between domains, 2) how can knowledge be transferred from source to target

domain under varying assumptions? The first challenge is a learning problem and deals with

identifying the bounds of transfer learning in recommender systems. The second problem

deals with identifying and developing methodologies for cross-domain collaborative filtering

based on target and source characteristics.

Various strategies for domain adaptation in recommender systems can be categorised as:

1) Explicit ratings-based domain adaptation (uses CF) : Here, the user set does not

overlap between the source and the target domain. The objective would be to transfer

knowledge from the source domain to the sparse target domain using the user interests in

the target domain. The user rating pattern in the source can be used to enhance User-User

collaborative filtering in the target domain. This approach is useful when some kind of user

profile information is available in the source and target domains and the idea is to use this

19

profile information to extract knowledge from source domain and provide recommendations

in target domain.

2) Implicit ratings-based domain adaptation (uses CF) : Here the user sets and item sets

are considered to be disjoint but an implicit connection can be established across items in

the domains. For example if we consider the books and movie domains, a book can have

a movie adaptation and this information can be used to enhance Item-Item collaborative

filtering in the target domain.

3) Content-based domain adaptation (hybrid approach): This approach can be considered

a hybrid content-based approach to domain adaptation. Here we can take the semantic

content associated with the items in the source domain and provide recommendations in the

target domain. The rationale behind using content-based recommendations is that related

domains have a common set of latent topics and topics that have a correlation in source

domain will have a similar correlation in the target domain. This type of content-based

recommendation can be used to enhance both Item-Item and User-User collaborative filtering

in the target domain.

4) Social network-based domain adaptation: The intuition behind social network-based

domain adaptation is similar to the rationale behind User-User CF. Here we have a more

constrained assumption that in a social network friends with similar tastes in one domain

will have similar tastes in other related domains. For example if two friends have similar

tastes in movies, then the assumption is that they have similar preferences over TV shows

which is related domain.

2.2.6 Deep Learning Approaches for Cross-Domain Recommen-

dations

Deep learning approaches have been shown to be effective for transfer learning applications.

Elkahky et al.55 propose a multi-view deep learning model56 for cross-domain recommenda-

tions. The multi-view model jointly learns from item features and user features over multiple

domains, and represents items and users in the same semantic space. Recent applications

20

such as Neural Collaborative Filtering (NCF) aim to learn the interactions, and the non-

linear relationships, between users and items, using Deep learning models57. Wang et al.58

extend the NCF model to a cross-domain social recommendations setting, where, user-item

interactions in an ecommerce domain, and user-user interactions in social network domains

are bridged to provide cross-domain social recommendations. This work leverages the bridge

user, i.e., the common users across social network and ecommerce domain, to make recom-

mendations across domains using a neural social collaborative ranking model. Cross-domain

Content-boosted Collaborative Filtering neural Network (CCCFNet) proposed by Lian et

al.59 is a dual model that combines collaborative filtering and content-based filtering. CC-

CFNet learns representations of content information, by splitting each network of the dual

net into two components: 1) a collaborative filtering factor, that captures the user and

item latent factors and 2)a content information factor that captures the user preferences

over item features. Cross-domain recommendations are performed by building a multi-view

neural framework on top of the dual model.

2.3 Recommender Systems Evaluation, Metrics, and

Measures

In order to measure the effectiveness of various aspects of recommender approaches, a diverse

set of metrics have been developed in past work. Recommender systems can be evaluated

in an online setting and an offline setting. In an online setting, a recommender system is

trained on historical data and effectiveness measure on live traffic. In an offline setting, a

test data set is created from historical data and the recommender system is evaluated on

the test data set. The test data set is considered as a proxy for future user behavior. In

practice, recommender systems are evaluated first in an offline setting and then in an online

setting.

21

Offline Evaluation - Data Preparation: Offline data is sampled from historical user-

item interactions, this data that is used to train and evaluate machine learning algorithms

is colloquially known as gold data or ground truth. Offline data is then usually split into

three sets: 1) the training set 2) the validation set 3) the testing set. The machine learning

models are trained over the training data, the hyper parameter tuning and model selection is

performed over the validation set and final offline metrics are measured over the test dataset.

When there is no hyper-parameter tuning and model selection, we do not need a validation

set.

Preparing ground truth splits: Usually ground truth data is uniformly sampled and

proportioned in a pre-determined way into the three data splits. An alternative and more

practical way is to split the data temporally. This simulates the real-world scenario of when

the models are learnt over historical data and used in the application on a continuation of

the data60. Temporal splitting of data has been now widely accepted as a standard practice

in the recommender systems community.

2.4 Taxonomy of Recommender Systems Metrics

Table 2.1 contains some of the wide variety of metrics used to measure the effectiveness of

recommender systems approaches. The metrics can be broadly classified into: 1) error 2) ac-

curacy 3) beyond accuracy metrics. Error metrics are basically rating prediction approaches

that are trying to minimize the predicted user-item preference error. Accuracy metrics are

used to measure item recommendation approaches, where we are trying to measure the effi-

cacy of top-K recommended items in the recommended list. Some accuracy metrics such as

Precision, Recall are trying to measure the ability of Recommender approaches to identify

relevant items for the users, whereas other metrics such as normalized discounted cumulative

gain (NDCG), mean average precision (MAP)61 take the ranked ordering of items into con-

sideration. Beyond accuracy measures are macro metrics that are trying to measure aspects

such as novelty, serendipity, diversity etc., which indicate to some extent the health of the

22

Measure Abbreviation Type Ranking-aware Task

Mean absolute error MAE error/accuracy No Rating Prediction
Root mean square error RMSE error/accuracy No Rating Prediction
Precision at K P@K accuracy No Recommendation
R-Precision R-Prec accuracy No Recommendation
Recall at K R@K accuracy No Recommendation
Mean average precision at K MAP@K accuracy Yes Recommendation
Clicks at Increment K Clicks%K accuracy No Recommendation
Normalized discounted cumulative gain NDCG accuracy Yes Recommendation
Half-life utility HLU accuracy Yes Recommendation
Mean percentile rank MPR accuracy Yes Recommendation
Spread — beyond accuracy No —
Coverage — beyond accuracy No —
Novelty — beyond accuracy No —
Serendipity — beyond accuracy No —
Diversity — beyond accuracy No —

Table 2.1: Popular Recommender Systems Evaluation Metrics.

recommender system.

2.4.1 Error and Accuracy metrics

Mean absolute error (MAE) is used to measure the rating prediction accuracy of

Recommender approaches. MAE computes the average absolute deviation between the pre-

dicted ratings and the actual ratings62. MAE is computed as follows:

MAE =
1

|T |
∑
ru,i∈T

|ru,i − r̂u,i| (2.2)

where ru,i and r̂u,i are the actual and the predicted ratings of item i for user u. MAE sums

over the absolute prediction errors for all ratings in a test set T . MAE assumes that there is a

linear cost associated with rating prediction error. For example, a rating prediction of 3 for an

item when ground truth is 4 is twice as bad as a 3.5 prediction. A Recommendation approach

with a lower MAE score is better when comparing MAE scores of various approaches, and

corresponds to a superior recommendation performance.

23

Root mean square error (RMSE) is similar MAE and is computed as:

RMSE =

√
1

|T |
∑
ru,i∈T

(ru,i − r̂u,i)2 (2.3)

RMSE fixes the linear cost drawback of MAE by squaring the prediction error, this penalizes

larger differences between predicted and true ratings more than smaller ones. A Recommen-

dation approach with a lower RMSE score is better when comparing RMSE scores of various

approaches, and correspond to a superior recommendation performance.

The major drawback with MAE and RMSE is that they treat all prediction errors equally.

For example, a true rating of 3 and predicted rating of 2 is treated the same way as true

rating of 4 and predicted rating of 5. From a practical perspective, this is not the case as

rating prediction accuracy matters only for items that are relevant to the user. Accuracy

metrics try to address this drawback of error metrics.

Precision at K (P@K) is a widely used metric in the information retrieval domain

that measures the accuracy of the system in identifying relevant items61. P@K is a metric

designed for binary relevance judgments, i.e. an item is either relevant or not relevant to

the user. If the user-item preference information is available in the form of ratings, this

is binarized, for example on a 5 point rating scale, ratings greater than or equal to 4 are

considered to be relevant.

For each user u, Pu@K is computed as follows:

Pu@K =
|Lu ∩ L̂u|
|L̂u|

(2.4)

where Lu is the set of relevant items for user u in the test set T and L̂u is the recommended

set containing the K items in T with the highest predicted ratings for the user u. The

overall P@K is then computed by averaging Pu@K values for all users in the test set. A

Recommendation approach with a higher P@K score is better when comparing P@K scores

24

of various approaches, and corresponds to a superior recommendation performance.

R-Precision (R-Prec) is defined as the number of retrieved relevant items divided by

the number of known relevant items63. For a user u, R− Precu is defined as:

R− Precu =
|Lu ∩R1:|Lu||
|Lu|

(2.5)

Lu is the set of relevant items of user u in the test set T and R1:|Lu| is the set of top retrieved

items, where the retrieved list length is the same as Lu. R-Prec metric is averaged across

all users. This metric rewards total number of retrieved relevant items (regardless of order)

. R-Prec is a variation of P@K where the precision is measured over the size of the ground

truth recall set and not a fixed K. R-Prec thus captures the precision when size of the

relevant set of items varies. A Recommendation approach with a higher R-Prec score is

better when comparing R-prec scores of various approaches, and corresponds to a superior

recommendation performance.

Mean average precision at K (MAP@K) is a rank-based metric that computes the

overall precision of a Recommender algorithm at various lengths of recommendation lists61.

MAP is defined as the arithmetic mean of the average precision over the entire set of users

in the test set. Average precision for the top K recommendations (AP@K) is defined as

follows:

AP@K =
1

N

K∑
i=1

P@i · rel(i) (2.6)

where rel(i) is an indicator signaling if the ith recommended item is relevant, i.e. rel(i) = 1,

or not, i.e. rel(i) = 0; N is the total number of relevant items. For two lists with same recall

MAP provides a higher recall to the list with relevant items higher in the ranked set of items,

thus addressing a drawback of P@K. MAP implicitly incorporates recall, because it also

considers the relevant items not in the recommendation list. A Recommendation approach

with a higher MAP score is better when comparing MAP scores of various approaches, and

25

corresponds to a superior recommendation performance.

In the above definition of AP@K, if the length of the list to be recommended is too small

when compared to the number of relevant items, the average precision scores in instances with

more relevant items are affected. Thus the previous definition of AP@K is biased towards

instances with smaller relevant items64. This is fixed in a modified version of Average

precision as:

AP@K =
1

min(K,N)

K∑
i=1

P@i · rel(k) (2.7)

where N is the total number of relevant items and K is the size of recommendation list.

Recall at K (R@K) Recall is defined as the algorithm’s ability to identify relevant

items. A good recommender system should ideally have high precision and high recall, i.e.,

it identifies more relevant items and places relevant items at the top of the list. For most

recommender applications, Recall is not an important metric, because in most cases the

system is not trying to recommend an exhaustive set of items, but a small set of highly

relevant items. For example in the case of web search, most users never scroll past the first

page, so the objective here is to primarily identify a small set of web pages that meet the

user needs and place that at the top of the search results. For certain domains such as Legal,

Patent law where exploratory search is of essence, recall is an important metric. In domains

such as movie recommendation, book recommendation etc. where the user has a limited

bandwidth, Recall is not an important metric. For a user u, Ru@K is defined as:

Ru@K =
|Lu ∩ L̂u|
|Lu|

(2.8)

where Lu is the set of relevant items of user u in the test set T and L̂u denotes the recom-

mended set containing the K items in T with the highest predicted ratings for the user u.

The overall R@K is calculated by averaging Ru@K values for all the users in the test set. A

Recommendation approach with a higher Recall score is better when comparing recall scores

of various approaches, and corresponds to a superior recommendation performance.

26

Clicks at Increment K (Clicks%K) is a user interface driven metric, where a user

needs to refresh a recommended set of items in order to view a fresh set of items. The user

need is satisfied once a user identifies a relevant item. Thus the number of refresh/clicks

needed before the user need is satisfied defined as clicks. Clicks%K is defined as:

Clicks%K = min{b(r − 1)/Kc, D} (2.9)

where K is the size of the set of recommended items that can be refreshed, D is the maximum

number of refreshes allowed by the interface.

Normalized discounted cumulative gain (NDCG) is an Information Retrieval mea-

sure for capturing the ranking quality of search results65. NDCG nowadays is also used for

evaluating the ranking quality of recommender systems66. For rating predictions task, as-

suming that the recommendations are sorted by predicted rating values for each user u. The

Discounted cumulative gain for u (DCGu) is defined as:

DCGu =
N∑
i=1

ru,i
log2(i+ 1)

(2.10)

where ru,i is the true rating (as found in test set T) for the item ranked at position i for user

u, and N is the length of the recommendation list.

Since the rating distribution depends on the user’s behavior, the DCG values for different

users are not directly comparable, the cumulative gain for each user is normalized. This is

captured by computing the ideal DCG for user u (IDCGu) , which is the DCGu value for the

best possible ranking, obtained by ordering the items by true ratings in descending order.

Normalized discounted cumulative gain for user u is then calculated as:

NDCGu =
DCGu

IDCGu

(2.11)

The overall normalized discounted cumulative gainNDCG is computed by averagingNDCGu

over the entire set of users. A Recommendation approach with a higher NDCG score is bet-

27

ter when comparing NDCG scores of various approaches, and corresponds to a superior

recommendation performance, and correspond to a superior recommendation performance.

Half-life utility (HLU) : In most recommender applications, the utility of an item in

a recommendation list decays as we go lower in the list i.e. in a ranked list, higher ranked

positions have a higher value when compared to a lower ranked positions. So it is important

to have higher ranked items at the top. HLU measures the utility of a list for a user u with

the assumption that the likelihood of selecting a recommended item in the list exponentially

decays with the item’s position in the ranking67. HLU for user u is defined as:

HLUu =
N∑
i=1

max (ru,i − d, 0)

2(ranku,i−1)/(h−1)
(2.12)

where ru,i and ranku,i are the rating and the rank of item i for user u, respectively, where

the recommendation list is of length N ; d represents a default rating (e.g., average rating)

and h is the half-time, calculated as the rank of an item in the list, such that the user

can eventually consume it/view it with a 50% chance. As in the case of NDCG, HLUu

can be further normalized by the maximum utility, and the final HLU is the average over

the half-time utilities obtained for all users in the test set. A Recommendation approach

with a higher HLU score is better when comparing HLU scores of various approaches, and

corresponds to a superior recommendation performance.

Mean percentile rank (MPR) is computed as the average of the percentile rank for

each test item within the ranked list of recommended items for each user68. The percentile

rank of an item is the percentage of items whose position in the recommendation list is equal

to or lower than the position of the item itself. The percentile rank PRu for user u is defined

as:

PRu =

∑
ru,i∈T

ru,i · ranku,i∑
ru,i∈T

ru,i
(2.13)

28

where ru,i is the true rating of the item in the test set T for item i rated by user u and

ranku,i is the percentile rank of item i within the ordered list of recommendations for user

u. MPR is calculated over all the users as the arithmetic mean of the individual PRu

values. A randomly ordered recommendation list has an expected MPR value of 50%. A

Recommendation approach with a smaller MPR score is better when comparing MPR scores

of various approaches, and corresponds to a superior recommendation performance.

2.4.2 Beyond Accuracy Metrics

Beyond accuracy metrics are macro-level quantitative evaluation metrics and are intended to

capture the health of a recommender system69. One draw back of accuracy metrics oriented

recommender systems is their proclivity to recommend popular items. This leads to low

exploration of the item set by the user and leading to filter bubbles 7.

Spread is defined as the entropy of the distribution of the items recommended to the

users in the test set. Spread is intended to capture how well the recommender algorithm can

spread its attention across a larger set of items70 and is defined as:

spread = −
∑
i∈I

P (i) logP (i) (2.14)

where I represents the entirety of items in the data set and P (i) = count(i)/
∑

i′∈I count(i
′),

such that count(i) denotes the frequency of item i showed in the recommendation lists. Thus

more popular items have a higher P (i). Spread tends to measure the bias of a system towards

popular items.

Coverage of a recommender system is defined as the proportion of items over which the

system is capable of generating accurate recommendations62:

coverage =
|T̂ |
|T |

(2.15)

29

where |T | is the size of the test set and |T̂ | is the number of ratings in T for which the system

can predict a value. In the scenarios of item cold-start, if a recommender system has low

coverage, then new items are never surfaced to the user. Coverage measures the ability of a

user to discover new items in a system.

Serendipity takes relevant and surprising recommendations into consideration while eval-

uating recommender systems. There isn’t an agreement on how to measure the serendipity

of a recommender system or how to define surprising recommendations.

Serendipity of a recommendation list Lu provided to a user u can be defined as:

serendipity(Lu) =

∣∣Lunexpu ∩ Lusefulu

∣∣
|Lu|

(2.16)

where Lunexpu and Lusefulu denotes subsets of L that are unexpected and useful to the user.

Usefulness of an item is obtained by explicitly asking users or taking user ratings as proxy69.

The unexpectedness of an item is a measure of distance from expected items or the items

already rated by the user.

Diversity measures the extent to which recommended items are different from each other,

where difference can be based on any explicit or implicit features associated with the item

content, side information. Similar to serendipity, diversity can be defined in several ways and

there is no general consensus on what constitutes diversity. One way to measure of diversity

is to compute pairwise distance between all items in a recommendation set71. The diversity

of a recommendation list L is calculated as follows:

diversity(L) =

∑
i∈L

∑
j∈L\i

disti,j

|L| · (|L| − 1)
(2.17)

where disti,j is a distance function defined between pairs of items.

30

Chapter 3

Representation Learning in Networks

“You shall know a word by the company it keeps.”

- J. R. Firth, A synopsis of linguistic theory

The goal of representation learning in networks is to embed nodes or sub-graphs of a

network by learning a mapping to a lower-dimensional vector space while simultaneously

preserving some properties of the nodes within the network. Representation learning can

be viewed as a feature engineering approach over information networks, so that they can be

used to construct features for machine learning algorithms.

3.1 Embeddings and Distributed Representations

In natural language processing (NLP), word embeddings/embeddings refer to a set of lan-

guage modeling and feature learning techniques where words in the vocabulary are mapped

to vectors of real numbers. Here, a sparse representation of words in a higher dimension

is converted to a low-dimensional latent representation. Conceptually, an embedding can

be viewed as a mapping from a space with one dimension per word to a continuous vector

space with a much lower dimension such that the mapping preserves the linguistic proper-

ties of the words. The term embeddings is usually used to refer to dense representations of

31

words or entities in a low-dimensional vector space. Other interchangeable terms for entity

embeddings are entity vectors and distributed representations.

The distributional hypothesis in linguistics states that words that occur in the same

contexts tend to have similar meanings72 and is the basis for statistical semantics. The main

idea behind this hypothesis is that there is a correlation between distributional similarity of

words and meaning of words, and knowing about the former helps us to estimate the latter.

Weaver contends that word sense disambiguation (WSD) in machine translation should be

based on the co-occurrence frequency of the context words near a given target word73. Most

modern approaches in linguistics, and machine translation, such as language modelling1,

words sense disambiguation, are based on the distributional hypothesis.

In NLP, vector space models have been used in distributional semantics to capture the

linguistic association of words in a vocabulary74. Bengio et al. combined a neural network

and a statistical language model to learn representations that they coined as word embed-

dings1. Collobert and Weston75 showed the effectiveness of pre-trained word embeddings on

NLP tasks. They refined the neural network architecture and proved that word embeddings

can improve downstream NLP tasks such as part-of-speech tagging, chunking, named entity

recognition (NER) , semantic role labeling (SRL) , identifying semantically similar words,

and language modeling. This work demonstrated the utility of word embeddings in NLP

tasks and showed how representation learning can be performed using neural network archi-

tectures. Word2Vec 4, a language modelling approach by Mikolov et al., popularized the word

embedding models and led to the wide usage of distributional representations in a wide vari-

ety of machine learning applications. The structure of the neural network in Word2Vec made

it viable to compute embeddings by consuming large amounts of data. Word2vec proposes

two approaches to learn distributed representations: 1)continuous bag-of-words (CBOW),

and 2) Skipgram. Pennigton and Socher propose Global Vectors (GloVe)76 model, an alter-

native approach to calculate word representations, by reformulating Word2Vec as a special

case of factorization of word co-occurence matrices.

1A statistical language model is a probability distribution over sequences of words. Given such a sequence,
say of length T, the language model assigns a probability to the whole sequence.

32

The concept of embeddings has been extended beyond word representations and NLP to

other areas such as web search, information retrieval and recommender systems. Just as one

can train word embeddings by treating a sequence of words in a sentence as context, one can

do the same by treating sequence of user actions as context. Embedding approaches have

been successfully used to learn representations of search queries, recommended items, items

that were clicked or purchased and ads that were clicked77;78.

3.2 Language Modelling

In NLP, language models compute the probability of a word wt given its previous n−1 words,

i.e. p(wt | wt−1, · · ·wt−n+1). Applying the chain rule, we can approximate the probability of

a whole sentence or document by the product of the probabilities of each word given its n

previous words as:

p(w1, · · · , wT) =
∏
i

p(wi | wi−1, · · · , wi−n+1) (3.1)

where wi is word at index i in the document. In n-gram-based language models, we can

calculate a word’s probability based on the frequencies of its constituent n-grams as:

p(wt | wt−1, · · · , wt−n+1) =
count(wt−n+1, · · · , wt−1, wt)

count(wt−n+1, · · · , wt−1)
(3.2)

3.2.1 Neural Network-Based Language Models

Bengio et al. propose using softmax 1 to build a neural network-based language model as:

p(wt | wt−1, · · · , wt−n+1) =
exp(h>v′wt

)∑
wi∈V exp(h>v′wi

)
(3.3)

where h is the output vector of the penultimate network layer - the hidden layer, while v′w is

the output embedding of word w. Bengio et al. in this work introduce the concept of word

embedding - a real-valued word feature vector in R. This model maximizes the following

33

Figure 3.1: Neural Language Model, Bengio et al.1

objective:

Jθ =
1

T

T∑
t=1

logf(wt, wt−1, · · · , wt−n+1) (3.4)

where f(wt, wt−1, · · · , wt−n+1) is the output of the model, i.e. softmax layer computes the

probability p(wt | wt−1, · · · , wt−n+1) , where n is the number of previous words fed into the

model.

The main components of this neural model are:

1. Embedding Layer: a layer that generates word embeddings by multiplying an index

vector with a word embedding matrix

2. Intermediate Layer (s) : one or more layers that produce an intermediate representation

of the input

34

3. Softmax Layer: the final layer that produces a probability distribution over words in

vocabulary V

The authors note that the neural language model proposed in this approach has high cost

of computation,and identify the bottleneck as the softmax layer. The cost of computing the

softmax is proportional to the number of words in the vocabulary V .

Collobert and Weston showed that the word embeddings trained on a sufficiently large

dataset using a neural language model captures syntactic and semantic meaning75. They

also showed how these embeddings can be used to improve the performance of popular NLP

tasks. In this model the authors try to avoid the computational bottleneck encountered in

the Neural language model proposed by Bengio et al. Instead of computing the expensive

softmax as their objective function, Collobert and Weston train a neural network to output

a higher score fθ for a correct word sequence than for an incorrect one. This work use the

following pairwise ranking criterion as their objective:

Jθ =
∑
x∈X

∑
w∈V

max{0, 1− fθ(x) + fθ(x
(w))} (3.5)

Because of the absence of softmax, this model is faster to compute than the neural language

model proposed by Bengio et al. But the fully connected hidden layer acts as a computational

bottleneck.

3.2.2 Word2Vec

In Word2Vec Mikolov et al. propose two different architectures and learning strategies for

learning word embeddings that are computationally less expensive than previous models4. In

a follow up paper, Mikolov et al. improve upon the previous Word2Vec models by employing

additional strategies such as negative sampling, noise contrastive estimation and adaptive

sampling to improve training speed, efficiency and accuracy of the neural language model79.

The architecture of the Word2Vec model offers two main advantages over the previously

discussed neural language models:

35

1. Word2Vec does not have a hidden layer. As this was a computationally expensive

layer in the Bengio and Collobert models, not having this in the model makes training

efficient.

2. The Word2Vec model allows the language model to take additional context into ac-

count. More the context available during the training process, the better the accuracy

of the language model.

Continuous Bag-Of-Words (CBOW)

During the training process of traditional language models and neural language models, the

model is supplied only the previous words in a sentence and is evaluated on the model’s

ability to predict the next word in the sentence, Mikolov et al. realized that in order to

generate accurate word embeddings, the model does not have to limit itself to this set up

and should be able to use words that precede and succeed a target word. They call this

version of the Word2Vec model as the continuous bag-of-words (CBOW) model. In the

CBOW model, the order of the words in the context window is not important, hence the

reference to bag-of-words.

The objective function of CBOW is:

Jθ =
1

T

T∑
t=1

logp(wt | wt−n, · · · , wt−1, wt+1, · · · , wt+n) (3.6)

This is quite similar to the traditional language model objective. Here the model gets a

context window of words around the target word wt as the input and the model is judged

on the ability to predict the target word.

Skipgram

In CBOW we use the surrounding words, i.e., the context of a target word to predict the

target word. Skipgram inverts this criteria by specifying the objective as, given a target word,

we try to predict the context/surrounding words of the target word. Thus the Skipgram

36

Figure 3.2: Continuous Bag-Of-Words (CBOW) architecture

objective sums the log probabilities of the surrounding n words to the left and to the right

of the target word wt in the context window as:

Jθ =
1

T

T∑
t=1

∑
−n≤j≤n,6=0

logp(wt+j | wt) (3.7)

where wt+j is a word surrounding the middle word/target word in the context window.

Softmax is used in Skipgram to compute the probabilities.

As there is no hidden layer in the Skipgram neural model, two different embeddings

matrices are maintained for input embeddings and output embeddings. The softmax function

37

Figure 3.3: Skipgram architecture

for Skipgram is given as:

p(wt+j | wt) =
exp(v>wt

v′wt+j
)∑

wi∈V exp(v>wt
v′wi

)
(3.8)

where vw is the input embedding of word w and v′w is the output embedding of the word

w. As calculating the softmax is expensive, efficient approaches such as hierarchical softmax

and differentiated softmax have been used to make the Skipgram model efficient.

38

3.3 Representation Learning in Networks

Representation learning in networks aims to learn latent, low-dimensional, semantic repre-

sentations of nodes in an information network, while preserving properties such as network

topology structure, vertex content, node neighborhood, etc. Once representations are learnt

over the network, network analytic tasks such as link prediction, predicting missing prop-

erties of nodes can be efficiently carried out by using ML algorithms in the new semantic

space. An information network can consist of various types of nodes and multiple types of

relations between the nodes. The edges in the information network can be weighted/un-

weighted, and directed/un-directed. In such a setting, the main challenge of representation

learning in networks is that there is no straightforward way to encode the high-dimensional,

non-euclidean information about graph structure into a feature vector.

An Information Network is a graph defined as G = (V,E,X, Y), where V denotes a

set of vertices, and |V | denotes the number of vertices in network G. E ⊆ (V × V) denotes

a set of edges connecting the vertices. X ∈ R|V |×m is the vertex attribute matrix, where m

is the number of attributes, and the element Xij is the value of the ith vertex on the j-th

attribute. Y ∈ R|V |×|Y| is the vertex label matrix with Y being a set of labels. If the ith

vertex has the kth label, the element Yik = 1; otherwise, Yik = −1.

First-order Proximity in an information network captures the local pairwise proximity

between two connected vertices. It is designed to capture neighborhood of nodes in an

information network.

Second-order Proximity in an information network is the number of common neigh-

bors between pairs of nodes and is designed to capture the local structure of the network.

High-order proximity is similar to second order proximity, and is defined as number of

common nodes between two pairs of nodes within a k-step distance from the nodes and

captures global structure of the network.

Representation learning in networks in an information network G = (V,E,X, Y),

is defined as learning a mapping function f : v 7−→ rv ∈ Rd, where rv is the learned vector

representation of vertex v, and d is the dimension of the learned representation. The trans-

39

formation f preserves some original property of the network.

Based on the graph structure, input data, and application, representation learning ap-

proaches can be broadly classified into two categories: 1) Unsupervised representation learn-

ing 2) Semi-supervised representation learning.

Unsupervised representation learning: In this setting, the vertices and the edges do

not have any labels associated with them. The goal is to learn a representation over the

network and the embeddings are used subsequently in down stream tasks.

Semi-supervised/supervised representation learning: In this setting, some of the

vertices in the network are labeled. Semi-supervised representation learning is used to take

advantage of vertex labels to generate better embeddings as more information regarding the

network is available via node labels.

Based on the techniques, representation learning methods can be broadly classified into

(1) Random walk-based methods, and (2) Edge modeling-based methods.

Random walk-based methods: Random walk-based approaches have shown to be

highly effective for representation learning. In these methods, sequences of truncated ran-

dom walks are generated over the information network and these sequences are then used

to generate embeddings of nodes in the network. As in language modeling approaches to

learning word representations79;80, vertex representations are learnt by using random walks.

DeepWalk81 was one of the first approaches to demonstrate the random walk-based represen-

tation learning. Node2vec82 further extends this by adopting a biased random walk strategy

to capture more flexible network structure.

Edge modeling-based methods: Edge modeling-based methods directly learn ver-

tex representations from the edges between the vertices. LINE83 models a joint probability

distribution and a conditional probability distribution, on connected vertices, thus having

the ability to preserve first-order and second-order proximity. Linked Document Embedding

(LDE)? learns the representations of linked documents by modeling the document-document

relationships by maximizing the conditional probability between connected documents. LDE

40

combines link and label information with content information to learn document represen-

tations for classification. GraphGAN84 adopts Generative Adversarial Nets (GAN)85 to

accurately model the vertex connectivity probability and learn distributed representations

of vertices in the network.

3.3.1 DeepWalk

DeepWalk81 utilizes the idea of the Skipgram model79;80 of Word2Vec. In the Skipgram

approach for language modeling, we learn latent representations of words by using context

windows of words in sentences; we can apply the same reasoning to sequence of nodes in the

network, where the sequences are obtained by performing random walks over the network.

Given a random walk sequence with length L, {v1, v2, · · · , vL}, similar as in Skipgram,

DeepWalk learns the representation of vertex vi by using it to predict its context vertices in

the random walk window:

min
f
− log Pr({vi−t, · · · , vi+t} \ vi|f(vi)), (3.9)

where {vi−t, · · · , vi+t} \ vi are the context vertices of vertex vi within t window size. Mak-

ing conditional independence assumption, the probability Pr({vi−t, · · · , vi+t} \ vi|f(vi)) is

approximated as

Pr ({vi−t, · · · , vi+t} \ vi|f(vi)) =

i+t∏
j=i−t,j 6=i

Pr(vj |f(vi)). (3.10)

DeepWalk uses the hierarchical softmax technique to compute the normalizing factor,

where a binary-tree structure is used to accelerate the computation of the softmax. Because

of the way random walks are generated, DeepWalk captures node embedding such that the

local neighborhood of the vertices are preserved. Because context vertices in random walk

sequences describe neighborhood structure, vertices sharing similar neighbors will be closer

to each other in the embedding space, i.e., the second-order and higher-order proximity are

preserved (depending on length of random walks and the size of the context window) .

41

3.3.2 Large-scale Information Network Embedding (LINE)

Unlike DeepWalk, which is based on random walks, LINE83 learns vertex representations by

explicitly modeling the first-order and second-order proximity. To preserve the first-order

proximity between nodes, LINE minimizes the following objective:

O1 = d(p̂1(·, ·), p1(·, ·)). (3.11)

For each vertex pair vi and vj with (vi, vj) ∈ E, p1(·, ·) is the joint distribution modeled by

their latent embeddings rvi and rvj . p̂1(vi, vj) is the empirical distribution between them.

d(·, ·) is the distance between two distributions.

To preserve the second-order proximity, LINE minimizes the following objective:

O2 =
∑
vi∈V

λid(p̂2(·|vi), p2(·|vi)), (3.12)

where p2(·|vi) is the context conditional distribution for each vi ∈ V modeled by vertex

embeddings, p̂2(·|vi) is the empirical conditional distribution and λi is the prestige of vertex

vi. Here, vertex context is determined by its neighbors, i.e., for each vj, vj is vi’s context, if

and only if (vi, vj) ∈ E.

By minimizing these two objectives, LINE learns two kinds of vertex representations that

preserve the first-order and second-order proximity, and takes their concatenation as the final

vertex representation. Both the first-order and second-order objectives are optimized using

loss functions derived from the KL-divergence metric. Thus, LINE explicitly factorizes first-

and second-order similarities, instead of combining them in fixed-length random walks.

3.3.3 Node2vec

Node2vec82 uses biased random walks as a neighborhood sampling strategy to generate se-

quences of nodes.This strategy smoothly interpolates between two extreme sampling strate-

gies, Breadth-first Sampling (BFS) and Depth-first Sampling (DFS) . The biased random

walk approach used in Node2vec has shown to better preserve both the second-order and

high-order proximity.

42

Using the Skipgram architecture, and given the set of neighbor vertices N(vi) generated

by biased random walk as the input, Node2vec learns the vertex representation f(vi) by

optimizing the occurrence probability of neighbor vertices N(vi) conditioned on the repre-

sentation of vertex vi, f(vi):

max
f

∑
vi∈V

log Pr(N(vi)|f(vi)). (3.13)

Instead of normalizing over the full vertex set as in DeepWalk, Node2vec approximates

the normalizing factor using a set of random negative samples. This is known as Skipgram

with negative sampling80. The main difference between DeepWalk and Node2vec is that,

while DeepWalk uses simple unbiased random walks over the graph to obtain vertex embed-

dings, Node2vec allows for a flexible definition of random walks.

The node embeddings learnt over the information networks can now be used as features

in downstream machine learning and data mining tasks such as vertex classification, link

prediction, clustering, and recommendation.

3.3.4 Deep Learning Approaches for Representation Learning in

Information Networks

This section summarizes some of the deep learning-based approaches for representation

learning in information networks. Deep learning-based methods have the ability to capture

non-linear associations in information networks. Deep learning techniques such as encoder-

decoder architectures, auto-encoders86 have been used to learn vertex representations, and

network representation learning. Cao et al. propose Deep Networks for Graph Represen-

tations 87 by applying stacked denoising autoencoders (SDAE)86 on the high-dimensional

matrix representations to learn node embeddings. This uses the random surfing model from

PageRank88 to capture contextual relatedness between each pair of nodes, and represents

them as a |V |-dimensional vertex representation X. Then a stacked denoising autoencoders

(SDAE) is used to convert the node representations X to low-dimensional embeddings.

43

Structural Deep Network Embedding (SDNE)89 applies a semi-supervised deep auto-encoder90,

where the unsupervised approach learns the second-order proximity to retain the global net-

work structure, while the supervised approach uses the first-order proximity as supervised

information to preserve the local network structure. SDNE learns the second-order prox-

imity by reconstructing the |V |-dimensional adjacency matrix, which tries to minimize the

following objective:

L2nd =

|V |∑
i=1

‖(r(0)
vi − r̂

(0)
vi)� bi‖22 (3.14)

where r
(0)
vi = Si: is the input representation, and r̂

(0)
vi is the reconstructed representation. bi

is a weight vector used to minimize construction errors. This constitutes the unsupervised

component of SDNE.

SDNE learns the first-order proximity by penalizing the distance between connected

nodes in the embedding space using the following objective:

L1st =

|V |∑
i,j=1

Sij‖r(K)
vi − r

(K)
vj ‖

2
2, (3.15)

where K represents the number of hidden layers, and r
(K)
vi is the K-th layer representation

of node vi.

SDNE minimizes the joint objective function:

L = L2nd + αL1st + νLreg, (3.16)

where Lreg is a regularization term to avoid overfitting.

Recently Generative Adversarial Networks (GAN)85 have been used for representation

learning in IN. GraphGAN84 learns node embeddings by modeling the connectivity behavior

using an adversarial learning approach. Similar to classical GANs, GraphGAN has two

components: (1) A Generator G(v|vc), which fits the distribution of the vertices connected

to vc across V and generates the likely connected vertices, and (2) A Discriminator D(v, vc),

which outputs a connecting probability for the vertex pair (v, vc), to differentiate the vertex

pairs generated by G(v|vc) from the ground truth. G(v|vc) and D(v, vc) are adversarial to

44

each other, i.e., G(v|vc) learns to generates fake connected vertex pairs to fool D(v, vc), while

D(v, vc) learns to increase its ability to distinguish the vertex pairs generated by G(v|vc) from

the ground truth.

3.3.5 Pre-trained Embeddings and their Applications in Down-

stream Discovery Tasks

Collobert et al.75;91 demonstrated the effectiveness of pre-trained embeddings learnt from

a neural language model over large amounts of unlabeled data can be used to improve the

performance of a wide array of supervised, and semi-supervised NLP tasks such as part of

speech tagging, semantic role labeling, word sense disambiguation, named entity recognition,

etc. The authors argue that neural networks are able to encode hidden representations that

capture semantic and lexical features, which in turn can be used to improve down stream

tasks. More recently Qi et al.92 show how pre-trained embeddings are useful for machine

translation tasks.

Figure 3.4: A search engine architecture - iterative refinement of results2. An example cas-
cade architecture. After an initial ranking function H0, each stage consists of two sequential
operations: Jt prunes the input ranked documents, then a local ranking function Ht refines
the rank order of the retained documents. The new ranked list is passed to the next stage.
The size of the shaded area denotes the size of the candidate documents. Subscripts for each
ranked list denotes the sequence of actions applied.

Using pre-trained embeddings in search

Fig. 3.4 illustrates a typical cascade architecture on large-scale search engines. Most modern

search engines perform search in two stages. When a user enters a query, in the first stage,

a large subset of documents that match the input query are obtained by a simple scoring

45

function such as tf-idf or BM2593. In the second phase, the top-k (by score) of these matching

documents are “re-ranked” using a complex ranking function that uses a richer set of features.

The candidate item generation phase is similar to the first stage of a search engine, where

give a ordered/unordered set of entities, we retrieve related entities that could be part of

the list. Then the candidate items are ranked by the “context fit” with respect to the

items in the list as well as the metadata associated with the list in order to obtain a high

quality set of candidates. The second stage of search engine can have a cascade/telescoping

architecture2, where, the items in the ranked lists are iteratively refined multiple times.

Thus, the first stage is tuned towards recall, while, the second stage is tuned towards ranking

and personalization of search results. These stages have various machine learning models

constructed with different objectives in mind. The machine learning models take a varying

set of features into consideration, for tasks such as ranking, retrieval, personalization, query

completion, ambiguous query resolution, etc. Thus, pre-trained embeddings can be used at

various stages, and the significance of these embedding features can change at each model

level. Zamani and Croft94 learn embeddings of query words using unsupervised relevance-

based language models, and show how these pre-trained embeddings can be used for tasks

such as query classification, and query expansion. Mitra et al.95 show how pre-trained

embeddins in IR, can be further tuned while training specific supervised and un-supervised

tasks , using deep learning models.

Using pre-trained embeddings in recommender systems

Fig. 3.5 illustrates the architecture of Netflix recommender system 2. The authors divide

the architecture into three components: 1) offline 2)nearline, and 3) online. Offline refers to

the set of algorithms, and tasks that can be computed as a batch process. Recommender

systems algorithms that need to be updated periodically as more data comes in can be

considered to be part of the offline architecture. Overtime, user behavior shifts, and more

signals are captured. Offline algorithms account for this shift, and change in behavior by

2https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-
e081aa94b5d8

46

re-training or incrementally training on new data. Nearline algorithms do not have real-time

constraints, but need to be updated constantly as new user data comes in. Online algorithms

are time sensitive processes that need to respond to user actions in real-time. For example if

a user stops watching a movie abruptly, then the online algorithms need to reason with this

behavior and provide appropriate alternatives. Thus, in this recommendation flow there are

various kinds of components that consume user behavior data, and are tailored for different

scenarios.

Figure 3.5: A recommender system architecture

In Liu et al.96, the Pinterest recommender system, that serves pins to users, based on

47

their current selection is described. This paper describes the Pin2Vec neural network model,

that learns embeddings of items in the Pinterest domain. The embeddings that are learnt

are used in real-time recommendations. This work also explains the architecture for visual

search, where visual embeddings on images are used to identify similar items. Grbovic and

Cheng97 detail the use of listing embeddings, and user embeddings, for the downstream tasks

of search ranking, and recommendations on AirBnb.

48

Chapter 4

Representation Learning and

Recommendations in Heterogeneous

Networks

In this chapter we discuss how representation learning can be heterogeneous information net-

works (HIN) using constrained random walks. Apart from users, items, and user feedback

in the form of ratings, most domains also contain typed attributes associated with these en-

tities. Information network embeddings approaches have the ability to project the network

entities into low dimensional space while preserving the network structure. These approaches

have been used for applications such as link prediction and entity disambiguation. In this

chapter, we propose a rating aware semi-supervised network embedding approach that takes

the entity side information into consideration to generate low dimensional embeddings of

HIN. Our empirical evaluation shows that metapath-constrained embeddings perform better

than popular network embedding approaches for recommendations.

Projecting all the entities within the HIN into the same space allows the users to express

their information needs in the form of queries, where the user query is comprised of various

entities in the HIN. This opens up some interesting interaction models for the user to ex-

49

plore the entity space. In this chapter, we also show how graph embeddings can be used to

perform query-based recommendations.

4.1 Introduction

Linked open data sources such as DBPedia and WikiData have become great sources for

generating knowledge graphs for online entities. Knowledge graphs with typed entities and

relationships can be viewed as instances of a heterogeneous information network (HIN).

Heterogeneous information networks are graphs wherein vertices and edges belong to one

or more types t ∈ T . Although most information networks can be viewed as heteroge-

neous, researchers and practitioners typically ignore the type designations when performing

various analytical tasks. One such task is the recommendation of entities in heterogeneous

information networks, which we define as follows: given a heterogeneous information network

{V,E} = G and a preference matrixW , we aim to predict the top k vertices< v1, v2, . . . , vk >

of type v associated with some input vertex u. As current network embedding generation

approaches assume that the networks are homogeneous these approaches do not take into

consideration the ”type” of the entities and interaction patterns between these entities while

generating the low dimensional representations. In our approach we capture these interac-

tion patterns between typed entities by specifying domain aware metapaths. Thus to obtain

distributed representations of entities in heterogeneous networks, we first model the interac-

tions across the typed entities in the network as metapaths, then we use these domain aware

metapaths as blue prints to generate path constrained random walks within the network.

We evaluate our approach by performing extensive experiments using 2 real world het-

erogeneous datasets. We perform experiments on the DBLP citation network and IMDB

network. We use the Precision@K metric to evaluate the author recommendations obtained

in the DBLP citation network. We then empirically evaluate the recommendations generated

by these low dimensional representations. Our experiments show that MetaWalk outperforms

popular graph embedding approaches.

Personalized PageRank98, SimRank99, Deepwalk100, LINE101 and other models have been

50

Figure 4.1: Movie domain interaction between entities

applied to the recommendations task in homogeneous information networks with good re-

sults; however, the type signal provided by heterogeneous information networks allows the

user to specify type constraints on information to return. Recent work in hybrid recommender

systems have demonstrated the efficacy of using knowledge graphs to improve recommenda-

tions102. Musto et al. in102;103 use linked open data and PageRank-style features to improve

the performance of graph-oriented recommender systems. Path-based approaches that are

aware of node type in a graph were proposed in104 for personalized recommendations. Graph

embedding on random walks over graphs and using embedding similarities from Node2vec 105

was proposed in Entity2rec 106, this approach learns a user, item relatedness in the context

of a intermediate property.

4.1.1 User-driven Interactive Recommendations

In addition to typed recommendations, the presence of multiple types of entities within a

heterogeneous information network, opens up new modalities for specifying user intent and

retrieving recommendations to the users. Query-based information retrieval is one of the

primary ways in which meaningful nuggets of information are retrieved from large amounts

51

of data. Here the query specifies a user’s information need. In a homogeneous network,

in the absence of type and contextual side information, the retrieval context for a user

reduces to the user’s preferences over observed items. In a heterogeneous setting, information

regarding entity types and preference context is available. Thus, query-based contextual

recommendations are possible in a heterogeneous network. The contextual query could be

type-based (e.g. directors, actors, movies, books etc.) or value-based (e.g. based on tag

values, genre values such as “Comedy”, “Romance”) or a combination of types and values.

Thus a user can express not only queries such as “Generate movies that I like”, but also

queries such as “Generate movies that I like” + “similar to the movie ‘Saving

Private Ryan’” + “war movie” + “drama movie” - “comedy movie”.

Existing Metapath-based approaches such as PathSim107 have explored the task of Top-K

similarity search in HIN. One limitation of these approaches is that the approaches only allow

for obtaining pair wise similarity of entities and cannot support combination queries that

involve multiple types of entities. In our proposed approach, all the typed entities within

the HIN are represented in the same space, we have the ability to retrieve recommendations

for complex contextual queries.

We evaluate the effectiveness of query-based recommendations using network embeddings

by applying them to the list completion task. Experiments conducted on the user curated

movie lists in the IMDB data set for set completion problem demonstrate the usefulness

of distributed representations. We use the Precision@K metric to compare the user lists

generated with the ground truth user lists.

The following is a summary of the contributions documented in this chapter:

1. We propose a metapath-based path constrained random walk framework to capture

the interaction patterns between entities in the HIN, and to generate distributed rep-

resentations of these entities.

2. We propose a query-based user driven interactive recommendation approach using the

Metapath-based HIN embeddings. This allows the user to define the context for the

52

Figure 4.2: Movie - Knowledge Graph Schema

recommendations. The query context is expressed as a combination of entities present

in the HIN. We demonstrate the efficacy of this approach by using the HIN embeddings

for the list completion task. We propose two kinds of user interface modalities for user

driven interactive recommendations: 1) exemplar-based recommendations 2) “less like

this/more like this” style recommendations

4.2 Problem Definition

In this section we provide an overview of of heterogeneous information networks and intro-

duce MetaWalk a metapath embedding approach for recommendations and retrieval in HIN.

Figure 4.2 illustrates the various kinds of interactions that can exist with the Movie domain.

Traditional recommender systems were restricted to a bipartite network between Movie and

User entities with rating edges connecting them.

Heterogeneous Information Network (HIN) : A weighted HIN is defined as a di-

rected graph G = {V,E} with an entity mapping function φ : V → A and a edge type

mapping function ψ : E → R where each node v ∈ V belongs to one particular entity type

53

Figure 4.3: (a) heterogeneous information network, (b) traces of fixed-length random walks

φ(v) ∈ A and each edge e ∈ E belongs to a relationship type ψ(e) ∈ R. The edge weights as-

sociated between vertices with the relationship context ψ(c) ∈ R is captured as a preference

matrix Wc.

Metapath: A metapath is a sequence of edges specified over a HIN schema SG = (A,R).

The Metapath defines a composite relationship that consists of ordered sequence of edge types

specified in the HIN schema.

Figure 4.5 illustrates some of the metapaths derived from the Movie network schema

specified in Figure 4.2. The UMU metapath specified in Figure 4.5 (b) illustrates the rating

semantic relationship between the entities User and Movie. This relationship is captured

in the User-Rating-Movie bipartite network, where the edges exist as rating relationship

between users and movies. Similarly the MGM metapath specified in Figure 4.5 (c) illustrates

the Movie attribute semantic relationship between the set of movies and the genres associated

with these movies.

As we define the HIN as a directed graph and capture the edge weights in a contextual

preference matrixWc, we can handle cases where multiple contexts exist between two entity

types.

Weighted Citation network: Citation network is a prime example of a weighted HIN.

54

Author

Paper

Author Paper Venue Paper

Author Paper Author

a) Metapath co-Author

b) Metapath co-Citation

c) Metapath APVP

d) Metapath APA

Figure 4.4: Citation network Metapaths

User Movie Director

User Movie User

Movie User

Movie Genre Movie

a) Metapath UMDMU

b) Metapath UMU c) Metapath MGM

Figure 4.5: Movie Network Metapaths

The citation network contains entities of the types: Authors (A) , Papers (P) , Venues (V)

and Terms (T) . For each paper the possible set of relations are co-Author (Author - Author)

, Author - Paper, Paper - term, Paper - Venue, co-Citation (Citation - Citation) , Paper -

Citation relationships. A publication can have two roles, the Paper and Citation roles. The

preference matrix among co-Authors and co-Citations is weighted, the preference matrix for

these contexts captures the co-occurrence count of pairs of entities at the global data set

level. The Author - Paper, Paper - Term, Paper - Venue and Paper - Citation relationships

are unweighted.

55

Movie network with explicit feedback: The movie network contains entities of the

types: Movies (M) , Users (U) , Actors (A) , Directors (D) , Genre (G) and Terms (T) .

Some of the relationships that exist in this network are: Rating relationship between User

and Movie, Acted relationship between Actor and Movie, Directed relationship between Di-

rector and Movie, Genre relationship between Movie and Genre, List Curation relationship

between User and Movie, Keyword relationship between Movie and Term. Rating relation-

ship between User and Movie is weighted, where the weight associated is the rating, while

the List Curation relationship between user and movie is unweighted. The acted, directed,

genre and keyword relationships between a movie and its attributes are unweighted.

Network Schema of a Weighted HIN: The network schema is a high level repre-

sentation of the typed relationships between various entities in a HIN. The network schema

of a graph G = {V,E} with entity types in A and and edge types in A is represented

as SG = (A,R). Network schema is nothing but a blue print for the various interactions

and the contexts that can exist in a type network. The network schema can be leveraged

by domain experts to specify interaction patterns in the HIN. Figure 4.2 provides two

example schemata, the citation network schema and the movie network schema. The self

edges present in Figure 4.2 (a) illustrates the co-occurrence edges captured by co-citation

and co-author relationships. The presence of multiple contextual relationships between two

entity types is illustrated by the presence of solid and dotted edges between a User and a

Movie in Figure 4.2 (b). These two edges capture the User-Rating-Movie interaction and

the user-List-Movie interaction.

Weighted metawalks:

Using the metapaths as references, we perform path constrained random walks on the HIN.

As the relationship edges between entities in the graphs have weights associated with them,

we cannot perform uniform sampling over the outgoing edges of a vertex. In weighted

metawalks we propose performing edge weighted sampling. The weight of the edge between

two entities in the graph can be viewed as the strength of association between those two

56

Table 4.1: Metapaths captured from IMDB schema

IMDB Metapaths

user - movie

user - movie - director - movie

user - movie - actor - movie

user - movie - genre - movie

user - movie - language - movie

user - movie - keyword - movie

movie - genre - movie - director

director - movie - actor - movie

director - movie - genre - movie

language - movie

keyword - movie

Table 4.2: Metapaths captured from Citation Network schema

Citation Network Metapaths

coAuthor

coReference

paper - reference

author - venue - author - reference

author - paper - coAuthor

venue - paper -reference

venue - reference

author - paper - reference

author - paper - venue - paper

57

entities. But the transition strength need not be uniform on these entities. For example let’s

say a user rates a movie with rating 5.0, then the edge weight between this user and movie

is 5.0, but, the transition strength from user to movie is not the same as transition strength

from movie to user. This directed edge value depends on the number of outgoing edges from

the transition source entity as well as the relative strength of this edge over all the outgoing

edges.

Table 4.1 enumerates the various metapaths that we specify over the IMDB schema and

Table 4.2 enumerates the various metapaths that we specify over Citation network schema.

These domain aware metapaths are used as blueprints for performing random walks. We use

the metapath-based random walk algorithm described in Algorithm 1 to perform weighted

metawalks over a HIN.

Injecting Non-linearities for edge selection on weighted edges:

While specifying the edge selection strategy it is essential to understand the nature of the

relationships between the entities and the meaning of weights associated between the entities.

For example, if a user U has 2 outgoing edge E1 and E2 to movies M1 and M2 respectively.

If U rates M1 as a 10 and M2 as 5, its does not necessarily mean that the strength of

association between U and M1 is twice as much as M2. To understand the effect of such

non-linear associations between entities we perform experiments with both linear and non-

linear weightings over the preference matrices.

4.3 Distributed Representations and HIN embeddings

Distributed representations have become a popular and effective way to represent higher-

dimensional information. Distributed representations have found a wide degree of applica-

tions in the fields of machine learning, natural language processing and information retrieval.

In the MetaWalk framework we aim to represent HIN into a low dimensional representation

while ensuring that the structural and semantic properties of the HIN are preserved. To

obtain information network embeddings we first specify the set of metapaths with the net-

58

work that capture semantic and structural patterns and then generate metapath constrained

random walks over the network. Once these random walks are generated, we use the Skip-

gram approach specified by Mikolov et al.4 to generate information network embeddings that

capture semantic relationships captured by user curated lists.

4.3.1 Skipgram

The Skipgram approach is a neural network approach for generating distributed representa-

tions over contextual windows. Given an entity e, the Skipgram model tries to predict the

surrounding context entities that are present within the random walk. The context for an

entity in a path constrained random walk is defined by a window around the entity. For

example in the User - Movie metapath, one context for users is movies that they prefer and

similar users that have shown similar preference for that movie. This metapath essentially

captures the collaborative filtering hypothesis of similar users show similar preferences over

items, for recommendations generation. For each entity and its context, a Softmax function

acts on the output layer activations for each input context entity. This approach tries to

maximize the co-occurrence probability of entities that appear within the same context.

4.3.2 Skipgram for Metapaths

In the case of User-Item metapath, this relationship spans the bipartite graph of users and

items. We then generate a random walk by traversing this bipartite graph. The semantic

meaning of these random walks can be expressed as similar users will have semantically

similar movies. For a sequence of items {si}Ki=1 ⊆ S we maximize the following term:

1

K

K∑
i=1

K∑
j 6=i

log
(
σ(uivj)

N∏
k=1

σ(−uivk)
)

where ui ∈ U is the latent vectors of target entity and vi ∈ V is the latent vectors of

59

other entities in the context window around target entity.

σ(x) = 1/1 + exp(−x)

N is the number of negative samples drawn that would be used to minimize the similarity

between the target entity and the item not present in the item context. The negative items

are sampled from the item distribution. The latent embeddings of items are estimated by

using stochastic gradient descent that maximizes the above criteria. We use cosine similarity

to calculate similarity between two latent representations. We use additive vector composi-

tion (AVC) to come up with a single representation from multiple representations if we want

get a single representation for a set of entities.

Skipgram for Homogeneous Paths: When all the nodes in a metapath are of the same

type we can model the conditional probability Pr(vj|Φ(vi)) to be independent of the type of

the node vj, and can be derived by softmax as:

Pr(vj |Φ(vi)) =
exp(Ψ(vj) · Φ(vi))∑
u∈V exp(Ψ(u) · Φ(vi))

. (4.1)

Skipgram For Metapaths that assumes the probability Pr(vj|Φ(vi)) is related to the type

of node vj:

Pr(vj |Φ(vi)) = Pr(vj |Φ(vi), φ(vj))Pr(φ(vj)|Φ(vi)), (4.2)

and can be derived by softmax as:

Pr(vj |Φ(vi), φ(vj)) =
exp(Ψ(vj) · Φ(vi))∑

u∈V,φ(u)=φ(vj) exp(Ψ(u) · Φ(vi))
. (4.3)

60

Table 4.3: IMDb dataset overview

sparsity 5 10 50 100

user 18414 18414 18414 18414
movie 30408 40837 73571 91070
rating 323979 648847 3249149 6494480
actor 35911 46475 79633 96910
director 13042 16843 27922 33493
genre 26 27 28 28
language 216 220 256 259

Table 4.4: Citation network dataset overview

sparsity paper author venue reference

5 57317 113625 7200 72769
10 111045 190230 7200 118732
50 541551 561721 7200 303968

100 1072190 842822 7200 411723

4.4 Experiments and Results

In this section, we present the empirical analysis of the proposed recommendation framework

that leverages the network schema of the heterogeneous domain to generate recommenda-

tions. We performed a series of experiments to demonstrate the effectiveness of our MetaWalk

model on IMDB.com domain. In this movie domain, we apply the proposed algorithm to

recommend a personalised Top-N movie-list for the user.

4.4.1 Dataset

To demonstrate the effectiveness of the proposed recommendation framework, we choose

two datasets from different domains (movie and academic citations). We represent the two

datasets as heterogeneous network. In the IMDB dataset, we use user ratings and meta-

data of movies that captures side information in order to build a heterogeneous information

network. The different entities in our graph are users, movies, actors, directors and genre.

The HIN graph consists of both weighted and unweighted edges over different typed entities.

61

The edges between user and movie entities are weighted. The edges about the meta-data

of movies are unweighted. The weighted edges represent the degree of affinity between two

nodes. For example, if a user rated a movie, we assign a weight to the user-movie edge as

a function of user’s rating. On the other hand, unweighted edges represent metadata about

the movies e.g. a movie-genre edge is created if movie belongs to that particular genre. We

filter out all the users who have rated less than 20 movies while building the dataset. The

dataset is divided into training and testing set as follows. For each user, we retain 50% user-

movie edges in training dataset, and rest is treated as testing dataset. In order to show the

effectiveness of our proposed approach, we further divide training set into sparse sets based

on number of edges. We create four sets with 5%, 10%, 50% and 100% randomly sampled

edges conditioned on user from the training dataset. The four sparse sets are described in

Table 4.3.

The second dataset is Citation Network Dataset108 extracted from DBLP. The citation

graph covers all the citations within a dataset of 3,272,991 papers with 8,466,859 edges.

Each publication has six attributes: paper title, publication venue, published year, abstract,

authors, and references. We extract relations with respect to authors, references and venues.

While building the dataset, we filter out authors with less than 5 venues. We do this since

we are predicting the next venues for an author. Train and test set is created pivoted on the

venues. For each venue, we retain 50% edges in train dataset, and rest of the edges fall in

test dataset. Similar to the experiments in IMDB dataset, to measure the effectiveness of

our approach at various levels of sparsity, we create sparse sets from the train dataset. The

sparse partition of training data is described in Table 4.4.

Degrees of freedom: For our experiments we consider the following while evaluating

various approaches: 1) sparsity of dataset to compare effectiveness of various approaches

across different sparsities 2) dimensionality of the learnt user/item embedding 3) significance

of using side information meta data in heterogeneous networks 4) significance of injecting

non-linearities while performing random walks over weighted edges.

62

Table 4.5: Results for Precision@K with varying sparsity

10% Data 50% Data 100% Data

P@10 P@20 P@10 P@20 P@10 P@20

NCF(Baseline) 0.034 0.059 0.127 0.178 0.235 0.316

LINE 0.082 0.132 0.083 0.133 0.089 0.143

DeepWalk 0.118 0.187 0.141 0.218 0.169 0.246

Node2Vec 0.081 0.132 0.082 0.133 0.083 0.134

MetaWalkU 0.113 0.182 0.116 0.183 0.122 0.191

MetaWalkW 0.159 0.238 0.18 0.262 0.185 0.271

Table 4.6: Results for Kendall’s τ , for ranked-order comparison

5% Data 10% Data 50% Data 100% Data

LINE 0.151 0.170 0.187 0.202

DeepWalk 0.259 0.292 0.347 0.364

Node2Vec 0.296 0.313 0.333 0.340

MetaWalkU 0.270 0.279 0.284 0.292

MetaWalkW 0.359 0.400 0.462 0.477

4.4.2 Evaluation Metrics

To measure the efficacy of top-K item recommendations using various proposed approaches,

we use the Precision@K. In the case of IMDB data set, we treat the recommendation task as

recommending unseen movies to the users. We treat this as a Top-K recommendation task

and not as rating completion task.

4.4.3 Results

Table 4.6 shows the empirical results for Precision@K in the Imdb.com domain. A MetaWalk

approach that leverages domain information in the HIN schema outperforms our baseline

approach. MetaWalkU - Unweighted MetaWalk generates random walks without considering

the user-item ratings. MetaWalkW - Weighted MetaWalk is the approach that generates

random walks while taking into account the user-item ratings.

63

F
ig

u
re

4
.6

:
pr

ec
is

io
n

@
5

an
d

pr
ec

is
io

n
@

10
fo

r
va

ry
in

g
sp

ar
si

ty
in

IM
D

b
do

m
ai

n

64

F
ig

u
re

4
.7

:
pr

ec
is

io
n

@
5

an
d

pr
ec

is
io

n
@

10
fo

r
va

ry
in

g
sp

ar
si

ty
in

ci
ta

ti
on

n
et

w
or

k

65

Table 4.7: Exemplar-based user list generation for “Bond Movies” (Left) and “Film Noir”
(Right) Movie titles in bold constitute the query set

Dr. No Maltese Falcon
Goldfinger Double Indemnity
You Only Live Twice The Big Sleep
Thunderball Key Largo
On Her Majesty’s Secret Service The Third Man
From Russia with Love Laura
Moonraker Out of the Past
Diamonds Are Forever To Have and Have Not
The Man with the Golden Gun White Heat
For Your Eyes Only Dark Passage
The Living Daylights The Lady from Shanghai

4.5 Interactive Recommendations

The semantic embeddings can be used to refine a user information need by providing exem-

plars. This opens up new modalities of interactions for the users to gravitate towards their

requirements.

4.5.1 Exemplar-based Recommendations

Table 4.7 shows the result of exemplar-based list completion for the user information need

“Bond” movies and “Film Noir” movies, as the community structure of these movies is tight

knit, our list generation approach generates a good set of movies with query set of size 1.

This interactive modality can be viewed as a list refinement task, where the user is providing

examples and refining the result set of items based on a tacit intent that they can more

easily express. Table 4.8 shows the result of exemplar-based list completion for the user

information need “new romantic comedy” movies, by adding more examples into the query

set the user can tweak the membership of the list generated. The rank of the candidate

items changes as the query set membership is modified.

66

Table 4.8: Exemplar-based user refinement for the intent “newer romantic comedies”, Movie
titles in bold constitute the query set

The 40-Year-Old Virgin The 40-Year-Old Virgin
Wedding Crashers Knocked Up
Waiting... Superbad
Anchorman... Wedding Crashers
Step Brothers The Heartbreak Kid
EuroTrip Anchorman...
Harold & Kumar... EuroTrip
The Ringer Sex Drive

The 40-Year-Old Virgin The 40-Year-Old Virgin
Knocked Up Knocked Up
Anchorman... Anchorman...
Superbad Step Brothers
Wedding Crashers Superbad
EuroTrip Wedding Crashers
Harold & Kumar... Role Models
Step Brothers Harold & Kumar...

67

4.5.2 Less Like this and More Like this

As all the entities (users, items, item attributes) are represented in the same space and as the

user embeddings are personalized, we can retrieve the resultant entities that match the query

expressed by the user. Notice here that entities need not be associated with the attributes

such as “war”, “comedy” etc. to qualify for this as they are represented semantically. We

can also express queries such as “more like this” and “less like this”. e.g. “generate

movies more like ‘Casino Royale’ and less like ‘Golden Eye’ ”. The presence of

positive and negative interactions between the users and the entities can also be leveraged to

provide Less Like this and More Like this interactive interfaces (where high ratings/thumbs

up can be considered as a positive interaction) . We believe that interactive search and

recommendations interfaces can be highly effective where users are in an exploratory phase

and are not familiar with the domain. In these cases, these novel modalities of interaction

can prove to be highly effective. This is a less researched area and more work needs to be

done in this field, especially with respect to metrics to identify effectiveness of such interface

modalities.

68

Algorithm 1 Metapath-based Random Walk generation for weighted graphs

Data: initial node n of type T , metapath P , length of random walk L

/* metapath P is a Circular Queue data structure */

Result: weighted random walk w

w ={}

/* random walk w is a Queue data structure */

Enqueue (w,n)

while iter ≤ L do

nextType=Next (P)

/* getting the next edge type in metapath */

if isWeighted (nextType) then

/* if next Edge in the metapath is a weighted edge */

WNeighborhood= GetNeighbors (n,nextType)

/* Get the Typed neighbors From the current Node */

n = WeightedSampleNeighborhood (WNeighborhood) /* Perform weighted

sampling in the Typed Neighborhood */

Enqueue (w,n)

else

Neighborhood= GetNeighbors (n,nextType)

/* Get the Typed neighbors From the current Node */

n = UniformSampleNeighborhood (WNeighborhood)

/* Perform uniform sampling in the Typed Neighborhood */

Enqueue (w,n)

end

end

69

Chapter 5

Semantic Diversity in Top-N

Recommender Systems

5.1 Introduction

Modern recommender systems use interaction data between users and items - either in the

form of explicit or implicit feedback - to predict user preference of unobserved items. These

approaches tend to use relevance metrics such as RMSE and ranking metrics to predict

a user’s proclivity towards items, but focusing solely on these relevance metrics leads to

recommending highly similar homogeneous set of items that exhibit low diversity109. The

drawback of such an approach is that the user is constrained to a low entropy result set

resulting in lower user satisfaction. This will also result in reduced coverage of the item

set and lower exploration opportunities for the user to discover novel and serendipitous

items110. Improving diversity of recommender systems has become an important research

topic in order to increase the discoverability of items. Nguyen et al.7 note that lack of

diversification of results lead to “filter bubbles” and over time recommender systems expose

users to a narrowing set of items. Vargas et al. use various latent user preferences over

items to improve quality of recommendations111. The authors propose identifying user sub

profiles by creating subsets of user interests from the set of user preferences over items. In

70

this work, first the user profiles are partitioned into pre-defined categories over the items and

then use these partitioned user sub-profiles to generate partition specific recommendations.

The recommendations from various partitions are then aggregated to generate a diverse set

of recommendations.

User-curated lists span a wide range of domains and usually contain items that users

view to be of a coherent topic. These lists of items can be videos belonging to a particular

topic on YouTube, movies on the Internet Movie Database (IMDb) , books on GoodReads

domain, lists of users and accounts on Twitter, playlists on music platforms such as Spotify

and wish lists on e-commerce domains such as Amazon. On domains such as Spotify, most

user-item preference activity happens predominantly through “list activity”. On IMDb, a

movie domain and GoodReads, a books domain the items in lists that are curated by users

typically share some common attribute such as genre, tag, director, actor, author, etc. These

lists capture semantically meaningful items at various granularities across various dimensions

of user interests. For example in the list titled “TOP WAR MOVIES”1 on IMDb, the user

lists a set of “war” movies. A user list titled “Great Old Movies (pre-1960) ”2 deals with

pre-1960 movies. In these examples, the items in the lists co-exist in different contexts such

as Genre and Temporal similarity, respectively. While a ‘tag’ such as “western” exists on

imdb.com, a user identifies “Modern western” movies in the user list “Modern Westerns:The

Ultimate List.”3 On goodreads.com, within lists tagged with the tag “love,”4 we can see a

wide variety of contexts within which items can be categorized semantically. In this chapter

we propose to leverage the semantic context that exists within lists to provide a more diverse

set of recommendations. Nguyen et al.7 use information encoded in user-generated tags to

measure the content diversity of items recommended by recommender systems. The user-

generated tags in this instance capture a context association of a user to an item.

Determinantal Point Processes (DPPs)112 have been succesfully used in machine learning

tasks such as information retrieval, diverse subset sampling, and document summarization.

1https://www.imdb.com/list/ls026329851/
2https://www.imdb.com/list/ls000000580/
3https://www.imdb.com/list/ls055895628/
4https://www.goodreads.com/list/tag/love

71

https://www.imdb.com/list/ls026329851/
https://www.imdb.com/list/ls000000580/
https://www.imdb.com/list/ls055895628/
https://www.goodreads.com/list/tag/love

Determinantal Point Processes have the ability to model the balance between quality and

diversity of sets as they model repulsion. In this exploratory work, we propose to improve

the diversity of Top-N recommender systems, by using DPPs over user-created lists. We

crawled the imdb.com5 domain to generate a lists dataset, the semantic similarity measure

from these user-generated lists is used by the DPP to model the diversity of the items. We

use an average dissimilarity metric to measure the diversity of the resulting re-ranked list.

Our early results on the MovieLens 1-million ratings dataset113 show that incorporating

semantic similarity expressed in user lists as a diversity proxy results in a more diverse set

of recommendations. The contributions in this chapter are the following:

– We propose leveraging user-curated lists for improving the intra list diversity of Top-N

recommender systems using Determinantal Point Processes (DPPs) . We empirically

show that the intra-list diversity score of Top-N systems can be improved by DPP

re-ranking.

– We show how latent representations – learnt over HIN by performing metawalk-based

random walks over – can be used to inject semantic diversity in top-n recommender

systems.

– We argue for using more diversity metrics apart from the “popularity-biased” co-

occurrence similarity that is popular in the recommender systems literature. We ob-

serve that to improve our understanding of this field, we need objective metrics that

would inform us of the utility of various diversity metrics.

5.2 Background

5.2.1 Determinantal Point Processes (DPPs)

A Determinantal Point Process (DPP) is useful in models and applications where repulsive

effects or diversity are important. For example, creating a model with the assumption of a

5https://www.imdb.com/

72

https://www.imdb.com/

uniform spatial distribution (e.g., particles114, cluster centers115, etc.) may be unwarranted,

and using a DPP may be a better choice. In recommender systems and information retrieval

settings, it may be desirable to return a more diverse collection of items, and a DPP can be

used to incorporate this preference for diversity.

Given a set Y of cardinality N , a DPP can be thought of as a probability distribution on

the subsets of Y , where the probabilities are proportional to the determinant of some matrix.

Such distributions are important because the determinant of a matrix captures the volume

of the parallelepiped spanned by its columns, which provides a useful measure of diversity

amongst the column vectors. In principle, one can encode relevant information into an N -by-

N matrix, each row and column being indexed by an item in Y . The determinants of interest

are those corresponding to the principal minors of this matrix. Different approaches to DPPs

exist, depending on the conditions the N -by-N matrix satisfies. In the L-ensemble approach,

our N -by-N matrix L is positive semidefinite, and the probability that our randomly selected

subset R ⊆ Y is exactly the subset A ⊆ Y is given by the equation

PL(A = R) = det(LA)
det(L+I)

,

where I is the N × N identity matrix and LA is the principal minor of L whose rows and

columns are indexed by the items in A.

The L-ensemble approach is useful when we have a feature space representation for the

items in Y . In this case, L is just a Gram matrix associated to these items.

For sufficiently large N , it is infeasible to compute the determinants of the all the prin-

cipal minors and select a subset of maximal determinant. For this reason, applications rely

on sampling algorithms that probabilistically constructs a subset with the probability of

constructing A being approximately PL(A).

5.2.2 k-DPPs

In general, sampling from a DPP involves two random variables: the random subset itself

and the size of the subset. For some applications, the desired number of items to select, say

k, is already known. (For example, a recommender system may recommend k = 5 items for

73

purchase.) In this case, a k-DPP is used. Technical details, including the contents of this

section, can be found in116 and112 by Kulesza and Taskar.

Given an L-ensemble DPP PL, we may recalculate probabilities to only take into consid-

eration k-item subsets:

P k
L(A = R) =

det(LA)∑
|A′|=k

det(LA′)
. (5.1)

Since

∑
A′⊆Y

det(LA′) = det(L+ I) = det(L+ I)
∑
A′⊆Y

PL(A′),

the denominator in (1) can be rewritten as

∑
|A′|=k

det(LA′) = det(L+ I)
∑
|A′|=k

PL(A′) (5.2)

while the numerator in (1) can be rewritten as

det(LA) = det(L+ I)PL(A). (5.3)

Using results in the theory of symmetric functions, we derive from (2) that

det(L+ I)
∑
|A′|=k

PL(A′) = ek(λ1, ..., λN), (5.4)

where ei is the ith elementary symmetric polynomial and the {λj} are eigenvalues of L.

Using (3) and (4) , we have that the atomic probability can be written as

P k
L(A = R) = det(L+I)PL(A)

ek(λ1,...,λi)
.

The practical significance of this form is that the elementary symmetric polynomials

may be computed in polynomial time, whereas the sum
∑
|A′|=k

has exponentially many terms,

presenting a priori time complexity challenges. Furthermore, it can be shown that the

marginal probability is given by

74

P (i ∈ R) = λiek−1(λ1,...,λi−1)

ek(λ1,...,λi)
,

yielding a sampling algorithm described by Kulesza and Taskar116.

Algorithm 2 Procedure for Sampling from k-DPP

Input: k Eigenvector/Eigenvalue Pairs {(vn, λn)}
Output: A sampled subset R
for n← 1 to N do

if u ∼ U [0, 1] < λn
ek−1(λ1,...,λn−1)

ek(λ1,...,λn)
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
end

end

end
V ← {vn}n∈J
R← ∅ while |V | > 0 do

R← R ∪ {i} with probability

∑
v∈V

(vT ei)
2

|V |
V ← V⊥, orthonormal basis of the subspace of V orthogonal to ei

end

The sampling process from the k-DPP is described in Algorithm 2. Its input is an eigen-

decomposition of matrix L, i.e. a collection of eigenvectors of L along with their associated

eigenvalues. It outputs a set containing k items, and the probability of outputting any par-

ticular k-element set is given by the k-DPP. To use DPP model in the top-N recommendation

task, we should construct the similarity matrix. In the context of recommender systems, we

might think of L as a similarity matrix between all pairs of items. In Section 3, we provide

more details on obtaining L from user-curated lists.

5.3 HIN Embeddings over User Curated Lists

We consider the list of items present in a playlist as a sequence, and employ the popular

CBOW model from Word2Vec 80 to learn item embeddings on the sequence C. A fixed size

window is moved over each list and the model is trained by trying to predict the track in

75

the middle of the window correctly given all the other tracks within the same window. This

translates to minimizing the following loss,

LCBOW =
∑
φ∈C

|φ|∑
i

−log
(
p(~vi|

∑
i−k≤j≤i+k,j 6=i

~vj)
)

(5.5)

Where, ~vi is the embedding of the ith track in the playlist φ. Similar to Mikolov et al. 79 ,

our item embeddings are trained with negative sampling instead of the full softmax over the

complete track collection. The IMDB network involving user curated lists contains four dif-

ferent types of entities—lists, items, users, and tags. Alternatively, we can view this dataset

as a heterogeneous information network (HIN) . A meta-path defines a composite relation-

ship by an ordered sequence of edge types specified in the HIN schema SG = (A,R). Based

on two different meta-path definitions: tag→list→item→tag (TLIT) and item→list→item

(ILI) .

In summary, we learn item embeddings based on three different approaches:

1. EMB1: CBOW over lists as sentences and items as terms

2. EMB2: CBOW over the ILI metapath

5.4 Data Set, Experiments and Results

The MovieLens 1-million ratings dataset contains ∼1 million ratings of 3,076 movies provided

by 6,040 users.

We obtained the IMDb user lists by performing targeted crawls for lists on the imdb.com

domain. We performed various crawls on the imdb.com domain over a period of 4 weeks

from 11/24/2017 to 12/24/2017. The crawl was able to capture historical interactions of

74134 users, these interactions were of the form “list activity” and “rating activity”. A user

performs list activity when they create a list and the lists has at least 1 item in the lists.

These approximately 74k users generated 352543 user-curated lists. These lists contained

76

13 million interactions between users and items. Of these 350k lists, we pruned generic lists

that contain mostly popular items (as these generic lists are associated with no semantic

coherence) . This resulted in a pruned set of 155496 lists. From these ∼155k lists we

removed items that were not part of the MovieLens dataset.

5.4.1 Experiments and Results

We divide the Movielens dataset into training and test sets, where we randomly select 1

item from the user’s item set to be part of the test set and the rest of the items are part

of the training set. For each user, using the user-item interaction in the training set as the

user profile, we identify the top 20 similar items of each item and the aggregate of all the

top 20 similar items of every item in the profile set forms the final candidate set. We then

rank the items in the candidate set and items are evaluated for N= 10 and 20. The baseline

algorithm aggregates the item-item similarity to generate a top-N list.

The semantic item-item similarity SemSimij utilized by k-DPP is calculated based on

the co-occurrence of the item pairs across the item lists. We can think of SemSim as a

Gram matrix by viewing each item as a vector of 0s and 1s, with the m-th coordinate 1 if

the item shows up in list m and 0 otherwise. Under this representation, SemSimij is just

the dot product of the vectors for items i and j, and SemSim is a Gram matrix. As a Gram

matrix, SemSim is positive semidefinite and therefore able to be used in our k-DPP.

Evaluation metric

We use the average dissimilarity metric to measure the diversity of the resulting set. The

similarity of 2 items i, j is given by Simij which is the co-occurrence similarity of the items

in the Movielens datsets as defined in117.

Diversity(AverageDissimilarity) =i,j∈Ru,i 6=j (1− Simij)

77

Table 5.1: Average dissimilarity measure of diversity

Approach diversity-Top 10 diversity-Top 20

Top-100 + Random 0.45 0.47
Top-100 0.72 0.74
Top-100 + k-DPP 0.79 0.86
Top-100 + k-DPP-Emb1 0.70 0.76
Top-100 + k-DPP-Emb2 0.81 0.83

Results

Table 5.1 contains the empirical results for the baseline approaches compared to semantic

similarity aware diverse recommendations. Top-100 + Random randomizes the top 100

items of the candidate set, Top-100 just uses the top 100 ranked items as it is, and Top-

100 + k-DPP obtains the k-DPP sampling from the top 100 ranked items. As shown in

the Table 5.1, applying k-DPP to the Top-100 will improve the diversity of the Top-N

recommender systems.

5.5 Diversity Metrics and their Utility

One popular way of measuring diversity of a recommendation list is to look at rating vectors

associated with the items and calculate similarity of items based on these rating vectors. One

major problem with this approach is that if two movies have similar user rating vectors, that

should lead to the conclusion that these are similarly liked, not the conclusion that their

content is similar7. By this approach, most popular movies would have a high similarity

even though from a content and taste perspective they could be highly diverse. Thus, even

for prevalent metrics we do not have a consensus on the utility of these metrics. To further

complicate things, one can consider a wide array of diversity measures based on content and

attributes associated with entities when large amounts of side information is available. We

need a structured approach to identify the utility of diversity metrics and such a framework

would help us take informed decisions based on a wide range of diversity metrics.

78

Chapter 6

Music Playlist Completion and

Continuation

Music streaming services such as Spotify have more than 2 Billion playlists and 30 million

tracks in their catalog. Playlists have become the primary mode of consuming content on on-

line streaming platforms. Thus playlist continuation and completion approaches have gained

traction in the Recommender Systems field. In this chapter we show how we can represent a

Music playlist data set as a HIN, where the nodes in the network are tracks, title keywords,

artists and albums; the edges are the co-occurrence relationship between these heterogeneous

nodes. Using this HIN, we can derive various domain driven distributional representations

of vertices. We then show how these representations can be used as features in Learning to

Rank (LTR) models for the task of music playlist continuation.

The popular approaches to recommendation and ad hoc retrieval tasks are largely distinct

in the literature. In this work, we argue that many recommendation problems can also be

cast as ad hoc retrieval tasks. To demonstrate this, we build a solution for the RecSys

2018 Spotify challenge1 by combining standard ad hoc retrieval models and using popular

retrieval tools sets. We draw a parallel between the playlist continuation task and the task of

1https://recsys-challenge.spotify.com/

79

https://recsys-challenge.spotify.com/

finding good expansion terms for queries in ad hoc retrieval, and show that standard pseudo-

relevance feedback can be effective as a collaborative filtering approach. We also use ad hoc

retrieval for content-based recommendation by treating the input playlist title as a query

and associating all candidate tracks with meta-descriptions extracted from the background

data. The recommendations from these two approaches are further supplemented by a near-

est neighbor search based on track embeddings learned by a popular neural model. Our final

ranked list of recommendations is produced by a learning to rank model118. Our proposed

solution using ad hoc retrieval models achieved a competitive performance on the music

recommendation task at RecSys 2018 challenge—finishing at rank 7 out of 112 participating

teams and at rank 5 out of 31 teams for the main and the creative tracks, respectively.

6.1 Introduction

Recommendation and ad hoc retrieval are two important information retrieval tasks. Given

a list of previously viewed items, a recommender system may suggest new items to the user

by considering past interactions between all users and all items (collaborative filtering 119) , or

it may suggest new items that share similar attributes to the already viewed items (content-

based filtering 120) —or it may adopt a hybrid approach. In contrast, in ad hoc retrieval121

the user expresses an explicit information need—typically in the form of a short text query—

and the retrieval system responds with a ranked list of relevant information resources (e.g.,

documents or passages) based on the estimated match between the query and the document

text. The popular approaches to recommendation and ad hoc retrieval tasks are largely

distinct in the literature, although the two tasks share many similar properties.

The 2018 edition of the RecSys Challenge122 featured the Spotify automatic playlist

continuation task. The goal is to recommend additional tracks for a playlist for which

(either or both of) the title and a number of existing tracks are known. A dataset containing

one million Spotify playlists2 is provided. This Million Playlist Dataset (MPD) can be used

as background data, as well as for generating training examples and for offline evaluation.

2Million Playlist Dataset, official website hosted at https://recsys-challenge.spotify.com/

80

https://recsys-challenge.spotify.com/

Looking through the lens of a typical recommender system, we may approach this task as

a collaborative filtering problem considering the playlist-track membership matrix derived

from the background data. A track may also be described by its own title, the primary artist

name, the parent album name, and even the names of the playlists in which it occurs in the

background data. These descriptions can be useful for content-based filtering. However, in

this work we explore how standard ad hoc retrieval methods and tools can be useful to solve

this recommendation task, using similar signals as collaborative filtering and content-based

recommendation models.

We generate a collection of pseudo-documents, each of which corresponds to a playlist in

the background data. The tracks in the playlist are treated as the terms in the document.

We use a standard retrieval system to index these pseudo-documents. An input playlist—for

which we should recommend new tracks—is treated as a query with its member tracks as

the query terms. Using pseduo-relevance feedback (PRF)123;124 we generate new expansion

tracks for the query and present these as our recommendations for the input playlist. As this

approach only considers past track-playlist membership information, we expect this method

to recommend tracks similar to the collaborative filtering approach.

The title of the input playlist, if provided, can also be an important relevance signal. For

example, if the input playlist title is “running music”, then tracks from other playlists titled

“running jams” or “running mix” may be good candidates for recommendation. Therefore,

we create a second collection where each pseudo-document corresponds to a track in the back-

ground data. We concatenate the titles of all the background playlists that contain the track

to generate the content for these pseudo-documents. Meta-descriptions about the track—

such as, its: title, primary artist name, and parent album name—can be similarly useful for

matching against the input playlist title, and be included as part of the pseudo-documents.

We index this second collection and produce additional candidates by considering the input

playlist title, if available, as a query to an ad hoc retrieval system.

Finally, we learn track embeddings using the popular Word2Vec model80 and generate

additional recommendations by a nearest-neighbour search in the learned latent space. The

candidates from all three approaches are combined and re-ranked using a LambdaMART

81

model125. By using only standard IR tools and methods, we built a solution that is compet-

itive with other top performing submissions at the RecSys 2018 Spotify Challenge.

6.2 The RecSys 2018 Challenge

Spotify—an online music streaming company3—co-organized the RecSys 2018 challenge. The

goal of this year’s challenge was music recommendation—to suggest new tracks for playlist

continuation. As part of this challenge, Spotify released a dataset containing one million

randomly sampled user generated playlists that are publicly available to any users of the

music streaming platform. The dataset includes playlists that were created between January

1, 2010 and November 1, 2017 by users who are at least 13 years old and resident in the

United States. Any private user information is excluded from the dataset, and adult and

offensive content scrubbed. Additional constraints placed on the inclusion of any playlist in

this dataset include:

1. a minimum number other playlists that should contain the same title,

2. a minimum of three distinct artists and two distinct albums in the playlist,

3. at least one follower other than the creator, and

4. no less than five and no more than 250 tracks in the playlist.

The demographic distribution of the users who contributed to the dataset—according to the

challenge website4—is reproduced in Figure 6.1.

The challenge dataset contains ten thousand playlists. For each playlist Φ = φseed∪φheld,

a set of tracks φseed = {tr1, tr2, . . . , trm} are provided as seed tracks and the remaining tracks

φheld = {tr1, tr2, . . . , trn} have been heldout. Optionally, the title TΦ of the playlist Φ is also

provided. The recommendation task involves predicting the heldout tracks in φheld given

φseed and optionally TΦ. The number of heldout tracks n for each playlist Φ is known and

3https://www.spotify.com/
4https://recsys-challenge.spotify.com/dataset

82

https://www.spotify.com/
https://recsys-challenge.spotify.com/dataset

Male Female Unspecified Nonbinary

45 %

54 %

0.5 % 0.5 %0
10

20
30

40
50

60

%
 o

f u
se

rs

18−24 25−34 35−44 45−54 55+ Other

43 %

31 %

9 %
4 % 3 %

10 %

0
10

20
30

40
50

60

%
 o

f u
se

rs

Figure 6.1: Demographics of users who contributed to the MPD by Left: gender and Right:
age.

each playlist in the challenge set belongs to one of the following ten categories based on the

information provided.

(i) the title only,

(ii) the title and the first track,

(iii) the title and the first five tracks,

(iv) the first five tracks only,

(v) the title and the first ten tracks,

(vi) the first ten tracks only,

(vii) the title and the first 25 tracks,

(viii) the title and 25 random tracks,

(ix) the title and the first 100 tracks, and

(x) the title and 100 random tracks.

When track information is provided, each track tr is described by:

(i) its position in the playlist,

(ii) the track name,

(iii) the track URI,

83

(iv) the primary artist name,

(v) the primary artist URI,

(vi) the album name,

(vii) the album URI, and

(viii) its duration.

The challenge set is sampled following the same guidelines as the MPD. For each playlist,

the recommender system needs to generate a ranked list of exactly 500 distinct tracks φpred

with no overlap with the seed tracks φseed provided as part of the playlist information.

Submissions are accepted under two different tracks—the main track and the creative

track. For the main track, participants were allowed to were allowed to use only the MPD

dataset. For the creative track, participants are allowed to use external data for making the

recommendations. The use of external data, however, is restricted to those that are publicly

available to all participants.

Each submission is evaluated based on three different metrics:

1. R-precision63, with partial credit for artist match even if the track is incorrect

2. Normalized Discounted Cumulative Gain (NDCG)65

3. Recommended songs clicks, computed as:

clicks = min{b(r − 1)/10c, 51} (6.1)

where, r is the highest rank of a relevant track, if any.

The challenge leaderboard ranked each participants based on the Borda Count126 election

strategy over all the three specified metrics. The Recsys challenge5 ran from January-2018

through June 30, 2018. From March-2018 to June 30, 2018 —the submission stage– partic-

ipating teams were allowed to submit one challenge set-prediction per day for each of the

5http://www.recsyschallenge.com/2018/

84

http://www.recsyschallenge.com/2018/

main and creative tracks. During the submission stage, the leaderboard was calculated and

updated daily based on 50% of the challenge dataset. When the challenge was finished,

the entire leaderboard was recalculated using the complete challenge dataset and the final

submission from each team.

6.3 Our approach

Our proposed solution consists of a candidate generation stage and a re-ranking stage. To

recall a diverse set of candidates for ranking, we employ three different candidate generation

strategies. Two of these approaches depend on track co-occurrence information, and the

other approach models the relationship between tracks and the titles of parent playlists.

Two of the approaches are implemented using Indri6—a standard ad hoc retrieval system—

while the other employs a nearest neighbor-based lookup. We describe all three candidate

generation methods and the re-ranking model in the next section.

6http://www.lemurproject.org/indri/

85

http://www.lemurproject.org/indri/

T
a
b
le

6
.1

:
T

he
fu

ll
li

st
of

fe
at

u
re

s
th

at
ou

r
le

ar
n

in
g

to
ra

n
k

m
od

el
co

n
si

de
rs

.
T

he
fe

at
u

re
s

ar
e

ca
te

go
ri

ze
d

ba
se

d
on

w
he

th
er

th
ey

de
pe

n
d

on
ly

on
th

e
in

pu
t

pl
ay

li
st

or
th

e
ca

n
di

da
te

tr
ac

k,
or

bo
th

.

F
ea

tu
re

s
T

y
p

es

In
p
u
t

p
la

y
li
st

o
n
ly

fe
a
tu

re
s

Is
p

la
y
li

st
ti

tl
e

av
ai

la
b

le
B

in
ar

y
N

u
m

b
er

of
to

ta
l

tr
ac

k
s

In
te

ge
r

N
u

m
b

er
of

h
el

d
ou

t
tr

ac
k
s

In
te

ge
r

R
at

io
of

n
u

m
b

er
of

u
n

iq
u

e
al

b
u

m
s

to
n
u

m
b

er
of

tr
ac

k
s

F
lo

at
R

at
io

of
n
u

m
b

er
of

u
n

iq
u

e
ar

ti
st

s
to

n
u

m
b

er
of

tr
ac

k
s

F
lo

at
R

at
io

of
fr

eq
u

en
cy

of
m

os
t

fr
eq

u
en

t
al

b
u

m
to

n
u

m
b

er
of

tr
ac

k
s

F
lo

at
R

at
io

of
fr

eq
u

en
cy

of
m

os
t

fr
eq

u
en

t
ar

ti
st

to
n
u

m
b

er
of

tr
ac

k
s

F
lo

at
P

la
y
li

st
ti

tl
e

co
n
ta

in
s

an
y

of
th

e
w

or
d

s:
to

p
,

b
es

t,
p

op
u

la
r,

h
ot

,
or

h
it

s
B

in
ar

y
P

la
y
li

st
ti

tl
e

co
n
ta

in
s

an
y

of
th

e
w

or
d

s:
la

te
st

,
n

ew
,

or
re

ce
n
t

B
in

ar
y

P
la

y
li

st
ti

tl
e

co
n
ta

in
s

an
y

of
th

e
w

or
d

s:
re

m
ix

,
re

m
ix

ed
,

or
re

m
ix

es
B

in
ar

y

C
a
n
d
id

a
te

tr
a
ck

o
n
ly

fe
a
tu

re
s

R
at

io
of

n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

co
n
ta

in
in

g
th

is
tr

ac
k

to
to

ta
l

n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

F
lo

at
R

at
io

of
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

co
n
ta

in
in

g
th

is
ar

ti
st

to
to

ta
l

n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

F
lo

at
R

at
io

of
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

co
n
ta

in
in

g
th

is
al

b
u

m
to

to
ta

l
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

F
lo

at
T

ra
ck

ti
tl

e
co

n
ta

in
s

an
y

of
th

e
w

or
d

s:
re

m
ix

,
re

m
ix

ed
,

or
re

m
ix

es
B

in
ar

y
R

at
io

of
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

ar
en

t
p

la
y
li

st
s

w
it

h
ti

tl
e

co
n
ta

in
in

n
g

an
y

of
th

e
w

or
d

s:
to

p
,

b
es

t,
p

op
u

la
r,

h
ot

,
or

h
it

s
to

to
ta

l
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

F
lo

at
R

at
io

of
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

ar
en

t
p

la
y
li

st
s

w
it

h
ti

tl
e

co
n
ta

in
in

g
an

y
of

th
e

w
or

d
s:

la
te

s,
n

ew
,

or
re

ce
n
t

to
to

ta
l

n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

F
lo

at
R

at
io

of
n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

ar
en

t
p

la
y
li

st
s

w
it

h
ti

tl
e

co
n
ta

in
in

g
an

y
of

th
e

w
or

d
s:

re
m

ix
,

re
m

ix
ed

,
or

re
m

ix
es

to
to

ta
l

n
u

m
b

er
of

b
ac

k
gr

ou
n

d
p

la
y
li

st
s

F
lo

at

In
p
u
t

p
la

y
li
st

a
n
d

ca
n
d
id

a
te

tr
a
ck

d
e
p

e
n
d
e
n
t

fe
a
tu

re
s

R
an

k
in

to
p

10
00

ca
n

d
id

at
es

fr
om

Q
E

,
se

t
to

10
01

if
n

ot
p

re
se

n
t

In
te

ge
r

R
an

k
in

to
p

50
0

ca
n

d
id

at
es

fr
om

M
E

T
A

1,
se

t
to

50
1

if
n

ot
p

re
se

n
t

In
te

ge
r

R
an

k
in

to
p

50
0

ca
n

d
id

at
es

fr
om

M
E

T
A

2,
se

t
to

50
1

if
n

ot
p

re
se

n
t

In
te

ge
r

R
an

k
in

to
p

25
0

ca
n

d
id

at
es

fr
om

E
M

B
1,

se
t

to
25

1
if

n
ot

p
re

se
n
t

In
te

ge
r

R
an

k
in

to
p

25
0

ca
n

d
id

at
es

fr
om

E
M

B
2,

se
t

to
25

1
if

n
ot

p
re

se
n
t

In
te

ge
r

R
an

k
in

to
p

25
0

ca
n

d
id

at
es

fr
om

E
M

B
3,

se
t

to
25

1
if

n
ot

p
re

se
n
t

In
te

ge
r

R
an

k
in

to
p

25
0

ca
n

d
id

at
es

fr
om

E
M

B
4,

se
t

to
25

1
if

n
ot

p
re

se
n
t

In
te

ge
r

R
at

io
of

n
u

m
b

er
of

tr
ac

k
s

in
p

la
y
li

st
fr

om
sa

m
e

ar
ti

st
to

n
u

m
b

er
of

tr
ac

k
s

in
p

la
y
li

st
F

lo
at

R
at

io
of

n
u

m
b

er
of

tr
ac

k
s

in
p

la
y
li

st
fr

om
sa

m
e

al
b

u
m

to
n
u

m
b

er
of

tr
ac

k
s

in
p

la
y
li

st
F

lo
at

86

6.3.1 Candidate generation

Playlist completion as query expansion (QE) In PRF123;124, given a query q of m

terms {t1, t2, . . . , tm}, first a set of k documents D = {d1, d2, . . . , dk} are retrieved and based

on these retrieved documents D the query is updated to q′. The translation from q to q′

typically involves addition of new terms from D to the original query q. A new round of

retrieval is performed using q′ and the newly retrieved documents presented to the user.

Let us consider individual tracks as terms and playlists as text—like a document or a

query—containing one or more terms. Let us also assume that we have an incomplete playlist

φseed which is derived from an original playlist Φ. Let C be the collection of all playlists in

the MPD and let C ′ = C ∪ {Φ} be an imaginary collection created by adding Φ to C. Now,

say, we want to retrieve Φ from C ′ but we are only provided φseed as a query. We know that

we can obtain a smoother estimate of the unigram distribution of terms (or tracks) in Φ—

and hence a better retrieval performance on this retrieval task—by first expanding φseed to

φexp = φseed∪φnew, where φnew is the set of additional “query terms” identified by performing

PRF over the collection C. While we do not, in fact, have C ′ and nor are we interested in

retrieving Φ from this imaginary collection, it is interesting to note that PRF over C starting

from φseed can help us identify a set of terms (or tracks) that are potentially from Φ but

missing in φseed. Estimating φnew accurately is similar to our playlist completion task. We

note that a similar approach has been previously proposed for collaborative filtering127;128.

Motivated by this, we use Indri to index a collection of all the the playlists in the MPD,

where each playlist is a sequence of track identifiers. Given an incomplete playlist φseed,

we retrieve a set of k playlists c from the collection and identify good expansion terms (or

tracks) using RM1129.

p(tr|θΦ) =
∑
φ∈c

p(tr|θφ)
∏

t̄r∈φseed

p(t̄r|θφ) (6.2)

p(tr|θφ) =
|φ ∩ {tr}|
|φ|

, without smoothing (6.3)

87

The top candidate tracks ranked by p(tr|θΦ) are considered for recommendation. In

the rest of this chapter, we refer to this candidate generation strategy as QE for Query

Expansion.

Ad hoc track retrieval using meta descriptions (META) In ad hoc retrieval, a

document representation may depend on its own content such as: title; body text; external

sources of descriptions; anchor text; clicked queries130;131. Similarly, we can describe a track

by its own title, the primary artist name, and the parent album name—or by the titles

of all the playlists in which it appears. All of this meta information about the track may

be useful for our recommendation task. Given an input playlist title TΦ, we can query

a collection of pseudo-documents—where each document contains meta descriptions for a

track—using a standard retrieval system, such as Indri. The retrieved ranked list of tracks

can be considered as candidates for the playlist completion task. Based on this intuition, we

generate two collections—one that describes tracks by their parent playlist titles and another

that describes a track by its own title, primary artist name, and album name. The separate

sets of candidates retrieved based on each of these two collections are referred to as META1

and META2, respectively, in the rest of this chapter. In our specific implementation, we

use BM2593 as the retrieval model and each document is generated by concatenation of the

constituent text descriptions, similar to Robertson et al. 131 .

Nearest neighbor search using track embeddings (EMB) Instead of comparing

the query and the document text in the term space, some ad hoc retrieval models132–134, we

compute the query and the document representations as a centroid of their term embeddings

and estimate their similarity in the latent space. A similar strategy may be useful for the

playlist completion task. We experiment with a number of unsupervised approaches to learn

the track embeddings that do not require any additional manual annotations.

First, we consider tracks as terms and playlists as documents containing a sequence of

tracks. We employ the popular CBOW model from Word2Vec 80 to learn track embeddings

on this pseduo-document collection C. A fixed size window is moved over each playlist and

88

the model is trained by trying to predict the track in the middle of the window correctly given

all the other tracks within the same window. This translates to minimizing the following

loss,

LCBOW =
∑
φ∈C

|φ|∑
i

−log
(
p(~vi|

∑
i−k≤j≤i+k,j 6=i

~vj)
)

(6.4)

where, ~vi is the embedding of the ith track in the playlist φ. Similar to Mikolov et al. 79 , our

track embeddings are trained with negative sampling instead of the full softmax over the

complete track collection.

A playlist representation can be derived from both its member tracks {tr1, tr2, . . . , trm, }

as well as its title Tφ. An analogy can be drawn to two collections in two different languages

with document aligned across the collections. Vulić and Moens 135 consider a similar scenario

in the context of cross-lingual retrieval and propose to learn a shared embedding space for

terms from both languages by merging the two versions of each document from respective

languages into a single pseudo-document. Motivated by their approach, we generate a col-

lection of playlists where each pseudo-document is constructed by interspersing the member

tracks and the playlist title terms. We train a CBOW model on this collection as our second

approach to learn track embeddings.

The MPD contains four different types of entities—playlists, tracks, artists, and albums.

Alternatively, we can view this dataset as a heterogeneous information network (HIN) . A

HIN is defined as a directed graph G = {V,E} with an entity mapping function ξ : V→ A

and a edge type mapping function ψ : E → R where each node v ∈ V belongs to one par-

ticular entity type ξ(v) ∈ A and each edge e ∈ E belongs to a relationship type ψ(e) ∈ R.

The edge weights associated between vertices with the relationship context ψ(c) ∈ R is cap-

tured as a preference matrix Wc. Finally, a metapath defines a composite relationship by

an ordered sequence of edge types specified in the HIN schema SG = (A,R). A number of

previous studies have explored methods to learn node embeddings in homogeneous81–83 and

heterogeneous136;137 graphs. In particular, Dong et al. 136 propose metapath-based random

89

walks in heterogeneous networks to generate neighborhood representations that capture se-

mantic relationships between different types of nodes in the graph followed by training a

Word2Vec model on this neighborhood data to learn node embeddings. We adopt a sim-

ilar approach based on two different meta-path definitions: artist→track→playlist→artist

(ATPA) and track→playlist→track (TPT) . In summary, we learn track embeddings based

on four different approaches:

1. EMB1: CBOW over playlists as documents and tracks as terms

2. EMB2: CBOW over interspersed member tracks and title terms for a playlist

3. EMB3: CBOW over the ATPA metapath

4. EMB4: CBOW over the TPT metapath

After training, we represent an input playlist φseed as the average of its member track

embeddings ~vseed. New recommendation candidates are identified by finding tracks that have

high cosine similarity with ~vseed. The embedding size is fixed to 200 dimensions for all four

approaches and the window size for Word2Vec at 20 for EMB1 and EMB2 and at 5 for

EMB3 and EMB4.

6.3.2 Learning to Rank

We take the union of all the candidates generated by each of the approaches described in

Section 6.3.1. More precisely, we take the top 1000 candidates from QE, top 500 candidates

each from META1 and META2, and top 250 candidates each from EMB1, EMB2, EMB3,

and EMB4. We re-rank these candidates using a learning to rank (LTR)138 model. We

choose LambdaMART125 with 100 trees and 50 leaves per tree as our model. We use the

publicly available implementation in RankLib7 for our experiments. We train the model

with a learning rate of 0.1 and optimize for NDCG@10 for our main track submission and

for NDCG@500 for our submission to the creative track. The full list of features used by the

LTR model is specified in Table 6.1.

7https://sourceforge.net/p/lemur/wiki/RankLib/

90

https://sourceforge.net/p/lemur/wiki/RankLib/

Table 6.2: Offline evaluation results for individual candidate sources and the combined
LTR model output. For the combined model, we only measured the metrics at rank 500.
The combined model achieves the best performance while QE emerges as the best candidate
source. Note that for the clicks metric a lower value indicates a better performance.

Recall RPrec NDCG Clicks
Model @10 @250 @500 @1000 @10 @250 @500 @1000 @10 @250 @500 @1000 @500

QE 0.072 0.392 0.497 0.596 0.063 0.129 0.129 0.129 0.204 0.264 0.303 0.337 05.129
META1 0.033 0.232 0.309 0.393 0.032 0.100 0.100 0.100 0.160 0.181 0.217 0.252 08.839
META2 0.001 0.012 0.016 0.018 0.001 0.003 0.003 0.003 0.003 0.007 0.009 0.010 47.857
EMB1 0.025 0.129 0.174 0.234 0.022 0.038 0.038 0.038 0.065 0.084 0.099 0.118 21.740
EMB2 0.031 0.156 0.200 0.250 0.028 0.049 0.049 0.049 0.087 0.104 0.119 0.135 17.531
EMB3 0.042 0.174 0.214 0.261 0.038 0.065 0.065 0.065 0.116 0.126 0.140 0.155 21.112
EMB4 0.048 0.219 0.268 0.320 0.043 0.078 0.078 0.078 0.138 0.155 0.173 0.190 17.174
All candidate sources + LTR - - 0.513 - - - 0.134 - - - 0.313 - 04.380

Table 6.3: Recall advantage of embeddings over QE. Recall advantage indicates the addi-
tional percentage of tracks retrieved by Embedding approaches over QE

k Emb1 Emb2 Emb3 Emb4

10 0.05895757051 0.05864550538 0.05905754329 0.05741188187
25 0.06884732689 0.07195282216 0.064488787 0.07116784649
50 0.07002885564 0.07574552345 0.06740902447 0.0741944282
100 0.06842808039 0.07955881428 0.07140596821 0.07707550985
250 0.06737840437 0.08299675109 0.07712303414 0.08266640182
500 0.06444418757 0.0772983969 0.07842230649 0.08216979349
1000 0.05895158878 0.07073236345 0.078430483 0.08179223353

91

During the LTR model training, we use 75% of the MPD for candidate generation and

feature computation. From the remaining portion we use 50K playlists to train the LTR

model and 5K playlists for offline evaluation. For each playlist in both the train and the

evaluation, we hold out some of the member tracks—and optionally the playlist title—to

generate a dataset with similar distributions as the challenge set. After finalizing the LTR

model, we regenerate the candidates and recompute the features using the full MPD for the

final challenge submission.

An open source implementation of our framework is available at: https://github.com/

skallumadi/BachPropagate.

6.4 Results

Table 6.3 shows the offline evaluation results for the individual candidate generation strate-

gies and the final combined output of the LTR model. Among the different candidate

sources, QE demonstrates the strongest performance across all four metrics and all rank

positions. While META1 shows reasonable performance, META2 achieves modest results

most likely because the challenge set is designed such that each playlist containts a diverse

set of artists and albums. So matching the input playlist title with the candidate track’s

title or its album/artist name does not add enough value. EMB4 fares the best among all

the track embedding-based approaches. The LTR model that re-ranks a combined set of

candidates from all the different sources performs best and shows significant improvement

over the strongest individual source-QE.

The final standing on the RecSys 2018 challenge for the main and the creative tracks

are shown in Table 6.4. Our submission based on the framework described in this chapter

features among the top ten teams out of 112 participants on the main track and among the

top five teams out of 31 teams on the creative track. Our submission also ranked among the

top five teams based on the clicks metric alone on both tracks. We achieved this competitive

performance based on simple applications of standard IR models. Our approach may be

improved even further by incorporating more advanced retrieval models, including those

92

https://github.com/skallumadi/BachPropagate
https://github.com/skallumadi/BachPropagate

based on recent neural and other machine learning-based approaches95.

6.5 Conclusion

In this chapter, we have argued that ad hoc retrieval models can be useful for recommen-

dation tasks. However, so far we have based our argument solely on retrieval performance.

Another important consideration in this debate is the runtime efficiency. Using inverted

index and other specialized data structures, typical web scale IR systems can retrieve the

relevant results under a second from collections containing more than billions of items139.

The Recsys 2018 challenge does not consider runtime efficiency. It is likely that our argu-

ment for applying ad hoc retrieval models to recommendation tasks may be strengthened if

we consider model response times.

Finally, because our main goal in this work was to achieve a competitive performance

at this year’s RecSys challenge, the current study is focused primarily on empirical results.

However, a theoretical comparison of ad hoc retrieval models and recommender systems may

reveal more insights and opportunities in the intersection of these two research communities.

We conclude by highlighting this as an important direction for future work in this area.

However, at the end of the competition the final ranking was computed based on the full

set. For more details, we refer the interested readers to the official rules as listed on the

challenge website: https://recsys-challenge.spotify.com/rules.

93

https://recsys-challenge.spotify.com/rules

Table 6.4: The final RecSys 2018 spotify challenge leaderboards. Our submissions are
highlighted in bold. Only the top 10 teams from the leaderboards are shown. The total number
of participating teams was 112 and 31 for the main and the creative tracks, respectively. For
the clicks metric a lower value indicates a better performance.

[a]

RPrec NDCG Clicks
Team name Value Rank Value Rank Value Rank Borda

1 vl6 0.224 1 0.395 1 1.784 2 329
2 hello world 0.223 2 0.393 2 1.895 6 323
3 Avito 0.215 6 0.385 4 1.782 1 322
4 Creamy Fireflies 0.220 3 0.386 3 1.934 7 320
4 MIPT MSU 0.217 4 0.382 5 1.875 4 320
6 HAIR 0.216 5 0.380 6 2.182 13 309
7 KAENEN 0.209 11 0.375 8 2.054 10 304
7 BachPropagate 0.209 12 0.374 12 1.883 5 304
9 Definitive Turtles 0.209 13 0.375 7 2.078 11 302
10 IN3PD 0.208 14 0.371 14 1.952 8 297

Main track [b]

RPrec NDCG Clicks
Team name Value Rank Value Rank Value Rank Borda

1 vl6 0.223 1 0.394 1 1.785 1 90
2 Creamy Fireflies 0.220 2 0.385 2 1.925 4 85
3 KAENEN 0.209 3 0.375 3 2.048 6 81
4 cocoplaya 0.202 7 0.366 6 1.838 2 78
5 BachPropagate 0.202 6 0.366 5 2.003 5 77
6 Trailmix 0.206 4 0.370 4 2.259 9 76
7 teamrozik 0.205 5 0.361 7 2.164 8 73
8 Freshwater Sea 0.195 9 0.350 9 2.130 7 68
9 Team Radboud 0.198 8 0.356 8 2.293 11 66
10 spotif.ai 0.192 10 0.339 11 2.267 10 62

Creative track

94

Chapter 7

Conclusions and Future work

In this chapter, we summarize the various research contributions and the future work asso-

ciated with the dissertation.

7.1 Summary and Conclusions

In this work we propose metapath-based approaches for representation learning in HIN,

and show how these learnt representations can be used for providing recommendations in

a heterogeneous information network. The metapath-based path-constrained random walk

framework, which we use to capture the interaction patterns between entities in the HIN, gen-

erates distributed representations of these entities. We show that using ratings as strength

of association between the entities and by using non-linear associations we can perform rec-

ommendations in a HIN with weighted edges. We also highlight the utility of using the

distributional representations for exploratory search, information retrieval, and recommen-

dations. We propose two query-oriented search mechanisms that help the user become an

active participant instead of a passive recipient of recommendation algorithms. Diversity of

results generated by machine learning algorithms has recently become a topic of importance

because of the prevalence of filter bubbles7. By learning semantic relatedness of entities in

various contexts, we show that the diversity of recommendation lists can be improved. These

95

learnt representations can further be used in downstream tasks such as improving diversity of

the ranked lists, playlist recommendation and playlist continuation in list oriented domains

such as Spotify. In the following sections we summarise findings, review research objectives

and claims drawn from the results.

7.1.1 Representation Learning in HIN using Constrained Random

Walks

We can encode the domain knowledge as a set of constrained random walks, thus capturing

the various interaction patterns present within the network. The assumption here is that

these interaction patterns, capture a semantic context within which a user expresses pref-

erence over an item. Using metapaths as blue prints for these interaction patterns, we can

generate random walks. We show how random walks can be performed over weighted and

unweighted networks; and how non-linearities can be injected into weighted random walks

to make them more or less biased over the ratings. We apply the metapath approach over

IMDB network and citation network domains. We show the effectiveness of weighted and

unweighted metawalks over these diverse set of domains. Metawalk approaches perform bet-

ter than approaches such as DeepWalk81, LINE83 and Node2vec82 as they do not take the

type information into account. Further more, we show how metawalk approaches compare

to other representation learning approaches with varying degrees of sparsity. Type-aware

metawalk approaches have a clear advantage over other approaches in the presence of high

sparsity.

7.1.2 New Modalities for Interaction for Interactive Search and

Recommendations

We show the utility of using the distributed representations for interactive search and rec-

ommendations. The semantic embeddings generated from heterogeneous knowledge sources

combined with user preferences can be used to refine a user’s information needs. This

96

representational modeling of users, entities and their associated properties opens up new

modalities of interactions for the users to gravitate towards their requirements. We propose

the use of semantic embeddings for two kinds of interactive recommendation modalities: 1)

exemplar-based recommendations 2) “less like this/more like this” style recommendations.

In our opinion providing these modalities will boost the expressive power of exploratory

search and recommender systems. With exemplar-based recommendations, the user pro-

vides their information need in the form of a few examples; the system then captures the

context within which these examples are related and then identifies more items that fit this

context. The user can iteratively interact with the system to edit the recommendations

to fine tune the results. Thus, a co-operative and interactive feedback mechanism can be

established to explore the item space.

7.1.3 Using Representation Learning to Improve Semantic Diver-

sity of Ranked Lists

Top-N Recommender Systems usually suffer from intra-list diversity as they are tailored for

relevance and predicted rating accuracy. This problem is magnified in the case of cold-start

setting - resulting in users being restricted to popular set of items and can result in a “rich

getting richer eco-system”. As a result, in recent years, more attention has been paid to

improving the diversity of recommender system results. List creation has become a popular

way for users to express preferences over items on online platforms such as imdb.com and

goodreads.com. These user-curated lists tend to contain a coherent semantic representation

of the domain the list of items belong to. List curation can be seen as a way to capture

fine grained topic-specific item-lists by users. Understanding and modeling user preferences

expressed in these curated lists can help with diverse set of applications such as recommen-

dations, user modeling, session understanding etc. As part of this dissertation, I propose

an approach to improve the diversity of results generated by Top-N recommender systems,

by using Determinantal Point Processes (DPPs) over user curated lists in the movie domain

and incorporating them to re-rank the top-N recommender systems. We further show the

97

utility of distributed representations learnt over user curated lists to improve the diversity

of results, the two domain-driven metapaths capture different interaction patterns over the

lists and thus can be used for two different contexts of diversity. In this work, we use the

user curated lists in the imdb.com domain. We evaluate our approach over the MovieLens

1-Million dataset and compare the results with other baseline approaches. Our results show

that incorporating semantic similarity expressed in user lists as a diversity proxy, results in

a more diverse set of recommendations.

7.1.4 Using Semantic Embeddings for Recommendation Tasks,

with Application to Playlist Completion and Continuation

One of the goals for representation learning, as stated in Chapter 3, is to use the embeddings

learnt over information networks as features for machine learning algorithms. We use the

distributed representations of tracks present in playlists to improve the metrics for the music

playlist continuation task. We learn four diverse set of semantic embeddings over the MPD

dataset. Using a metapath approach over HIN, as defined in Chapter 4, we learn track

embeddings based on four different semantics:

1. EMB1: CBOW over playlists as documents and tracks as terms

2. EMB2: CBOW over interspersed member tracks and title terms for a playlist

3. EMB3: CBOW over the ATPA metapath

4. EMB4: CBOW over the TPT metapath

Each of these embeddings capture different interaction patterns over the music playlist net-

work. We then use a LTR model over the various feature spaces to identify candidate tracks

for partial playlists. While META1 shows reasonable performance, META2 achieves modest

results most likely because the challenge set is designed such that each playlist contains a

diverse set of artists and albums. EMB4 fares the best among all the track embedding-based

approaches. The LTR model that re-ranks a combined set of candidates from all the different

98

sources performs best and shows significant improvement over the strongest individual source

QE. Thus demonstrating the utility of using metapath track representations for downstream

recommendation tasks.

In conclusion, we have shown how item and user representations can be learnt over di-

verse domains such as movies, citation networks and music. We have also seen how these

representations can be used to capture the semantic structure of networks. These represen-

tations can be used as features to improve the performance of machine learning algorithms

for tasks such as user modeling, personalization and recommendations.

7.2 Future work

7.2.1 Deep Semantic Models that Utilize Semantic Embeddings

for Information Retrieval and Discovery

In information retrieval and web search, Deep Structured Semantic Models (DSSM) have

been shown to be quite effective in meeting the user’s information needs140. Inspired by

these models we propose using the entity embeddings learnt from HIN as features for the

DSSM style model shown in Figure 7.1. The intuition behind using the embeddings generated

over HIN is to supply semantic information in addition to co-occurrence information to the

deep learning model and then use fully connected layers to capture the interactions between

the co-occurrence patterns and the semantic patterns.

7.2.2 High Accuracy Recall to Improve Performance of Search

Systems

Most modern search engines perform search in two stages. In the first stage, a large subset

of documents that match the input query are obtained by a simple scoring function such as

tf-idf or BM2593. In the second phase, the top-k (by score) of these matching documents

99

Figure 7.1: DSSM style model for playlist continuation task

are “re-ranked” using a complex ranking function that uses a richer set of features. The

candidate item generation phase is similar to the first stage of a search engine, where give a

ordered/unordered set of entities, we retrieve related entities that could be part of the list.

Then the candidate items are ranked by the “context fit” with respect to the items in the

list as well as the metadata associated with the list in order to obtain a high quality set of

candidates. For ambiguous queries and low information queries, the semantic information

associated with the user’s information need can be used to identify relevant documents and

items, thus improving the efficiency of the candidate generation phase. Performing candidate

generation and retrieving a high quality candidate list in an efficient manner is a significant

aspect of list completion recommender systems as it affects user experience and semantic

embeddings can be used to improve the quality of first phase of retrieval systems.

100

7.2.3 Cross-Domain Recommendations using Domain-Aware Meta-

paths

One way of reducing the effects of sparsity in recommender systems is to perform cross-

domain CF. In CDCF we can have multiple source domains and a target domain and the

objective is to transfer knowledge in the form of user preferences from the source domains

to the target domain. One central assumption to CDCF is that there should be an inherent

relationship between the domains between which learning is performed. We can consider

news, browsing activity, search and ads as closely-related domains, where the type of news we

consume, the online articles we browse, the queries we search for, and the ads we click on can

be considered to be inherently related. Thus knowledge from one or more of these domains

could be used as side information to drive recommendations within another domain. By

performing metawalks over connected domains — where the bridges can be common users,

semantically similar tags, similar items etc — we can transfer knowledge across related

domains. This can improve the performance of recommender systems when there is not

enough preference information available regarding the items.

7.2.4 Retraining and Incremental Training for New Data, Users,

and Items

As more user-item interaction data comes in, the distributed representations associated with

items, users, and other entities need to be updated. Over time, there will also be a drift

in user preferences. For example a user who starts off preferring “Romantic” books might

slowly drift to other “Genres”. A good recommender system, should take this drift in user

interests over time into consideration while recommending items. Also new users, and new

items are constantly added to the system. These users and items will have a smaller amount

of preference, and behavior data associated with them. Taking all these variabilities into

account, the embedding models and entity models would either need to be retrained, or

incrementally trained. For example, in a news recommender system, user preferences are

101

heavily biased towards their recent activity. Thus, in such a scenario, incremental training

might not be a good strategy. This raises the following research problems: 1) How often

should a system be retrained? 2) What aspects/which embeddings can be incrementally

trained without loss of accuracy? 3) Can the embedding components be split in such a

way that, some of the item embeddings can be incrementally trained and other embeddings

need to be re-trained? And, can a joint model utilize both these incremental, and re-trained

embeddings to provide recommendations?

102

Bibliography

[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural

probabilistic language model. J. Mach. Learn. Res., 3:1137–1155, March 2003. ISSN

1532-4435. URL http://dl.acm.org/citation.cfm?id=944919.944966.

[2] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for efficient

ranked retrieval. In Proc. SIGIR, pages 105–114. ACM, 2011.

[3] Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM, 40(3):56–58,

March 1997. ISSN 0001-0782. doi: 10.1145/245108.245121. URL http://doi.acm.

org/10.1145/245108.245121.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. CoRR, abs/1301.3781, 2013. URL http:

//arxiv.org/abs/1301.3781.

[5] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender

Systems Handbook. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010. ISBN

0387858199, 9780387858197.

[6] Asela Gunawardana and Christopher Meek. A unified approach to building hybrid

recommender systems. In Proceedings of the Third ACM Conference on Recommender

Systems, RecSys ’09, pages 117–124, New York, NY, USA, 2009. ACM. ISBN 978-

1-60558-435-5. doi: 10.1145/1639714.1639735. URL http://doi.acm.org/10.1145/

1639714.1639735.

[7] Tien T. Nguyen, Pik-Mai Hui, F. Maxwell Harper, Loren Terveen, and Joseph A.

Konstan. Exploring the filter bubble: The effect of using recommender systems on

content diversity. In Proceedings of the 23rd International Conference on World Wide

103

http://dl.acm.org/citation.cfm?id=944919.944966
http://doi.acm.org/10.1145/245108.245121
http://doi.acm.org/10.1145/245108.245121
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://doi.acm.org/10.1145/1639714.1639735
http://doi.acm.org/10.1145/1639714.1639735

Web, WWW ’14, pages 677–686, New York, NY, USA, 2014. ACM. ISBN 978-1-

4503-2744-2. doi: 10.1145/2566486.2568012. URL http://doi.acm.org/10.1145/

2566486.2568012.

[8] Harald Steck, Roelof van Zwol, and Chris Johnson. Interactive recommender systems:

Tutorial. In Proceedings of the 9th ACM Conference on Recommender Systems, RecSys

’15, pages 359–360, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3692-5. doi:

10.1145/2792838.2792840. URL http://doi.acm.org/10.1145/2792838.2792840.

[9] Chen He, Denis Parra, and Katrien Verbert. Interactive recommender systems: a

survey of the state of the art and future research challenges and opportunities. Expert

Systems with Applications, 2016. doi: 10.1016/j.eswa.2016.02.013. URL http://web.

ing.puc.cl/~dparra/pdfs/pre-print_ESWA_He_Parra_Verbert_2016.pdf.

[10] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based col-

laborative filtering recommendation algorithms. In Proceedings of the 10th inter-

national conference on World Wide Web, WWW ’01, pages 285–295, New York,

NY, USA, 2001. ACM. ISBN 1-58113-348-0. doi: 10.1145/371920.372071. URL

http://doi.acm.org/10.1145/371920.372071.

[11] RA Likert. A technique for measurement of attitudes. 22:1–, 01 1932.

[12] Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. Addressing cold-

start problem in recommendation systems. In Proceedings of the 2nd international

conference on Ubiquitous information management and communication, ICUIMC ’08,

pages 208–211, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-993-7. doi:

10.1145/1352793.1352837. URL http://doi.acm.org/10.1145/1352793.1352837.

[13] Manos Papagelis, Dimitris Plexousakis, and Themistoklis Kutsuras. Alleviating the

sparsity problem of collaborative filtering using trust inferences. In iTrust, pages 224–

239, 2005.

104

http://doi.acm.org/10.1145/2566486.2568012
http://doi.acm.org/10.1145/2566486.2568012
http://doi.acm.org/10.1145/2792838.2792840
http://web.ing.puc.cl/~dparra/pdfs/pre-print_ESWA_He_Parra_Verbert_2016.pdf
http://web.ing.puc.cl/~dparra/pdfs/pre-print_ESWA_He_Parra_Verbert_2016.pdf
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/1352793.1352837

[14] Raymond J. Mooney and Loriene Roy. Content-based book recommending using learn-

ing for text categorization. In Proceedings of the Fifth ACM Conference on Digital Li-

braries, DL ’00, pages 195–204, New York, NY, USA, 2000. ACM. ISBN 1-58113-231-X.

doi: 10.1145/336597.336662. URL http://doi.acm.org/10.1145/336597.336662.

[15] Prem Melville, Raymod J. Mooney, and Ramadass Nagarajan. Content-boosted col-

laborative filtering for improved recommendations. In Eighteenth national conference

on Artificial intelligence, pages 187–192, Menlo Park, CA, USA, 2002. American As-

sociation for Artificial Intelligence. ISBN 0-262-51129-0. URL http://dl.acm.org/

citation.cfm?id=777092.777124.

[16] Justin Basilico Basilico and Thomas Hofmann. Unifying collaborative and content-

based filtering. In In ICML, pages 65–72. ACM Press, 2004.

[17] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.

Grouplens: an open architecture for collaborative filtering of netnews. ACM, 1994.

URL http://doi.acm.org/10.1145/192844.192905.

[18] Thomas Hofmann and Jan Puzicha. Latent class models for collaborative filtering. In

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,

IJCAI ’99, pages 688–693, San Francisco, CA, USA, 1999. Morgan Kaufmann Publish-

ers Inc. ISBN 1-55860-613-0. URL http://dl.acm.org/citation.cfm?id=646307.

687583.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for

recommender systems, 2009.

[20] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’08, pages 426–434, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-193-4. doi: 10.1145/1401890.1401944. URL

http://doi.acm.org/10.1145/1401890.1401944.

105

http://doi.acm.org/10.1145/336597.336662
http://dl.acm.org/citation.cfm?id=777092.777124
http://dl.acm.org/citation.cfm?id=777092.777124
http://doi.acm.org/10.1145/192844.192905
http://dl.acm.org/citation.cfm?id=646307.687583
http://dl.acm.org/citation.cfm?id=646307.687583
http://doi.acm.org/10.1145/1401890.1401944

[21] Jon Herlocker, Joseph A. Konstan, and John Riedl. An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms. Inf. Retr., 5(4):287–

310, October 2002. ISSN 1386-4564. doi: 10.1023/A:1020443909834. URL http:

//dx.doi.org/10.1023/A:1020443909834.

[22] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-

item collaborative filtering. IEEE Internet Computing, 7(1):76–80, January 2003. ISSN

1089-7801. doi: 10.1109/MIC.2003.1167344. URL http://dx.doi.org/10.1109/MIC.

2003.1167344.

[23] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.

Gordon, and John Riedl. Grouplens: Applying collaborative filtering to usenet news.

Commun. ACM, 40(3):77–87, March 1997. ISSN 0001-0782. doi: 10.1145/245108.

245126. URL http://doi.acm.org/10.1145/245108.245126.

[24] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar Kumar,

Deepak Ravichandran, and Mohamed Aly. Video suggestion and discovery for youtube:

Taking random walks through the view graph. In Proceedings of the 17th International

Conference on World Wide Web, WWW ’08, pages 895–904, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-085-2. doi: 10.1145/1367497.1367618. URL http:

//doi.acm.org/10.1145/1367497.1367618.

[25] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with

label propagation. 2002.

[26] M. W. Berry, S.T. Dumais, G.W. O’Brien, Michael W. Berry, Susan T. Dumais, and

Gavin. Using linear algebra for intelligent information retrieval. SIAM Review, 1995.

[27] Daniel Billsus and Michael J. Pazzani. Learning collaborative information filters. In

Proceedings of the Fifteenth International Conference on Machine Learning, ICML ’98,

pages 46–54, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN

1-55860-556-8. URL http://dl.acm.org/citation.cfm?id=645527.657311.

106

http://dx.doi.org/10.1023/A:1020443909834
http://dx.doi.org/10.1023/A:1020443909834
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1109/MIC.2003.1167344
http://doi.acm.org/10.1145/245108.245126
http://doi.acm.org/10.1145/1367497.1367618
http://doi.acm.org/10.1145/1367497.1367618
http://dl.acm.org/citation.cfm?id=645527.657311

[28] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A

constant time collaborative filtering algorithm. Inf. Retr., 4(2):133–151, July 2001.

ISSN 1386-4564. doi: 10.1023/A:1011419012209. URL http://dx.doi.org/10.1023/

A:1011419012209.

[29] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans.

Inf. Syst., 22(1):89–115, January 2004. ISSN 1046-8188. doi: 10.1145/963770.963774.

URL http://doi.acm.org/10.1145/963770.963774.

[30] Hyunsoo Kim and Haesun Park. Nonnegative matrix factorization based on alternating

nonnegativity constrained least squares and active set method. SIAM journal on matrix

analysis and applications, 30(2):713–730, 2008.

[31] Michael J. Pazzani and Daniel Billsus. The adaptive web. chapter Content-based Rec-

ommendation Systems, pages 325–341. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN

978-3-540-72078-2. URL http://dl.acm.org/citation.cfm?id=1768197.1768209.

[32] Michal Kompan and Mária Bieliková. Content-based news recommendation. In

Francesco Buccafurri and Giovanni Semeraro, editors, E-Commerce and Web Tech-

nologies, pages 61–72, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN

978-3-642-15208-5.

[33] Owen Phelan, Kevin McCarthy, Mike Bennett, and Barry Smyth. Terms of a feather:

Content-based news recommendation and discovery using twitter. In ECIR, 2011.

[34] Charu C Aggarwal. Content-based recommender systems. In Recommender systems,

pages 139–166. Springer, 2016.

[35] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based

music recommendation. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

26, pages 2643–2651. Curran Associates, Inc., 2013. URL http://papers.nips.cc/

paper/5004-deep-content-based-music-recommendation.pdf.

107

http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1023/A:1011419012209
http://doi.acm.org/10.1145/963770.963774
http://dl.acm.org/citation.cfm?id=1768197.1768209
http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf
http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf

[36] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-

ommender systems: A survey of the state-of-the-art and possible extensions. IEEE

Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005. ISSN 1041-4347. doi:

10.1109/TKDE.2005.99. URL https://doi.org/10.1109/TKDE.2005.99.

[37] Charu C Aggarwal. Ensemble-based and hybrid recommender systems. In Recom-

mender Systems, pages 199–224. Springer, 2016.

[38] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Cross-domain mediation in col-

laborative filtering. In Proceedings of the 11th international conference on User Mod-

eling, UM ’07, pages 355–359, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-

3-540-73077-4. doi: 10.1007/978-3-540-73078-1 44. URL http://dx.doi.org/10.

1007/978-3-540-73078-1_44.

[39] Bin Li. Cross-domain collaborative filtering: A brief survey. In Proceedings of the 2011

IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI ’11,

pages 1085–1086, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-

0-7695-4596-7. doi: 10.1109/ICTAI.2011.184. URL http://dx.doi.org/10.1109/

ICTAI.2011.184.

[40] Pinata Winoto and Tiffany Tang. If you like the devil wears prada the book, will you

also enjoy the devil wears prada the movie? a study of cross-domain recommendations.

New Generation Computing, 26:209–225, 2008. ISSN 0288-3635. URL http://dx.doi.

org/10.1007/s00354-008-0041-0. 10.1007/s00354-008-0041-0.

[41] Bin Li, Qiang Yang, and Xiangyang Xue. Can movies and books collaborate?:

cross-domain collaborative filtering for sparsity reduction. In Proceedings of the

21st international jont conference on Artifical intelligence, IJCAI’09, pages 2052–

2057, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc. URL

http://dl.acm.org/citation.cfm?id=1661445.1661773.

[42] Bin Li, Qiang Yang, and Xiangyang Xue. Transfer learning for collaborative filtering

108

https://doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1007/978-3-540-73078-1_44
http://dx.doi.org/10.1007/978-3-540-73078-1_44
http://dx.doi.org/10.1109/ICTAI.2011.184
http://dx.doi.org/10.1109/ICTAI.2011.184
http://dx.doi.org/10.1007/s00354-008-0041-0
http://dx.doi.org/10.1007/s00354-008-0041-0
http://dl.acm.org/citation.cfm?id=1661445.1661773

via a rating-matrix generative model. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, pages 617–624, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.1553454. URL http:

//doi.acm.org/10.1145/1553374.1553454.

[43] Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. Transfer learning in

collaborative filtering for sparsity reduction. In Maria Fox and David Poole, editors,

AAAI. AAAI Press, 2010.

[44] Zhongqi Lu, ErHeng Zhong, Lili Zhao, Evan Wei Xiang, Weike Pan, and Qiang Yang.

Selective transfer learning for cross domain recommendation. CoRR, abs/1210.7056,

2012.

[45] Weike Pan, Nathan Nan Liu, Evan Wei Xiang, and Qiang Yang. Transfer learning

to predict missing ratings via heterogeneous user feedbacks. In Toby Walsh, editor,

IJCAI, pages 2318–2323. IJCAI/AAAI, 2011. ISBN 978-1-57735-516-8.

[46] Weike Pan, Evan Wei Xiang, and Qiang Yang. Transfer learning in collaborative

filtering with uncertain ratings. In Jörg Hoffmann and Bart Selman, editors, AAAI.

AAAI Press, 2012.

[47] Bin Li, Xingquan Zhu, Ruijiang Li, Chengqi Zhang, Xiangyang Xue, and Xin-

dong Wu. Cross-domain collaborative filtering over time. In Proceedings of the

Twenty-Second international joint conference on Artificial Intelligence - Volume Vol-

ume Three, IJCAI’11, pages 2293–2298. AAAI Press, 2011. ISBN 978-1-57735-515-1.

doi: 10.5591/978-1-57735-516-8/IJCAI11-382. URL http://dx.doi.org/10.5591/

978-1-57735-516-8/IJCAI11-382.

[48] Orly Moreno, Bracha Shapira, Lior Rokach, and Guy Shani. Talmud: transfer learning

for multiple domains. In Proceedings of the 21st ACM international conference on

Information and knowledge management, CIKM ’12, pages 425–434, New York, NY,

109

http://doi.acm.org/10.1145/1553374.1553454
http://doi.acm.org/10.1145/1553374.1553454
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-382
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-382

USA, 2012. ACM. ISBN 978-1-4503-1156-4. doi: 10.1145/2396761.2396817. URL

http://doi.acm.org/10.1145/2396761.2396817.

[49] Yu Zhang, Bin Cao, and Dit-Yan Yeung. Multi-domain collaborative filtering. CoRR,

abs/1203.3535, 2012.

[50] Jian Tang, Jun Yan, Lei Ji, Ming Zhang, Shaodan Guo, Ning Liu, Xianfang Wang,

and Zheng Chen. Collaborative users’ brand preference mining across multiple domains

from implicit feedbacks. In AAAI’11, pages –1–1, 2011.

[51] Yue Shi, Martha Larson, and Alan Hanjalic. Tags as bridges between domains: im-

proving recommendation with tag-induced cross-domain collaborative filtering. In Pro-

ceedings of the 19th international conference on User modeling, adaption, and person-

alization, UMAP’11, pages 305–316, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN

978-3-642-22361-7. URL http://dl.acm.org/citation.cfm?id=2021855.2021882.

[52] Yue Shi, Martha Larson, and Alan Hanjalic. Generalized tag-induced cross-domain

collaborative filtering. CoRR, abs/1302.4888, 2013.

[53] Weiqing Wang, Zhenyu Chen, Jia Liu, Qi Qi, and Zhihong Zhao. User-based collab-

orative filtering on cross domain by tag transfer learning. In Proceedings of the 1st

International Workshop on Cross Domain Knowledge Discovery in Web and Social

Network Mining, CDKD ’12, pages 10–17, New York, NY, USA, 2012. ACM. ISBN

978-1-4503-1555-5. doi: 10.1145/2351333.2351335. URL http://doi.acm.org/10.

1145/2351333.2351335.

[54] Ignacio Fernández-Tob́ıas, Iván Cantador, Marius Kaminskas, and Francesco Ricci.

Cross-domain recommender systems: A survey of the state of the art.

[55] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning

approach for cross domain user modeling in recommendation systems. In Proceedings

of the 24th International Conference on World Wide Web, WWW ’15, pages 278–288,

Republic and Canton of Geneva, Switzerland, 2015. International World Wide Web

110

http://doi.acm.org/10.1145/2396761.2396817
http://dl.acm.org/citation.cfm?id=2021855.2021882
http://doi.acm.org/10.1145/2351333.2351335
http://doi.acm.org/10.1145/2351333.2351335

Conferences Steering Committee. ISBN 978-1-4503-3469-3. doi: 10.1145/2736277.

2741667. URL https://doi.org/10.1145/2736277.2741667.

[56] Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview:

Recent progress and new challenges. Information Fusion, 38:43–54, 2017.

[57] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.

Neural collaborative filtering. In Proceedings of the 26th International Conference

on World Wide Web, WWW ’17, pages 173–182, Republic and Canton of Geneva,

Switzerland, 2017. International World Wide Web Conferences Steering Committee.

ISBN 978-1-4503-4913-0. doi: 10.1145/3038912.3052569. URL https://doi.org/10.

1145/3038912.3052569.

[58] Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Item silk road: Recom-

mending items from information domains to social users. In Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’17, pages 185–194, New York, NY, USA, 2017. ACM. ISBN 978-

1-4503-5022-8. doi: 10.1145/3077136.3080771. URL http://doi.acm.org/10.1145/

3077136.3080771.

[59] Jianxun Lian, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. Cccfnet: A content-

boosted collaborative filtering neural network for cross domain recommender systems.

In Proceedings of the 26th International Conference on World Wide Web Companion,

WWW ’17 Companion, pages 817–818, Republic and Canton of Geneva, Switzer-

land, 2017. International World Wide Web Conferences Steering Committee. ISBN

978-1-4503-4914-7. doi: 10.1145/3041021.3054207. URL https://doi.org/10.1145/

3041021.3054207.

[60] Chris Chatfield. The analysis of time series: an introduction. CRC Press, Florida, US,

6th edition, 2004.

111

https://doi.org/10.1145/2736277.2741667
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
http://doi.acm.org/10.1145/3077136.3080771
http://doi.acm.org/10.1145/3077136.3080771
https://doi.org/10.1145/3041021.3054207
https://doi.org/10.1145/3041021.3054207

[61] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Information

retrieval in practice, volume 283. Addison-Wesley Reading, 2010.

[62] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.

Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22

(1):5–53, January 2004. ISSN 1046-8188. doi: 10.1145/963770.963772. URL http:

//doi.acm.org/10.1145/963770.963772.

[63] Ellen M Voorhees and Donna Harman. Common evaluation measures. In The twelfth

text retrieval conference (TREC 2003), pages 500–255, 2003.

[64] Brian McFee, Thierry Bertin-Mahieux, Daniel P.W. Ellis, and Gert R.G. Lanckriet.

The million song dataset challenge. In Proceedings of the 21st International Conference

on World Wide Web, WWW ’12 Companion, pages 909–916, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2188222. URL http:

//doi.acm.org/10.1145/2187980.2188222.

[65] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-

niques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[66] Nathan N. Liu and Qiang Yang. Eigenrank: A ranking-oriented approach to collabora-

tive filtering. In Proceedings of the 31st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’08, pages 83–90, New

York, NY, USA, 2008. ACM. ISBN 978-1-60558-164-4. doi: 10.1145/1390334.1390351.

URL http://doi.acm.org/10.1145/1390334.1390351.

[67] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference

on Uncertainty in Artificial Intelligence, UAI’98, pages 43–52, San Francisco, CA,

USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-555-X. URL http:

//dl.acm.org/citation.cfm?id=2074094.2074100.

112

http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/2187980.2188222
http://doi.acm.org/10.1145/2187980.2188222
http://doi.acm.org/10.1145/1390334.1390351
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=2074094.2074100

[68] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In Proceedings of the 2008 Eighth IEEE International Confer-

ence on Data Mining, ICDM ’08, pages 263–272, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3502-9. doi: 10.1109/ICDM.2008.22. URL

http://dx.doi.org/10.1109/ICDM.2008.22.

[69] Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty, and coverage: A

survey and empirical analysis of beyond-accuracy objectives in recommender systems.

ACM Trans. Interact. Intell. Syst., 7(1):2:1–2:42, December 2016. ISSN 2160-6455.

doi: 10.1145/2926720. URL http://doi.acm.org/10.1145/2926720.

[70] Daniel Kluver and Joseph A. Konstan. Evaluating recommender behavior for new

users. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys

’14, pages 121–128, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2668-1. doi:

10.1145/2645710.2645742. URL http://doi.acm.org/10.1145/2645710.2645742.

[71] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-

proving recommendation lists through topic diversification. In Proceedings of the 14th

International Conference on World Wide Web, WWW ’05, pages 22–32, New York,

NY, USA, 2005. ACM. ISBN 1-59593-046-9. doi: 10.1145/1060745.1060754. URL

http://doi.acm.org/10.1145/1060745.1060754.

[72] Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.

[73] Warren Weaver. Translation. In William N. Locke and A. Donald Boothe, editors, Ma-

chine Translation of Languages, pages 15–23. MIT Press, Cambridge, MA, 1949/1955.

Reprinted from a memorandum written by Weaver in 1949.

[74] Hinrich Schtze. Word space. In Advances in Neural Information Processing Systems

5, pages 895–902. Morgan Kaufmann, 1993.

[75] Ronan Collobert and Jason Weston. A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the 25th

113

http://dx.doi.org/10.1109/ICDM.2008.22
http://doi.acm.org/10.1145/2926720
http://doi.acm.org/10.1145/2645710.2645742
http://doi.acm.org/10.1145/1060745.1060754

International Conference on Machine Learning, ICML ’08, pages 160–167, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390177. URL

http://doi.acm.org/10.1145/1390156.1390177.

[76] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,

Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543,

2014. URL http://aclweb.org/anthology/D/D14/D14-1162.pdf.

[77] Mihajlo Grbovic. Search ranking and personalization at airbnb. In Proceedings of the

Eleventh ACM Conference on Recommender Systems, RecSys ’17, pages 339–340, New

York, NY, USA, 2017. ACM. ISBN 978-1-4503-4652-8. doi: 10.1145/3109859.3109920.

URL http://doi.acm.org/10.1145/3109859.3109920.

[78] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,

Charles Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A system for recommending

3+ billion items to 200+ million users in real-time. In Proceedings of the 2018 World

Wide Web Conference, WWW ’18, pages 1775–1784, Republic and Canton of Geneva,

Switzerland, 2018. International World Wide Web Conferences Steering Committee.

ISBN 978-1-4503-5639-8. doi: 10.1145/3178876.3186183. URL https://doi.org/10.

1145/3178876.3186183.

[79] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013.

[80] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[81] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

114

http://doi.acm.org/10.1145/1390156.1390177
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://doi.acm.org/10.1145/3109859.3109920
https://doi.org/10.1145/3178876.3186183
https://doi.org/10.1145/3178876.3186183

representations. In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[82] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.

In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 855–864. ACM, 2016.

[83] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:

Large-scale information network embedding. In Proceedings of the 24th International

Conference on World Wide Web, pages 1067–1077. International World Wide Web

Conferences Steering Committee, 2015.

[84] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang,

Xing Xie, and Minyi Guo. Graphgan: Graph representation learning with generative

adversarial nets. CoRR, abs/1711.08267, 2017. URL http://arxiv.org/abs/1711.

08267.

[85] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Proceedings of the 27th International Conference on Neural Information Processing

Systems - Volume 2, NIPS’14, pages 2672–2680, Cambridge, MA, USA, 2014. MIT

Press. URL http://dl.acm.org/citation.cfm?id=2969033.2969125.

[86] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, Decem-

ber 2010. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.

1953039.

[87] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph

representations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intel-

115

http://arxiv.org/abs/1711.08267
http://arxiv.org/abs/1711.08267
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dl.acm.org/citation.cfm?id=1756006.1953039

ligence, AAAI’16, pages 1145–1152. AAAI Press, 2016. URL http://dl.acm.org/

citation.cfm?id=3015812.3015982.

[88] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[89] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.

In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 1225–1234, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939753. URL http:

//doi.acm.org/10.1145/2939672.2939753.

[90] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. Int. J. Approx. Rea-

soning, 50(7):969–978, July 2009. ISSN 0888-613X. doi: 10.1016/j.ijar.2008.11.006.

URL http://dx.doi.org/10.1016/j.ijar.2008.11.006.

[91] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. Natural language processing (almost) from scratch. J. Mach. Learn.

Res., 12:2493–2537, November 2011. ISSN 1532-4435. URL http://dl.acm.org/

citation.cfm?id=1953048.2078186.

[92] Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sarguna Janani Padmanabhan, and

Graham Neubig. When and why are pre-trained word embeddings useful for neural

machine translation? CoRR, abs/1804.06323, 2018. URL http://arxiv.org/abs/

1804.06323.

[93] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework:

Bm25 and beyond. Foundations and Trends R© in Information Retrieval, 3(4):333–389,

2009.

[94] Hamed Zamani and W. Bruce Croft. Relevance-based word embedding. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’17, pages 505–514, New York, NY, USA, 2017. ACM.

116

http://dl.acm.org/citation.cfm?id=3015812.3015982
http://dl.acm.org/citation.cfm?id=3015812.3015982
http://doi.acm.org/10.1145/2939672.2939753
http://doi.acm.org/10.1145/2939672.2939753
http://dx.doi.org/10.1016/j.ijar.2008.11.006
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://arxiv.org/abs/1804.06323
http://arxiv.org/abs/1804.06323

ISBN 978-1-4503-5022-8. doi: 10.1145/3077136.3080831. URL http://doi.acm.org/

10.1145/3077136.3080831.

[95] Bhaskar Mitra and Nick Craswell. An introduction to neural information retrieval.

Foundations and Trends R© in Information Retrieval (to appear), 2018.

[96] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma,

Zhigang Zhong, Jenny Liu, and Yushi Jing. Related pins at pinterest: The evolution of

a real-world recommender system. In Proceedings of the 26th International Conference

on World Wide Web Companion, WWW ’17 Companion, pages 583–592, Republic

and Canton of Geneva, Switzerland, 2017. International World Wide Web Conferences

Steering Committee. ISBN 978-1-4503-4914-7. doi: 10.1145/3041021.3054202. URL

https://doi.org/10.1145/3041021.3054202.

[97] Mihajlo Grbovic and Haibin Cheng. Real-time personalization using embeddings for

search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 311–320,

New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.

3219885. URL http://doi.acm.org/10.1145/3219819.3219885.

[98] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart

and its applications. In Proceedings of the Sixth International Conference on Data

Mining, pages 613–622, Washington, DC, USA, 2006. IEEE. ISBN 0-7695-2701-9. doi:

10.1109/ICDM.2006.70. URL http://dx.doi.org/10.1109/ICDM.2006.70.

[99] Glen Jeh and Jennifer Widom. Simrank: A measure of structural-context similarity.

In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 538–543, New York, NY, USA, 2002. ACM. ISBN

1-58113-567-X. doi: 10.1145/775047.775126. URL http://doi.acm.org/10.1145/

775047.775126.

[100] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

117

http://doi.acm.org/10.1145/3077136.3080831
http://doi.acm.org/10.1145/3077136.3080831
https://doi.org/10.1145/3041021.3054202
http://doi.acm.org/10.1145/3219819.3219885
http://dx.doi.org/10.1109/ICDM.2006.70
http://doi.acm.org/10.1145/775047.775126
http://doi.acm.org/10.1145/775047.775126

representations. In Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’14, pages 701–710, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi: 10.1145/2623330.2623732. URL

http://doi.acm.org/10.1145/2623330.2623732.

[101] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:

Large-scale information network embedding. In Proceedings of the 24th International

Conference on World Wide Web, WWW ’15, pages 1067–1077, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3469-3. doi: 10.1145/2736277.2741093. URL http:

//doi.acm.org/10.1145/2736277.2741093.

[102] Cataldo Musto, Pierpaolo Basile, Marco Degemmis, Pasquale Lops, Giovanni Semer-

aro, and Simone Rutigliano. Automatic selection of linked open data features in graph-

based recommender systems. In CBRecSys@RecSys, 2015.

[103] Cataldo Musto, Pierpaolo Basile, Pasquale Lops, Marco de Gemmis, and Giovanni

Semeraro. Introducing linked open data in graph-based recommender systems. Inf.

Process. Manage., 53(2):405–435, March 2017. ISSN 0306-4573. doi: 10.1016/j.ipm.

2016.12.003. URL https://doi.org/10.1016/j.ipm.2016.12.003.

[104] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal,

Brandon Norick, and Jiawei Han. Personalized entity recommendation: A heteroge-

neous information network approach. In Proceedings of the 7th ACM International

Conference on Web Search and Data Mining, WSDM ’14, pages 283–292, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2351-2. doi: 10.1145/2556195.2556259. URL

http://doi.acm.org/10.1145/2556195.2556259.

[105] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.

CoRR, abs/1607.00653, 2016. URL http://arxiv.org/abs/1607.00653.

[106] Enrico Palumbo, Giuseppe Rizzo, and Raphaël Troncy. Entity2rec: Learning user-item

relatedness from knowledge graphs for top-n item recommendation. In Proceedings of

118

http://doi.acm.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2736277.2741093
http://doi.acm.org/10.1145/2736277.2741093
https://doi.org/10.1016/j.ipm.2016.12.003
http://doi.acm.org/10.1145/2556195.2556259
http://arxiv.org/abs/1607.00653

the Eleventh ACM Conference on Recommender Systems, RecSys ’17, pages 32–36,

New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4652-8. doi: 10.1145/3109859.

3109889. URL http://doi.acm.org/10.1145/3109859.3109889.

[107] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. Pathsim: Meta

path-based top-k similarity search in heterogeneous information networks. In In VLDB

11, 2011.

[108] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:

Extraction and mining of academic social networks. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’08, pages 990–998, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-193-4. doi:

10.1145/1401890.1402008. URL http://doi.acm.org/10.1145/1401890.1402008.

[109] Neil Hurley and Mi Zhang. Novelty and diversity in top-n recommendation – anal-

ysis and evaluation. ACM Trans. Internet Technol., 10(4):14:1–14:30, March 2011.

ISSN 1533-5399. doi: 10.1145/1944339.1944341. URL http://doi.acm.org/10.

1145/1944339.1944341.

[110] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-

proving recommendation lists through topic diversification. In Proceedings of the 14th

International Conference on World Wide Web, WWW ’05, pages 22–32, New York,

NY, USA, 2005. ACM. ISBN 1-59593-046-9. doi: 10.1145/1060745.1060754. URL

http://doi.acm.org/10.1145/1060745.1060754.

[111] Saúl Vargas and Pablo Castells. Exploiting the diversity of user preferences for rec-

ommendation. In Proceedings of the 10th Conference on Open Research Areas in

Information Retrieval, OAIR ’13, pages 129–136, Paris, France, France, 2013. LE

CENTRE DE HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE DOC-

UMENTAIRE. ISBN 978-2-905450-09-8. URL http://dl.acm.org/citation.cfm?

id=2491748.2491776.

119

http://doi.acm.org/10.1145/3109859.3109889
http://doi.acm.org/10.1145/1401890.1402008
http://doi.acm.org/10.1145/1944339.1944341
http://doi.acm.org/10.1145/1944339.1944341
http://doi.acm.org/10.1145/1060745.1060754
http://dl.acm.org/citation.cfm?id=2491748.2491776
http://dl.acm.org/citation.cfm?id=2491748.2491776

[112] Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning.

Now Publishers Inc., Hanover, MA, USA, 2012. ISBN 1601986289, 9781601986283.

[113] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and

context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015. ISSN

2160-6455. doi: 10.1145/2827872. URL http://doi.acm.org/10.1145/2827872.

[114] Odile Macchi. The coincidence approach to stochastic point processes. 7:83–122, 03

1975.

[115] Yanxun Xu, Peter Muller, and Donatello Telesca. Bayesian inference for latent biologic

structure with determinantal point processes (dpp). Biometrics, 2016. ISSN 0006-

341X.

[116] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In

Proceedings of the 28th International Conference on International Conference on Ma-

chine Learning, ICML’11, pages 1193–1200, USA, 2011. Omnipress. ISBN 978-1-4503-

0619-5. URL http://dl.acm.org/citation.cfm?id=3104482.3104632.

[117] George Karypis. Evaluation of item-based top-n recommendation algorithms. In Pro-

ceedings of the Tenth International Conference on Information and Knowledge Man-

agement, CIKM ’01, pages 247–254, New York, NY, USA, 2001. ACM. ISBN 1-58113-

436-3. doi: 10.1145/502585.502627. URL http://doi.acm.org/10.1145/502585.

502627.

[118] Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr.,

3(3):225–331, March 2009. ISSN 1554-0669. doi: 10.1561/1500000016. URL http:

//dx.doi.org/10.1561/1500000016.

[119] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on

Uncertainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publishers Inc.,

1998.

120

http://doi.acm.org/10.1145/2827872
http://dl.acm.org/citation.cfm?id=3104482.3104632
http://doi.acm.org/10.1145/502585.502627
http://doi.acm.org/10.1145/502585.502627
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1561/1500000016

[120] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. The adaptive web. Springer-

Verlag Berlin Heidelberg, 2007.

[121] Ellen M Voorhees, Donna K Harman, et al. TREC: Experiment and evaluation in

information retrieval, volume 1. MIT press Cambridge, 2005.

[122] Alan Said. A short history of the recsys challenge. AI Magazine, 37(4), 2016.

[123] Victor Lavrenko. A generative theory of relevance, volume 26. Springer Science &

Business Media, 2008.

[124] Victor Lavrenko and W Bruce Croft. Relevance based language models. pages 120–127.

ACM, 2001.

[125] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. Adapting

boosting for information retrieval measures. Information Retrieval, 13(3):254–270,

2010.

[126] Jean C de Borda. Mémoire sur les élections au scrutin. 1781.

[127] Javier Parapar, Alejandro BelloǵıN, Pablo Castells, and Álvaro Barreiro. Relevance-

based language modelling for recommender systems. Information Processing & Man-

agement, 49(4):966–980, 2013.

[128] Daniel Valcarce, Javier Parapar, and Álvaro Barreiro. Efficient pseudo-relevance feed-

back methods for collaborative filtering recommendation. In European Conference on

Information Retrieval, pages 602–613. Springer, 2016.

[129] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey,

Xiaoyan Li, Mark D Smucker, and Courtney Wade. Umass at trec 2004: Novelty and

hard. Computer Science Department Faculty Publication Series, page 189, 2004.

[130] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary. Neural

ranking models with multiple document fields. In Proceedings of the Eleventh ACM

International Conference on Web Search and Data Mining, pages 700–708. ACM, 2018.

121

[131] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple bm25 extension to

multiple weighted fields. In Proc. CIKM, pages 42–49. ACM, 2004.

[132] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and docu-

ments. In ICML, volume 14, pages 1188–1196, 2014.

[133] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. A dual embedding

space model for document ranking. arXiv preprint arXiv:1602.01137, 2016.

[134] Hamed Zamani and W Bruce Croft. Estimating embedding vectors for queries. pages

123–132. ACM, 2016.

[135] Ivan Vulić and Marie-Francine Moens. Monolingual and cross-lingual information re-

trieval models based on (bilingual) word embeddings. In Proceedings of the 38th inter-

national ACM SIGIR conference on research and development in information retrieval,

pages 363–372. ACM, 2015.

[136] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable

representation learning for heterogeneous networks. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

135–144. ACM, 2017.

[137] Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through

large-scale heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1165–1174.

ACM, 2015.

[138] Tie-Yan Liu. Learning to rank for information retrieval. Foundation and Trends in

Information Retrieval, 3(3):225–331, March 2009.

[139] Jaime Teevan, Kevyn Collins-Thompson, Ryen W White, Susan T Dumais, and Yubin

Kim. Slow search: Information retrieval without time constraints. In Proc. HCIR,

page 1. ACM, 2013.

122

[140] Learning Deep Structured Semantic Models for Web Search using Clickthrough Data,

October 2013. ACM International Conference on Information and Knowledge Manage-

ment (CIKM).

123

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Introduction
	Representation Learning in Heterogeneous Networks
	Recommender Systems Challenges
	Sparsity and cold-start recommendations:
	Diversity:
	Interactive recommender systems:
	Explanations to recommendations:

	Objectives

	Recommender Systems
	Introduction
	Overview of Recommender Systems Approaches
	Providing Recommendations to Users
	Collaborative Filtering Approach
	Content-based Recommender Systems
	Hybrid Recommender Systems
	Domain Adaptation and Cross-Domain Collaborative Filtering
	Deep Learning Approaches for Cross-Domain Recommendations

	Recommender Systems Evaluation, Metrics, and Measures
	Taxonomy of Recommender Systems Metrics
	Error and Accuracy metrics
	Beyond Accuracy Metrics

	Representation Learning in Networks
	Embeddings and Distributed Representations
	Language Modelling
	Neural Network-Based Language Models
	Word2Vec

	Representation Learning in Networks
	DeepWalk
	Large-scale Information Network Embedding (LINE)
	Node2vec
	Deep Learning Approaches for Representation Learning in Information Networks
	Pre-trained Embeddings and their Applications in Downstream Discovery Tasks

	Representation Learning and Recommendations in Heterogeneous Networks
	Introduction
	User-driven Interactive Recommendations

	Problem Definition
	Distributed Representations and HIN embeddings
	Skipgram
	Skipgram for Metapaths

	Experiments and Results
	Dataset
	Evaluation Metrics
	Results

	Interactive Recommendations
	Exemplar-based Recommendations
	Less Like this and More Like this

	Semantic Diversity in Top-N Recommender Systems
	Introduction
	Background
	Determinantal Point Processes (DPPs)
	k-DPPs

	HIN Embeddings over User Curated Lists
	Data Set, Experiments and Results
	Experiments and Results

	Diversity Metrics and their Utility

	Music Playlist Completion and Continuation
	Introduction
	The RecSys 2018 Challenge
	Our approach
	Candidate generation
	Learning to Rank

	Results
	Conclusion

	Conclusions and Future work
	Summary and Conclusions
	Representation Learning in HIN using Constrained Random Walks
	New Modalities for Interaction for Interactive Search and Recommendations
	Using Representation Learning to Improve Semantic Diversity of Ranked Lists
	Using Semantic Embeddings for Recommendation Tasks, with Application to Playlist Completion and Continuation

	Future work
	Deep Semantic Models that Utilize Semantic Embeddings for Information Retrieval and Discovery
	High Accuracy Recall to Improve Performance of Search Systems
	Cross-Domain Recommendations using Domain-Aware Metapaths
	Retraining and Incremental Training for New Data, Users, and Items

	Bibliography

