
A Dependable and Secure Approach for Secret Key Establishment and

Operation in Automotive CPS

by

Naresh Kumar Giri

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

Approved by:

Major Professor
Arslan Munir

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/160292703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright

c© Naresh Kumar Giri 2018.

Abstract

Modern automobiles incorporate a network of electronic control units (ECUs) that pro-

vides a range of features such as safety, driver assistance, infotainment. Such network of

ECUs in a vehicle are connected to each other through buses, forming interconnections

called intra-vehicle network. Bus technologies that are widely used in modern day auto-

mobiles are controller area network (CAN), local interconnect network (LIN), and media

oriented systems transport (MOST). These bus technologies, however, do not possess any

security or dependability features, and thus are susceptible to vulnerabilities. Such vulnera-

bilities allow attackers to mount passive attacks (e.g., snooping) and/or active attacks (e.g.,

fault injection). In this study, we propose a scheme for secure authentication of automo-

tive ECUs. Our proposed scheme ensures that only authenticated ECUs can participate

in communication over the intra-vehicle network/bus. ECU authentication is carried out

using certificate-based authentication which is implemented using elliptic curve cryptogra-

phy (ECC). The study also proposes a symmetric (session) key-establishment mechanism

within intra-vehicular network to establish a common symmetric (session) key for all ECUs

to communicate over the network. The key-establishment mechanism removes the need of

storing symmetric keys in ECU memory permanently. The study incorporates key refresh-

ment by assigning a certain lifetime/timeframe period to symmetric (session) key and then

regularly updates session key after the expiration of each lifetime. Our proposed method

provides confidentiality and integrity in intra-vehicle ECU communication without violating

safety and real-time constraints of the vehicle. Our approach leverages multi-core ECUs to

provide fault-tolerance by using redundant multi-threading (FT-RMT), performs quick error

detection (FT-QED) and accelerate performance using lightweight checkpointing (CP).

Table of Contents

List of Figures . vii

List of Tables . viii

Acknowledgements . viii

Dedication . ix

1 Introduction and Motivation . 1

2 Related Works . 6

3 Background . 8

3.1 In-Vehicle Functional Domains . 8

3.1.1 Powertrain Domain . 9

3.1.2 Chassis Domain . 9

3.1.3 Body Domain . 10

3.1.4 Telematics Domain . 10

3.1.5 Passive Safety Domain . 11

3.2 In-Vehicle Network . 11

3.2.1 Local Interconnect Network (LIN) . 11

3.2.2 Media Oriented System Transport (MOST) 12

3.2.3 Ethernet . 12

3.2.4 CAN . 13

3.2.5 CAN-FD . 13

iv

3.2.6 FlexRay . 13

3.3 Elliptic Curve Cryptography (ECC) . 14

3.3.1 Public and Private Key Generation 16

3.3.2 Scalar Multiplication (Point Multiplication) 16

3.3.3 Elliptic Curve Diffie-Hellman key sharing (ECDH) Algorithm 17

4 Integrated Dependable and Secure Approach (IDSA) 19

4.1 Dependability . 20

4.2 Security Threat Model . 20

4.3 Cardinal Ingredients of the Proposed Approach 21

4.3.1 Certificate Generation . 23

4.3.2 ECU Authentication . 23

4.3.3 Symmetric Key Generation and Establishment 24

4.4 Proposed Symmmetric Key Establishment Protocol 24

4.5 Regular In-Vehicle Operation . 27

4.6 Algorithms used to Implement Proposed Key Exchange Protocol 27

4.6.1 Elliptic Curve Digital Signature Algorithm (ECDSA) 28

4.6.2 Symmetric Key Generation Process 30

4.6.3 Elliptic Curve Integrated Encryption Scheme (ECIES) 30

5 Case Study: Steer-by-wire Subsystem . 33

5.1 Steer-by-wire Operational Architecture . 33

5.2 Timing Model of SBW . 34

6 Result and Discussion . 37

6.1 Security Standards . 37

6.2 Experimental Setup . 38

6.3 Timing Analysis . 38

6.3.1 Performance Overhead Due to Fault Tolerance Approaches 38

v

6.3.2 Effect of Error Location on Performance 39

6.3.3 Effect of Checkpointing on Performance with Errors 40

6.3.4 Performance Analysis of Regular Operation 41

6.4 Feasibility Analysis . 42

6.5 Synchronization . 43

7 Conclusion . 44

Bibliography . 45

vi

List of Figures

4.1 An Integrated dependable and secure approach (IDSA) for in-vehicle network 22

4.2 Proposed symmetric key establishment protocol 25

5.1 Steer-by-wire Operational Architecture . 34

6.1 Effect of checkpoint and error on performance (for step 3) 40

vii

List of Tables

6.1 NIST P-192 curve details . 37

6.2 Timing of Key Generation and Establishment Steps in Different Operational

Modes . 39

6.3 Effect of error location on performance (for step 2 ECU side) 39

6.4 Performace of Regular OPeration at Sender and Receiver ECU Nodes 41

6.5 ECU Nodes . 42

viii

Acknowledgments

This work was supported by the National Science Foundation (NSF) (NSF-CNS-1743490).

Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the NSF.

I would like to express my sincere gratitude towards my advisor Professor Arslan Munir

for granting me the opportunity to be a part of his research group, ISCAAS. My academic

training would be incomplete with the mentorship and generous support of Professor Munir.

I would also like to extend my gratitude towards my committee members Professor

Mitchell Neilson and Professor Eugene Vasserman for their time and expert views and opin-

ions on this study.

I would also like to take this opportunity to thank my colleagues Prasanna Kansakar and

Bikash Poudel for constantly pushing me towards exciting new platforms, both academically

and professionally. Thank you to Bibek Bhattarai and Avantika Gurung for providing me

a helping hand whenever needed. I would also like to acknowledge my friends, seniors and

relatives who were directly or indirectly involved.

Lastly, I am indebted to my mother, father and brother for providing me with emotional

and moral support all the way from Nepal.

ix

Dedication

To my parents.

x

Chapter 1

Introduction and Motivation

Advancements in computing, sensor, and communication technologies have transformed au-

tomotive systems from dumb electro-mechanical devices into smart and intelligent. Modern

vehicles are equipped with a multitude of sensors, digital processors (known as Electronic

Control Units (ECUs)), and radio interfaces connected to each other via in-vehicle bus

networks and protocols. In addition, modern automobiles employ several communication

protocols such as Controller Area Network (CAN) and CAN with flexible data rate (CAN

FD) for carrying engine control, transmission control messages, Local Interconnect Network

(LIN) for carrying headlamp, electric windows and doors signals, Media Oriented System

Transport (MOST) for carrying infotainment systems signal, and Ethernet for video acqui-

sition to support autonomous driving. FlexRay is also a recently introduced protocol for

automotive x-by-wire applications.

Highly critical control messages between components such as engine control module

(ECM), anti-lock braking system (ABS), and electric steering system (ESS) are sent over

the bus via protocols like CAN, CAN-FD, and FlexRay depending upon underlying network

technologies. However, these protocol do not have built-in security primitives. Attackers

can easily gain access to any ECU through a compromised bus network and can read/alter

messages potentially causing security threats. An attacker who has direct access to any

ECU can control many safety critical systems such as disabling brakes, stopping the engine,

1

opening doors, changing heating and cooling, and turning on/off lights [1], [2].

Previous works [3], [4] have incorporated security primitives like Advanced Encryption

Standard (AES) along with Hash-based Message Authentication Code (HMAC) for message

integrity. To meet real-time deadline requirements, these approaches use computationally

economic symmetric cryptography. However, symmetric cryptography requires pre-shared

encryption keys between communicating parties. Existing works assume that these keys are

programmed by the original equipment manufacturers (OEMs) during vehicle manufacturing

and assembly. OEMs tend to use identical keys across series of ECUs and even vehicles. This

makes a whole series of ECUs and vehicles vulnerable to security attacks when a single key is

compromised. Moreover, symmetric keys can be easily extracted using side-channel analysis

(SCA) attacks. This renders use of permanent symmetric keys in all ECUs very vulnerable

to attacks.

Although use of unique symmetric keys for every ECU can alleviate the risk, it increases

system complexity significantly as every ECU in the intra-vehicle network needs to store

symmetric keys for all other ECUs in the network. In addition, if any ECU of a vehicle is

compromised through its storage, then an attacker may obtain the symmetric keys for all

ECUs.

In this work we propose a symmetric (session) key-establishment mechanism, which gen-

erates, distributes and periodically updates the symmetric session keys for all ECUs to

communicate via intra-vehicle network. While node-to-node communication is carried out

using symmetric cryptography, to ensure that real time deadlines are always met, our solu-

tion eliminates the need to store the symmetric keys permanently. This prevents an attacker

from gaining access to symmetric keys through permanent storage. The key refreshment

policy prevents replay and side channel attacks. In addition, ECUs are authenticated using

certificate-based authentication before being supplied with session keys. This before-hand

authentication helps to prevent malicious ECUs from getting symmetric keys by infiltrating

into the network.

Authentication and key distribution have been widely studied and protocols such as

Kerberos protocol [5] has been developed. Kerberos is a key exchange protocol that utilizes

2

pre-shared symmetric keys to generate symmetric session keys that expire after a certain

lifetime period associated with the session. The key exchange in Kerberos is managed by

a key distribution centre (KDC) which stores pre-shared symmetric keys in non-volatile

memory for all the communicating nodes in the network. The pre-shared symmetric keys

stored in non-volatile memory are vulnerable to SCAs [6]. An attacker can target the KDC

and do SCAs to extract pre-shared keys of all ECUs in an in-vehicle network. Hence,

this approach is not suitable for use in safety-critical automotive cyber-physical system

(CPS). Instead, certificate-based asymmetric cryptography is more appropriate method for

authentication and key exchange for automotive systems because this approach does not

have to store all pre-shared keys.

For certification and authentication, we use elliptic curve cryptography (ECC). ECC is

chosen over other asymmetric cryptography like RSA, Elgamal because ECC provides higher

security with comparatively smaller key length [7]. ECC has 80-bit symmetric key security

level with key length of 160 bits whereas for the same security level RSA requires a key of

length of 1024 bits. ECC implementations therefore have lower computation complexity and

are more suitable for applications having real-time deadlines.

For authentication, each ECU must ensure that all other ECUs are authentic which is

an expensive task with computational complexity of O(n2). It also increases the network

overhead as all nodes need to communicate with all the remaining nodes. Finally, an ECU

that is responsible for generating and distributing key needs to be identified.

This problem of ECU authentication is addressed by introducing a Central Security

Module (CSM) to do authentication of all ECUs. The CSM module authenticates all other

ECUs by sharing its certificate and other ECUs authenticate with CSM by sharing their

certificates. If any malicious ECU tries to authenticate with false certificate then CSM

notifies through dashboard. These certificates are generated and managed by a certificate

authority (CA) specified by OEM.

CSM module also generates symmetric keys and shares these keys with all ECUs. Along

with the symmetric keys, HMAC of keys is also sent to prevent man-in-the-middle (MITM)

attack. The CSM module will periodically update the symmetric keys during runtime, which

3

makes the system safe against SCA attacks.

Next generation automotive require dependability and safety features embedded in ECUs

and in-vehicle networks. These requirements are strictly specified in ISO 26262 [8]. The ISO

26262 standard requires that at least one critical fault must be tolerated by an automobile

without loss of functionality. To address this requirement we have incorporated fault tol-

erance (FT) by redundant multi-threading (RMT). This FT approach leverages RMT on a

dual-core architecture. RMT uses two different threads to compute the same safety-critical

computation. The result of the two different threads are matched at the end of the com-

putation to detect any error during computation. If an error occurs during computation,

recomputation is carried out in both threads. Recomputation fixes the errors that are caused

by transient faults which consists of majority of errors.

We further enhance RMT by quick error detection (QED) mechanism to accelerate the

computation during transient faults [9]. We further propose the use of lightweight check-

pointing to alleviate the overhead of the complete/whole program recomputation in presence

of faults.

We analyze and study the result of different fault-tolerant mechanisms and test the

validity of our approach using a steer-by-wire (SBW) as case study.

In summary, our main contributions are as follows:

• Proposal of an integrated dependability and security approach that simultaneously

incorporates security (key establishment, confidentiality, integrity, and authentication)

and fault tolerance primitives while adhering to real-time constraints of automotive

CPS. We demonstrate this approach through a steer-by-wire case study.

• Proposal of a novel certificate-based authentication scheme of ECUs leveraging ECC

to prevent participation of unauthorized ECUs in in-vehicle network communication.

• Proposal of a symmetric (session) key-establishment protocol for ECUs in intra-vehicle

networks to enable the ECUs to communicate securely over the in-vehicle networks.

• Integration of dependability primitives through various fault tolerance (FT) approaches

4

such as FT by redundant multi-threading (FT-RMT), FT-RMT enhanced with quick

error detection (FT-RMT-QED), and lightweight checkpointing.

The rest of the paper is organized as follows. Chapter 2 provides overview of existing so-

lutions. Chapter 3 describes the preliminaries and underlying concepts of in-vehicle network

architecture. Chapter 4 details the techniques and implementation mechanisms used in this

work. Chapter 5 discuss the steer-by-wire model which is used as case study to verify our

approach. Chapter 6 presents experimental results and analysis. Finally, Chapter 7 presents

concluding remarks.

5

Chapter 2

Related Works

Many previous works have studied security of automotive systems.

Koscher et al. [1] analyzed internal and external attack surfaces through which an at-

tacker could control automotive subsystems. In [1], authors attacked a car through onboard

diagnostics (OBD) port by using a self-developed software, where authors were successfully

controlled radio, instrument panel cluster, body controller, engine, brakes and heating ven-

tilation air conditioning (HVAC). Rouf et. al. [10] have studied the security and privacy

related to Tire Pressure Monitoring System (TPMS). Huang et al. [11] classified the in-

vehicle network in three different layers i.e. control layer, middle layer and external interface

layer, and studied the security vulnerabilities at each layer. All these works suggested that

there needs to be security and authentication mechanisms within in-vehicle networks for

realizing secure and dependable automotive CPS.

Lin et al. [12] proposed integration of message authentication codes (MACs) in CAN data

frames to prevent masquerade and replay attacks. Wolf et al. [13] proposed a vehicular hard-

ware security module (HSM) that provided hardware support for symmetric cryptography,

asymmetric cryptography, hash function, and pseudorandom number generator. However,

the HSM did not support any FT features which are crucial for safe operation of modern

automobiles. The dependability for automotive embedded system has been studied in some

previous works. Beckschulaze et. al.[14] have studied different FT approaches on dual-core

6

micro-controllers. Munir et al. [3], Poudel et al. [4] have proposed multicore ECU based

design for secure and dependable cybercars. However, these works did not discuss about

establishment and sharing symmetric secret key.

7

Chapter 3

Background

In this chapter, we discuss about in-vehicle functional domain and in-vehicle network. We

also discuss about Elliptic curve cryptography (ECC) which is used in proposed protocol.

3.1 In-Vehicle Functional Domains

Early vehicles used dedicated point-to-point connections for in-vehicle communications. As

the number of in-vehicle features increased, the point-to-point communication started be-

coming incompatible as the wiring system became bulkier, more complex, and difficult to

install and manage. The introduction of serial bus addressed the issue of incompatible

point-to-point connections in in-vehicle communications, through the reduction of wiring

complexity.

Data rates in automobiles vary according to the different features; as engine modules

and transmission modules require higher data than the data required for door and light

module. Also, high-speed components are more expensive than low-speed components, and

therefore, it is more cost effective to use high-speed components where high data rate is

required and use low-speed components where low data rate is required. High speed buses

are generally used for powertrain and engine control, and low speed buses are used for body

electronics. For certain operations, the data between high-speed bus and low-speed bus has

8

to be exchanged, and the exchange of data is done by a gateway device. When required to

transfer messages, the gateway device converts messages from one protocol to other.

In this section we discuss about various functional domains in car embedded system.

3.1.1 Powertrain Domain

The powertrain domain is one of the two functional domains which are geared particularly for

safety of the vehicle and real time control. The powertrain domain consists of two processes -

i.) engine control-the power generation in the engine, ii.) transmission and gear control-

power transmission in the engine through the gearbox to the wheels and driving axis. As the

powertrain domain functions to control and manage the engine, it requires high computing

power and complex control laws. This domain is formed through real-time subsystems that

are frequently interacting and exchanging data with the body domain (e.g., dashboard)

and the chassis (e.g., ABS). Therefore, the powertrain domain requires high dependability,

communication predictability and high network bandwidth. Powertrain domain subsists high

degree of network loads and message traffics and adapts with less flexibility.

3.1.2 Chassis Domain

The chassis domain is the other functional domain geared for safety of the vehicle and real

time control. This chassis domain manages the functions of suspension, steering and braking

and controls activity of driving dynamics, active safety and assistance. Such activities are

monitored by systems such as active suspensions, electronic stability program (ESP), ABS,

automatic stability control (ASC), adaptive cruise control (ACC), anti-slip regulation (ASR),

electronic power steering (EPS), 4-wheel drive (4WD) and electronic damper control (EDC).

This functional domain, similar to the powertrain domain, has advanced real-time control

systems and closed loop with specific timing and safety applications.

Technologies such as x-by-wire are currently replacing mechanical and hydraulic systems

to electrical systems which are being implemented in braking, driving and steering functions.

Such innovative technologies fall in this domain. These functionalities also require high

9

bandwidth, flexibility as well as high dependability.

3.1.3 Body Domain

The elements that make up the body domain are the body and comfort related functions

such as air conditioning, wipers, doors, seats, climate control, locks, cruise control (CC), park

distance control. Passenger activities such as locking doors and closing windows prompts

the activation of the body domain. These elements of the body domain are controlled by

electronic subsystems. As a variety of communications needs are found in body domain, the

network architecture is formed in a hierarchical manner where subsystems are connected via

the CAN backbone. From a safety standpoint, this domain is not considered safety critical

nor does it require higher bandwidth. Low cost networks such as LIN is used to implement

communication subsystem of this domain.

3.1.4 Telematics Domain

This domain can consist of vehicular technologies and telecommunication elements ranging

from wireless network, in-vehicle navigation systems, CD/DVD players, rear seat entertain-

ment, audio systems, monitors, displays, infotainment and multimedia. Wireless technologies

in automobiles can provide services such as hands-free phones, laptop computers, GPS units,

car access systems in the telematics domain. This domains wireless technology is not only

limited to communication, but also other diverse functions such as traffic information sys-

tems, fleet management systems, voice recognition, diagnostics and maintenance services

and many more.

The nature of this domain requires gigantic amount of data to be circulated and ex-

changed through systems as well as the external world. Therefore, extensibility (principle

where implementation takes future growth into consideration) and composability (principle

which deals with the inter-relationships of components) requirements are crucial for telem-

atics domain, unlike embedded real-time networks in the chassis and powertrain domains.

This domain is more focused on bandwidth sharing, data streams of multimedia, quality of

10

service of multimedia while preserving and ensuring harmful alterations and confidentiality

of information.

3.1.5 Passive Safety Domain

This domain serves particularly safety related functions, employing electronic based systems

that serves to protect occupants in the vehicle. Prominent examples of such electronic based

systems are belt pretensioners, tire monitoring, roll over sensors and airbags.

3.2 In-Vehicle Network

In this sub-section bus networks that are widely used in modern vehicles are discussed.

3.2.1 Local Interconnect Network (LIN)

LIN is a low cost and low speed (20 kbps) serial bus in-vehicle communication network.

The application of this protocol are on areas that are neither time critical nor needing extra

fault tolerance. This network is used in body domain. It connects modules like light module,

window module, sun-roof module, seat control module, climate control module, door module,

mirror module, and other comfort functional modules.

LIN is time-triggered network, means message transmission is driven at predefined time

instant [15]. LIN is based on universal asynchronous receiver-transmitter (UART) network-

ing architecture. It is a single master/multiple slave bus that uses a single wire to transmit

data. The LIN bus frame contains two parts, first part is a message header and the second

part is message response. The master node controls the communication between various

slaves. The master node sends the message request by sending the message header on the

bus, the particular slave node replies the request by sending message response.

The major drawback of this protocol is that if the master node fails the whole commu-

nication network fails. Hence, it is not suitable for safety critical applications.

11

3.2.2 Media Oriented System Transport (MOST)

MOST is a protocol for high-speed multimedia and infotainment networking for automotive.

This protocol provides an efficient and cost-effective audio, video, data and control infor-

mation between any two nodes. MOST corporation, a consortium of car makers, system

architects and key component suppliers was established in 1998. MOST protocol is adopted

by every car brand.

The MOST protocol follows the seven layers of Open System Interconnection (OSI) model

of communication protocol. MOST network is usually arranged in a ring topology, however,

it can also be laid as star topology. This protocol can accommodate at most 64 nodes at

a time. Plug and play functionality of this protocol makes it easier to add and remove any

node from the network.

MOST is a synchronous network and it uses point-to-point data transfer, supporting both

synchronous and asynchronous traffic. In MOST network, one device is designated as the

timing master and rest all are slaves. Timing master continuously feeds the MOST frames

into the ring. The preamble is sent out by timing master at beginning of transmission of

MOST frame. The timing followers (slaves) use this preamble for synchronization.

3.2.3 Ethernet

Ethernet is one of the most common high-speed interfaces found in homes and offices. The

interest from car manufacturer (e.g. BMW, Daimler), automotive electronics companies

(e.g. Bosch, Continental, Micrel), and academic research projects are investigating the

performance of Ethernet/IP in automotive embedded systems. The major advantage of

Ethernet over traditional automotive bus technology is the bandwidth provided by Ethernet.

Old technologies like LIN, MOST, CAN were tailored for automotive applications of that

time. But recent development in automotive industry needs larger bandwidth technologies.

Ethernet is preferred for data-intensive requirement like driver assistance, collision avoid-

ance, lane departure detection, traffic sign classification, blind spot detection, driver intent

detection, pedestrian detection, and many others.

12

3.2.4 CAN

CAN bus is most widely used in-vehicle network that was developed by Robert Bosh GmbH

in 1985. It became ISO standard in 1994. Although, it was originally designed for automo-

tive industry but it is also popular in other fields like electric power, petroleum, chemical,

metallurgical, aviation, industrial, and security protection. It is famous for its low-cost, its

robustness, and the bounded communication delays. CAN provides the serial-communication

upto 1Mbps and permits, 40 meter of bus-range [16]. Fault-tolerant systems use this bus

because of its error detection and signaling mechanism. In case of any error in CAN frame,

the ECUs either discards the frame, or ask for re-transmission the frame or raises error flags.

The standard CAN 2.0 frame structure had defined two frame structures CAN 2.0A and

CAN 2.0B. CAN 2.0A structure consists of 7 fields: start of frame (SOF) bit, 18 bits header,

0-8 bytes of data field, 15 bit cyclic redundancy check (CRC) field, 3 bit acknowledgement

field (ACK), 7 bits end of frame (EOF). The header of the frame consists of 11 bits identifier

field, 1 bit of remote transmission request (RTR) field, 2 reserved bits and 4 bits data length

code (DLC). The CAN 2.0B format is same as CAN 2.0A format except the identifier field

of header is 29 bits instead of 11 bits. This identifier part defines the message priorities.

3.2.5 CAN-FD

CAN-FD is newer version of CAN network, that provides higher bandwidth with maximum

bit-rate of 15Mbps. The protocol is backward compatible , so can work with CAN protocol.

This protocol can communicate with data length of 8-64 bytes at a time.

3.2.6 FlexRay

FlexRay protocol was developed by FlexRay consortium of big automobile companies whose

members were BMW, Bosch, DaimlerChrysler, General Motors, Motorola, Philips and Volk-

swagen. The aim of the consortium was to conduct technical analysis of existing networks

which could meet all the technical requirement of modern automobiles. Since, most of

13

available in-network protocols were found to be technically insufficient for newer automo-

biles, they came up with their own new protocol ”FlexRay protocol”. FlexRay provides high

speed, fault-tolerant and flexible in-vehicle network communication. FlexRay can offer speed

of upto 10Mbps as bus, star and multiple star networks. The bus operation time cycle is

divided into two parts: the static segment and the dynamic segment. The static segment is

time-triggered traffic in which particular slots are allocated for specific nodes. The dynamic

segment is event-triggered traffic in which nodes take control of the bus according message

identifiers.

FlexRay supports dual channel which provides redundancy for dependability and higher

bandwidth communication. This also supports CRC, bus guardians, never-give-up strategy

(strategy of nodes to get into safe mode after transient fault) of nodes and trigger monitor-

ing mechanisms which makes it more suitable for dependable for safety-critical applications.

However, implementation of FlexRay protocol is challenging and more expensive than con-

temporary networks. Furthermore, since this protocol is new compared to other protocols,

only few automobile contain this protocol.

All the bus networks that are widely used in in-vehicle networks do not have security

mechanisms embedded within them. CAN network, which is present in every vehicle used

to carry control signals, does not have any built-in security primitive. Since, majority of

the vehicles use CAN bus and most existing attacks on vehicle attacks are based on CAN

network. CAN network is considered for symmetric key generation and distribution for

secured communication of ECU nodes, however, our approach can be extended to other

vehicle networks as well.

3.3 Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography (ECC) is the newest member of the public-key algorithm. ECC

provides the same level of security as RSA or discrete logarithmic (DL) systems with con-

siderably shorter operands or key length. It is based on elliptic curve defined over a finite

field (Galois Field (GF)). In finite field operation, all the arithmetic is performed modulo a

14

prime ‘p’.

According to [7], elliptic curve ε is defined as the curve over Zp, where, Zp is finite field

and p is prime number p > 3 , is the set of all pairs (x, y) ∈ Zp which satisfies

ε(x, y) : y2 ≡ x3 + a.x+ b mod p (3.1)

together with an imaginary point of infinity φ, where, a, b ∈ Zp and the condition 4 ·a3 +

27 · b2 6= 0 mod p. Point of infinity φ is the neutral element required for finite field.

The operation on elliptic curves are called as group operations. The two main group

operations point addition and point doubling. Given two points in elliptic curve, say P =

(x1, y1) and Q = (x2, y2) such that P 6= Q, point addition computes the third point

R = (x3, y3) such that

P +Q = R (3.2)

and point doubling computes third point R when P = Q, given as

P + P = R (3.3)

The value for third point R is computed by following equation,

x3 = s2 − x1x2 mod p

y3 = s(x1 − x3)− y1 mod p
(3.4)

where ,

s =

y2−y1
x2−x1

mod p; if P 6= Q (point addition)

3x2+a
2y1

mod p; if P = Q (point doubling)

The total number of points in a curve is finite denoted by #E and is called order of

elliptic curve.

15

3.3.1 Public and Private Key Generation

Algorithm 1: ECC Public and Private Key Generation Algorithm

Input: Elliptic curve ε ,
generation point G = (Gx, Gy),
prime number p,
private key (kpr = k)
Output: public key kpub

1 kpr = random number k ∈ (1,#E)
2 kpub = kpr ·G = k ·G

The user’s public key is a point in the curve and its private key is a randomly selected

number. The base point or generation point G of the curve is multiplied with the private

key to obtain public key. The basic algorithm for ECC private and public key generation is

given in Algorithm 1. At first a random number, as private key k, less than order of curve

#E is selected. The private key is then multiplied with generation point G to obtain the

public key. This multiplication operation is also called point multiplication.

3.3.2 Scalar Multiplication (Point Multiplication)

Algorithm 2: Double And Add Algorithm

Input: Elliptic curve ε
generation point G = (Gx, Gy),
prime number p
scalar k =

∑t
i=0 ki2

i with ki in 0, 1 and kt = 1
such that 1 ≤ k ≤ q where q = (#E − 1)
Output: T = kG

1 T = G
2 For i = t− 1 downto 0

i) T = T + T mod p
ii) If ki = 1

T = T +G mod p
3 Return (T)

Point multiplication operation involves many point addition and point doubling. Various

algorithm are developed to quicken this operation. Double and Add Algorithm is one of the

16

algorithm point multiplication operation. The basic steps for Double and Add Algorithm

are shown in Algorithm 2. The scaler number k is expressed in binary by t number of bits.

The algorithm iterates through the bit values from left to right; in each iteration it performs

point doubling and only if the current bit value is 1 it performs point addition of G.

3.3.3 Elliptic Curve Diffie-Hellman key sharing (ECDH) Algo-

rithm

Another important functionality of public key cryptography is addressing key distribution

problem. ECC also provides mechanism for sharing a common secret communicating over

an insecure channel. This key sharing mechanism is called elliptic curve Diffie-Hellman

key exchange (ECDH). Before participating in key sharing mechanism two parties agree on

domain parameters like elliptic curve (ε), prime number (p), generation point (G). The basic

steps for ECDH is given in Algorithm 3. Here, side A and side B are sharing a common secret.

Side A sends it’s public key (kpub,A) to side B. Since public keys are known to everyone losing

this information will not compromise security system. At side B, it computes a common

secret (TAB) multiplying private key of B (kpr,B = b) and public key of A(kpub,A). Then side

B sends it’s public key to side A. Now, side A also computes the common secret (TAB) by

doing point multiplication of private key of A (kpr,A = a) with public key of B(kpub,B). As

shown in step 2 and 4, the common secret value (TAB = a · b · G) is shared in between two

parties without losing any secured information.

17

Algorithm 3: Elliptic Curve Diffie-Hellman Key Exchange (ECDH) Algorithm

Input: Elliptic curve ε,
generation point (Gx, Gy),
private key of A (kpr,A = a ∈ (1,#E)),
public key of A (kpub,A = a ·G),
private key of B (kpr,B = b ∈ (1,#E)),
public key of B (kpub,B = b ·G)
Output: Common Secret TAB = (xAB, yAB)

1 A sends public key kpub,A to B
2 B computes TAB = kpr,B · kpub,A = b · a ·G
3 B send public key kpub,B to A
4 A computes TAB = kpr,A · kpub,B = a · b ·G

18

Chapter 4

Integrated Dependable and Secure

Approach (IDSA)

The design of dependable and secure automotive CPS requires inclusion of dependability

and security primitives without violating real-time constraints using limited resources (in

terms of computation). This requirement has made the task of designing dependable and

secure automotive CPS challenging.

This work includes different mechanisms for FT like FT-RMT, FT-RMT-QED and FT-

RMT-CP which are explained in section 4.1. For secure communication between in-network

vehicle nodes, security primitives proposed in [3], [4] are encryption for message confidential-

ity and hash based message authentication for message integrity. Both of these operations

need symmetric keys shared between ECU nodes. And moreover, the ECUs nodes partic-

ipating in communication need to be verified before taking part in communication. This

chapter discusses the proposed certificate based ECU authentication mechanism followed by

symmetric key generation, key distribution and key refreshment mechanisms.

19

4.1 Dependability

The dependability requirements as stipulated in ISO 26262 [8] requires that at least one crit-

ical fault must be tolerated by automotive application without loss of function. Contempo-

rary automotive systems use single-core ECU that have difficulty in meeting the performance

and dependability requirement. Technological advancement and low-cost of silicon-chips, we

leverage multicore ECUs to provide FT. Our approach is equally applicable to dual-core and

triple-core ECUs. Our multicore FT approach does not provide resilience against hardware

failures, power supply failure, and other major component failures. However, these failures

can be addressed by having redundant modules within the automotive.

We consider computing redundantly in multiple threads so that the results can be com-

pared if any soft-error occur during computation. If we find any error during computation,

recomputation is carried out until result match. The fault-tolerant approaches used are

non-fault tolerant (NFT) or single threaded, FT-RMT, FT-RMT-QED, FT-RMT-CP. NFT

implementation is a single threaded execution of the algorithm. FT-RMT implements two

different threads in a multi-core process for the same program. FT-RMT-QED compares the

execution results at multiple spots, detecting errors occurred during execution. FT-RMT-

CP implements the lightweight checkpoint. In FT-RMT-CP, checkpoints are introduced in

various portions of the code, dividing a program into small sections. When an error/fault

occur in the program, the execution resumes from previous (last) checkpoint. This removes

the need of re-executing whole program during errors.

4.2 Security Threat Model

The aim of this research project is to develop integrated dependability and security method-

ology for early design phase of a secure and dependable automotive. Assuming an adversary

has gained access to intra-vehicular network and has plenty of time to access the network,

the security model should prevent the passive and active attacks. Attackers can do passive

eavesdropping which means they can sniff and steal all the traffic information from intra-

20

vehicular network, losing the critical information about driver, vehicle and traffic will put

the driver and passenger in great risk. Suppose that, in a x-by-wire systems, if an adversary

knows the initial location of vehicle, and eavesdrops the communication of steering collecting

the information of steering angle, acceleration, brake value etc, the adversary can easily know

the final destination. Moreover, the attacker can do active eavesdropping and inject the false

messages. If the adversary enters into intra-vehicular network, s/he can easily modify the

content of message as well as inject fake messages into the network. This also can bring

serious problems.

To address the threat of these active and passive attacks we can implement security prim-

itives: encryption for confidentiality to discourage active attacks and message authentication

codes for authentication to discourage passive attacks (message injection) [3], [4] and [17].

These approaches use symmetric key based cryptography because of less computation com-

pared to public key cryptography. These approaches need to have symmetric key saved

into secured memory. However, an adversary can attack on memory to get symmetric key.

Losing symmetric key will compromise not only the single ECU or single vehicle but also

compromises whole series of vehicle, because same series of ECU tend to use same symmetric

key. Furthermore, if all the instructions are send using same symmetric key, an attacker can

send same message resulting replay attacks. So, new symmetric key should be generated

during driving to prevent attacks through memory and symmetric key should be updated to

prevent replay attacks.

4.3 Cardinal Ingredients of the Proposed Approach

Figure 4.1 shows the overview of all entities that participate in authentication, symmetric

key generation, and node-to-node communication.

As shown in Figure 4.1, CA is certificate authority that generates the necessary keys for

all ECUs. CA has its own public key and private key. The public key is shared with all ECU

nodes, whereas the private key is stored secretly. CA can be OEM, so the private key can

be easily kept secret.

21

M: Message

HMAC: Hash-Based Message
 Authentication Code

SHA-3-based HMAC
[HMACS(M)]

AES
Encryption

AES + HMAC
512 bits

 Message M Symmetric Key K

Message M

Formatting of
M & HMAC

AES
Decryption

M's Integrity
con rmed

M has lost
Integrity

SHA-3: Secure Hash Algorithm-3(256bit)

AES: Advanced Encryption Standard

ECU: Electronic Control Unit

FT-RMT: Fault Tolerance by RMT

 FT-RMT/
FT-RMT-QED/
FT-RMT-CP

Multicore ECU

Sending Node

Receiving Node

256 bits

=

Automotive Bus

FT-RMT-QED: Fault Tolerance by RMT with QED

RMT: Redundant Multi-Threading

QED: Quick Error Detection

Multicore ECU

FT-RMT/
FT-RMT-QED/

FT-RMT-CheckPoint

HMACS(M) Comparator

SHA-3-based HMAC
[HMACR(M)]

 K

FT-RMT-CP: Fault Tolerance by RMT with CheckPoint

Centraly Security Module (CSM)

ECU Registration/
Authentication

Symmetric Key
Generation

 FT-RMT/
FT-RMT-QED/
FT-RMT-CP

Certi cation Authority (CA)

Generate Certi cate
Generate Public/Private Keys

Resides in OEM

Figure 4.1: An Integrated dependable and secure approach (IDSA) for in-vehicle network

Central Security Module (CSM) is responsible for ECU registration, authentication and

symmetric key establishment. The CSM has its private key, public key, certificate signed by

the CA, and a unique ID. It also contains public key of CA which is used to authenticate other

ECUs. The sending node and receiving node are two sample ECU nodes of the vehicular

network which participate in the communication. Each node has its private key, public key,

certificate signed by the CA and a unique ID. Each ECU node also has the public key of

CA which is used to authenticate the legitimate CSM. Although our proposed methodology

requires secure storage of private key but security sensitivity of private key is much less

than symmetric keys used for node-to-node communication. If a private key of an ECU is

compromised, it only compromises one ECU, and upon revocation of the certificate of that

ECU, no further harm can be done by the ECU. However, if symmetric key of an ECU is

compromised, it has the potential to compromise all the ECUs in the vehicle or even the

series of the vehicle because likely the same symmetric key would be programmed/stored by

the OEM in all of the ECUs of the vehicle or even the series of vehicle.

The following subsections provide the overview of different stages of proposed work.

22

4.3.1 Certificate Generation

Suppose nE be the total number of ECUs on the automotive bus. Each ECUi ∀ i ∈

{1,2,3,...,nE}, has a key denoted as

kEi
= (kpub,Ei

, kpr,Ei
), (4.1)

where kpub,Ei
is public key and kpr,Ei

is private key. The CA is responsible for generating

these public and private keys for each ECU. The CA also generates the certificate for each

ECUi by combining ECUs public key kpub,Ei
with its identity IDEi

and signature signed by

the private key of the CA. The ID of each ECU is assigned by OEM (e.g., an ECU’s serial

number can serve as the ECU’s ID).

The certificate ECUi can be denoted as

CertEi
= [(kpub,Ei

, IDEi
) , SEi

] (4.2)

where, signature

SEi
= sigkpr,CA (kpub,Ei

, IDEi
) (4.3)

The algorithm for signature generation is given in Section 4.6.1.

4.3.2 ECU Authentication

Authentication of ECU can be done by certificate verification. Certificate has two parts:

first, public key and ID of node kpub,Ei
, IDEi

, and second, signature on the first part by using

the private key of the CA sigkpr,CA (kpub,Ei
, IDEi

). By using kpub,CA, we can verify if the

signature is from a legitimate source or not. The algorithm for signature verification is given

in Section 4.6.1.

23

4.3.3 Symmetric Key Generation and Establishment

After verifying all the ECUs, the CSM generates new symmetric key and distributes it to all

ECUs. After certain time period T , this process of new key generation and establishment is

repeated. The value of T is defined during manufacturing. The value of T should be greater

than summation of time to authenticate all ECUs and the time to distribute symmetric keys

to all ECUs. The time period T relates to desired symmetric key freshness interval. The

process of key generation is described in Section 4.6.2.

4.4 Proposed Symmmetric Key Establishment Proto-

col

Figure 4.2 presents our proposed protocol for symmetric key establishment. At the vehicle

start up, the CSM advertises/broadcasts its public key, ID, and certificate to all other ECUs

(step 1). This is done only once during start up.

All ECUs verify the authenticity of CSM. The information sent during this stage are

not encrypted and an intruder can easily get the data but losing this information would not

weaken the security of the network. After CSM authentication, the ECU i which requires

registration or authentication generates a random nonce ri.

For registration/authentication of ECU i, it’s certificate and nonce should be sent to

CSM. The message sent here should be encrypted because only the CSM should be able to

retrieve the certificate and nonce of the ECU i and no other malicious ECU should be able

to obtain this information. So, we generate a common secret between private key of ECU i

and public key of CSM, which is transformed to obtain local key klocal. This local key can

be generated only by ECU i and CSM, no other entity can generate this key. This key is

used to encrypt the message and generate HMAC of the message (mr
Ei
||hm) (Step 2 ECU

side). Here, HMAC is appended along with message to maintain integrity of the message.

When ECUs are authenticating the CSM, the CSM generates a new symmetric keys ksym

and the lifetime T for ksym as prescribed by OEM (step 2 CSM side).

24

Eelectronic Control Unit

(ECUi)
Central Security Module

(CSM)

Broadcast CSM Certi cate to all

ECU (CertCSM)

Verify Certi cate verkpub,CA(CertCSM)

Generate nonce ri

Derive ECC-Encryption & HMAC Key

klocal = SHA-3{ECDH(kpr,ECUi
,kpub,CSM)}

Encrypt the certi cate and nonce

mr
Ei
= e klocal

(CertEi
, ri)

Generate HMAC of mr
Ei

hm = HMACklocal
(mr

Ei
)

Compute symmetric key ksym

Generate lifetime T for ksym

Broadcast SYNC message (mSYNC)

Generate HMAC of yEi

hy' = HMACklocal
(yEi

)

Verify hy= hy'

Decrypt key, nonce, time & ID

dklocal
(yEi

) = (ksym, ri', T, IDCSM)

Verify ri = ri'

Verify IDCSM

Store ksym

Derive ECC-Encryption & HMAC Key

klocal = SHA-3{ECDH(kpr,CSM,kpub,ECUi
)}

Generate HMAC of mr
Ei

hm' = HMACklocal
(mr

Ei
)

Verify hm = hm'

Decrypt the certi cate and nonce

dklocal
(mr

Ei
) = CertEi

, ri

Verify certi cate verkpub,CA(CertEi
)

Encrypt key, nonce, time & ID

yEi
= eklocal

(ksym, ri, T, IDCSM)

Generate HMAC of yEi

hy = HMACklocal
(yEi

)

ECUi can use ksym for lifetime T

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

CertCSM

m
r

Ei ||
hm

y
Ei
 || h

y

mSYNC

a.

b.

c.

d.

e.

a.

b.

c.

d.

e.

f.

g.

a.

b.

c.

d.

e.

f.

g.

Figure 4.2: Proposed symmetric key establishment protocol

25

After receiving the request message mr
Ei

along with hash hm. The CSM verifies the

HMAC to find out integrity of the message. Here, to calculate HMAC, we need to have

local key klocal which was used in ECU side (step 2). The local key is again generated via

common secret of private key of CSM and public key of ECU i. This key is used to generate

HMAC, decryption and later for encryption. After verification of HMAC, the CSM decrypts

the message and verifies the certificate CertEi
using public key of CA. After the verification,

the CSM encrypts the generated symmetric keys ksym, nonce ri, lifetime T and ID of the

CSM IDCSM with the public key of ECU i. This response message yEi
is sent back to the

ECU i (step 3) along with HMAC of message as hy.

The received message packet yEi
is tested for message integrity and then decrypted by

the ECU i using its local key (generated in step 2). The ECU i verifies the random nonce ri

received from the CSM and its original random nonce. Further, the ECU i verifies IDCSM

with the one received in step 1. If verification is succeed then the ECU accepts the symmetric

keys (step 4).

Finally, the CSM broadcast SYNC message instructing all ECUs to use the newly gener-

ated symmetric key for time T (step 5). Each ECU starts communicating with other nodes

using this key for symmetric encryption and HMAC. After time period T , each ECU requests

for a new key by sending a message request as in step 2 ECU side Figure 4.2. The CSM

then distributes symmetric keys to ECUs as shown in Figure 4.2.

This protocol assures the timeliness through the following measures: the protocol specifies

a lifetime T for the symmetric keys during which the symmetric keys are used for encryption

communication; the ECU i sends the random nonce ri to the CSM, and requires the CSM

to encrypt ri; if the returned value r′i after decryption, matches the sent value ri then ECU i

will be assured that response came for that particular request. Even if an intruder knew the

reply message packet to ECU i for now, it cannot be used to later perform replay attacks.

Furthermore, including IDCSM in response message from the CSM provides extra assurance

to ECU i that it communicated with the authentic CSM.

The length of random nonce ri must be long enough to resist the series of replay attacks.

A malicious ECU can act as the CSM and can replay with old symmetric key for every

26

request of new symmetric key. An ECU distinguishes by checking random nonce. However,

if the length of random nonce is too small, random nonce may repeat after some runs and

malicious ECU will be successful to deceive by sending old symmetric key . So, the length

of random nonce should be long enough to survive series of replay attacks.

The synchronization mechanism is discussed in subsection 6.5.

We use elliptic curve cryptography (ECC) for the computation of steps 2, 3 and 4 ex-

plained above. The details of elliptic curve is given in Section 6.1. The basic information

of elliptic curve is include in Section 3.3. The algorithm for certificate verification using

signature verification is given in Section 4.6.1. The algorithm used in step 2(c, d and e), step

3(a, b, c, d) are steps of elliptic curve integrated encryption scheme (ECIES). The algorithm

for ECIES is shown in Section 4.6.3.

4.5 Regular In-Vehicle Operation

ECU nodes communicate with each other through an authenticated encrypted message. The

cipher text of the plain message is produced by using 128-bit block-based AES encryption.

HMAC digest of the cipher text is computed and attached along with the cipher text. The

sender ECU node sends the combination of cipher text and HMAC digest. The receiver ECU

node extracts the cipher text and computes the MAC digest. The MAC digest computed at

the receiver node is compared against the MAC digest sent along with the cipher text. If

the MAC digest matches, the message is authentic otherwise the message has lost integrity

and should be sent again. The details of regular operation is described in [17].

4.6 Algorithms used to Implement Proposed Key Ex-

change Protocol

In this section, we discuss different ECC-algorithms used to implement the protocol discussed

in Figure 4.2.

27

4.6.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

This section describes the general idea of generating and verifying digital signature us-

ing elliptic curve. The following algorithms generate and verify signature which are used

in certificate generation (Section 4.3.1) and ECU authentication using certificate verifica-

tion(Section 4.3.2).

An elliptic curve ε with modulus p, coefficient a and b, and a generation point G is

considered as shared ECC parameters. The CA has private key kpr,CA(= d) and public

key kpub,CA(= K). The algorithm to generate signature by CA is shown in Algorithm 4.

At first, CA generates a random number ke less than the order of ECC q(= #E). Then,

CA computes the scaler multiplication of ke with generation point G resulting point as

R = (Rx, Ry). The x-component of r(= Rx) is used to compute s as shown in step 4. Here

h(x) is hash of message x, (where, x = (kpub,Ei
, IDEi

)). The length of hashed message h(x)

must be at least as long as q. The final result produced by signature generation algorithm

is concatenation of x-component of R ‘r’ and signature ‘s’ which is denoted by ‘r||s’.

Algorithm 4: ECDSA Signature Generation Algorithm

Input: Elliptic curve ε,
prime number p,
coefficients of curve a and b,
generation point G = (Gx, Gy)
order of curve q = #E
message x
hash digest of message h(x)
private key of Signature Generator kpr = d ∈ (1, q)
public key of Signature Generator kpub = d ·G = K
Output: r||s, x-component of R and signature s

1 Choose an integer as random ephemeral key ke ∈ (1, q)
2 Compute R = ke ·G
3 Let r = Rx

4 Compute s ≡ (h(x) + d · r)k−1e mod q

The basic algorithm for signature verification is shown in Algorithm 5. ECU extracts sig-

nature s and x-component of random number r, and message x, (where, x = (kpub,Ei
, IDEi

))

from certificate. ECU also calculates h(x) by using hash of x. w, u1, u2, T are calculated as

28

Algorithm 5: ECDSA Signature Verification Algorithm

Input: Elliptic curve ε,
prime number p,
coefficients of curve a and b,
generation point G = (Gx, Gy)
order of curve q = #E
message x
hash digest of message h(x)
x-component of random number r
signature s
public key of Signature Generator kpub = K
Output: Valid or Invalid Signature

1 Compute value w ≡ s−1 mod q
2 Compute value u1 ≡ w · h(x) mod q
3 Compute value u2 ≡ w · r mod q
4 Compute value T = u1G+ u2K
5 The verification rule is:

xT

{
≡ r mod q =⇒ valid signature

6≡ r mod q =⇒ invalid signature

where, xT is x-component of T

29

shown in step 1− 4. The x-component of T i.e. xT is compared with r, if they are equal it

is a valid signature otherwise it is a invalid signature.

4.6.2 Symmetric Key Generation Process

For symmetric key generation, the CSM selects any random number Rnum ∈ {2, 3....,#E},

where #E denotes the total number of points in elliptic curve. Rnum is multiplied with

generation point G = (Gx, Gy) to get some other point (kx, ky) which is then hashed by

SHA-3 256-bit algorithm. Here, kx is only hashed to get 256-bit hashed value. The first 128-

bit is used for symmetric key encryption and decryption, as well as for message authentication

HMAC. The generated keys are then distributed to all other ECUs for communication. After

certain period T this process is repeated and new keys are generated and distributed.

4.6.3 Elliptic Curve Integrated Encryption Scheme (ECIES)

In step 2 and step 3 as shown in Figure 4.2, the message packets are encrypted and send.

Here, the encryption scheme used is ECIES which is explained in this section.

ECIES is the hybrid encryption and decryption scheme based on ECC. We use different

functions for ECIES which are:

• Key Agreement Function(KAF): Function used to generate shared keys between two

parties. We use ECDHA as KAF.

• Key Derivation Function (KDF): Mechanism used to extract the key form set of keys.

We use hash of x-component of keys produced by KAF.

• Encryption and Decryption (ENC & DEC): Symmetric encryption algorithm. AES-128

bit encryption and decryption scheme is used.

• Message Authentication Code (MAC): Data used to authenticate the message. Hash

based MAC is generated using hash function.

30

• Hash (HASH): Digest function, used within KDF and the MAC functions. SHA-256

kecckak-p hash algorithm is used.

Let us follow the tradition, Alice wants to send a message to Bob. In public key cryptog-

raphy approach Alice and Bob have their private and public keys say, Alice has private key

say ‘a’, public key ‘A’ and Bob has private key ‘b’ and public key ‘B’. Both Alice and Bob

agree on using an elliptic curve ε, with constants a and b and generation point G = (Gx, Gy).

The basic idea of ECIES algorithm is to use elliptic curve deffie-hellman key exchange

(ECDH) to exchange common secret. Apply some key derivation function (like hash func-

tions) on common secret to generate symmetric key. This symmetric key is then used in

symmetric encryption, decryption and producing HMAC.

The Algorithm 6 and 7 are given below for encryption and decryption using ECIES

scheme respectively.

Algorithm 6: ECIES Encryption Algorithm

Input: Elliptic curve ε,
plain message mp

private key of Alice a
public key of Bob B
Output: cipher message with its MAC mc||mc,MAC

1 generate shared secret using KAF ksec,x where ksec = (ksec,x, ksec,y) = a ·B
2 use a KDF to generate symmetric key for encryption and message authentication

codes kenc,mac = HASH(ksec,x)
3 encrypt the plain message mc = ENC(kenc,mac,mp)
4 generate the MAC of cipher message mc,MAC = MAC(mc)
5 concatenate (mc||mc,MAC)

31

Algorithm 7: ECIES Decryption Algorithm

Input: Elliptic curve ε,
cipher message with MAC mc||mc,MAC

private key of Bob b
public key of Alice A
Output: plain message mp

1 generate shared secret using KAF ksec,x where ksec = (ksec,x, ksec,y) = b · A
2 use a KDF to generate symmetric key for encryption and message authentication

codes kenc,mac = HASH(ksec,x)
3 generate the MAC of cipher message m

′
c,MAC = MAC(mc)

4 check MAC tag with generated MAC, decryption fails if m
′
c,MAC 6= mc,MAC

5 decrypt the plain message mp = DEC(kenc,mac,mc)

32

Chapter 5

Case Study: Steer-by-wire Subsystem

In a SBW subsystem, the heavy mechanical steering column is substituted by electronic

system. It has two advantages-first, SBW subsystem eliminates the risk of steering column

entering the cockpit during frontal crash. Second, steering column is one of the heaviest part

of vehicle, its removal reduces the weight of vehicle. Less weight lowers the fuel consumption.

In this chapter, we explain our SBW case study that leverages dual-core ECUs to incorporate

dependability and security primitives.

5.1 Steer-by-wire Operational Architecture

The SBW subsystem provides the same functionalities as conventional steering column: front

axle control (FAC) and hand-wheel (HW) force feedback (HWF). The front axle control

controls the wheel direction according to hand-wheel whereas, hand-wheel force feedback

provides the mechanical like feedback to hand-wheel. The basic architecture of SBW is

shown in Fig 5.1. The rotation on hand-wheel is sensed by hand-wheel sensors and the

sensed values are fed as the input to HWS ECU1. HWS ECU1 processes the information

and creates CAN packet with processed hand-wheel sensor information. The CAN packet is

then transmitted to FAA ECU1 via CAN bus. The FAA ECU1 processes CAN packet and

turns the actuators to rotate the wheels based on the command information in th received

33

CAN packet. The wheel rotation effect is sensed by front axle sensors and processed by

FAS ECU2 and a CAN packet is transmitted to HWA ECU2 as response. The HWA ECU2

turns actuators to provide force feedback to hand-wheel. The connection between the ECU

is by CAN bus. The sensors/actuators and the ECUs are connected by point-to-point links.

Furthermore, the SBW subsystem is made FT by using dual-core ECUs, redundant-sensors

and redundant-actuators. In this work, we only focus on front axle control (FAC) part to

compute the response time and error resilience of our FT approach.

HW Force FeedbackFA Control

HWS1 HWS2 HWS3 HW Motor1 HW Motor2

FAS1 FAS2 FAS3FAA Motor1 FAA Motor2

HWS ECU1

FAA ECU1

HWA ECU2

FAS ECU2

 :Point-to-Point Link :FlexRay/CAN-FD ECU: Electronic Control Unit

HW: Hand Wheel HWS: Hand Wheel Sensor HWA: Hand Wheel Actuator

FA: Front Axle FAS: Front Axle Sensor FAA: Front Axle Actuator

Figure 5.1: Steer-by-wire Operational Architecture

5.2 Timing Model of SBW

The delay between the drivers request at the HWS and the corresponding response at the

front axle actuator (FAA) has significant impact on the working of SBW subsystem. The

end-to-end delay/response (τr) is regarded as Quality of Service (QoS) metric. If this delay

exceeds a critical threshold value τ r
max, it effects the safety and reliability of the automotive.

This critical threshold value is defined by automotive OEMs. The probability that the worst-

case response time is less than the critical threshold is termed as behavioral reliability. In

the following, we analytically model the response time for the SBW subsystem and error

34

resilience of our FT approaches. The response delayτr time is given by following equation,

τr = τp + τm + τs (5.1)

where, τp is pure delay, τm is mechatronic delay, and τs sensing delay.

The mechatronic delay is introduced by the actuators (electric motor in our case). The

sensing delay is the delay caused by sensors and the interaction of application processor of

ECUs with the sensors. The sensing and mechatronic delays are bounded by a constant

value of 3.5ms [18]. For our secure and dependable approach, the pure delay (τp) includes

ECUs computational delay for processing the control algorithm, computational delay for

processing the incorporated security and dependability primitives(depends on the execution

time of the ECU), and transmission delay including bus arbitration (depends on the type of

in-vehicle network used like CAN-FD or FlexRay). Mathematically, pure delay (τp) for our

FAC function can be written as,

τp = rcc1 · τ ecu1hws + rtc · τbus + rcc2 · τ ecu1faa ≤ τmax
p (5.2)

where τ ecu1hws and τ ecu1faa denote the computation time at HWS-ECU1 and FAA-ECU1, re-

spectively; τbus represents the transmission time for a message on an in-vehicle bus (CAN

FD, or FlexRay) from HWS-ECU1 to FAA-ECU1; rcc1 and rcc2 represent the number of

re-computations that are needed to be done at HWS-ECU1 and FAA-ECU1, respectively,

for error correction; rtc represents the number of retransmissions required for an error-free

transmission of a secure message over in-vehicle bus; and τmax
p represents maximum allow-

able τp. According to Wilwert et al. [19], with a minimum tolerable QoS score of 11.15, the

critical limit for pure delay τmax
p is 15ms, beyond which the vehicle becomes unstable and

risks the drivers safety.

Here, pure delay at FAC can be divided in two parts.

• Delay during regular operation: During regular operation the delay is only due

to computation of encryption and HMAC for secured communication at both sending

35

and receiving ends and delay due to message transmission.

τp = rcc1 · τ ecu1,RegOp
hws + rtc · τbus

+rcc2 · τ ecu1,RegOp
faa ≤ τmax

p

(5.3)

where, τ ecu1,RegOp
hws , τ ecu1,RegOp

faa denotes the delay at HWS-ECU1 and FAA-ECU1 respec-

tively during regular operation.

• Delay during key refreshment operation: During key refreshment operation the

delay is summation of delay during regular operation and delay due to key refreshment

operation (one of the protocol step, since only one step is done during critical time

period).

So above equation can be rewritten as,

τp = rcc1 · τ ecu1,RegOp
hws + rcc3 · τ ecu1,KeyRf

hws + rtc · τbus

+rcc2 · τ ecu1,RegOp
faa + rcc4 · τ ecu1,KeyRf

faa ≤ τmax
p

(5.4)

where, τ ecu1,KeyRf
hws and τ ecu1,KeyRf

faa denotes delay at HWS-ECU1 and FAA-ECU1 re-

spectively during key refreshment operation, rcc3 and rcc4 represent re-computation

due to fault at HWS-ECU1 abd FAA-ECU1 respectively.

Since, during key refreshment operation CSM handles only one ECU at a time, ei-

ther HWS-ECU1 or FAA-ECU1 computation will be carried out at one time. So the

Equation 5.4 will be

τp = rcc1 · τ ecu1,RegOp
hws + rcc · τ ecu,KeyRf

fac + rtc · τbus

+rcc2 · τ ecu1,RegOp
faa ≤ τmax

p

(5.5)

where, τ ecu1,RegRf
fac denotes key refreshment computation either at HWS or at FAA, rcc

is total re-computation at either end during faults.

36

Chapter 6

Result and Discussion

In this chapter we present our experimental set up and evaluation results timing analysis.

6.1 Security Standards

ECC: For ECC implementation, we have used a prime field curve P-192 from NIST [20].

For the prime p, the pseudo-random curve is given as

ε : y2 ≡ x3 − 3ax+ b(mod p) (6.1)

of order n. The details of curve are given in Table 6.1.

AES: For implementing AES, we follow NIST FIPS-197 [21]. We implement AES-128

bit encryption and decryption.

Table 6.1: NIST P-192 curve details
Item Value

prime modulus (p) 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF
order (#E) 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831

a coefficient (a) -0x3
b coefficient (b) 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1

x-generation point (Gx) 0x188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012
y-generation point (Gy) 0x07192B95FFC8DA78631011ED6B24CDD573F977A11E794811

cofactor (h) 1

37

SHA3: For hashing, we use SHA3-256 bit based on FIPS-202 [22]. We follow keccak−p

algorithm.

HMAC: For message authentication codes we follow NIST FIPS-198-1[23]. For hashing

we use SHA3-256 bit hash function. The key length used for HMAC is 128 bit.

6.2 Experimental Setup

We implemented the computational aspects of the proposed IDSA on Cortex-A57 in NVIDIA’s

Jetson TX2 kit [24]. ARM Cortex-A57 has 64-bit quad core ARMv8 processor running

Ubuntu 14.04.4 LTS at 2.0GHz. All the codes for authentication, key-generation and key-

distribution are written in C-language. OpenMp is used for FT-RMT implementation.

Operational Parameters: For our SBW subsystem, we assume the steering wheel

sensor sampling rate to be fixed at 420Hz, which corresponds to the sampling delay, τsample

of, 2.38ms [18].

6.3 Timing Analysis

In this sub-section, we describe the timing response of key-generation and key-establishment

process in different fault tolerant approaches. For timing analysis, we introduce soft errors at

different points in the program. Our approach emulates bit flipping in the program/memory

due to noise and/or radiation hitting the computing and/or memory elements.

6.3.1 Performance Overhead Due to Fault Tolerance Approaches

In this section, we present execution time taken by different steps of protocol (Figure 4.2)

without error. We calculate the overhead caused by FT approaches.

Table 6.2 shows execution time of different steps of the key establishment protocol (Fig-

ure 4.2) in various operational modes. Table 6.2 does not contain computation time for step

1 and step 5 because in these steps the CSM broadcasts the precomputed message packet,

38

Table 6.2: Timing of Key Generation and Establishment Steps in Different Operational
Modes

Operational Modes
Algorithm Steps (time in µsec)

Step 2 Step 3 Step 4
ECU Side CSM Side CSM Side ECU Side

NFT 5214.63 216.51 5224.71 1563.63
FT-RMT 5259.53 219.80 5226.57 1565.86

FT-RMT-QED 5306.83 220.42 5300.08 1571.29
FT-RMT-CP 5352.41 219.71 5300.93 1585.75

Table 6.3: Effect of error location on performance (for step 2 ECU side)

Error Location
Operational Modes (time in µsec)

NFT FT-RMT-QED FT-RMT-CP
@ Verification of Certificate 10223.79 8483.39 8760.96

@ ECC-Encryption (Gen Key) 10191.91 9951.42 6837.83
@ ECC-Encryption (AES-Encryption) 10202.22 10153.84 5692.02

@ ECC-Encryption (HMAC) 10323.72 10224.69 5747.74

which do not require computation. This table shows the computation time without any

error in the program. Without the fault injection (i.e. in the absence of errors), execution

time increases sequentially from NFT to FT-RMT to FT-RMT-QED to FT-RMT-CP. This

increment is due to multiple reasons such as overhead of thread creation, variable comparison

to detect error and overhead of storing temporary variables for check-pointing. In the table,

we can see that the total overhead is very insignificant (less than 1%). This is because the

computation time of the steps in the key establishment protocol are very large compared to

the summation of all overheads.

6.3.2 Effect of Error Location on Performance

Table 6.3 shows the execution time of Step 2 ECU side. In this examination, single soft error

is injected at different points in the program and observed. The fault-injection emulates bit

flipping, in the program/memory due to external noise and/or radiation. If a single error

occurs in FT-RMT mode, the entire function is recomputed to rectify the error. This results

in the computation time to be 2× the computation time without the error. In FT-RMT-

39

1 2 3 4 5

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0
2

5
0

0
0

3
0

0
0

0

No of Errors

E
xe

c
u

ti
o

n
 t

im
e

 i
n

 µ
s
)

No of CheckPoints

1
2
3
4
5
6

Figure 6.1: Effect of checkpoint and error on performance (for step 3)

QED, if error occurs during the start of program, the computation overhead is less compared

to FT-RMT. However, if error occurs around the end of program, the computation overhead

is almost the same as that of FT-RMT. FT-RMT-CP repeats the execution of those parts

where error occurred. The recomputation overhead depends on the size of code between two

consecutive checkpoints where error(s) has occured. Table 6.3 presents that overhead due

to errors at Verification of Certificate step is comparatively more than the overhead due to

errors at other locations of the program. This is because Verification of Certificate demands

majority of execution time. From the table, we observe that the performance during faults

is best in FT-RMT-CP.

6.3.3 Effect of Checkpointing on Performance with Errors

Figure 6.1 shows the execution time of the step 3 pf the key establishment protocol when

multiple errors are injected at different points with varying number of checkpoints in the pro-

gram. The number of checkpoints span from one to six, whereas number of errors introduced

vary from one to five. The errors are evenly spread at different checkpoints of the program

40

Table 6.4: Performace of Regular OPeration at Sender and Receiver ECU Nodes
Operational Mode Sender Node (time in µsec) Receiver Node (time in µsec)

NFT 130 87
FT-RMT 151 109

in order for fair and comprehensive evaluation. Here, we consider that in one checkpoint

only one error occurs. Two errors occur in one checkpoint means the first error occurs in

first computation and second error occurs in second computation. Two errors occur in two

checkpoints means two error occur in two different checkpoints.

In FT-RMT-CP, having a single checkpoint is same as FT-RMT model, where results

are compared only at the end of program. In single checkpoint, when any error occurs whole

function needs to be recomputed and as the number of errors increase the computational

time increases linearly. If we increase the number of checkpoints, the time consumption to

rectify the error decreases. From the Figure 6.1, it can be observed that the recomputation

time also depends on the error location in the program. In 6-checkpoint evaluation, a drastic

increase of computation time is observed when number of errors changed from 1 to 2. This

is because the new error (from 1 to 2) was introduced in the compute-intensive region of the

program. From this table, it can be observed that a large number of checkpoints in a program

decreases the computation overhead in the presence of large number of soft-/transient errors.

This is only applicable for programs with large computation time than the overhead of thread

creation, -variable comparison, and temporary variable storage.

6.3.4 Performance Analysis of Regular Operation

Table 6.4 shows the temporal performance obtained from our experiments. The results show

that the encryption and HMAC at the sender node takes longer time as compared to the

decryption and HMAC at receiver node. This is because in receiver node the decryption

computation is accelerated by using pre-computed tables. We observe FT-RMT at sender

node has 16.2% overhead and receiver node has 25.2% overhead as compared to NFT.

41

Table 6.5: ECU Nodes

rcc1, rcc2, rtc
rcc

Step 2 Step 2 Step 3 Step 4
ECU Side CSM Side CSM Side ECU Side

rcc1 = 2, rcc2 = 2, rtc = 2 2.38 58.08 2.40 8.50
rcc1 = 3, rcc2 = 3, rtc = 3 2.17 52.87 2.18 7.32
rcc1 = 4, rcc2 = 4, rtc = 4 1.96 47.67 1.96 6.60

6.4 Feasibility Analysis

As described in section 5.2 the pure delay or real-time deadline for transmitting a message

packet from sender node to receiver node in SBW subsystem is 15ms. This critical limit

for real-time (15ms) constitutes of combined computation time from sender node to receiver

node, as well as the message transmission time. As shown in Table 6.4, the computational

time at sender node for encryption (2-blocks of 128-bit) and HMAC (256-bit digest) is

0.151ms, and the computational time at receiving node for decryption and HMAC is 0.109ms.

The message transmission time using CAN-FD is 0.12ms (for a packet of 512 bits) [4]. The

total computational and transmission delay without error is 0.38ms (for one 512-packet of

CAN-message). Furthermore, in period of 15ms at least 6 readings are taken by sensor

(Section 6.2). Considering one block-of-AES can store the reading of one sample, at least 3

CAN frame (1 frame holds 2 reading, and in 15ms there will be 6 readings) are transmitted

within a period of 15ms without losing any sample value.

During faults in computation and transmission process, the program recomputes and

retransmits the faulty computations and packets, respectively, at the corresponding sender,

receiver nodes and/or transmission links. For this study, the different number of recomputa-

tion for each step of the protocol is shown in Table 6.5. For 1 recomutations (rcc1 = 2, rcc2

= 2) at receiver end and sender end as well as 1 retransmission (rtc = 2), we have enough

time to recompute any step of the protocol. Similarly, number of recomputation at sender

end and receiver end affecting recomputation of step of the protocol is shown in table.

Here, our key establishment protocol runs only one step during one critical time-period

and CSM can serve to only one ECU at a time.

42

This data verifies the feasibility of our approach. Our approach meets the real-time

deadline and feasible to use.

6.5 Synchronization

Synchronization of symmetric key at all ECUs is fundamental for proper functioning of the

protocol. The key is used to encrypt the messages at the sender node must be available and

used to decrypt the messages at the receiver node. Therefore, a synchronization mechanism

needs to be established. CSM node stores the list of all ECUs nodes ID number. When the

vehicle starts, the CSM authenticates and registers all ECU nodes. The CSM produces a

new symmetric key along with the expiration period T and distributes it to all ECUs. As

explained in the key establishment protocol (Figure 4.2), the CSM broadcasts SYNC message

and directs all the ECUs to use new symmetric key. After receiving the SYNC message, all

the ECU nodes use the newly established symmetric key for encryption, decryption, and

HMAC operation.

The time period field T indicates the expiration time of the symmetric key. After time

T , a new symmetric key is generated and established by the CSM. During the new key

establishment process, all the ECUs function with the current symmetric key. The CSM

has the knowledge of total number of ECU nodes, and broadcasts the SYNC message to

all the ECUs (Step 5). As soon as all the ECUs receive the SYNC message, the ECUs

copy the new key to the current key field. If an ECU node is decrypting the message it

continues without halting. However, if an ECU node is encrypting the message, it stop its

execution and resumes execution with new symmetric key. Here, the receiver ECU does not

stop the decryption process as the previously transmitted message by the sender ECU must

be decrypted using the old symmetric key. The new key is used for an on-going encryption

because the receiver node will update its symmetric key.

43

Chapter 7

Conclusion

We propose a novel ECUs authentication and symmetric key establishment protocol for

intra-vehicle network of automotive CPS. We realize ECU authentication using certificate-

based authentication. Key-establishment mechanism establishes a common symmetric (ses-

sion) key for all ECUs intra-vehicular network to implement secured communication over

the network. This protocol removes the need of storing symmetric keys in ECUs memory

permanently. Moreover, the study incorporates key refreshment policy for each symmetric

(session) key, which are updated after certain lifetime/timeframe. We leverage multi-core

ECUs to embed fault-tolerance by using redundant multi-threading (FT-RMT), performs

quick error detection (FT-QED) and accelerate performance using lightweight checkpointing

(CP).

We have implemented our proposed protocol in Cortex-A57 on NVIDIA TX2 kit. We

demonstrate the effectiveness of our proposed approach using a SBW application over CAN

FD as a case study. We show that our method provides ECU authentication, symmetric key

generation and distribution in intra-vehicle ECU communication without violating safety and

real-time constraints of the vehicle. Moreover, results reveal that our fault tolerant approach

has very minimal overhead (< 1%) and among FT-RMT, FT-RMT-QED and FT-RMT-CP,

the lowest overhead of recomputation during fault occurrence is of FT-RMT-CP.

44

Bibliography

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,

B. Kantor, D. Anderson, H. Shacham, et al., “Experimental security analysis of a mod-

ern automobile,” in Security and Privacy (SP), 2010 IEEE Symposium on, pp. 447–462,

IEEE, 2010.

[2] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehicle,”

Black Hat USA, vol. 2015, p. 91, 2015.

[3] A. Munir and F. Koushanfar, “Design and performance analysis of secure and depend-

able cybercars: A steer-by-wire case study,” in Consumer Communications & Network-

ing Conference (CCNC), 2016 13th IEEE Annual, pp. 1066–1073, IEEE, 2016.

[4] B. Poudel, N. K. Giri, and A. Munir, “Design and comparative evaluation of gpgpu-and

fpga-based mpsoc ecu architectures for secure, dependable, and real-time automotive

cps,” in Application-specific Systems, Architectures and Processors (ASAP), 2017 IEEE

28th International Conference on, pp. 29–36, IEEE, 2017.

[5] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for computer net-

works,” IEEE Communications magazine, vol. 32, no. 9, pp. 33–38, 1994.

[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication

and secret key generation,” in Design Automation Conference, 2007. DAC’07. 44th

ACM/IEEE, pp. 9–14, IEEE, 2007.

[7] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and practi-

tioners. Springer Science & Business Media, 2009.

[8] I. O. for Standardization, “ISO 26262 road vehicles - functional safety,” Feb 2016.

45

[9] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim, H. Naeimi, D. S.

Gardner, and S. Mitra, “Qed: Quick error detection tests for effective post-silicon vali-

dation,” in Test Conference (ITC), 2010 IEEE International, pp. 1–10, IEEE, 2010.

[10] R. M. Ishtiaq Roufa, H. Mustafaa, S. O. Travis Taylora, W. Xua, M. Gruteserb,

W. Trappeb, and I. Seskarb, “Security and privacy vulnerabilities of in-car wireless

networks: A tire pressure monitoring system case study,” in 19th USENIX Security

Symposium, Washington DC, pp. 11–13, 2010.

[11] T. Huang, J. Zhou, Y. Wang, and A. Cheng, “On the security of in-vehicle hybrid

network: Status and challenges,” in International Conference on Information Security

Practice and Experience, pp. 621–637, Springer, 2017.

[12] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for the controller area net-

work (can) communication protocol,” in Cyber Security (CyberSecurity), 2012 Interna-

tional Conference on, pp. 1–7, IEEE, 2012.

[13] M. Wolf and T. Gendrullis, “Design, implementation, and evaluation of a vehicular

hardware security module,” in International Conference on Information Security and

Cryptology, pp. 302–318, Springer, 2011.

[14] E. Beckschulze, F. Salewski, T. Siegbert, and S. Kowalewski, “Fault handling ap-

proaches on dual-core microcontrollers in safety-critical automotive applications,” in

International Symposium On Leveraging Applications of Formal Methods, Verification

and Validation, pp. 82–92, Springer, 2008.

[15] U. Keskin, “In-vehicle communication networks: a literature survey,” Computer Science

Report, vol. 10, 2009.

[16] C. Specification, “Version 2.0,” Robert Bosch GmbH, 1991.

[17] A. Munir and F. Koushanfar, “Design and analysis of secure and dependable automo-

tive cps: A steer-by-wire case study,” IEEE Transactions on Dependable and Secure

Computing, 2018.

46

[18] K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller, “Timing modeling and analysis for

autosar-based software development: a case study,” in Proceedings of the Conference on

Design, Automation and Test in Europe, pp. 642–645, European Design and Automation

Association, 2010.

[19] C. Wilwert, Y.-Q. Song, F. Simonot-Lion, and T. Clément, “Evaluating quality of ser-

vice and behavioral reliability of steer-by-wire systems,” in 9th IEEE International Con-

ference on Emerging Technologies and Factory Automation-EFTA’2003, vol. 1, pp. 193–

200, IEEE, 2003.

[20] P. FIPS, “186-4,” Digital Signature Standard (DSS), 2013.

[21] N. F. Pub, “197: Advanced encryption standard (aes),” Federal information processing

standards publication, vol. 197, no. 441, p. 0311, 2001.

[22] M. J. Dworkin, “Sha-3 standard: Permutation-based hash and extendable-output func-

tions,” tech. rep., 2015.

[23] P. FIPS, “198-1,” The Keyed-Hash Message Authentication Code (HMAC), 2008.

[24] N. Corporation, “Data sheet nvidia jetson tx2 systme-on-module,” 2017.

47

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction and Motivation
	Related Works
	Background
	In-Vehicle Functional Domains
	Powertrain Domain
	Chassis Domain
	Body Domain
	Telematics Domain
	Passive Safety Domain

	In-Vehicle Network
	Local Interconnect Network (LIN)
	Media Oriented System Transport (MOST)
	Ethernet
	CAN
	CAN-FD
	FlexRay

	Elliptic Curve Cryptography (ECC)
	Public and Private Key Generation
	Scalar Multiplication (Point Multiplication)
	Elliptic Curve Diffie-Hellman key sharing (ECDH) Algorithm

	Integrated Dependable and Secure Approach (IDSA)
	Dependability
	Security Threat Model
	Cardinal Ingredients of the Proposed Approach
	Certificate Generation
	ECU Authentication
	Symmetric Key Generation and Establishment

	Proposed Symmmetric Key Establishment Protocol
	Regular In-Vehicle Operation
	Algorithms used to Implement Proposed Key Exchange Protocol
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Symmetric Key Generation Process
	Elliptic Curve Integrated Encryption Scheme (ECIES)

	Case Study: Steer-by-wire Subsystem
	Steer-by-wire Operational Architecture
	Timing Model of SBW

	Result and Discussion
	Security Standards
	Experimental Setup
	Timing Analysis
	Performance Overhead Due to Fault Tolerance Approaches
	Effect of Error Location on Performance
	Effect of Checkpointing on Performance with Errors
	Performance Analysis of Regular Operation

	Feasibility Analysis
	Synchronization

	Conclusion
	Bibliography

