
Predictive Modelling of Student Reviewing Behaviors in an
Introductory Programming Course

Yancy Vance Paredes
Arizona State University

yvmparedes@asu.edu

David Azcona
Dublin City University

David.Azcona@insight-
centre.org

I-Han Hsiao
Arizona State University

Sharon.Hsiao@asu.edu

Alan F. Smeaton
Dublin City University

Alan.Smeaton@insight-
centre.org

ABSTRACT
In this paper, we developed predictive models based on stu-
dents’ reviewing behaviors in an Introductory Programming
course. These patterns were captured using an educational
technology that students used to review their graded paper-
based assessments. Models were trained and tested with
the goal of identifying students’ academic performance and
those who might be in need of assistance. The results of the
retrospective analysis show a reasonable accuracy. This sug-
gests the possibility of developing interventions for students,
such as providing feedback in the form of effective reviewing
strategies.

Keywords
Programming Learning, Educational Technology, Educational
Data Mining, Predictive Modelling, Behavioral Analytics

1. INTRODUCTION
In Computer Science Education research, identifying stu-
dents who may be having difficulties in programming courses
is important. Several studies have used students’ digital
footprints, such as keystrokes, program edits, compilation,
executions, or submissions obtained from a programming
learning environment [2, 9] to achieve this. Unfortunately,
other sources, such as paper-based assessments, are often
less explored because of their nature. Furthermore, captur-
ing these data is quite challenging.

In our research lab, we developed an educational technology
platform, WebPGA1, to bridge this gap. Using this system
we were able to collect data and conduct an initial investiga-
tion. Based on the results of a subjective evaluation from a

1https://cidsewpga.fulton.asu.edu

previous study [12], students were looking for a more person-
alized reviewing experience. This could be achieved by using
a data-driven approach based on efficient reviewing patterns
extracted from historical data of the student’s cohorts. This
paper explores how to develop predictive models on these
scenario with two major goals. First, to identify students
who might be in need of assistance; and, second, to predict
their academic performance. By doing so, the suggestion of
personalized reviewing actions becomes feasible.

2. LITERATURE REVIEW
2.1 Behavioral Analytics in the Programming

Learning
Modelling of student’s programming learning is not a new
topic. These models reside in intelligent tutoring systems
(ITS) or any adaptive educational systems. The learning of
the students are normally estimated based on their interac-
tions with the system (such as tutors) which then results
to an update of the knowledge components. In program-
ming learning, several parameters can be used to estimate
a student’s knowledge in coding, such as sequence of pro-
gramming problem solving success [5], programming assign-
ments progression [13], assignment submission compilation
behavior [1], and generic Error Quotient measures [4]. In
the learning analytics literature, Blikstein [3] has proposed
an automatic analytic tool to access student’s learning in
an open-ended environment, which considers a range of be-
havioral analytics to predict learning, such as the amount of
code changing, compilation behavior, and code editing.

2.2 Multimodal Learning Analytics
Several approaches have been adopted to integrate multi-
modal learning analytics to gather comprehensive informa-
tion about a class (i.e. collaborative confluence [11], mobile
devices [14], and EduAnalysis [8]). In addition to traditional
click-stream logs derived from educational systems, these
methods combine and present data from various sources, en-
capsulating a wide range of learning activities which encode
the entire learning process. In a recent learning analytics
handbook, the state of the art of multimodal learning ana-
lytics research is summarized. These involve the commonly
captured and use data formats, such as textual, audio, spa-
tial, visual and linguistics, etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/160292643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3. METHODOLOGY
3.1 Research Platform
WebPGA was developed to connect the physical and dig-
ital learning spaces in programming learning. A detailed
discussion about its design can be found in [7]. Through
this system, paper-based assessments can be digitized. Also,
grading and distribution can be done online. Students can
access their graded assessments virtually anytime and any-
where. Whenever the student interacts with the system, all
actions are captured. Examples of these actions include: log-
ging in and out, selecting a question to review, time spent
reviewing a question, bookmarking a question, navigating
through all the questions of an exam, and taking of notes.

3.2 Data Collection
A classroom study was conducted in a Data Structures and
Algorithms course during the Fall 2016 semester. The in-
structor administered a total of 3 exams and 13 quizzes
throughout the semester. Among the 13 quizzes, only 6
were graded while 7 were for attendance only (full credit
regardless of the correctness of answers). A total of 283 stu-
dents were enrolled in the course. However, in this study,
only 246 (86.93%) students were included as we excluded
those who dropped out of the course in the middle of the
semester, did not take the three exams, or did not use the
research platform.

In this study, review actions performed by students were
analyzed. A review action is an event where a student ex-
amines his or her graded answer. This includes reading the
question, the answer, the assigned score and the feedback
provided by the grader (see Fig. 1).

3.3 Data Processing
The students were labelled according to their overall aca-
demic performance. To achieve this, we computed for the
average of the three exams of each student (see Fig. 2 for
the distribution). Using Jenks natural breaks classification
method [10], the break-point of 77.60% was obtained and
used as a threshold to divide the students into two groups,
namely high-performer and low-performer.

4. PREDICTIVE MODELLING
4.1 Student Digital Footprint
A student’s digital footprint is shaped to combine the differ-
ent modalities of student data and leverage that information
to analyse the behaviour of the students on these courses
using Artificial Intelligence techniques. In this study, logs
captured by WebPGA as students browse through their dig-
itized paper-based assessments have been leveraged to model
their reviewing behavior.

First, a set of features was extracted based on the students’
interaction within the system and the different actions they
performed. For each assessment, the following were gath-
ered: (1) their grades, (2) whether they reviewed the as-
sessment or not, and (3) when they reviewed it for the first
time. General engagement features were also collected. This
includes: (1) number of distinct days when the system was
used by each student, and (2) the number of interactions
or how many assessments were reviewed per student. The

Table 1: Feature correlations with the cumulative
exam average

Feature name Correlation coefficient

Number of assessments covered 34%*

Average time to review −0.14%

Distinct Days 28%*

Distinct Actions 12%

Number of web interactions 24%*

Quiz 6 Mark 38%*

Quiz 10 Mark 35%*

* p− value < 0.01

predictive power of these features is measured by correlat-
ing their values with the cumulative exam average (target).
Table 1 shows a few of those features and the corresponding
correlation coefficient. Students were more likely to obtain a
better score on the average exam grade as they (1) reviewed
more assessments; or (2) accessed the system regularly on
different days; or (3) obtained higher scores on their quizzes.
On the other hand, the later the student reviewed the as-
sessments (on average), the lesser the chance he or she had
in getting a high grade. This analysis confirmed the predic-
tive power of our variables individually. In contrast, other
parameters such as whether the students reviewed specific
assessments or how long it took them to review particular
assessments were individually not correlated with the aver-
age grade target.

4.2 Classification and Regression Modelling
A bag of learning algorithms were trained retrospectively
using the students’ digital footprint and their observed be-
havioral patterns. We analyzed their power to predict the
students’ performance and their generalizability. We used
cross-validation to train and test on the same dataset. The
target was to predict whether a student will score above or
below the threshold of each cumulative exam average. Note
that the cumulative exam averages (our target for each pe-
riod) include: (1) the first exam score before it took place,
(2) an average between the first and second exam before
the second exam, and (3) an average of the three exams be-
fore the third exam was taken by students. The threshold,
77.60%, was used to divide high and low performers, which
is derived in Section 3.3.

The three exams divided the entire semester into four peri-
ods, namely Before Exam1, Exam1-Exam2, Exam2-Exam3,
and After Exam3. For each period, a learning function is
trained to predict a student’s likelihood of scoring above or
below the performance threshold on their cumulative aver-
age grades. For instance, the first classifier was trained to
predict the first exam outcome (above or below the thresh-
old), the second one was to predict the average outcome
between the first two exams, and so on. In a given period,
the features mentioned above (Table 1) were extracted from
the student’s interactions with the system along with their
reviewing patterns. A classifier was built by concatenating
all the features from previous assessments, such as scores
and reviewing times.



Figure 1: Screenshot of what students see when they review a question

Figure 2: Distribution of students’ academic perfor-
mance

Table 2: Features per period

Period No. of features Students below threshold

Before Exam1 16 86 (34.96%)
Exam1-Exam2 34 93 (37.80%)
Exam2-Exam3 52 89 (36.18%)
After Exam3 55 89 (36.18%)

Table 2 shows how more features were concatenated as stu-
dents were being assessed throughout the semester. The
percentage of students below the threshold was also checked.
It shows that the two target classes (above and below) were
balanced.

In terms of the features’ importance, their weights were plot-
ted in Figure 3 using a heatmap. The general engagement
features, such as the number assessments reviewed by stu-
dents or the number of distinct days students logged in, were
used individually in the model. Their weights were calcu-
lated per period and plotted on the graph. In addition,
features developed which were specific for each assessments
were grouped (mark or score, whether they reviewed these
assessments and how early they reviewed them) into three
single parameters: Mark, Reviewed and Time. Those three
parameters aggregated the importance for each of those cat-
egories. For instance, the features that capture the time
students review each assessment for the first time were clus-
tered into one parameter, Time, that adds up the weights
of all of them for the importance graph. Therefore, Figure
3 shows the following:



Figure 3: Feature Importance Across Periods

• Across all periods, these three parameters (the mark
of the assessment, the review patterns and the time to
attend to review) consistently remained the key pre-
dictors among all the classifiers.

• The feature importance converged over time. There
were more diverse predictors for the first classifier. It
could possibly be due to the relatively fewer items that
could be reviewed and/or students were learning how
to use the system.

• The parameters review patterns and the time to attend
to review gradually increased their importance over
time until the third exam, which highlighted the na-
ture of programming as accumulative. Students relied
on studying past assessments and attended to review
them sooner.

• Another key parameter the mark of the assessment
gained importance from the first to the second exam
and loses it from the second to the third. It become
more important how and when students had reviewed
than their previous scores in quizzes and exams.

The empirical error minimization approach was employed
to determine the learning algorithm with the fewest empir-
ical error from a bag of classifiers C[6]. Cross-validation
was utilized to train and test the bag of classifiers using 10
folds. Figure 4 shows a visual comparative analysis between
classifiers using the Receiver Operating Characteristic Area
Under the Curve (ROC AUC), a well-known metric to eval-
uate binary classifiers, and the number for each classifier on
each period is an average of the metric per fold. In addition,
Table 3 shows the chosen learning algorithm, SVM with a
linear kernel, and the results for the weighted average preci-
sion and F1-metric, which combines precision and recall, for
each period. The values for the metrics shown are the mean
and the standard deviation for the cross validation folds.

In addition, a regression model was built to predict the pre-
cise cumulative exam average grade for each students on
these periods. In a similar manner, a linear regression func-
tions was constructed retrospectively per period. Cross-
validation was employed using 10 folds. The performance
of the linear regression function can be found in Figure 5.
Table 6 shows the means and the standard deviation of the
folds for each period using the Coefficient of Determination

Figure 4: Classification Performance using ROC
AUC

Table 3: Linear SVM Classification Performance
throughout the periods

Period Precision F1-score
Mean (SD) Mean (SD)

Before Exam1 70.65% (7.89%) 76% (2.76%)
Exam1-Exam2 93.03% (4.45%) 84.66% (6.91%)
Exam2-Exam3 96.55% (2.92%) 90.84% (4.58%)
After Exam3 100% (0%) 95.59% (3.51%)

Figure 5: Linear Regression Performance using R2

Table 4: Linear Regression Performance throughout
the periods

Period R2 MAE
Mean (SD) Mean (SD)

Before Exam1 -0.1411 (0.2231) 0.0843 (0.0074)
Exam1-Exam2 0.6404 (0.1221) 0.0476 (0.0099)
Exam1-Exam3 0.8752 (0.0495) 0.0266 (0.0049)
After Exam3 1.0 (0.0) 0.0 (0.0)



Figure 6: Linear Regression Predictions vs. Actual
Results before the third exam

(R2) and the Mean Absolute Error (MAE). In Figure 6,
the predicted cumulative target grades were plotted with
respect to the actual results for each of the students before
the third exam period.

5. CONCLUSIONS
This retrospective analysis managed to demonstrate (1) the
gathering of student data, which tells us their reviewing
learning process; (2) the extraction of features; and (3) the
identification of patterns which could be used for predic-
tions. These predictions reached a usable accuracy for po-
tential interventions and feedback to students. Both mod-
els worked well and increased their performance every week
and period as students completed and reviewed more as-
sessments and more timing and engagement features were
extracted.

After the last exam was finished, the three exam scores could
be utilized to calculate the average exam score and, there-
fore, the classification and regression models made no mis-
take. It is now possible to leverage the patterns extracted
from this reviewing data to predict how a new incoming co-
hort of students will perform in next versions of this course,
intervene and provide personalized help to those in need to
follow desired reviewing strategies.

6. REFERENCES
[1] A. Altadmri and N. C. Brown. 37 million compilations:

Investigating novice programming mistakes in
large-scale student data. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education, pages 522–527, NY, US, 2015. ACM.

[2] D. Azcona and A. F. Smeaton. Targeting at-risk
students using engagement and effort predictors in an
introductory computer programming course. In
European Conference on Technology Enhanced
Learning, pages 361–366, NY, USA, 2017. Springer.

[3] P. Blikstein. Using learning analytics to assess
students’ behavior in open-ended programming tasks.
In Proceedings of the 1st international conference on
learning analytics and knowledge, pages 110–116, NY,
US, 2011. ACM.

[4] A. S. Carter, C. D. Hundhausen, and O. Adesope. The
normalized programming state model: Predicting
student performance in computing courses based on
programming behavior. In Proceedings of the eleventh
annual International Conference on International
Computing Education Research, pages 141–150, NY,
US, 2015. ACM.

[5] J. Guerra, S. Sahebi, Y.-R. Lin, and P. Brusilovsky.
The problem solving genome: Analyzing sequential
patterns of student work with parameterized exercises.
In Educational Data Mining 2014, North Carolina,
US, 2014. EDM.

[6] L. Gyorfi, L. Devroye, and G. Lugosi. A probabilistic
theory of pattern recognition, 1996.

[7] I.-H. Hsiao, P.-K. Huang, and H. Murphy. Uncovering
reviewing and reflecting behaviors from paper-based
formal assessment. In Proceedings of the Seventh
International Learning Analytics & Knowledge
Conference, pages 319–328, NY, US, 2017. ACM.

[8] I.-H. Hsiao and Y.-L. Lin. Enriching programming
content semantics: An evaluation of visual analytics
approach. Computers in Human Behavior, 72:771–782,
2017.

[9] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Borstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, et al. Educational data mining
and learning analytics in programming: Literature
review and case studies. In Proceedings of the 2015
ITiCSE on Working Group Reports, pages 41–63, NY,
USA, 2015. ACM.

[10] G. F. Jenks. The data model concept in statistical
mapping. International yearbook of cartography,
7:186–190, 1967.

[11] R. Martinez-Maldonado, Y. Dimitriadis,
A. Martinez-Monés, J. Kay, and K. Yacef. Capturing
and analyzing verbal and physical collaborative
learning interactions at an enriched interactive
tabletop. International Journal of Computer-Supported
Collaborative Learning, 8(4):455–485, 2013.

[12] Y. V. Paredes, P.-K. Huang, H. Murphy, and I.-H.
Hsiao. A subjective evaluation of web-based
programming grading assistant: Harnessing digital
footprints from paper-based assessments. In CEUR
Workshop Proceedings, volume 1828, pages 23–30,
2017.

[13] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program.
In Proceedings of the 43rd ACM technical symposium
on Computer Science Education, pages 153–160, NY,
US, 2012. ACM.

[14] K. VanLehn, S. Cheema, J. Wetzel, and D. Pead.
Some less obvious features of classroom orchestration
systems. In Educational Technologies: Challenges,
Applications and Learning Outcomes. Nova Science
Publishers, Inc., NY, US, 2016.


