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Summary 

Frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND) are 

two related fatal neurodegenerative diseases showing major neuropathological, 

genetic and clinical overlap. The most frequent genetic mutation causing FTLD and 

MND is a GGGGCC hexanucleotide repeat expansion in the non-coding region of 

the C9orf72 gene. Despite the lack of an initiation ATG codon and its intronic 

location, the repeat is translated into aggregating dipeptide-repeat (DPR) proteins. 

Translation of the sense strand results in poly-GA, poly-GR, and poly-GP, while 

translation of the antisense strand leads to poly-PR, poly-PA and additional poly-

GP proteins. All DPR proteins predominantly co-aggregate in neuronal cytoplasmic 

inclusions, that can be labeled with p62 antibodies, a marker of the ubiquitin-

proteasome system, but are distinct from the TDP-43 inclusion, another 

neuropathologic hallmark of FTLD and MND. Since DPR protein deposition 

precedes the symptoms in C9orf72 patients, their role for the disease is still under 

intense debate. For poly-GA and the arginine-rich DPR proteins poly-GR and poly-

PR toxicity has been shown in various model systems. In a recent in vitro study 

from our lab Unc119 was identified in poly-GA immunoprecipitates. I confirmed 

this finding in C9orf72 patient tissue by showing co-aggregation of Unc119 in DPR 

aggregates (May&Hornburg&Schludi et al., 2014; not part of this cumulative 

dissertation). 

Based on these initial findings, the overall goal of my studies was to elucidate 

whether and how DPR proteins contribute to FTLD and MND pathophysiology 

using a mouse model and patient tissues.  

In the first part, I analyzed the distribution pattern of the different DPR species and 

Unc119 aggregates in C9orf72 cases subclassified into FTLD, MND or FTLD/MND 

according to neuropathological criteria. Most inclusions were present in neurons, 

mainly in the cytoplasm and to a lesser extent in the nucleus and in dystrophic 

neurites. The majority of intranuclear inclusions was adjacent to the nucleolus and 

colocalized with heterochromatin and histone 3 dimethylated at lysine 9 

(H3K9me2), a marker for transcriptional silencing. Additionally, a small number of 

aggregates were found in ependymal and subependymal cells. Since the regional 

distribution of poly-GA aggregates does not correlate with areas of 

neurodegeneration, I quantitatively analyzed the distribution and correlation of 

DPR proteins with disease subtypes. This revealed a significant increased number 
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of poly-PR inclusions in the CA3/4 region of FTLD cases compared to cases with 

MND, although poly-PR inclusions were very rare in the entire brain of both 

clinical subtypes. In contrast, poly-GA showed most severe inclusion pathology of 

all DPR proteins in C9orf72 cases. Moreover, inclusions of poly-GA, as well as its 

interacting protein Unc119, were significant more abundant in the granular cell 

layer of the cerebellum in FTLD cases compared to MND or FTLD/MND cases. 

These findings suggest a crucial role of poly-GA to the pathological cascade and a 

cerebellar involvement in the C9orf72 disease.  

To address the causal role of poly-GA to C9orf72 disease, I analyzed a new 

transgenic mouse model expressing (GA)149-CFP in the second part of my thesis. 

These mice developed poly-GA aggregates mainly in neurons of brainstem, spinal 

cord and deep cerebellar nuclei that increased with age. Remarkably, poly-GA 

pathology was accompanied by progressive regional activation of microglia in 

transgenic mice, shown by Iba1 and CD68 expression. At 12 months, poly-GA mice 

showed no overt neuron loss but mildly increased TDP-43 phosphorylation. 

Furthermore, I analyzed poly-GA interacting proteins and newly identified co-

aggregation of Mlf2 with poly-GA in tissues from C9orf72 patients and transgenic 

mice. In-depth behavioral phenotyping revealed abnormal gait at four months of 

age and progressive balance impairment. Thus, poly-GA inclusion pathology likely 

causes neuronal dysfunction even prior to overt neurodegeneration, which may 

explains the prodromal behavioral deficits in C9orf72 patients. 

Taken together, my studies provide the first quantitative analysis of DPR 

protein aggregates in C9orf72 patient tissue and show distinct distribution of 

DPR proteins in FTLD and MND cases, although regional DPR aggregation 

correlates poorly with neurodegeneration. In addition, colocalization of 

previously unrecognized para-nucleolar DPR inclusions with heterochromatin 

suggests a link to transcriptional silencing. Furthermore, I established the first 

germline transgenic poly-GA mouse and demonstrated that poly-GA triggers 

motor deficits presumably due to inflammation and sequestration of Mlf2 and 

other proteins leading to neuronal dysfunction prior to cell death. 
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Zusammenfassung 

Frontotemporale Lobärdegeneration (FTLD) und Motoneuron Erkrankung (MND) 

sind zwei tödlich verlaufende Neurodegenerative Erkrankungen mit ähnlichen 

neuropathologischen, genetischen und klinischen Symptomen. Die häufigste 

genetische Mutation ist eine Verlängerung der GGGGCC Hexanucleotid-Sequenz im 

nicht-codierenden Bereich des C9orf72 Gens. Die Sequenz wird translatiert, obwohl 

sie in einem Intron lokalisiert ist und kein ATG Startcodon aufweist. Die so 

entstehenden Proteine bestehen aus einem sich wiederholenden Dipeptid (DPR 

Proteine). Das Sense-Transkript wird in poly-GA, poly-GR und poly-GP translatiert, 

das Antisense-Transkript in poly-PR, poly-PA und ebenfalls in poly-GP. Die DPR 

Proteine aggregieren gemeinsam in neuronalen Einschlüssen, die mit p62, einem 

Marker für das Ubiquitin-Proteasom System, kolokalisieren. Diese Einschlüsse haben 

kaum Überlapp mit den TDP-43 positiven Aggregaten, die auch bei anderen Formen 

von FTLD und MND gefunden werden. Da die DPR Aggregate mehrere Jahre vor 

den klinischen Symptomen auftreten, wird ihre Rolle zum Krankheitsverlauf 

kontrovers diskutiert. poly-GA und die Arginin-reichen DPR Proteine poly-GR und 

poly-PR sind in zahlreichen Modellsystemen toxisch. Unser Labor identifizierte vor 

kurzem in Zellkultur Unc119 als Interaktor von poly-GA. Ich konnte Unc119 in den 

DPR Aggregaten von C9orf72 Patienten nachweisen und so die in vitro Daten 

verifizieren (May&Hornburg&Schludi et al., 2014; nicht Teil der kumulativen 

Dissertation). 

Deshalb wollte ich durch Analyse von Patientengewebe und einem Mausmodell 

herausfinden ob und wie die DPR Proteine zur Pathogenese von FTLD und MND 

beitragen.  

Im ersten Teil meiner Doktorarbeit verglich ich das Verteilungsmuster von DPR 

Proteinen und Unc119 in C9orf72 Patienten mit der neuropathologischen Diagnose 

FTLD, MND und FTLD/MND. Fast alle Einschlüsse waren in Neuronen, 

hauptsächlich in Zytoplasma und seltener im Nukleus und in dystrophen Neuriten. 

Die Mehrheit der intranukleären Einschlüsse grenzt an den Nukleolus und 

kolokalisiert mit Heterochromatin und dimethyliertem Histon 3 (H3K9me2), einem 

Marker für inaktive Genesegmente. Einige Aggregate waren auch in Ependym- und 

Subependymzellen zu finden. Da das Verteilungsmuster von poly-GA Aggregaten 

schlecht mit Neurodegeneration korreliert, analysierte ich die quantitative Verteilung 

der DPR Proteine in den verschiedenen Krankheitsgruppen. In dieser Analyse 
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detektierte ich signifikant mehr poly-PR Einschlüsse in der CA3/4 Region von FTLD 

Patienten verglichen mit MND Patienten, obwohl im ganzen Gehirn beider 

Patientengruppen poly-PR Aggregate sehr selten vorkamen. poly-GA zeigte die 

stärkste Einschlusspathologie. Überdies waren Einschlüsse von poly-GA, und von 

seinem Interaktor Unc119, in der zerebellaren Körnerzellschicht von FTLD Patienten 

verglichen mit MND oder FTLD/MND Patienten signifikant erhöht. Diese 

Entdeckungen legen nahe, dass poly-GA den Krankheitsverlauf beeinflusst und das 

Zerebellum mit involviert ist. 

Um die kausale Rolle von poly-GA zur C9orf72 Erkrankung zu untersuchen, 

fokussierte ich mich im zweiten Teil meiner Doktorarbeit auf ein neues transgenes 

Mausmodell, welches (GA)149-CFP exprimiert. Die transgenen Mäuse entwickelten 

zunehmend poly-GA Aggregate in den tiefen Kleinhirnkernen, im Hirnstamm und im 

Rückenmark. Parallel dazu kommt es zu einer zunehmenden lokalen Mikroglia-

Aktivierung mit Expression von Iba1 und CD68. Obwohl pathologisches TDP-43 

leicht zunahm, zeigten die poly-GA Mäuse keinen offensichtlichen Verlust an 

Neuronen. Ich identifizierte Mlf2 als ein neues mit poly-GA interagierendes Protein, 

indem ich dessen Ko-Aggregation im Mausmodell und in C9orf72 Patienten 

nachweisen konnte. Mit Verhaltensanalysen konnte ich in den transgenen Mäusen 

eine progressive Gang- und Gleichgewichtsstörung nachweisen. poly-GA 

Ablagerungen stören also wahrscheinlich schon vor einer offensichtlichen 

Neurodegeneration die neuronalen Funktionen, was die prodromalen Symptome von 

C9orf72 Patienten erklären könnte. 

Zusammengefasst habe ich die erste quantitative Analyse von DPR Proteinen in 

C9orf72 Patienten durchgeführt, in der ich eine unterschiedliche Verteilung von 

DPR Proteinen zwischen FTLD und MND Patienten detektierte, obwohl DPR 

Aggregate nicht mit Neurodegeneration korrelieren. Die Kolokalisierung von 

bisher nicht beschriebenen para-nukleolaren DPR Aggregaten mit 

Heterochromatin lässt auf eine Verbindung mit Gen-Inaktivierung schließen. 

Außerdem etablierte ich das erste keimbahngängige transgene poly-GA 

Mausmodell, in dem ich zeigen konnte, dass poly-GA motorische Störungen 

verursacht. Diese motorischen Störungen entstehen vermutlich durch 

fehlfunktionierende Neuronen, ausgelöst durch Mikroglia-Aktivierung und 

Sequestrierung von Mlf2 und anderen Proteinen. 
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I. Introduction 

1  Terminology of FTD/FTLD and ALS/MND 

Frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND) are two 

devastating neurodegenerative disorders with overlapping clinical, neuropathological and 

genetic features. The neuropathological diagnosis FTLD is typically associated with the 

clinical diagnosis frontotemporal dementia (FTD). FTD is one of the leading causes of 

presenile dementia (Vieira et al., 2013) and, the third most common form of dementia at all 

age groups after Alzheimer´s disease and dementia with Lewy bodies, (Bang et al., 2015).  

MND has an average prevalence of 5.4 per 100,000 people in European countries (Chio et al., 

2013) and the distinction between clinical syndrome and the pathological process is somewhat 

inconsistent (Al-Chalabi et al., 2016). The term MND is often used to cover a spectrum of 

neurodegenerative disorders including the most common form, amyotrophic lateral sclerosis 

(ALS), also known as Lou Gehrig´s disease.  In the United States, the term ALS is used as an 

umbrella term for all forms of the MND disease. In the following, the term ALS denotes the 

clinical diagnosis and MND denotes the neuropathological diagnosis. 

 

1.1 Clinical characterization 

1.1.1 The clinical syndrome FTD 

In 1892, Arnold Pick, a Czech neurologist, gave the first description of FTD. The patient, a 

71-year-old man, suffered from rapidly progressive mental retardation with apathy and 

aphasia, but his motor system was not impaired (Pick A. 1892). These exclusively cognitive 

deficits without motor symptoms represent the key characteristics of FTD. 

With continuing advances in clinical diagnostics and imaging techniques, FTD now 

encompasses three main clinical variants: The behavioral-variant frontotemporal dementia 

(bvFTD) and the primary progressive aphasia (PPA), whereby the latter comprises 

progressive non-fluent aphasia (PNFA) and semantic dementia (SD) (Bang et al., 2015). The 

different clinical symptoms of the three subtypes manifest as a result of a different regional 

pattern of brain atrophy in the frontal and temporal lobe, measured by structural imaging 

using MRI and CT (Rosen et al., 2002). 

bvFTD is the most frequent variant affecting more than half of all FTD patients (Hogan et al., 

2016). The main diagnostic criteria are progressive deterioration of behavior and cognition 

with behavioral disinhibition, apathy and loss of sympathy or empathy resulting from 

degeneration of the frontal lobe (Rascovsky et al., 2011). PPA is characterized by a 

progressive decline in language skills, but while patients with PNFA suffer from 
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agrammatism and apraxia of speech caused by atrophy in the left posterior frontal and insular 

region, SD features fluent speech with impaired single-word comprehension and 

confrontation naming due to anterior temporal lobe degeneration (Gorno-Tempini et al., 

2011). The average age of disease onset is 59 years (Kansal et al., 2016). With progression of 

disease the symptoms of the three clinical variants often converge and the patients develop 

globally impaired cognition (Bang et al., 2015). Death due to pneumonia or other secondary 

infections typically occurs about 8 years after symptom onset (Rascovsky et al., 2011). 

 

1.1.2 The clinical syndrome ALS 

The first clinical description of ALS reaches back to the early 19th century, but it was Jean-

Martin Charcot who deduced in 1874 that muscle atrophy was caused by sclerosis in the 

spinal cord, and the disease was henceforth termed amyotrophic lateral sclerosis (Rowland, 

2001).  

The clinical syndrome ALS presents as a combination of signs involving the upper and lower 

motor neurons of the brainstem and/or the spinal cord leading to progressive paralysis. It is 

distinct from primary lateral sclerosis (PLS) and progressive muscular atrophy (PMA), which 

affect either only the upper or only the lower motor neurons. The clinical hallmark of PMA is 

the presence of weakness, muscle atrophy and fasciculation, whereas PLS typically results in 

a pathologic spread of reflexes like rhythmic muscular contractions and relaxations (Brooks et 

al., 2000; Kiernan et al., 2011). Nevertheless, most PLS patients subsequently develop 

symptoms of lower motor neuron degeneration. Thus, ALS appears to be a disease continuum 

with the two extreme subtypes PMA and PLS (Al-Chalabi et al., 2016). The mean age of ALS 

disease onset is 61.8 years (Chio et al., 2013) and most patients die within 2-4 years after 

symptom onset as a consequence of respiratory failure (Haverkamp et al., 1995). 

 

1.1.3 The clinical syndrome FTD/ALS 

As mentioned earlier, the shared clinical symptoms of FTD and ALS support the view that 

both diseases are two extreme ends of a disease continuum with predominantly cognitive 

symptoms at the one end, and predominantly motor dysfunction at the other. With disease 

progression 5-15% of the FTD patients develop ALS that meets clinical diagnosis criteria and 

a greater proportion develop some clinical symptoms (Burrell et al., 2011; Hogan et al., 

2016). Conversely, up to half of the ALS patients develop cognitive or behavioral symptoms 

at some stage of the disease course with about 8-15% meeting the diagnostic criteria of FTD 
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(Murphy et al., 2016). Notably, the course of disease in the mixed FTD/ALS cases is more 

severe. 

 

1.2 Genetics of FTD and ALS 

Both, FTD and ALS are mainly sporadic diseases with unknown genetic predisposition. 

About 10-27% of all FTD cases (Pottier et al., 2016) and 5-10% of the ALS cases have an 

autosomal dominant inheritance (Kiernan et al., 2011). Beside the clinical evidence for a link 

between FTD and ALS, genetic analyses clearly show a connection of both diseases. The 

identification of a GGGGCC hexanucleotide repeat expansion at chromosome 9 open reading 

frame 72 (C9orf72) as the most frequent genetic cause for inherited FTD and ALS was a 

breakthrough discovery (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Additionally, 

rare mutations leading to FTD and ALS were identified in the coiled-coil-helix-coiled-coil-

helix domain 10 (CHCHD10), optineurin (OPTN), sequestome 1 (SQSTM1), TANK-binding 

kinase 1 (TBK1), ubiquilin 2 (UBQLN2) and the valosin-containing protein (VCP) genes 

(Bannwarth et al., 2014; Cirulli et al., 2015; Deng et al., 2011; Fecto et al., 2011; Johnson et 

al., 2010; Maruyama et al., 2010; Pottier et al., 2015; Rubino et al., 2012; Watts et al., 2004). 

Of note, almost all gene mutations that cause both FTD and ALS are functionally involved in 

protein degradation, namely in the ubiquitin-proteasome system or in autophagy, underlying 

the importance of this pathway to the disease cascade. Known genetic mutations causing pure 

FTD include the microtubule-associated protein Tau (MAPT), progranulin (GRN) (Baker et 

al., 2006; Cruts et al., 2006; Hutton et al., 1998), and less frequently also mutations in the 

charged multivesicular body protein 2b (CHMP2B) (Skibinski et al., 2005) or heterozygous 

loss of function mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) 

(Borroni et al., 2014). The most common genetic cause leading to ALS are mutations in the 

superoxide dismutase 1 (SOD1) (Rosen et al., 1993), followed by mutations in the TAR 

DNA-binding protein 43 (TDP-43) (Sreedharan et al., 2008) and fused in sarcoma (FUS) 

genes (Kwiatkowski et al., 2009; Vance et al., 2009).  An overview of the most common 

genes linked to familial FTD and ALS are illustrated in Figure 1.  
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Figure 1: Genetics of familial FTD and ALS cases. 
FTD and ALS represent the two ends of a disease spectrum. Mutations leading to pure FTD include 
gene mutations in GRN, MAPT, TREM2 and CHMP2B (blue). Mutations mainly leading to pure ALS 
are mutations in the SOD1, TDP-43 and FUS genes (red). The largest genetic cause for both FTD and 
ALS is a mutation in the C9orf72 gene, followed by less frequent mutations in OPTN, CHCHD10, 
TBK1, VPC, UBQLN and SQSTM1. 

 

 

2  FTD/ALS with C9orf72  mutation 

In 2006 two groups identified a candidate locus for FTD and ALS on chromosome 9p21-p13 

using linkage analysis in large kindreds with hereditary FTD and ALS  (Morita et al., 2006; 

Vance et al., 2006). In 2011, this locus was mapped to a GGGGCC hexanucleotide repeat 

expansion within the non-coding region of chromosome 9 open reading frame 72 (C9orf72). 

This mutation is the most common genetic cause of frontotemporal dementia and amyotrophic 

lateral sclerosis (DeJesus-Hernandez et al., 2011; Renton et al., 2011) with a prevalence of 

25% of familial FTD, 34% of familial ALS and about 5% of sporadic FTD and ALS in people 

of European decent (Ng et al., 2015; Zou et al., 2017).  

 

2.1 C9orf72 function and mutation 

Bioinformatic analyses have predicted the C9orf72 protein to function as a guanine nucleotide 

exchange factor (GEF) (Levine et al., 2013; Zhang et al., 2012). Recent studies confirmed that 

C9orf72 is a component of a multiprotein complex with SMCR8, WDR41 and ATG101, 

which acts as a GDP-GTP exchange factor for small GTPases regulating vesicle trafficking in 
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the autophagy pathway, namely Rab8a and Rab39b. Furthermore, the C9orf72 complex gets 

phosphorylated by the autophagy related TANK-binding kinase 1 (TBK1) and interacts with 

the autophagy initiation complex Unc-51-like kinase 1 (ULK1), implicating C9orf72 in the 

regulation of autophagy (Sellier et al., 2016; Sullivan et al., 2016; Webster et al., 2016; Yang 

et al., 2016). 

 

 

 

 

Figure 2: Overview of genomic structure of the C9orf72 locus and pre-RNA splicing products. 
Schematic sequence of the genomic C9orf72 locus and the pre-mRNA transcript variants. Transcript 
variant 1 (V1) encodes for the short C9orf72 isoform, transcript variant 2 and 3 (V2 and V3) encode 
for the long C9orf72 isoform. Boxes represent noncoding (black) and coding (orange) exons. The 
positions of the GGGGCC repeat sequence (red), the start codon (ATG) and stop codon (TAA) are 
indicated.  

 

 

According to the latest information in the NCBI database (September 2017), alternative 

splicing of C9orf72 yields three transcript variants that code for two protein isoforms (Figure 

2). Transcript variant 2 (NCBI: NM_018325.4) and 3 (NCBI: NM_001256054.2) lead to a 

long C9orf72 protein isoform involved in the autophagy pathway, variant 1 (NCBI: 
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NM_145005.6) to a short isoform with a yet unknown function (Sellier et al., 2016; Sullivan 

et al., 2016) (take note, some of the publications cited in this dissertation refer to 

nomenclature from an older version of the NCBI database). Depending on the transcript, the 

expanded GGGGCC repeat is located in either the promoter region of transcript variant 2 or 

the first intron of transcript variants 1 and 3 of chromosome 9 open reading frame 72. In 

patients, the GGGGCC repeat is expanded up to several thousands of times, in contrast to 

healthy individuals who harbor less than 24 repeats (van der Zee et al., 2013). However, the 

exact threshold for a pathogenic expanded repeat is unclear, because most people have only 2 

repeats (Gami et al., 2015; Gomez-Tortosa et al., 2013). Due to the germline and somatic 

instability of the GGGGCC sequence, the repeats expand or shrink between generations and 

show even variability between tissues (Beck et al., 2013; Dols-Icardo et al., 2014; van 

Blitterswijk et al., 2013). 

 

2.2 Clinical presentation of C9orf72  cases 

FTD and ALS patients carrying a C9orf72 mutation show a considerable heterogeneity of 

clinical features and differ from non-mutation carriers by a significant higher co-morbidity of 

FTD and ALS (Byrne et al., 2012; Stewart et al., 2012). According to the literature, both 

syndromes converge during disease progression in approximately half of the C9orf72 carriers 

(Boeve et al., 2012; Chio et al., 2012). C9orf72 FTD patients progress faster in motor 

symptoms, and C9orf72 patients diagnosed with ALS have a higher decline of cognitive and 

behavior functions compared to patients without the C9orf72 mutation. FTD symptoms 

mainly manifest in bvFTD with apathy, disinhibition and impaired executive dysfunction, as 

well as delusions and hallucinations accompanied by predominantly anterior temporal 

cerebral atrophy (Hsiung et al., 2012; Simon-Sanchez et al., 2012). ALS patients present with 

a combination of both upper and lower motor neuron deficits with mainly spinal onset and 

bulbar involvement. Consequently, patients show motor symptoms like muscle atrophy, 

weakness, hyperreflexia and spasticity. Additionally, signs of Parkinsonism such as 

symmetric akinetic-rigid syndrome are rarely seen (Boeve et al., 2012; Byrne et al., 2012). 

Besides, the severity of the C9orf72 disease precipitates with increasing repeat size 

(Gijselinck et al., 2016). The gender of the parents transmitting the mutant allele does not 

influence phenotype or age at onset of the affected child, but children develop the disease ~7 

years earlier than their affected parent (Byrne et al., 2012; Stewart et al., 2012). In all C9orf72 

cases an autosomal dominant inheritance pattern is apparent and patients show heterozygosity 

for the expanded allele with the exception of a few reported homozygous cases (Cooper-
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Knock et al., 2013; Fratta et al., 2013). The age at disease onset varies from 27 to 82 years 

with an average of 57 years, and survival ranges from 9 months to 22 years (Boeve et al., 

2012; Byrne et al., 2012; Majounie et al., 2012; Simon-Sanchez et al., 2012; Stewart et al., 

2012). 

 

2.3 C9orf72  pathomechanisms and pathology 

Insoluble protein aggregates in the brain are pathognomonic hallmarks of FTLD, MND and 

other neurodegenerative diseases. For example, FTLD and MND disease-causing gene 

mutations in TDP-43, FUS and MAPT promote aggregation of the mutated protein.  If 

aggregated proteins or their soluble oligomers are the toxic species is under intense debate. 

For Huntingtin and Tau intracellular inclusions seem to be less toxic than soluble oligomers 

(Arrasate et al., 2004; de Calignon et al., 2010). In contrast TDP-43 deposits highly correlate 

with areas of neurodegeneration (Van Deerlin et al., 2008). In C9orf72 FTLD and MND 

patients is one pathognomonic hallmark neuronal cytoplasmic inclusions containing 

phosphorylated TDP-43, which are detectable in both brain and spinal cord tissues of affected 

individuals (DeJesus-Hernandez et al., 2011). The function of TDP-43 includes mRNA 

processing, alternative splicing and transcriptional repression (Buratti and Baralle, 2008). 

TDP-43 is located in the nuclei of healthy individuals and in unaffected neurons of FTLD and 

MND patients, but is absent in the nuclei of neurons with cytoplasmic phospho-TDP-43 

inclusions, suggesting that TDP-43 redistributes from the nucleus to the cytoplasm with 

disease progression (Neumann et al., 2006). Like most of the other inclusions, phospho-TDP-

43 aggregates can be labeled with antibodies against p62, a marker of the ubiquitin-

proteasome system. The phospho-TDP-43 pathology is closely correlated with 

neurodegeneration in C9orf72 patients. FTLD cases show more abundant phospho-TDP-43 

pathology in the degenerated areas of the frontal and temporal lobe compared to MND 

patients. In contrast, MND cases with spinal cord degeneration have significant more 

phospho-TDP-43 in the spinal cord than FTLD patients (Mackenzie et al., 2013).  

The precise mechanism underlying the TDP-43 redistribution and neurodegeneration in the 

C9orf72 disease has remained unknown. Three potential pathomechanisms are under intense 

debate (Figure 3). First, loss-of-function due to silencing of the mutated C9orf72 gene may 

leads to haploinsufficiency. Second, a toxic gain-of-function mechanism might be triggered 

by the transcribed repeat containing RNA, which sequesters RNA-binding proteins. Third, the 

expanded GGGGCC repeat is translated by an unconventional mechanism resulting in the 
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production of potentially toxic dipeptide-repeat proteins. In the following paragraph, the three 

postulated pathomechanisms and their resulting pathologies are discussed in more detail. 

 

 

 

 

Figure 3: Pathomechanisms of the C9orf72 disease. 
Schematic overview of the three postulated mechanisms underlying C9orf72 FTLD/MND. Left 
column (green): Sense and antisense transcripts derived from the repeat expansion accumulate into 
RNA foci, that sequester RNA binding proteins (ADARB2, ALYREF, hnRNP-A1, hnRNP-A3, 
hnRNP-H1, NCL, Pur-α, SRSF1 and Zfp106) resulting in an impairment of RNA processing. Middle 
column (red): Repeat RNA is unconventionally translated into five dipeptide-repeat proteins that bind 
to different proteins (G3BP1, hnRNP-A1, hnRNP-A2, NCL, NPM1, Pom121, Rad23, RanGAP1, 
SF3a, SNRPB2, TIA1, and Unc119) and impair the cell homeostasis and function. Right column 
(blue): The C9orf72 protein forms a complex with ATG101, SMCR8 and WDR41 that gets 
phosphorylated (P) by TBK1. Reduced C9orf72 expression levels, caused by the repeat expansion, are 
associated with impaired autophagy.  
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2.3.1 C9orf72 loss-of-function 

Patients with GGGGCC repeat mutation in the C9orf72 gene typically carry hundreds, or 

even thousands of repeats. This immense length could interfere with functions of the 

transcribed product, leads to splicing deficits or results in epigenetic silencing. Gene silencing 

has already been described for other repeat-associated neurodegenerative diseases (Colak et 

al., 2014; Verkerk et al., 1991). Therefore, haploinsufficiency of C9orf72 is proposed as one 

mechanism underlying the disease pathogenesis. Indeed, a single patient has been reported 

with a loss-of-function mutation in the C9orf72 gene and clinical ALS symptoms, although 

other mutations were not excluded in this case (Liu et al., 2016a).  

Evidence for epigenetic silencing has emerged from the finding that the mutated allele in 

C9orf72 patients is bound to histones that are trimethylated at lysine residues indicative of 

gene expression repression (Belzil et al., 2013). Moreover, the 5´ CpG island promoter 

upstream of the C9orf72 gene of affected alleles is hypermethylated, consequently inhibiting 

the expression of mutant RNA (Xi et al., 2014; Xi et al., 2013). Both, histone methylation and 

promoter hypermethylation have also been shown in transgenic C9orf72 mice (Esanov et al., 

2017). In patients, the extent of the repeat length correlates with the degree of promoter 

methylation (Gijselinck et al., 2016). However, most studies revealed no effect of CpG island 

hypermethylation and reduced mRNA levels on disease progression and pathology (Lagier-

Tourenne et al., 2013; Liu et al., 2014; Russ et al., 2015). Therefore, promoter 

hypermethylation of the mutated allele is thought to be a partial protective mechanism by 

reducing the abnormal expression of the GGGGCC repeat RNA (Esanov et al., 2017; Liu et 

al., 2014; Russ et al., 2015). 

Potential defects in mutated C9orf72 also do not appear related to disease outcomes. Of the 

three annotated C9orf72 mRNAs, patients with GGGGCC repeat expansion solely show a 

50% reduction of C9orf72 transcript variant 2, whereas most studies found no change in 

transcription of total C9orf72 mRNA (DeJesus-Hernandez et al., 2011; Liu et al., 2014; 

Sareen et al., 2013; van Blitterswijk et al., 2015). Moreover, the expression of the C9orf72 

protein is only slightly changed up to 25% in the frontal cortex (Waite et al., 2014). In 

addition, a patient homozygous for the C9orf72 hexanucleotide repeat expansion, and with 

80% loss of transcript 2 and 30% reduction of transcript 1 and 3, had no exacerbation of the 

disease and his clinical symptoms fell within the typical range of the disease (Fratta et al., 

2013). Correspondingly, ablation of 3110043O21RIK, the mouse ortholog of C9orf72, does 

not lead to neurodegeneration (Koppers et al., 2015; Lagier-Tourenne et al., 2013) (discussed 

in more detail in paragraph 3.1. C9orf72 gene knock-out models). Together, these data 
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strongly suggest that C9orf72 gene silencing is not the driving cause of degeneration in the 

nervous system of C9orf72 patients. However, C9orf72 loss of function may promote DPR 

protein toxicity by inhibiting autophagy (see paragraph 2.1 C9orf72 function and mutation) 

(Sellier et al., 2016; Webster et al., 2016; Yang et al., 2016).  

 

2.3.2 RNA toxicity 

In C9orf72 patients, both the sense strand including the intronic GGGGCC expansion and the 

antisense strand with the CCCCGG sequence, are transcribed into repeat RNAs. This repeat 

RNAs form highly stable inter- and intramolecular structures (e.g. G-quadruplexes, R-loops 

and hairpins) and accumulates into predominantly nuclear, and occasionally cytoplasmic, 

RNA foci (DeJesus-Hernandez et al., 2011; Fratta et al., 2012; Gendron et al., 2013; Mori et 

al., 2013c; Reddy et al., 2013). Abundant RNA foci pathology is seen in neurons of C9orf72 

mutation carriers but also to a lesser extent in astrocytes, microglia and oligodendrocytes 

(Lagier-Tourenne et al., 2013; Mizielinska et al., 2013). Thus, sense and antisense repeat 

RNA may cause toxicity by sequestering essential RNA-binding proteins, potentially altering 

RNA processing and gene transcription. Among the RNA-binding proteins trapped by the 

GGGGCC and CCCCGG repeat, there are regulators of alternative splicing factors, namely 

ALYREF (Aly/REF export factor), SRSF1 (serine/arginine rich splicing factor 1), Zfp106 

(zinc finger protein 106), members of heterogenous nuclear ribonucleoprotein (hnRNP) 

family hnRNP-A1, hnRNP-A3, hnRNP-H1, the transcriptional regulator Pur-α (purine-rich 

element binding protein A), the mRNA nuclear export adopter ADARB2 (adenosine 

deaminase RNA specific B2), and the ribosome associated protein NCL (nucleolin) (Celona et 

al., 2017; Cooper-Knock et al., 2014; Donnelly et al., 2013; Haeusler et al., 2014; Lee et al., 

2013; Mori et al., 2013b; Reddy et al., 2013; Sareen et al., 2013; Xu et al., 2013). Most 

repeat-binding proteins are involved in alternative splicing, and widespread splicing 

dysregulation has consequently been reported in the frontal cortex and cerebellum of C9orf72 

patients when compared to sporadic ALS patients and healthy controls (Prudencio et al., 

2015). The transcriptome profile of C9orf72 patients reveals a high number of differentially 

expressed genes through exon-skipping and alternative polyadenylation events. A substantial 

number of the differential expressed genes are targets of the splicing regulators hnRNP-H1 

and SRSF1, and are involved in inflammatory and defense response, unfolded protein 

response, neuron development, and protein localization (Conlon et al., 2016; Prudencio et al., 

2015). Although misregulation in gene expression is striking, the expression levels of the 

RNA-binding proteins in the brains of C9orf72 patients are not affected (Cooper-Knock et al., 
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2015; Donnelly et al., 2013). Of note, some studies revealed a toxic effect of RNA foci, or 

discovered a correlation between disease phenotype and hnRNA-H1 inclusions or antisense 

RNA foci (Conlon et al., 2016; Cooper-Knock et al., 2015; DeJesus-Hernandez et al., 2017; 

Xu et al., 2013). In contrast, other studies failed to substantiate RNA toxicity and showed that 

RNA foci pathology does not correlate with neurodegeneration. Moreover, C9orf72 cases 

with a higher burden of RNA foci do not have a more severe disease course (DeJesus-

Hernandez et al., 2017; Mizielinska et al., 2014; Mizielinska et al., 2013; Tran et al., 2015). 

Taken together, further disease modulating factors might play an essential role in the C9orf72 

disease and the role of repeat RNA induced toxicity to disease cascade and progression is still 

unclear. 

 

2.3.3 DPR protein toxicity 

It is becoming increasingly clear that many hairpin-forming microsatellite repeat expansions, 

such as the GGGGCC repeat in the C9orf72 disease, can undergo repeat-associated non-ATG 

(RAN) translation. This unconventional mode of translation occurs in non-coding regions and 

in the absence of an initiating ATG codon (Zu et al., 2011). RAN translation of the sense 

strand GGGGCC repeat results in the three dipeptide-repeat (DPR) proteins poly-GA (Gly-

Ala), poly-GP (Gly-Pro) and poly-GR (Gly-Arg), while the translation of the antisense strand 

CCCCGG repeat leads to poly-PR (Pro-Arg), poly-PA (Pro-Ala) and also poly-GP (Ash et al., 

2013; Gendron et al., 2013; Mori et al., 2013a; Mori et al., 2013c). With increasing repeat 

length, RAN translation becomes more efficient and the DPR proteins subsequently aggregate 

in the brains of C9orf72 mutation carriers. poly-GA is the most abundant DPR protein in 

C9orf72 cases followed by poly-GP and poly-GR. The antisense proteins poly-PR and poly-

PA are very sparse in post mortem tissues (Mori et al., 2013a; Mori et al., 2013c). The DPR 

protein inclusions colocalize with p62 in characteristic star-shaped or dot-like neuronal 

cytoplasmic inclusions, neuronal nuclear inclusions or dystrophic neurites, and colocalize 

only rarely with phosphorylated TDP-43 inclusions (Mori et al., 2013c). No glial DPR protein 

inclusions have been detected so far. In semi-quantitative analysis, the pattern of poly-GA 

protein pathology is highly consistent among C9orf72 cases regardless of their clinical 

phenotype and DPR proteins do not correlate with areas of neurodegeneration (Mackenzie et 

al., 2013). The highest load of poly-GA proteins is found in the cerebellum, hippocampus, 

thalamus and in neocortical regions including the frontal, motor and occipital cortex. 

Moderate pathology is detected in subcortical areas and pathology is rarely found in the lower 
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motor neurons of the spinal cord (Ash et al., 2013; Mackenzie et al., 2013; Mann et al., 2013; 

Mori et al., 2013a).  

The relative contribution of the different DPR species is still a matter of debate. Recent 

studies indicate that poly-GR, poly-PR and poly-GA disturb cell homeostasis in various ways. 

The arginine-rich DPR proteins poly-GR and poly-PR interact with low complexity domains 

of intermediate filaments such as the heavy, medium, and light chain neurofilaments and 

vimentin leading to altered cell morphology (Lin et al., 2016). Furthermore, poly-GR and 

poly-PR bind to components of the nucleoli and other membrane-less organelles such as 

G3BP1 (Ras GTPase-activating protein-binding protein 1), hnRNP-A1, hnRNP-A2 

(heterogenous nuclear ribonucleoprotein A1 and A2), NCL (nucleolin), NPM1 

(nucleophosmin), TIA1 (T-cell-restricted intracellular antigen-1), and the U2 snRNP complex 

namely SF3a (splicing factor 3a), and SNRPB2 (U2 small nuclear ribonucleoprotein B) 

(Boeynaems et al., 2017; Kanekura et al., 2016; Kwon et al., 2014; Lee et al., 2016; Wen et 

al., 2014; Yin et al., 2017). As a result of protein sequestration pre-mRNA splicing and 

ribosomal biogenesis is impaired, and the nucleocytoplasmic transport is inhibited, ultimately 

leading to cell death (Boeynaems et al., 2016; Jovicic et al., 2015; Kwon et al., 2014; Lopez-

Gonzalez et al., 2016). However, due to the relative paucity of poly-GR and especially poly-

PR, the contribution of the arginine-rich DPR proteins to the C9orf72 disease remains unclear. 

poly-GA, the most abundant DPR protein, is highly aggregation-prone in vitro and, in contrast 

to the other DPR proteins, forms β-sheet containing amyloid fibrils (Chang et al., 2016). The 

aggregation of the poly-GA proteins is essential to its toxicity, impairing neurite outgrowth 

and the ubiquitin-proteasome system (May et al., 2014; Zhang et al., 2016; Zhang et al., 

2014). poly-GA aggregates sequester essential proteins into the inclusions namely the cargo 

protein Unc119 (uncoordinated 119) and proteins involved in the assembly of the nuclear 

pore, Pom121 (nuclear pore membrane protein 121 kDa) and RanGAP1 (Ran GTPase-

activating protein 1). Moreover Rad23 (radiation 23 homolog A), a protein related to the 

ubiquitin-proteasome system, is recruited into the poly-GA inclusions.  

In conclusion, most studies attribute toxicity to either the arginine-rich DPR proteins or to 

poly-GA, although both hypotheses require further investigations and are not mutually 

exclusive. Since in semi-quantitative studies poly-GA aggregates do not correlate with brain 

atrophy, one critical remaining question is the correlation of the arginine-rich poly-GR/PR 

with neurodegeneration. Furthermore, quantitative in-depth analyses of all DPR proteins are 

missing as well. Nonetheless pathological and clinical examinations of asymptomatic or 

mildly cognitively impaired C9orf72 mutation carriers with extensive DPR protein pathology 
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suggest, that DPR protein formation and deposition precedes phospho-TDP-43 accumulation, 

and causes prodromal symptoms in patients (Baborie et al., 2015; Gami et al., 2015; Lehmer 

et al., 2017; Proudfoot et al., 2014).  

 

3  Mammalian models for the C9orf72  disease 

Recently, several mouse models have been generated to gain more insight into the 

pathomechanism of the C9orf72 disease. Reportedly, both C9orf72 gene knockout mice 

mimicking haploinsufficiency and mice overexpressing diverse repeat-constructs for RNA 

and protein gain-of-function toxicity have been generated. The following section provides a 

detailed overview of all mammalian C9orf72 disease models published until September 2017. 

 

3.1  C9orf72  gene knock-out models 

Several knockout mice lacking 3110043O21RIK, the mouse ortholog of C9orf72 (henceforth 

referred as C9orf72), have been generated to elucidate the possible loss-of-C9orf72 function 

mechanism due to haploinsufficiency. The C9orf72 protein is expressed in both neuron and 

glial cells in the central nervous system of human and mouse (Suzuki et al., 2013; Uhlen et 

al., 2015). Heterozygous knockout mice have a 50% reduced expression of the C9orf72 

protein resembling the haploinsufficiency in C9orf72 mutation carriers, though the mice 

neither develop a motor phenotype nor pathological hallmarks of C9orf72 patients. However, 

some mice develop a slight reduction in body weight, phagocytic deficits or a slightly 

increased mortality (Burberry et al., 2016; Koppers et al., 2015; O'Rourke et al., 2016). 

Remarkably, full ablation of C9orf72 in mice results in a fatal autoimmune disease. These 

mice suffer from splenomegaly, enlarged lymph nodes and increased cytokine levels 

(Atanasio et al., 2016; Burberry et al., 2016; Jiang et al., 2016; O'Rourke et al., 2016; Sudria-

Lopez et al., 2016). Homozygous knockout mice show a massive inflammation with 

infiltration of macrophages and lymphocytes into multiple organs including the central 

nervous system, but no sign of neurodegeneration. The immune system related pathology 

decreases the mice’s survival and some develop a mild motor phenotype (Atanasio et al., 

2016; Burberry et al., 2016; Jiang et al., 2016; Sudria-Lopez et al., 2016). However, partial 

and full ablation of C9orf72 in mice does not result in FTD or ALS like symptoms. This 

finding is consistent with the report of a patient with homozygosity for the expanded repeat 

allele who showed symptoms and disease progression comparable to heterozygous C9orf72 

cases. The findings in mice corroborate the observations made in C9orf72 patients and 

suggest that haploinsufficiency is not the driver for FTD or ALS symptoms, but contributes to 
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the disease by an impaired autophagy system (Fratta et al., 2013; Sellier et al., 2016; Webster 

et al., 2016; Yang et al., 2016). 

 

3.2 Transgenic C9orf72  models 

A total of seven different mammalian gain-of-function models have been developed and 

published in parallel to my study so far (Figure 4). While some of these mouse models 

express a patient-derived bacterial-artificial-chromosome (BAC) construct containing parts of 

the human C9orf72 gene including the GGGGCC expansion (Jiang et al., 2016; Liu et al., 

2016b; O'Rourke et al., 2015; Peters et al., 2015), others express a GGGGCC repeat from a 

AAV-injected promoter-driven synthetic construct (Chew et al., 2015; Herranz-Martin et al., 

2017; Zhang et al., 2016).  In AAV-injected mice, the construct is inserted into somatic cells 

and shows variable expression levels. In contrast, BAC transgenic mice have a germline 

insertion and the expression constantly passes through generations. 

In the different mouse lines, divergent outcomes are reported regarding pathological features 

as well as behavior and motor phenotypes. All the transgenic mice show RNA and protein 

pathology regardless of the GGGGCC repeat length and their expression system. RNA foci 

formation occurs at a variable frequency throughout the central nervous system. Moreover, 

the sense strand DPR proteins poly-GA, poly-GR and poly-GP are detected in neurons and 

glial cells throughout the entire brain with the highest prevalence in either neocortical regions 

and hippocampus (Chew et al., 2015; Jiang et al., 2016; Liu et al., 2016b; Zhang et al., 2016) 

or cerebellum (Herranz-Martin et al., 2017; O'Rourke et al., 2015; Peters et al., 2015).  

Due to the DPR protein toxicity cellular functions are disturbed in the majority of the mouse 

models. Here, the DPR proteins co-aggregate with p62 and inhibit the ubiquitin-proteasome 

system, as observed in patients. Furthermore, proteins involved in the synthesis of ribosomes 

(NCL), the nuclear pore complex (RanGAP1, Pom121), and DNA damage repair (Rad23) are 

found to be mislocalized in some animal models (Chew et al., 2015; O'Rourke et al., 2015; 

Zhang et al., 2016). TDP-43 aggregates, the pathological hallmark of C9orf72 patients, are 

also observed, as well as activated microglia or astrocytes in some mouse lines (Chew et al., 

2015; Herranz-Martin et al., 2017; Liu et al., 2016b; Zhang et al., 2016). In brains of patients, 

reactive gliosis and TDP-43 mislocalization are often accompanied by neurodegeneration. 

However, only some mouse lines show a loss of neurons (Chew et al., 2015; Jiang et al., 

2016; Liu et al., 2016b; Zhang et al., 2016) or a loss of axons at neuromuscular junctions 

(Herranz-Martin et al., 2017; Liu et al., 2016b). The different transgenic mouse models show 

very different phenotypes. While some mice show no behavioral or cognitive abnormalities 
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(O'Rourke et al., 2015; Peters et al., 2015), others develop an anxiety-like behavior, social 

abnormalities, cognitive deficits or an impairment of the motor system (Chew et al., 2015; 

Herranz-Martin et al., 2017; Jiang et al., 2016; Liu et al., 2016b; Zhang et al., 2016). 

 

 

 

Figure 4: Gain-of-function C9orf72 disease models. 
Overview of published C9orf72 gain-of-function models with combined RNA and DPR protein 
toxicity (green) and DPR protein toxicity only (red). On the top are bacterial-artificial-chromosome 
(BAC) transgenic and on the bottom AAV-injected transgenic mouse models listed. Respective repeat 
lengths, detected RNA foci, DPR proteins, changes in expression and localization of proteins, 
neurodegeneration and phenotypes are listed.  

 

 

A major disadvantage of most mouse models is that toxicity mediated by RNA or by the 

different DPR proteins cannot be distinguished, which is crucial for future drug target 

approaches. Only in a single mouse model the effect of poly-GA was exclusively studied. 

Here they used a synthetic DNA sequence without any extensive GGGGCC repeats avoiding 

confounding effects of RNA toxicity (Zhang et al., 2016).  These AAV-injected poly-GA 

mice developed mislocalization of Rad23 suggesting an impaired DNA damage repair in the 

cells. Furthermore, the nuclear pore complex was disrupted, shown by altered RanGAP1 and 

Pom121 distribution. These findings of this singular mammalian poly-GA toxicity model 

suggest a crucial role of poly-GA to disease pathology. However, the expression of poly-GA 

at unphysiological high levels in cortical regions and the very low expression of poly-GA in 

the motor system limit the significance of this model with respect to the consequences of DPR 
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protein pathology, particularly in C9orf72 ALS patients (Zhang et al., 2016). For pure 

neuromuscular studies, no mouse model with exclusive expression of DPR proteins in the 

upper and lower motor neurons is available so far. In conclusion, more mouse models with 

physiological expression levels of the DPR proteins, especially poly-GA/GR/PR, have to be 

generated and analyzed to get a better understanding of the pathological features of the 

diseases and to develop therapeutic approaches in future. 
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II. Aim of the study 

Despite enormous progress on many aspects of C9orf72 disease, it is still unknown how the 

GGGGCC repeat expansion actually triggers FTD and/or ALS. Especially the relative 

contribution of the individual DPR species is still unclear. One major challenge is to mimic 

the pathognomonic hallmarks of C9orf72 patients in in vitro and in vivo models. In C9orf72 

patients, all DPR proteins are aggregating into p62-positive cytoplasmic and nuclear 

inclusions, whereas in cell culture only poly-GA expression resembles the pattern observed in 

patients (May et al., 2014; Zhang et al., 2014). In contrast, when poly-GR and poly-PR are 

expressed in different cell culture models or in Drosophila, they show a diffuse cytoplasmic 

and nuclear pattern and a dense accumulation in the nucleolus. Poly-GP and poly-PA are 

diffusely distributed throughout the cells in vitro (May et al., 2014; Tao et al., 2015; 

Yamakawa et al., 2015; Yang et al., 2015; Zhang et al., 2014). Based on these findings, the 

aim of my study was to elucidate the contribution of the DPR proteins to the C9orf72 disease. 

Therefore, my first goal was to dissect the regional and subcellular distributions of the DPR 

proteins in C9orf72 mutation carriers and primary neuron models. Furthermore, I aimed to 

correlate the distribution of DPR protein pathology with areas of neurodegeneration and 

disease subtypes FTLD, MND and FTLD/MND. 

Transgenic mouse models are crucial for elucidating the physiological processes occurring in 

human diseases. When I started my dissertation in the Edbauer lab, no C9orf72 disease mouse 

model was available. Therefore, my second aim was to generate and analyze a transgenic 

poly-GA mouse model. In parallel to my work, several other groups reported various C9orf72 

animal models. However, in these models, the specific contribution of DPR proteins to the 

clinical and pathological symptoms remained unclear (Chew et al., 2015; Herranz-Martin et 

al., 2017; Jiang et al., 2016; Liu et al., 2016b; O'Rourke et al., 2015; Peters et al., 2015; Zhang 

et al., 2016) and none of these mouse models showed significant pathology in the ALS related 

upper and lower motor neurons. Thus, I focused on neuropathological effects of poly-GA in 

the brainstem and spinal cord and analyzed behavioral and motor deficits. 

Together, these new pathological insights and in vivo analyses provide a better understanding 

of the mechanism underlying the C9orf72 disease, and may assist future development of 

efficient treatments and therapies. 
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primary neurons and postmortem brain and spinal cord of 
C9orf72 mutation patients. Only poly-GA overexpression 
closely mimicked the p62-positive neuronal cytoplasmic 
inclusions commonly observed for all DPR proteins in 
patients. In contrast, overexpressed poly-GR and poly-PR 
formed nucleolar p62-negative inclusions. In patients, most 
of the less common neuronal intranuclear DPR inclusions 
were para-nucleolar and p62 positive. Neuronal nucleoli 
in C9orf72 cases showed normal size and morphology 
regardless of the presence of poly-GR and poly-PR inclu-
sions arguing against widespread nucleolar stress, reported 
in cellular models. Colocalization of para-nucleolar DPR 
inclusions with heterochromatin and a marker of transcrip-
tional repression (H3K9me2) indicates a link to gene tran-
scription. In contrast, we detected numerous intranuclear 
DPR inclusions not associated with nucleolar structures in 
ependymal and subependymal cells. In patients, neuronal 
inclusions of poly-GR, poly-GP and the poly-GA interact-
ing protein Unc119 were less abundant than poly-GA inclu-
sions, but showed similar regional and subcellular distribu-
tion. Regardless of neurodegeneration, all inclusions were 
most abundant in neocortex, hippocampus and thalamus, 
with few inclusions in brain stem and spinal cord. In the 
granular cell layer of the cerebellum, poly-GA and Unc119 
inclusions were significantly more abundant in cases with 
FTLD than in cases with MND and FTLD/MND. Poly-PR 

Abstract A massive expansion of a GGGGCC repeat 
upstream of the C9orf72 coding region is the most com-
mon known cause of amyotrophic lateral sclerosis and 
frontotemporal dementia. Despite its intronic localiza-
tion and lack of a canonical start codon, both strands are 
translated into aggregating dipeptide repeat (DPR) pro-
teins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. 
To address conflicting findings on the predominant toxicity 
of the different DPR species in model systems, we com-
pared the expression pattern of the DPR proteins in rat 
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inclusions were rare throughout the brain but significantly 
more abundant in the CA3/4 region of FTLD cases than in 
MND cases. Thus, although DPR distribution is not cor-
related with neurodegeneration spatially, it correlates with 
neuropathological subtypes.

Keywords ALS · FTLD · Repeat disorders · C9orf72 · 
DPR inclusions · Neurotoxicity

Introduction

About 10 % of all patients with amyotrophic lateral scle-
rosis (ALS), frontotemporal dementia (FTD) or mixed 
presentation of both diseases (ALS/FTD) are caused by a 
massive expansion of a GGGGCC repeat upstream of the 
C9orf72-coding region [11, 18, 43]. Three main hypoth-
eses have been proposed to explain the pathomechanism 
of C9orf72 disease. First, reduced expression of the 
mutant allele suggests a loss of function mechanism [11, 
18]. Studies in C. elegans and zebrafish reported motor 
deficits [7, 51], although loss of C9orf72 has no obvious 
effect in cultured neurons and mice [25, 55]. Second, the 
repeat RNA may induce toxicity by sequestering endog-
enous RNA-binding proteins in nuclear RNA foci [16]. 
A large number of GGGGCC-interacting proteins have 
been identified, but their contribution to C9orf72 dis-
ease has not been elucidated so far [9, 27, 37]. Addition-
ally, formation of RNA·DNA hybrids of the expanded 
repeat (so-called R-loops) may contribute to toxicity by 
interfering with transcription [20, 54]. However, in cul-
tured primary neurons and the fly retina even high-level 
expression of repeat RNA causes little or no toxicity [35, 
55]. Third, although located in an intron and lacking an 
ATG start codon, sense and antisense transcripts of the 
expanded repeat are translated by an unconventional 
mechanism into five dipeptide repeat (DPR) protein spe-
cies [1, 17, 36, 38, 60]. All DPR species are detected 
in neuronal inclusions throughout the central nervous 
system (CNS) of C9orf72 mutation patients, predomi-
nantly in the cytoplasm. Inclusions of poly-(glycine–
alanine) (poly-GA), poly-(glycine–arginine) (poly-
GR) and poly-(glycine–proline) (poly-GP) proteins 
encoded by the sense strand are far more abundant than 

poly-(proline–alanine) (poly-PA) and poly-(proline–
arginine) (poly-PR) proteins encoded by the antisense 
strand [17, 36]. None of these mechanisms, however, has 
so far explained the origin of neuronal and glial TDP-43 
inclusions found in almost all cases with C9orf72 muta-
tion, and the variable expression of dementia and motor 
symptoms even within the same family [16, 33]. Inter-
estingly, the first clinical symptoms and neurodegenera-
tion seem to arise prior to the onset of TDP-43 pathology 
when DPR inclusion pathology is already widespread [2, 
36, 38, 42].

Recently, several groups reported toxicity of recom-
binantly expressed individual DPR species in cell lines, pri-
mary neurons and the fly retina. This led to a controversy 
about the main toxic DPR species. Several groups showed 
neurotoxicity of poly-GA, the most abundant DPR inclu-
sion protein in C9orf72 mutation patients. Poly-GA toxic-
ity has been attributed to co-aggregation of the transport 
factor Unc119 [34] and impairment of the proteasome [57, 
59]. However, in contrast to TDP-43 inclusions, poly-GA 
inclusions show no spatial correlation with neurodegen-
eration in patients [10, 29]. Other reports favor toxicity 
of the arginine-rich DPR species, poly-GR and poly-PR, 
by interference with global RNA metabolism and protein 
synthesis [23, 35, 55]. While poly-GR and poly-PR locali-
zation was not analyzed in the fly model [35], cell culture 
studies found overexpressed poly-GR and poly-PR (20–
400 repeats) predominantly in nucleolar aggregates [23, 
34, 55, 57, 59]. This is in strong contrast to the predomi-
nantly cytoplasmic localization of poly-GR and poly-PR 
described in patients so far [17, 36, 38, 60]. Poly-GP also 
has been reported to induce toxicity in cell lines, although 
no mechanism was proposed [60]. Only poly-PA was not 
toxic in any system tested. However, none of the proposed 
pathomechanisms has been rigorously validated in patient 
tissue.

Prompted by conflicting reports on the neurotoxic-
ity of DPR proteins in vitro, we carefully compared the 
expression of recombinant DPR proteins in primary rat 
neurons of all DPR species with proposed neurotoxic-
ity, including the predominant sense strand-derived DPR 
inclusions and poly-PR, in patient brain using novel 
monoclonal antibodies particularly focusing on nuclear 
and nucleolar pathology. Since toxic overexpressed argi-
nine-rich DPRs mainly aggregate in p62-negative intra-
nuclear inclusions, we tried to identify such inclusions 
in key areas of neurodegeneration in patient CNS. Addi-
tionally, we analyzed the regional distribution pattern 
of aggregates containing poly-GA, its interacting part-
ner Unc119, poly-GR, poly-GP or poly-PR in brain and 
spinal cord of autopsy cases with C9orf72 mutation and 
correlated aggregate frequency with the neuropathologi-
cal diagnosis.
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81377 Munich, Germany

7 Department of Psychiatry and Psychotherapy, Ludwig-
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80336 Munich, Germany

8 Institute for Metabolic Biochemistry, Ludwig-Maximilians 
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Materials and methods

Antibodies and reagents

The following antibodies were used: anti-nucleolin (rab-
bit polyclonal and mouse monoclonal, Abcam, Cam-
bridge England), anti-p62/SQSTM1 (rabbit polyclonal, 
MBL, Nagoya Japan and mouse monoclonal, BD, Bel-
gium), anti-poly-GA clone 5E9 (mouse monoclonal) [29], 
anti-Unc119 (rabbit polyclonal, homemade) [34], anti-
fibrillarin (rabbit polyclonal, Abcam), anti-GST (rabbit 
polyclonal, Eurogentec, Belgium), anti-H3K9me2 (Cell 
Signaling Technology, Cambridge, England), anti-HDAC6 
(Santa Cruz, Dallas, Texas), anti-CUG-BP1 (Abcam), anti-
PML (Abcam), anti-HSF1 (Santa Cruz), anti-CD99/MIC2 
(Thermo scientific, Waltham, Massachusetts), anti-PSMC2 
and anti-PSMC4 (Bethyl laboratories, Montgomery, Texas), 
anti-Coilin (Abcam) and anti-p53 (Ventana, Tuscon, 
Arizona). Poly-GR antibodies 5A2 and 5H9 have been 
described previously [36, 38]. The novel poly-GR-specific 
clone 7H1 (rat isotype IgG2c) was identified by rescreening 
monoclonal antibodies raised against the EBNA2 epitope 
GQSRGRGRGRGRGRGKGKSRDK with asymmetri-
cally dimethylated arginines [19] and screened by ELISA 
against biotinylated (GR)10 peptides (Peps4LifeSciences, 
Heidelberg, Germany) as described [36]. Like clone 5H9, 
7H1 detected (GR)10 with asymmetrically dimethylated 
arginines and non-methylated arginines, but also weakly 
cross-reacts with (GR)10 containing symmetrically dimeth-
ylated arginines (data not shown). By immunizing rats with 
synthetic GP10 peptides the poly-GP-specific antibody 7A5 
(isotype IgG2c) was raised using previously described pro-
tocols [29]. Poly-PR antibody 32B3 (isotype IgG2b) was 
raised against synthetic PR10 peptides in mouse using the 
same protocol.

RNA was stained with SYTO12 and SYTO RNAselect 
(Life Technologies, Darmstadt, Germany) and nuclei were 
stained with DAPI (Roche Applied Science, Penzberg, 
Germany).

DNA constructs and lentivirus production

Previously described cDNAs of GA175-GFP and GFP-
GR149, GP80-V5/His and PR175-GFP with ATG start codon 
were cloned in a lentiviral packing vector (FhSynW2) 
containing the human synapsin promoter [34]. Poly-GA, 
poly-GR and poly-PR were expressed from synthetic genes 
devoid of GGGGCC repeats, while poly-GP was expressed 
from a ATG(GGGCCG)80 construct. For poly-GR, the GFP 
had to be fused to the N-terminus to allow robust expres-
sion (for details see [34]). Lentivirus was produced in 
HEK293FT cells (Life Technologies) as described previ-
ously [15].

Cell culture

Primary hippocampal and cortical neurons were cultured 
from embryonic day 19 rats and infected for transduction 
with lentivirus as described previously [15, 48]. For immu-
nofluorescence, the primary neurons were fixed for 10 min 
in 4 % paraformaldehyde and 4 % sucrose on ice. Primary 
and secondary antibodies were diluted in GDB buffer 
(0.1 % gelatin, 0.3 % Triton X-100, 450 mM NaCl, 16 mM 
sodium phosphate pH 7.4). Confocal images were taken 
by a LSM710 confocal laser scanning system (Carl Zeiss, 
Jena, Germany) with a 63× oil immersion objective.

Patient material, brain slices

Tissue samples of all autopsy cases investigated were pro-
vided by the Neurobiobank Munich, Ludwig-Maximilians-
University (LMU) Munich. They were collected according 
to the guidelines of the local ethical committee. Demo-
graphic and neuropathological data are listed in Table 1.

Definition of neuropathological groups

Cases with C9orf72 mutation were stratified into fronto-
temporal lobar degeneration (FTLD), motoneuron disease 
(MND) or mixed FTLD/MND according to neuropatho-
logical criteria. FTLD was diagnosed when gliosis and/or 
spongy alterations were seen in the cortex of the superior 

Table 1  Demographic and neuropathological data of patients and 
control cases

Case no. Sex Age at death Duration of 
disease

Neuropathologi-
cal diagnosis

C9-1 Female 65 3 years FTLD–MND

C9-2 Female 59 6 months FTLD–MND

C9-3 Male 65 4 years FTLD–MND

C9-4 Female 63 3 years MND

C9-5 Female 49 8 months MND

C9-6 Male 51 2 years MND

C9-7 Male 72 1 years FTLD

C9-8 Female 57 7 years FTLD

C9-9 Male 67 Unknown FTLD

C9-10 Male 41 6 years FTLD–MND

C9-11 Male 56 22 months FTLD–MND

C9-12 Male 57 3 years FTLD–MND

C9-13 Male 57 3–4 years FTLD–MND

C9-14 Male 74 Several years FTLD–MND

FUS-1 Female 54 4 years FTLD–MND–
FUS

Ctrl-1 Male 60 – –

Ctrl-2 Female 60 – –
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and/or medial frontal gyrus (Brodman areas 8/9) and/or in 
the cortex of the parahippocampal and/or fusiform gyrus 
on hemalum–eosin stainings. MND was diagnosed when 
either the motor cortex showed gliosis and/or spongy alter-
ations on hemalum–eosin stainings and/or the pyramidal 
tract showed a microglia activation on immunohistochemi-
cal stains using the CR3/43 antibody and/or the hypoglos-
sal nucleus and/or the anterior horn at any spinal cord 
level showed a loss of motoneurons and/or gliosis and/or 
p62-positive inclusions in motoneurons.

Immunohistochemistry

Immunohistochemistry and immunofluorescence were per-
formed on paraffin sections as previously described [29]. 
For Unc119 immunohistochemistry, paraffin sections were 
treated 25 min with 0.1 µg/μl proteinase K in 10 mM Tris/
HCl. This pretreatment dramatically increased the number 
of visible Unc119 aggregates (compare [34]). Afterwards 
the slides were incubated with the Unc119 antibody over-
night at 4 °C and detected with the DCS SuperVision 2 Kit 
(DCS innovative diagnostic-system, Hamburg, Germany) 
according to the manufacturer’s instructions. An additional 
0.05 µg/µl proteinase K pretreatment for 1 min before cit-
rate retrieval was used for anti-nucleolin and H3K9me2 
immunofluorescence experiments. Anti-poly-GA immu-
nohistochemistry was performed with the Ventana Bench-
Mark XT automated staining system (Ventana) using the 
UltraView Universal DAB Detection Kit (Roche). Incuba-
tion with poly-GR and poly-GP antibodies was done over-
night at 4 °C, further steps were an incubation with a rab-
bit anti-rat antibody (1:2000) for 1 h at room temperature, 
and a final processing on the Ventana BenchMark XT using 
the UltraView Universal DAB Detection Kit (Roche). The 
poly-PR antibody was also incubated overnight at 4 °C 
and detected the following day on Ventata BenchMark XT. 
Images of immunohistochemical stainings were taken by 
CellD, Olympus BX50 Soft Imaging System (Olympus, 
Tokyo, Japan), confocal images on a LSM710 (Carl Zeiss) 
with a 40× or 63× oil immersion objective.

RNA in situ hybridization

Paraffin sections were dewaxed in xylene and ethanol fol-
lowed by microwaving in citrate pH6 buffer for 4 × 5 min. 
After washing with 2× SSC (0,3 M NaCl, 30 mM sodium 
citrate, pH7), sections were preincubated (30 min) at 65 °C 
in 2× SSC containing 40 % formamide and 2.5 % BSA and 
incubated over night at 50 °C with the Cy3(GGCCCC)4 
probe (Integrated DNA Technologies, Coralville, Iowa) in 
2× SSC containing 0.8 mg/ml tRNA, 0.8 mg/ml salmon 
sperm DNA, 0.16 % BSA, 8 % dextran sulfate, 1.6 mM 
ribonucleoside vanadyl complex and 5 mM EDTA. After 

washing with 0.5× SSC immunofluorescence was per-
formed as described previously [29]. In all steps, RNase-
free Milli-Q ultrapurified water was used.

Semi‑quantitative analysis of inclusion pathology

Frequency of poly-GA, poly-GR, poly-GP and Unc119 
inclusion pathology was analyzed separately for neuronal 
cytoplasmic inclusions (NCI), neuronal intranuclear inclu-
sions (NII) and dystrophic neurites (DN) in a semi-quan-
titative manner for 36 different CNS regions of five repre-
sentative cases (C9-1 to 5) with C9orf72 mutation with a 
Zeiss Axioplan microscope. In neocortical regions, in the 
granular and molecular cell layers of the cerebellum and in 
spinal cord, each type of inclusion pathology was consid-
ered as “few” if less than half of 12 representative visual 
fields (using a 20× objective) showed at least one inclu-
sion, as “some” if more than half but not all visual fields 
showed at least one inclusion, as “many” if in every visual 
field at least 4 inclusions were detectable and as “abun-
dant” if each visual field showed more than 20 aggregates. 
This method was also used for counting dystrophic neur-
ites in all regions. In structures of hippocampus, subcortical 
nuclei, brain stem and the Purkinje cell layer of the cerebel-
lum, NCIs and NIIs were considered as “few” if less than 
2 % of the neurons contained aggregates, “some” if 3–25 % 
of the neurons contained aggregates, “many” if 25–50 % of 
the neurons contained aggregates and “abundant” if more 
than 50 % of the neurons contained aggregates.

Quantitative analysis of inclusion pathology

The following areas with high loads of DPR protein aggre-
gates but diverging neurodegenerative vulnerability were 
selected for quantification of NCIs and NIIs: cortex of 
the superior frontal gyrus, motor cortex, striate area of the 
occipital cortex, granular cell layer of the dentate gyrus, 
cornu ammonis regions 3/4, granular cell layer of the cer-
ebellum, molecular cell layer of the cerebellum (superior 
part).

In all cases with C9orf72 mutation, 3–12 pictures adja-
cent to each other were taken from a representative area 
of each region of interest with a digital camera (Olympus 
Cam SC30) at an Olympus BX41 microscope using a 40× 
objective for cerebellar granular cell layer and a 20× objec-
tive for all other regions. Three to four pictures were taken 
from each cerebellar and hippocampal region. In neocortex, 
pictures were taken in a columnar orientation covering all 
six cell layers. The inclusions of one such column repre-
sented by 6–12 adjacent pictures were counted. All NCIs 
and NIIs were manually counted on each digital picture 
separately using the CellCounter plugin in Fiji ImageJ. For 
each region in each case, the total number of inclusions was 

45



Acta Neuropathol 

1 3

divided by the number of pictures taken, and the average 
value was determined. Finally, the average of the values 
for each region was determined in each neuropathological 
group (FTLD, MND, FTLD/MND) separately.

Statistics

Statistical analysis was performed with GraphPad Prism 
software (version 6.01). The groups with neuropathological 
diagnosis MND, FTLD and FTLD/MND were compared 
and analyzed by two-way ANOVA followed by Tukey’s 
post hoc test. Nucleolus size (Feret diameter) was quanti-
fied from confocal images, taken on a LSM710 with a 40× 
oil immersion objective, using Fiji ImageJ particle analyzer 
and statistically evaluated by an unpaired t test followed by 
an F-test to compare variances. Multiple comparison of the 
size of the nucleoli in the frontal cortex was done by one-
way ANOVA followed by Tukey’s post hoc test. Signifi-
cance level was set at p < 0.05 (two sided).

Results

Intranuclear poly‑GR and poly‑PR inclusions are 
nucleolar in cell models, but para‑nucleolar in patients

To compare DPRs expressed from synthetic genes and 
DPR inclusions in C9orf72 mutation patients under opti-
mal conditions, we raised novel monoclonal antibodies. 
Rat poly-GP antibody 7A5, rat poly-GR antibody 7H1 and 
mouse poly-PR antibody 32B3 specifically detected the 
respective 15-mer DPRs fused to GST (Fig. S1a). 7A5 and 
7H1 robustly detected SDS-insoluble aggregates in frontal 
cortex of patients but not of controls cases (Fig. S1b). In 
patients, poly-GR antibody 7H1 detected more neuronal 
cytoplasmic inclusions than the previously used clone 5H9 
(Fig. S1c). The monoclonal poly-GP and poly-PR antibod-
ies also allowed a more sensitive detection of poly-GP and 
poly-PR inclusions than our previous polyclonal antibod-
ies [36, 38]. With the new antibodies, poly-GR and poly-
GP aggregates were found in various brain areas and in 
spinal cord motoneurons of C9orf72 mutation patients, but 
not of control cases (Fig. S2a, b). Poly-PR inclusions were 
much less common in all brain regions (Fig. S2c). Despite 
a recent report of preferential aggregation of poly-PR in 
spinal cord motoneurons [8], we found no such inclusions 
with both the mouse poly-PR antibody 32B3 and our rabbit 
polyclonal antibody [39].

To analyze the DPR proteins in vitro, we transduced rat 
hippocampal neurons with a lentivirus expressing GFP-
GR149, PR175-GFP, GA175-GFP or GP80-V5/His for 7 days. 
Consistent with previous results [34, 57, 59], GFP-GR149 
showed a diffuse cytoplasmic distribution and often formed 

nuclear aggregates that colocalized with nucleolin, a key 
component of the nucleolus (Fig. 1a, first row). PR175-GFP 
showed more pronounced nuclear and nucleolar locali-
zation and the majority of nucleoli appeared fragmented 
(Fig. 1a, second row). GA175-GFP formed compact mainly 
cytoplasmic and some intranuclear inclusions that did not 
colocalize with nucleolin (Fig. 1a, third row). GP80-V5/His 
expression was diffusely distributed throughout the neurons 
with some enrichment in the nucleus (Fig. 1a, fourth row). 
Lentiviral expression of the four DPR constructs in corti-
cal neurons fully confirmed the localization found in hip-
pocampal neurons (Fig. S3).

In contrast to transduced hippocampal neurons, poly-GR 
and poly-PR antibodies labeled mainly cytoplasmic inclu-
sions in C9orf72 mutation patients (Fig. S2a, c), an obser-
vation consistent with previous reports [17, 36, 38, 60]. 
However, a fraction of neurons also contained small poly-
GR and poly-PR inclusions in the nucleus (Fig. 1b, first 
and second row). Quantitative analysis revealed that 78 % 
of the poly-GR NIIs were attached to the nucleoli, whereas 
the remaining NIIs were randomly distributed (Fig. 1b, 
first row, Fig. S4a). In contrast to GFP-GR149 and PR175-
GFP expressing neurons, we never saw a colocalization of 
poly-GR or poly-PR and nucleolin in three C9orf72 cases 
investigated. Immunofluorescence with two other monoclo-
nal poly-GR antibodies (5H9 and 5A2) [36, 38] confirmed 
these results (Fig. S4b). Moreover, poly-GR did not colo-
calize with fibrillarin, another nucleolar marker (Fig. S4c). 
Intranuclear poly-GA and poly-GP showed a very similar 
pattern of para-nucleolar inclusions in C9orf72 mutation 
patients (Fig. 1b, rows three and four; Fig. S4a). Thus, cur-
rent cellular DPR models cannot fully replicate the pattern 
of intranuclear aggregates found in patient tissue.

Para‑nucleolar DPR aggregates colocalize with silent 
DNA

To elucidate the nature of the para-nucleolar DPR compart-
ment, we analyzed colocalization with several marker pro-
teins (data not shown). However, none of the markers for 
Marinesco bodies (HDAC6), the perinuclear compartment 
(CUG-BP1, PML, HSF1 and CD99), clastosomes (protea-
somal subunits PSMC2 and PSMC4) and nucleolar caps 
(fibrillarin, coilin and PML) colocalized with para-nucleo-
lar DPR inclusions, indicating they represent a unique com-
partment. Moreover, the para-nucleolar DPR protein aggre-
gates were also not colocalized with the nuclear GGGGCC 
RNA foci in frontal cortex or cerebellum (Fig. S4d/e). 
However, many para-nucleolar DPR inclusions colocal-
ized with heterochromatin detected by the DNA-binding 
dye DAPI in patients (Fig. 2a), which was not observed for 
poly-GA, poly-GR, poly-PR or poly-GP overexpressed in 
primary neurons (Fig. 1a). Para-nucleolar DPR inclusions 

46



 Acta Neuropathol

1 3

were also labeled by the RNA-binding dyes SYTO12 and 
SYTO RNAselect, but no RNA enrichment was observed 
compared to the nucleolus (Fig. 2b). Since all RNA dyes 
also cross-react with DNA to some extent, we focused on 
the specific enrichment of heterochromatin DNA in para-
nucleolar DPR inclusions. Colocalization was even more 
pronounced with an antibody for histone 3 dimethylated 
at lysine 9 (H3K9me2), a signal for transcriptional silenc-
ing (Fig. 2c). This may link para-nucleolar DPR proteins to 
transcriptional changes induced by the expanded C9orf72 
repeat DNA and RNA [20].

Since arginine-rich DPR proteins and transcription of 
the expanded repeat have been shown to induce nucleo-
lar stress in cellular models [20, 50], we also investigated 

nucleolar size and morphology. Nucleolin stainings of the 
CA3/4 layer of the hippocampus, a region with abundant 
DPR pathology, revealed no differences in nucleolus shape 
and size between C9orf72 patients and controls (Fig. S5a, 
b). In the frontal cortex of C9orf72 FTLD cases, the size 
of the nucleoli did not differ from nucleoli of healthy con-
trols regardless, whether the cells contained cytoplasmic or 
para-nucleolar or no DPR inclusions (Fig. S5c).

Nucleolar stress typically results in nucleolar p53 accu-
mulation [26], which we did not observe in C9orf72 cases 
(Fig. S5d). Thus, the expanded hexanucleotide repeat DNA 
and/or RNA may interfere with transcriptional processes 
without inducing overt nucleolar stress in the hippocampus 
and cortical areas.
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Fig. 1  Differential localization of intranuclear DPR inclusions in 
transduced primary neurons and in neurons of cases with C9orf72 
mutation. Double immunofluorescence for different DPR proteins 
(green) and nucleolin (red), a marker for the nucleolus, in primary 
neurons (a) and in frontal cortex of cases with C9orf72 mutation (b). 
Nuclei are labeled with DAPI. Single confocal sections containing 
the nucleolus are shown. a Primary neurons transduced with lentivi-
rus expressing either GFP-GR149, PR175-GFP, GA175-GFP or GP80-
V5/His (DIV6 + 7). Note that poly-GR and poly-PR but not poly-

GA intranuclear inclusions are localized in the nucleolus. Poly-GA 
forms mainly compact cytoplasmic inclusions. Poly-GP expression 
is mainly pan-nuclear and also cytosolic. b In cortical areas of cases 
with C9orf72 mutation neuronal intranuclear poly-GA, poly-GR and 
poly-GP inclusions are mostly localized adjacent to the nucleolus 
(red arrows) or less frequently randomly distributed (white arrows). 
No colocalization of DPR proteins with the nucleolus is observed. 
Scale bars represent 10 µm
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Overexpressed and patient poly‑GR, poly‑PR 
and poly‑GP show different p62 labeling

p62 is found in many inclusion bodies of neurodegenera-
tive diseases. Although most inclusions of all DPR species 
colocalize with p62 in C9orf72 patients [36, 38], we and 
others had only found a colocalization of p62 with over-
expressed poly-GA but not with other overexpressed DPR 
species in HEK293 cells [34, 57]. We therefore tested 
p62 co-aggregation in primary hippocampal neurons with 
lentiviral expression of GA175-GFP, GFP-GR149, PR175-
GFP, GP80-V5/His. Consistent with previous results, most 
cytoplasmic and intranuclear GA175-GFP inclusions were 
strongly co-labeled with p62 antibodies (Fig. 3a, first row), 
while GFP-GR149 and PR175-GFP inclusions were nega-
tive for p62 (Fig. 3a, second row and Fig. S6a). GP80-V5/
His was diffusely expressed with enrichment in the nucleus 
without obvious p62 colocalization (Fig. 3a, third row). 
These results were confirmed in cortical neurons trans-
duced with the same DPR constructs (Fig. S6b).

We wondered whether such p62-negative poly-GR 
inclusions occur in patients, particularly in the nucleo-
lus. In frontal cortex, double immunostaining revealed a 
strong colocalization of poly-GR and p62 in the cytosol 
and the nucleus, similar to poly-GA (Fig. 3b, first and 
second row, Fig. S7a, first row). Only very few poly-GR 
inclusions in the cytosol (Fig. 3b, second row) as well as 
in the nucleus (Fig. S7a, second row) were not labeled 
with p62. Similarly, the vast majority of poly-GP and 
poly-PR inclusions co-stained with p62 (Fig. 3b, third 
row and Fig. S7b).

Moreover, double immunostaining of p62 and nucleolin 
revealed no colocalization of ubiquitinated inclusions and 
the nucleolus (Fig. 3c). However, occasionally p62 labeling 
was observed next to the nucleolus, which was consistent 
with the findings for specific DPR antibodies (Fig. 1b). 
Together, these findings indicate that in patients with 
C9orf72 mutation most intranuclear DPRs aggregate in a 
p62-positive para-nucleolar compartment and not directly 
within the nucleolus.

Fig. 2  Para-nucleolar poly-GA 
inclusions colocalize with 
transcriptionally silenced 
DNA. Immunofluorescence 
for poly-GA proteins with the 
indicated antibodies and dyes 
to label DNA or RNA in frontal 
cortex of cases with C9orf72 
mutation. a Para-nucleolar poly-
GA inclusions are enriched 
for heterochromatin labeled 
with the DNA-specific dye 
DAPI (arrow). b Para-nucleolar 
poly-GA inclusions are also 
stained with RNA-selective dyes 
SYTO12 and SYTO RNAselect. 
Note that both dyes also show 
chromatin staining similar to 
DAPI indicating cross-reactivity 
with DNA. c Nuclear poly-
GA inclusions colocalize with 
histone 3 dimethylated at lysine 
9 (H3K9me2), a marker for 
transcriptionally inactive DNA. 
Scale bars represent 10 µm
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Poly‑GR and poly‑GP inclusion types resemble 
poly‑GA pathology and also occur in glia

To further analyze the correlation of DPR inclusions with 
neurodegeneration, we characterized the spectrum of poly-
GR, poly-GP and poly-PR pathology in C9orf72 mutation 
patients. Poly-GR (7H1), poly-GP (7A5) and poly-PR (32B3) 
antibodies labeled predominantly NCIs throughout the brain, 
which showed the characteristic star-shaped appearance in 
pyramidal cells of the hippocampal formation and cortical 
neurons (Fig. 4a–c). Additionally, NIIs and “pre-inclusions” 
with diffuse cytoplasmic staining were also detected with all 
three DPR antibodies (Fig. 4d–i). Only poly-GR and poly-GP 
antibodies also detected DNs (Fig. 4j, k). Additionally, poly-
GP antibodies occasionally visualized diffuse pan-nuclear 
DPR expression (Fig. 4l), resembling the pattern of recombi-
nant poly-GP expression in neurons (Figs. 1a, 3a, S3).

Although DPR proteins had previously been described 
exclusively in neurons, we noticed intranuclear inclu-
sions in ependymal cells of the spinal cord central canal in 
C9orf72 cases with MND most prominently with poly-GA 
antibodies (Fig. 4m, n), but also with poly-GR and poly-
GP antibodies (Fig. 4o, p). Such glial inclusions were not 
detected in an FTLD–MND–FUS case confirming anti-
body specificity (Fig. S7c). Strikingly, the vast majority 
of these inclusions were intranuclear, while most neuronal 
DPR inclusions were cytoplasmic. In contrast to neu-
ronal intranuclear DPR inclusions, the ependymal inclu-
sions were not associated to the nucleolus (Fig. S7d). We 
observed further glial intranuclear poly-GA inclusions in 
ependymal and subependymal cells lining the lateral ven-
tricle (Fig. 4q). Thus, not only TDP-43 pathology but also 
DPR pathology extends to glial cells in C9orf72 mutation 
patients.
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DAPI

GA p62 Merge
DAPI

GP p62 Merge
DAPI

Primary hippocampal neurons C9orf72 frontal cortex

Fig. 3  Differential colocalization of DPR and p62 inclusions in cases 
with C9orf72 mutation and cell culture. Double immunofluorescence 
for DPR proteins and p62. Nuclei are labeled with DAPI. a In pri-
mary hippocampal neurons transduced with GA175-GFP, GFP-GR149 
or GP80-V5/His (DIV6 + 7) p62 co-aggregates with cytoplasmic and 
intranuclear poly-GA inclusions, but not with poly-GR and poly-GP. 
In contrast to poly-GA inclusions, poly-GR and poly-GP aggregates 

appear less compact or granular. b In frontal cortex of C9orf72 muta-
tion patients almost all poly-GA and poly-GR and all poly-GP inclu-
sions are positive for p62 (orange arrows). Poly-GA and poly-GR 
inclusions without p62 labeling are rare (white arrows). c Intranuclear 
p62 aggregates show the same distribution pattern as DPR inclusions 
and are mostly para-nucleolar (arrow). Scale bars represent 20 µm
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Taken together, the poly-GR and poly-GP inclusion 
pattern resembled that of poly-GA in C9orf72 mutation 
patients [10, 29, 38]. Poly-PR inclusions were very rare and 
were not found in DNs. The identification of different types 
of inclusions in neuronal and glial cells suggests cell type-
dependent differences in DPR aggregation or degradation.

Spectrum and distribution of DPR inclusions

To further elucidate the spectrum of DPR pathology in 
C9orf72 mutation patients, we analyzed the load of NCI, 
NII and DN pathology in 36 CNS regions using monoclo-
nal antibodies for poly-GA (clone 5E9), poly-GR (clone 
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Fig. 4  Spectrum of DPR pathology in neurons and glial cells of 
patients with C9orf72 mutation. a–l Immunohistochemistry with 
novel monoclonal antibodies for poly-GR (clone 7H1), poly-GP 
(clone 7A5) and poly-PR (clone 32B3) in cases with C9orf72 muta-
tion. Poly-GR, poly-GP and poly-PR mainly form compact character-
istic star-like cytoplasmic (a–c) or small round intranuclear inclusions 
(arrows in d–f) in neurons and show a diffuse granular cytoplasmic 
staining (g–i). Furthermore there are poly-GR and poly-GP aggre-
gates in dystrophic neurites (j, k); note that dystrophic neurites with 
poly-PR could not be detected. Solely for poly-GP, a diffuse pan-
nuclear staining is also found (l). m–q Immunohistochemistry with 
indicated DPR antibodies shows glial intranuclear inclusions in 

C9orf72 cases. In ependymal cells of spinal cord central canal intra-
nuclear inclusions of poly-GA (m, n detail of m), and less frequently 
of poly-GR (o) and poly-GP (p) are detectable; further glial intranu-
clear inclusions of poly-GA are present in ependymal (arrow) and 
subependymal (arrowhead) cells of the lateral ventricle wall at level 
of accumbens nucleus (q). Scale bars represent 20 µm. Am amyg-
dala, CA cornu ammonis region, DN dystrophic neurite, Ent entorhi-
nal cortex, FCtx frontal cortex, GII glial intranuclear inclusion, MCtx 
primary motor cortex, LV wall of lateral ventricle, NCI neuronal 
cytoplasmic inclusion, NII neuronal intranuclear inclusion, SC spinal 
cord, SCcc spinal cord central canal
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7H1) and poly-GP (clone 7A5) in five representative cases 
with comprehensive tissue collection, including two MND 
cases and three FTLD/MND cases (C9-1 to C9-5, see 
Table 1). Overall poly-PR distribution pattern appeared 
similar (not shown), but the number of inclusions was too 
low for a reliable semi-quantitative analysis.

In all brain regions, DPR inclusion pathology in form 
of NCIs, NIIs and DNs was most abundant for poly-
GA (Fig. 5a) and less distinct for poly-GR and poly-GP 
(Fig. 5b, c; Table S1). Regardless of the neuropathological 
diagnosis, all cases showed the strongest DPR pathology in 
neocortex, hippocampus and cerebellum. DPR inclusions 
were also abundant in amygdala and thalamus. Few inclu-
sions were visible in basal ganglia, brain stem and spinal 
cord. Overall, DNs with poly-GR aggregates were less fre-
quent than those with poly-GA or poly-GP aggregates. The 
highest density of poly-GA or poly-GP containing DNs 
was seen in the molecular layer of the cerebellum. Despite 
the abundant intranuclear inclusions of overexpressed 
poly-GR in various cell models, poly-GR NIIs were even 
less frequent than poly-GA and poly-GP NIIs in C9orf72 
mutation patients. Poly-GR NIIs were most abundant in 
the thalamus compared to poly-GR NCIs. Thus, the pat-
tern of poly-GA, poly-GR and poly-GP inclusions pathol-
ogy is consistent with previous less detailed reports [1, 29, 
36]. The biggest difference between the three sense strand-
derived DPR species was the almost complete lack of poly-
GR DNs throughout the CNS.

Poly‑PR but not poly‑GR inclusions show different 
distribution in FTLD and MND cases

To better analyze the correlation of poly-GR and poly-PR 
pathology with neurodegeneration, we focused on seven 
key regions that are variably affected in C9orf72 mutation 
patients. We counted the number of inclusions in a defined 
number of visual fields in three neocortical regions (cor-
tex of the medial frontal gyrus, motor cortex striate area 
of the occipital cortex), two hippocampal regions (granu-
lar cell layer of the dentate gyrus, pyramidal cell layer 
of cornu ammonis regions 3 and 4) and the granular and 
molecular cell layers of the cerebellar cortex (for details 
see methods). Compared to the semi-quantitative analysis 
(Fig. 5), we used a larger cohort of 14 patients, including 
three MND cases, three FTLD cases and eight patients 
with combined FTLD/MND (Table 1). Strikingly, poly-GR 
load was similar in occipital cortex, which is not affected 
by neurodegeneration in any of the three patient groups, 
and in frontal cortex, which is degenerated in FTLD and 
FTLD/MND cases, but not in MND cases (Fig. 6a; Table 
S2). In contrast, DPR abundance was less in the motor 
cortex than in frontal or occipital cortex, although we did 
not have material for comparison from patients without 

neuropathological signs of MND. Overall, poly-GR inclu-
sions showed a very similar distribution pattern among all 
three patient subgroups, suggesting that poly-GR aggrega-
tion does not spatially correlate with neurodegeneration in 
C9orf72 mutation patients.

Poly-PR inclusions were scarce throughout the CNS 
with the highest frequency in the hippocampus. In three 
cases (MND and FTLD/MND, 6 sections each), we found 
no poly-PR in spinal cord motoneurons. Poly-PR was sig-
nificantly more abundant in the CA3/4 region of FTLD 
cases compared to MND cases (Fig. 6b). Thus, poly-PR, 
but not poly-GR, distribution differs between C9orf72 dis-
ease subtypes, although it is not spatially correlated with 
neurodegeneration.

Spectrum of Unc119 inclusion pathology

Next, we analyzed the distribution of Unc119, a transport 
factor for myristoylated proteins, which co-aggregates 
with poly-GA [34]. In our previous analyses, Unc119 
inclusions were more prominent in regions affected by 
prominent neurodegeneration in three C9orf72 mutation 
patients, but staining intensity and inclusions density var-
ied considerably between patients. To improve detection of 
Unc119 inclusions, we tested several conditions for antigen 
retrieval (see method section for details). Brief proteinase 
K treatment completely removed the diffuse Unc119 stain-
ing in the neuronal soma of patients and controls, but dra-
matically increased visible Unc119 inclusion pathology in 
C9orf72 mutation patients (Fig. 7). Using this improved 
staining protocol, we identified abundant Unc119 inclu-
sions not only in the frontal cortex, the dentate gyrus but 
also in the cerebellum (Fig. 7a–c). Rare Unc119 inclusions 
were also seen in the cytoplasm of spinal cord motoneu-
rons (Fig. 7d) and in the nuclei of central canal ependymal 
cells (Fig. 7e). No Unc119 inclusions were found in con-
trol cases (Fig. 7f–j). The spectrum of proteinase K resist-
ant Unc119 pathology ranged from predominant NCIs 
to less abundant NIIs and DNs and to rare diffuse aggre-
gates (Fig. 7k–n). Moreover, para-nucleolar Unc119 inclu-
sions colocalizing with poly-GA were found, indicating 
that Unc119 can be recruited into the nucleus by poly-GA 
aggregates (Fig. S8). Overall, the pattern of Unc119 pathol-
ogy in cases with C9orf72 mutation strongly resembled the 
pattern of DPR pathology.

Regional distribution of poly‑GA and Unc119 
inclusions differs between MND and FTLD cases

To analyze the correlation of Unc119 aggregation and neu-
rodegeneration, we extended our analysis to further CNS 
regions in the five representative cases (C9-1 to C9-5, see 
Table 1). We found many Unc119 inclusions throughout 
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Fig. 5  Regional distribution pattern of neuronal poly-GA, poly-GR 
and poly-GP inclusion pathology in cases with C9orf72 mutation. 
Semi-quantitative immunohistochemical analyses for poly-GA (a), 
poly-GR (b) and poly-GP (c) neuronal cytoplasmic inclusions (NCI), 
neuronal intranuclear inclusions (NII) and dystrophic neurites (DN) 
in representative cortical, hippocampal, subcortical, brain stem, cer-
ebellar and spinal cord areas of five C9orf72 mutation patients reveal 
a predominance of poly-GA aggregates for all types of aggregates in 
all areas. Highest densities of poly-GA, poly-GR and poly-GP aggre-
gates are seen in cortical areas, hippocampus, amygdaloid nuclei, 
thalamus and cerebellum. Note that poly-GR-positive DNs are rarely 
found outside the hippocampus. Categories for semi-quantitative 
analysis (none, few, some, many, abundant) are explained in detail 
in the “Materials and methods” section. Acc accumbens nucleus, 
Am amygdaloid nuclei, BC basal nucleus of Meynert compact part, 
CA3/4 cornu ammonis fields 3/4, CBLgl cerebellar granular cell layer, 

CBLml cerebellar molecular cell layer, CBLpcl cerebellar Purkinje 
cell layer, CCtx cortex of cingulate gyrus, Cd caudate nucleus, DG 
dentate gyrus, DRN dorsal raphe nuclei, FCtx frontal cortex, IO 
inferior olive, LC locus coeruleus, MCtx primary motor cortex, N 
XII hypoglossal nucleus, OCtx occipital cortex, Pa pallidum, PCtx 
parietal cortex, PN pontine nuclei of pons, preEnt lamina principa-
lis externa of entorhinal cortex, priEnt lamina principalis interna of 
entorhinal cortex, Pu putamen, SCAc anterior horn of cervical spinal 
cord, SCAl anterior horn of lumbar spinal cord, SCAs anterior horn of 
sacral spinal cord, SCAt anterior horn of thoracic spinal cord, SCPc 
posterior horn of cervical spinal cord, SCPl anterior horn of lumbar 
spinal cord, SCPs posterior horn of sacral spinal cord, SCPt posterior 
horn of thoracic spinal cord, SNc substantia nigra compact part, STN 
subthalamic nucleus, SubCA1/2 subiculum plus cornu ammonis fields 
1/2, TCtx temporal cortex, Th thalamus
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the neocortex, hippocampus and thalamus (Fig. 8a; Table 
S1). In contrast to findings using our previous staining pro-
tocol, Unc119 inclusions were now also frequent in the cer-
ebellum. Overall, Unc119 distribution closely resembled 
poly-GA distribution (Fig. 5a), although Unc119 inclusions 
were less frequent in all brain regions (Fig. 8a). Unc119 
NIIs were most prominent in the dentate gyrus and com-
pletely absent in the brain stem.

A quantitative analysis of the complete patient cohort 
revealed no difference in the poly-GA and Unc119 fre-
quency in cortical regions and hippocampus between the 
MND, FTLD or FTLD/MND patients (Fig. 8b, c; Table 

S2). As for poly-GR (Fig. 6a), the poly-GA load was simi-
lar in the non-degenerating occipital cortex and the degen-
erating frontal cortex of FTLD and FTLD/MND patients 
(Fig. 8b). Unexpectedly, poly-GA and Unc119 inclusions 
were significantly more common in the cerebellar granular 
cell layer of FTLD patients compared to MND or FTLD/
MND patients (Fig. 8b, c). Interestingly, these patients 
showed a trend towards lower levels of poly-GR inclusions 
(Fig. 6a), suggesting differential translation or aggregation 
of these DPR species in the cerebellum. These findings are 
consistent with an emerging role of the cerebellum in the 
pathophysiology of C9orf72 disease [13, 14, 30–32, 52, 
56].

Discussion

With this study, we provide the first quantitative analysis of 
the three major DPR species poly-GA, poly-GR and poly-
GP as well as poly-PR in a neuropathologically character-
ized cohort of C9orf72 mutation patients using monoclonal 
antibodies. Despite ample in vitro evidence especially for 
poly-GA, poly-GR and poly-PR toxicity [23, 34, 35, 50, 
55, 57, 59, 60], we could not identify a spatial correlation 
between DPR inclusion pathology and neurodegeneration 
in patients, although poly-GA and poly-PR showed differ-
ent distribution in MND and FTLD cases. Different locali-
zation and aggregation behavior especially of poly-GR 
and poly-PR proteins in cellular models and patients may 
explain the poor translatability of the in vitro results. The 
newly identified para-nucleolar aggregation of DPR pro-
teins in heterochromatin structures in patient neurons hints 
for repeat-associated alterations in transcription.

Subcellular localization of DPR proteins

In patients, poly-GA, poly-GR, poly-GP and poly-PR 
showed remarkably similar regional and subcellular expres-
sion patterns, suggesting that these proteins are co-trans-
lated in most cells and then co-aggregate in p62-positive 
inclusions [38]. In transduced primary neurons, only poly-
GA expression gives rise to p62-positive compact cyto-
plasmic inclusions. Consistent with previous reports over-
expressed poly-GR and poly-PR predominantly localized 
to the nucleolus and was p62 negative in primary neuron 
culture [34, 50, 57]. However, in patients with C9orf72 
mutation, poly-GR and poly-PR inclusions were predomi-
nantly cytoplasmic, and we did not find a single nucleolar 
inclusion. Overexpression of poly-GP in neurons resulted 
either in diffuse cytoplasmic or more often diffuse pan-
nuclear accumulation similar to previous reports [57]. We 
found both expression patterns in patients, although com-
pact NCIs were much more common.
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Fig. 6  Quantitative assessment of poly-GR and poly-PR inclu-
sion pathology in selected brain areas of C9orf72 cases with differ-
ent neuropathological phenotypes. The graphs show the minimum, 
mean and maximum number of poly-GR and poly-PR inclusions 
averaged per visual field. a There is no significant difference in the 
average number of cytoplasmic and intranuclear neuronal poly-GR 
inclusions per visual field (20× objective, 40× for cerebellar granular 
cell layer) between C9orf72 cases with motoneuron disease (MND, 
n = 2–3), cases with frontotemporal lobar degeneration (FTLD, 
n = 3, no MtCtx) and cases with a combination of frontotemporal 
lobar degeneration and motoneuron disease (FTLD/MND, n = 4–8) 
in brain areas with highest poly-GR load. b Poly-PR inclusions are 
only common in hippocampus and cerebellum of FTLD and FTLD/
MND cases, but absent in MND cases, reaching statistical signifi-
cance in CA3/CA4 (ANOVA, p = 0.0103). The quantitative analy-
sis is explained in detail in the “Materials and methods” section. 
The data for individual cases are presented in Table S2. CA3/4 cornu 
ammonis fields 3/4, CBLgl cerebellar granular cell layer, CBLml cer-
ebellar molecular cell layer, DG dentate gyrus, FCtx frontal cortex, 
MCtx primary motor cortex, OCtx occipital cortex
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We noticed abundant poly-GA pathology in ependy-
mal cells of the spinal cord central canal and the lateral 
ventricle. Poly-GP and poly-GR were detected at a lesser 
extent. While TDP-43 pathology and RNA foci have been 
detected in neurons and glia [17], DPR proteins had been 
described only in neurons and in Sertoli cells of testis so 
far [1, 38]. In contrast to neurons, ependymal cells harbor 
almost exclusively intranuclear inclusions. The pathogenic 
role of glial DPR inclusions remains unclear, since it does 
not extend to astrocytes and oligodendrocytes [29]. How-
ever, trophic support from ependymal cells has been linked 
to ALS either directly or via altering neurogenesis [6, 12]. 
Moreover, poly-GP has been detected in the CSF, which 
may reflect neuronal death or active secretion [47]. Addi-
tionally, ependymal cells may release DPR proteins into the 
CSF more efficiently than neurons.

Since the localization of DPR aggregates is already 
differing between neurons and glia in patients, cell type-
specific effects may contribute to the aberrant expression 
pattern of overexpressed poly-GR and poly-GP in cellular 
models. Further explanations may be the faster expression 
kinetics and the lack of expression of the other DPR species 
and hexanucleotide repeat RNA in most current model sys-
tems. Since aberrantly localized DPR proteins may invoke 
different toxic pathways, future studies of cellular and 

animal models of DPR toxicity will benefit from the careful 
analysis of the subcellular localization of the aggregates.

Para‑nucleolar DPR aggregates and nucleolar stress

While intranuclear DPR inclusions appear randomly dis-
tributed throughout the nucleus in glia, we noticed that 
intranuclear inclusions in neurons are predominantly para-
nucleolar. To elucidate the function of para-nucleolar DPR 
aggregates, we tested several markers for known nucleolus-
associated compartments. Robust co-staining with p62 is 
reminiscent of the ubiquitinated Marinesco bodies, found 
in the aging brain particularly in neuromelanin containing 
neurons of the substantia nigra [3, 40]. However, the para-
nucleolar DPR inclusions lack the characteristic eosino-
philic staining and we could not detect colocalization with 
HDAC6, which had previously been identified in Mari-
nesco bodies [40]. The “perinucleolar compartment” has 
been implicated in RNA polymerase III-dependent tran-
scription [41], but the marker proteins CUG-BP1, PML, 
HSF1 and CD99 did not colocalize with DPR NIIs. In cells 
with elevated proteasomal activity, proteasomes congre-
gate in “clastosomes” close to the nucleolus [24], but the 
para-nucleolar DPRs were negative for proteasomal subu-
nits PSMC2 and PSMC4. Block of transcription leads to a 

C9 NCI C9 NII C9 DN C9 diffuseEnt Ent EntCA1/2

9C9C 9C9C C9

a b c d e

f g h i j

k l m n

lgLBCxtCF ccCSCSGD

lrtClrtC lrtClrtClrtC lgLBCxtCF ccCSCSGD

Fig. 7  Spectrum of Unc119 pathology in cases with C9orf72 muta-
tion resembles poly-GA pathology. Immunohistochemistry with a 
polyclonal rabbit antibody against Unc119. In C9orf72 mutation 
cases, numerous Unc119 inclusions are seen in neurons of various 
brain areas (a–c), rarely in motoneurons of spinal cord (d) and in 
ependymal cells of spinal cord central canal (e); examples of cyto-
plasmic inclusions are marked by arrows. (f–j) Corresponding areas 
of control cases do not contain such inclusions and the proteinase K 
pretreatment removes all soluble Unc119 staining in cases and con-

trols. (k–n) The types of Unc119 aggregates are similar to those of 
DPR proteins. There are often star-like neuronal cytoplasmic inclu-
sions (NCI) (k), neuronal intranuclear inclusions (NII, pointed by 
arrow in l), compact aggregates in dystrophic neurites (DN) (m) 
and diffuse granular cytoplasmic aggregates in neurons (n). Scale 
bars represent 20 µm. C9 case with C9orf72 mutation, CA1/2 cornu 
ammonis fields 1/2, CBLgl granular cell layer of cerebellum, Ctrl 
control case, DG dentate gyrus, Ent entorhinal cortex, FCtx frontal 
cortex, SC spinal cord, SCcc spinal cord central canal
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segregation of nucleolar subcompartments and formation 
of the so-called “nucleolar caps”, but the marker proteins 
fibrillarin, PML and coilin were not detected in DPR inclu-
sions [45].

Colocalization of para-nucleolar DPR proteins with 
heterochromatin in DAPI staining and with H3K9me2, a 
prominent marker of transcriptional repression, suggests a 
link between DPRs and transcriptional regulation. This is 
most consistent with transcriptional stalling and nucleolar 
stress due to formation of RNA·DNA hybrids (so-called 
R-loops) from hexanucleotide repeats [20]. Importantly, 
H3K9 dimethylation has been linked to R-loop-induced 

transcriptional silencing [46]. This potential link of DPR 
proteins with DNA/RNA-based disease mechanisms may 
also explain why para-nucleolar DPR aggregates were not 
found in transduced neurons expressing DPR proteins from 
synthetic genes. We found no colocalization of para-nucle-
olar DPR inclusions with GGGGCC repeat RNA foci. Con-
sistent with previous reports, there was rather an inverse 
correlation of foci and (cytoplasmic) DPR inclusions [17]. 
Nucleolar stress is typically associated with nucleolar 
enlargement and nucleolar accumulation of p53 particu-
larly when it is caused by proteasomal inhibition [21, 26]. 
Interestingly, two groups reported proteasomal impairment 
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Fig. 8  Distribution of poly-GA and Unc119 inclusion pathology 
depends on pathological subtypes. a Semi-quantitative analysis of 
Unc119 neuronal cytoplasmic inclusions (NCI), neuronal intranu-
clear inclusions (NII) and dystrophic neurites (DN) in representative 
cortical, hippocampal, subcortical, brain stem, cerebellar and spinal 
cord areas of five C9orf72 mutation patients. The regional distribu-
tion of Unc119 inclusions resembles the pattern of poly-GA pathol-
ogy (Fig. 5), albeit at overall lower abundance. Semi-quantitative 
analysis is explained in detail in the “Materials and methods” sec-
tion. Abbreviations as in Fig. 5. b, c Quantitative analysis of NCI and 
NII of poly-GA and Unc119 pathology by immunohistochemistry in 
C9orf72 mutation patients with MND (n = 2–3), FTLD (n = 3, no 

MtCtx) and combined FTLD/MND (n = 4–8) cases as in Fig. 6. The 
graphs show the minimum, mean and maximum number of poly-
GA and Unc119 inclusions averaged per visual field. Poly-GA dis-
tributions are significantly different between FTLD, FTLD/MND 
and MND patients in granular layer of cerebellum (p(FTLD vs. FTLD/

MND) = 0.0003, p(FTLD vs. MND) = 0.0003) (b). Similarly, the frequency 
of Unc119 inclusions is different in the granular layer of cerebellum 
in FTLD patients compared with FTLD/MND and MND (p(FTLD vs. 

FTLD/MND) = 0.0005, p(FTLD vs. MND) = 0.0008) (c). Quantitative analy-
sis is explained in detail in the “Materials and methods” section, the 
data for individual cases are presented in Table S2. Abbreviations as 
in Fig. 6

55



Acta Neuropathol 

1 3

by poly-GA in vitro [57, 59]. However, we detected no 
nucleolar accumulation of p53 and no change in nucleolar 
size and morphology in C9orf72 patients. Thus, neither the 
C9orf72 mutant allele nor cytoplasmic or para-nucleolar 
DPR inclusions affected nucleolar size in the brain.

Correlation of DPR and Unc119 inclusion pathology 
with neuropathological subtypes

Our cohort of 14 C9orf72 mutation patients represents the 
whole spectrum of clinical and neuropathological subtypes, 
including three cases each with either MND or FTLD and 
eight cases with a mixed disease. We chose five representa-
tive cases with comprehensive tissue collection for the 
semi-quantitative analysis of 36 CNS regions of the sense 
strand-derived DPR species and Unc119. We had previ-
ously shown that poly-GA sequesters Unc119, a protein 
that regulates trafficking of lipidated cargo proteins, such 
as transducin α in the retina [34, 58]. Loss of Unc119 is 
neurotoxic and Unc119 overexpression rescues poly-GA 
toxicity in vitro. Using improved antigen retrieval with 
proteinase K, we could detect Unc119 in about 40 % of 
poly-GA inclusions in all analyzed brain regions. Although 
these data corroborate Unc119 as a specific component of 
poly-GA inclusions, selective co-aggregation of Unc119 
cannot easily explain selective vulnerability in certain brain 
regions. However, proteinase K pretreatment precludes 
analyzing the residual soluble Unc119 in affected cells. 
Identification of Unc119 cargos essential for neuronal sur-
vival and analysis of their localization in C9orf72 patients 
will be necessary to determine functional Unc119 inactiva-
tion and its correlation to neurodegeneration.

In all patients, DPR and Unc119 pathology showed a 
stereotypic expression pattern with highest abundance in 
cortex, hippocampus, thalamus and cerebellum. In contrast 
to previous semi-quantitative studies restricted to poly-GA 
pathology [10, 29], we performed a quantitative analysis 
of poly-GA, poly-GR, poly-PR and Unc119 pathology in 
seven critical brain regions in all 14 patients. The amount 
of poly-GA, poly-GR, poly-PR and Unc119 aggregates was 
similar in frontal cortex, motor cortex and occipital cortex, 
although the latter is not affected by neurodegeneration in 
C9orf72 mutation patients. Moreover, the extent of DPR 
pathology in frontal cortex and motor cortex did not cor-
relate with neurodegeneration in FTLD or MND cases. 
Interestingly, poly-GA and poly-PR, the DPR species with 
the strongest toxic effects in cell culture, showed distinct 
depositions in FTLD vs. MND cases with C9orf72 muta-
tion cases [34, 35, 55, 57, 59]. Poly-PR aggregates were 
significantly more common in the CA3/4 region of FTLD 
than of MND cases. Due to the very low frequency of poly-
PR inclusions, the pathophysiological relevance remains 
unclear. Interestingly, nuclear foci of antisense repeat RNA 

have recently been linked to motor neuron degeneration [8]. 
Poly-GA and Unc119 pathology was significantly higher in 
the cerebellar granular cell layer of FTLD patients com-
pared to MND and FTLD/MND patients. At the same time, 
there was a trend for lower poly-GR pathology in FTLD 
patients, which suggests that the composition of the DPR 
inclusions in these patients is significantly altered, although 
it is unclear if and how this is related to pathogenesis. In 
our previous study, focusing on poly-GA pathology no sim-
ilar correlation was observed [29], but both studies differ 
in staging of the cases (clinically vs. neuropathologically) 
and in analyzing the extent of DPR pathology (semi-quan-
titative vs. quantitative approaches). Interestingly, there 
is considerable somatic heterogeneity in the length of the 
expanded C9orf72 repeat and only the repeat length in the 
cerebellum but not in the frontal cortex is inversely corre-
lated with disease duration, arguing for an underappreci-
ated role of the cerebellum in the pathogenesis of FTLD 
[49, 52].

Overall, our data do not support a spatial correlation of 
DPR inclusions with neurodegeneration, although DPR 
proteins can clearly induce neurotoxicity in various model 
systems. Several explanations are possible:

1. DPR inclusions are not actually involved in the 
C9orf72 pathomechanism but only TDP-43 inclusions. 
The strongest counterarguments are rare C9orf72 cases 
without TDP-43 pathology and abundant DPR pathol-
ogy [2, 36, 38, 42]. In addition, DPR pathology seems 
to precede TDP-43 pathology, although it is not spa-
tially correlated [2, 33]. Moreover, introducing stop 
codons into the GGGGCC repeat expansion prevented 
toxicity in the fly model, strongly arguing for a critical 
role of DPR proteins [35]. Methylation in the C9orf72 
promoter region is associated with reduced RNA foci 
and DPR pathology and prolonged disease duration 
presumably by inhibition of repeat transcription, which 
supports a toxic gain of function pathomechanism [4, 
28, 44].

2. Soluble DPR proteins, rather than inclusions, may 
cause neurodegeneration. Although diffuse poly-GA 
coalesces into inclusions in cell culture systems [59], 
it remains unclear whether DPR proteins in cells with 
diffuse staining patterns cause enhanced toxicity. Solu-
ble poly-GR/PR may interfere with the overall cellular 
RNA metabolism [23]. Intercellular spreading of DPR 
proteins may trigger pathogenic mechanisms leading to 
TDP-43 phosphorylation or seed TDP-43 aggregation 
in a non-cell autonomous manner. Spreading and seed-
ing have been reported for other intracellular aggregat-
ing proteins in neurodegenerative diseases, but have 
not been claimed to be the main source of toxicity [22, 
53].
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3. Finally and most likely, a combination of DNA•RNA 
hybrids, RNA foci and protein toxicity, together with a 
potential C9orf72 haploinsufficiency and unknown cell 
type-specific susceptibility factors are responsible for 
the selective neurodegeneration in certain brain regions 
in C9orf72 mutation carriers. This is supported by a 
very recent mouse model showing TDP-43 pathology, 
neurodegeneration, RNA foci and DPR proteins upon 
high-level viral expression of the GGGGCC repeat [5].

This interaction of DNA/RNA toxicity and DPR toxicity 
may be represented by the newly described para-nucleolar 
DPR aggregates. Thus, models expressing both repeat RNA 
and DPR proteins and constant comparison with pathologi-
cal analysis of patient samples are needed to elucidate the 
cause of neurodegeneration in C9orf72 repeat expansion 
carriers, and how this can lead to either FTLD or MND.
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Figure S1: Monoclonal poly-GR and poly-GP antibodies are specific  

(a) Immunoblot of 200 ng recombinant GST-GA15, GST-GR15, GST-GP15, GST-PR15 and GST-AP15 fusion 

proteins with indicated antibodies as described previously (Mori et al, 2013a). (b) Immunoblot of the 

insoluble fraction of cerebellum shows poly-GP and poly-GR aggregates at the top of the gel (arrows) in 

C9orf72 cases (C9) but not in healthy controls (Ctrl). Frontal cortex samples were prepared by boiling the 

Triton X-100 (1 %) and SDS (2 %) insoluble fraction in 4x Laemmli buffer (containing 8 % SDS) as 

described previously (Mori et al, 2013c). poly-PR inclusions are very rare  and can only be detected by 

immunostaining. (c) Double immunofluorescence showing coaggregation of poly-GA and poly-GR in the 

dentate gyrus of hippocampus. Poly-GA is used as a reference for the total number of DPR inclusions. 

poly-GR antibody 7H1 shows more inclusions pathology than antibody 5H9. Scale bar represents 20 µm. 
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Figure S2: Poly-GR, poly-GP and poly-PR aggregates are specific for patients with C9orf72 mutations. 

Immunohistochemistry with novel monoclonal antibodies for (a) poly-GR (rat clone 7H1) and (b) poly-GP 

(rat clone 7A5), shows abundant inclusions in various brain regions of patients with C9orf72 mutations 

(C9). Many aggregates are seen in the frontal cortex (FCtx), dentate gyrus of hippocampus (DG) and 

granular cell layer of cerebellum (CBLgl).  Rarely, motoneurons in the spinal cord (SC) contain small 

intracytoplasmic poly-GR and poly-GP aggregates which are mainly localized at the edge of the cells. No 

inclusions are seen in a control brain (Ctrl). (c) Mouse poly-PR antibody 32B3 detects similar C9orf72-

specific inclusions in FCtx, DG and CBLgl, but with much lower abundance. Poly-PR inclusions in 

motoneurons of the spinal cord were not detectable. Scale bar represents 20 µm.  
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Figure S3: Expression pattern of DPR proteins in primary cortical neurons 

Primary cortical neurons transduced with lentivirus expressing either GFP-GR149, PR175-GFP, GA175-GFP or 

GP80-V5/His (DIV6+7). Double immunofluorescence for different DPR proteins and nucleolin. Nuclei are 

labeled with DAPI. Single confocal sections containing the nucleolus are shown. The expression pattern 

of all DPR species strongly resembles the pattern seen in hippocampal neurons (Fig. 1a). Neurons 

expressing PR175-GFP often have fragmented nucleoli. Scale bar represent 10 µm. 
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Figure S4: Poly-GR antibodies detect para-nucleolar aggregates 

 (a) Quantitative analysis of the localization of poly-GA and poly-GR NIIs was performed on double 

immunofluorescence stains with nucleolin in cortical areas of two C9orf72 patients and two controls. 

76% of poly-GA NIIs and 78% of poly-GR NIIs are attached to the nucleolus (50 NIIs each were analyzed).  

(b) Para-nucleolar poly-GR aggregates (arrows) are detected by two additional monoclonal poly-GR 

antibodies (5H9 and 5A2) as shown by double immunofluorescence with nucleolin. (c) Para-nucleolar 

poly-GR aggregates (arrow) are detected using fibrillarin as an alternative marker for nucleoli. Scale bars 

represent 20 µm. (d, e) Combined GGGGCC-specific in situ hybridization and poly-GA 

immunofluorescence shows no colocalization of RNA foci (white arrows) and para-nucleolar DPR 

inclusions (orange arrow). 

64



   Supplemental Materials: Schludi et al. 

 

Figure S5: Analysis of nucleolar stress in C9orf72 cases 

Analysis of the hallmarks of nucleolar stress in C9orf72 mutation patients (C9) and controls (Ctrl). (a) 

Immunohistochemistry with a nucleolin antibody reveals no difference in the shape of the nucleoli in 

neurons of the CA3/4 region between cases with C9orf72 mutation and control cases. (b) Quantitative 

analysis of the average nucleolus size in the CA3/4 region performed on nucleolin immunofluorescence 

images reveals no difference between C9orf72 patients and controls as well (nctrl=45, nC9=55 nucleoli 

from two control cases and four C9orf72 patients). The detailed analysis is described in the methods 

section.  (c) Quantitative analysis of nucleolus size performed on nucleolin and poly-GR or poly-PR 

double immunofluorescence images in the frontal cortex. In C9orf72 patients nucleolus size was 

analyzed separately for cells without DPR inclusions, with neuronal cytoplasmic inclusions (NCI) or 

inclusions in a para-nucleolar compartment (PNC) using MetaMorph software. nctrl=91, nGR NCI=40, nGR 

PNC=12, nGR neg.=126, nPR NCI.=12, nPR PNC=5, nPR neg.=78  nucleoli were investigated from two control cases 

and two C9orf72 patients. Box plot shows mean, first and third quartile. Whiskers represent minimum 

and maximum. (d) Immunohistochemistry of frontal cortex using p53 antibodies in C9orf72 patients, a 

healthy control and a case with glioblastoma as a positive control. Stress-indicative nucleolar 

accumulation of p53 in the nucleolus is not detected in C9orf72 cases. Scale bars represent 20 µm.  

  

65



   Supplemental Materials: Schludi et al. 

 

Figure S6: Colocalization of DPR proteins with p62 in primary neurons 

Double immunofluorescence for DPR proteins and p62. Nuclei are labeled with DAPI. (a) PR175-GFP 

expressed in primary hippocampal neurons does not colocalize with p62 (DIV6+7). (b) Primary cortical 

neurons transduced with GA175-GFP, GFP-GR149, GP80-V5/His or PR175-GFP (DIV6+7). p62 co-aggregates 

only with cytoplasmic and intranuclear poly-GA inclusions, but not with poly-GR, poly-GP and poly-GR. 

Scale bars represent 20 µm.   
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Figure S7: p62 negative DPR inclusions are rare. DPR aggregates in the central canal of the spinal cord 

are not found in control cases and do not localize close to the nucleolus in C9orf72 patients 

(a) Double immunofluorescence with poly-GR (7H1) and p62 in frontal cortex. Aside from p62 positive 

intranuclear inclusions (orange arrow), p62 negative intranuclear poly-GR inclusions also exist (white 

arrow), but are very rare. (b) In frontal cortex of C9orf72 mutation patients most poly-PR inclusions are 

positive for p62 (orange arrow). Rarely a p62 negative poly-PR inclusion for can be found (white arrows). 

(c) Immunohistochemistry with antibodies against poly-GA (5E9), poly-GR (7H1) and poly-GP (7A5) shows 

no DPR inclusions in the central canal of the spinal cord (SCcc) in an FTLD-MND-FUS case (FUS-1). (d) 

Double immunofluorescence with poly-GA and nucleolin shows that DPR inclusions are randomly 

distributed within the nuclei in SCcc glial cells. Scale bars represent 20 µm. 
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Figure S8: Unc119 is colocalized with poly-GA in para-nucleolar inclusions 

Double immunofluorescence with Unc119 and nucleolin, poly-GA or p62 in frontal cortex. (a) Some 

Unc119 inclusions show para-nucleolar localization (arrow). (b) Intranuclear Unc119 is colocalized with 

poly-GA (arrow). 
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Table S2: Quantitative assessment of DPR and Unc119 pathology in 14 C9orf72 cases 

Raw data for the quantitative analysis of inclusion pathology in 14 C9orf72 mutation cases shown in Fig. 

6, 8a and 8b. Three to twelve pictures were taken from representative areas of each region. In cortical 

areas pictures were taken in a columnar orientation covering layer I to VI. The total number of inclusions 

was divided by the number of pictures taken. For details see methods section, for abbreviations Fig. 6.  

GR (NCI + NII) 

Case no. FCtx MCtx OCtx DG CA3/4 CBLgl CBLml 
C9-1  11.5 5.1 6.0 48.5 10.0 29.5 6.0 
C9-2  17.4 5.0 22.8 102.0 16.7 20.0 9.7 
C9-3 3.4 1.5 3.5 6.7 14.7 8.0 5.7 
C9-4 4.0 6.0 6.6 14.0 12.0 0.7 0.7 
C9-5 15.2 5.0 11.0 31.0 13.0 37.5 13.0 
C9-6 7.1 0.5 1.7 4.7 
C9-7 4.1 18.3 64.7 23.7 3.7 2.3 
C9-8 2.6 2.0 2.7 3.3 1.0 3.0 
C9-9 5.0 6.8 34.7 10.0 0.3 1.0 
C9-10 2.4 0.0 18.7 27.7 0.0 3.0 
C9-11 2.5 0.3 2.0 1.0 1.3 0.7 
C9-12 7.0 1.6 13.0 7.0 1.0 0.0 
C9-13 22.6 32.4 34.3 12.7 
C9-14 7.0 5.4 9.0 30.0 10.3 10.0 7.7 

 

PR (NCI + NII) 

Case no. FCtx MCtx OCtx DG CA3/4 CBLgl CBLml 
C9-1  0.1 0.0 0.2 1.3 2.7 0.0 0.0 
C9-2  0.1 0.0 0.0 0.7 1.0 0.3 0.0 
C9-3 0.1 0.0 0.0 0.0 0.0 1.0 0.0 
C9-4 0.0 0.2 0.2 0.0 0.0 0.0 0.0 
C9-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
C9-6 0.0 0.0 0.0 0.0 
C9-7 0.0 0.0 0.3 2.3 0.3 0.3 
C9-8 0.5 0.0 0.0 0.7 0.0 0.0 
C9-9 0.2 0.0 0.3 0.3 0.3 0.0 
C9-10 0.0 0.0 0.3 0.0 
C9-11 0.0 0.0 0.0 0.3 1.0 0.0 
C9-12 0.0 0.0 0.3 0.3 0.7 0.0 
C9-13 0.1 0.1 0.7 0.0 
C9-14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

GA (NCI + NII) 

Case no. FCtx MCtx OCtx DG CA3/4 CBLgl CBLml 
C9-1  10.6 6.5 9.8 70.7 30.7 85.3 16.0 
C9-2  46.7 34.8 75.5 368.3 40.3 364.3 61.0 
C9-3 14.6 14.0 16.2 26.0 13.0 83.0 17.7 
C9-4 6.7 4.6 7.9 47.0 29.7 180.0 15.0 
C9-5 48.6 25.4 79.1 80.3 28.0 183.7 39.0 
C9-6 23.7 21.5 153.3 26.0 
C9-7 20.0 15.2 94.0 21.3 338.5 24.0 
C9-8 44.8 51.8 95.0 19.0 473.0 54.3 
C9-9 14.0 24.0 56.3 11.5 315.0 35.0 
C9-10 34.2 55.5 112.7 40.0 123.0 58.3 
C9-11 30.8 3.3 47.0 12.7 283.0 31.0 
C9-12 20.2 19.4 55.0 21.0 179.0 20.7 
C9-13 25.2 46.2 437.3 29.0 
C9-14 16.4 15.4 26.5 87.0 17.7 119.0 15.0 

73



   Supplemental Materials: Schludi et al. 

 

Unc119 (NCI + NII) 

Case no. FCtx MCtx OCtx DG CA3/4 CBLgl CBLml 
C9-1  5.9 2.5 3.2 16.0 7.0 16.0 6.0 
C9-2  16.8 17.7 16.0 141.5 27.7 133.0 25.7 
C9-3 6.2 4.4 5.0 13.7 8.3 20.0 3.3 
C9-4 2.0 2.0 2.2 5.8 16.6 7.3 2.7 
C9-5 14.2 14.8 19.6 27.3 16.0 100.3 22.3 
C9-6 12.8 6.5 39.0 15.0 
C9-7 11.8 12.0 24.3 19.7 164.7 15.0 
C9-8 17.0 10.2 26.3 10.3 146.0 18.0 
C9-9 4.3 6.1 19.5 5.0 86.3 1.5 
C9-10 31.6 35.5 138.3 35.0 61.0 18.7 
C9-11 10.2 0.7 11.3 6.0 27.7 2.3 
C9-12 8.0 9.6 18.0 17.3 85.7 4.3 
C9-13 12.2 24.6 114.0 10.3 
C9-14 11.3 10.0 12.5 18.0 12.0 25.0 10.7 
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1.2 Contribution to the publication 

As first author of this publication, I contributed to the study design and had major 

contributions to the experimental work. In detail, I performed all experiments shown in this 

publication except of immunohistochemistry or immunofluorescence staining of figure 

4m/n/q, S3, S6b and demographic/neuropathological patient/control data shown in table 1. 
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Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and 

inflammation without neuron loss 
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transgenic mice showed abnormal gait and progressive 
balance impairment, but showed normal hippocampus-
dependent learning and memory. Apart from microglia acti-
vation we detected phosphorylated TDP-43 but no neuronal 
loss. Thus, poly-GA triggers behavioral deficits through 
inflammation and protein sequestration that likely contrib-
ute to the prodromal symptoms and disease progression of 
C9orf72 patients.

Keywords ALS · FTLD · FTD · MND · C9orf72 · 
Neurodegeneration · Neurological disorder · Mouse model

Abstract Translation of the expanded (ggggcc)n repeat in 
C9orf72 patients with amyotrophic lateral sclerosis (ALS) 
and frontotemporal dementia (FTD) causes abundant poly-
GA inclusions. To elucidate their role in pathogenesis, 
we generated transgenic mice expressing codon-modified 
(GA)149 conjugated with cyan fluorescent protein (CFP). 
Transgenic mice progressively developed poly-GA inclu-
sions predominantly in motoneurons and interneurons 
of the spinal cord and brain stem and in deep cerebellar 
nuclei. Poly-GA co-aggregated with p62, Rad23b and the 
newly identified Mlf2, in both mouse and patient sam-
ples. Consistent with the expression pattern, 4-month-old 

Electronic supplementary material The online version of this 
article (doi:10.1007/s00401-017-1711-0) contains supplementary 
material, which is available to authorized users.
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Introduction

A (ggggcc)n hexanucleotide repeat expansion upstream of 
the coding region of C9orf72 is the most common genetic 
cause of amyotrophic lateral sclerosis (ALS) and fronto-
temporal dementia (FTD), with some patients showing 
symptoms of both diseases [7]. Patients usually carry sev-
eral hundred or thousand ggggcc repeats compared to less 
than 30 in the general population. The repeat expansion 
inhibits C9orf72 expression, and sense and antisense tran-
scripts may cause toxicity by sequestering RNA-binding 
proteins in nuclear foci [6, 28]. Moreover, both sense and 
antisense repeat transcripts are translated from all reading 
frames into aggregating dipeptide repeat (DPR) proteins 
(poly-GA, -GP, -GR, -PA, and -PR) [1, 22, 23, 40]. The rel-
ative contribution of these putative pathomechanisms, and 
their link to the co-occurring TDP-43 pathology present in 
patients with C9orf72 ALS/FTD, are under intense debate.

Generating mouse models for C9orf72 repeat expansion 
diseases has been surprisingly challenging [13]. Complete 
loss of C9orf72 does not cause neurodegeneration, but does 
affect autophagy, particularly in the immune system, and 
leads to splenomegaly [15, 25]. High level viral expression 
of a relatively short (ggggcc)66 repeat expansion leads to 
rapid neurodegeneration accompanied by DPR and TDP-
43 pathology [5]. In contrast, expressing lower levels of 
an expanded repeat in its endogenous context leads to vari-
able results. Two BAC transgenic mouse lines showed the 
characteristic RNA foci and DPR inclusions of C9orf72 
ALS/FTD, but no neuron loss or behavioral symptoms [24, 
26], while two similar mouse models additionally showed 
cognitive symptoms [15, 19]. The more dramatic effects 
in the viral system may be due to higher expression lev-
els and altered processing of exonic repeat expression 
[34]. Together, these models strongly support gain of func-
tion toxicity as the main cause of C9orf72 ALS/FTD, but 

cannot differentiate the contribution of sense and antisense 
RNA transcripts and the five DPR species. Viral expression 
of the most abundant DPR species, poly-GA, in the mouse 
brain causes mild neurodegeneration and cognitive symp-
toms without TDP-43 pathology, but this system showed no 
expression in the spinal cord [37]. In patients, DPR proteins 
are less common in the spinal cord than in the brain, but 
they are also found in upper and lower motoneurons [31].

To elucidate the specific contribution of poly-GA to 
disease pathogenesis, we aimed to generate a transgenic 
mouse model with poly-GA expression levels compara-
ble to C9orf72 ALS/FTD patients. We chose a Thy1-based 
expression vector for neuron-specific expression of poly-
GA [9]. Here, we report in-depth pathological and pheno-
typic analyses of these mice focusing on the motor system.

Methods

Generation of Thy1 (GA)149‑CFP mice

We inserted a multiple cloning site into the pUC18 based 
murine Thy1.2 vector using synthetic oligonucleotides [9]. 
This allowed us to insert a cDNA encoding (GA)149, 31 
amino acids corresponding to the 3′ region of the poly-GA 
reading frame in patients [22] and cyan fluorescent pro-
tein (CFP) (sequence shown in Fig. S1a). Compared to the 
previous (GA)149-GFP construct [21] only the fluorescent 
protein had been changed. Linearized vector was injected 
into C57BL/6-derived zygotes and transferred into pseu-
dopregnant CD1 females (PolyGene). GA-CFP mice were 
kept in the C57BL/6N background. Mice were PCR geno-
typed using the following primers (tccaggagcgtaccatcttc; 
gtgctcaggtagtggttgtc). We confirmed maintenance of the 
full length transgene with PCR amplification (Expand 
Long Template PCR System, Roche, 11681842001; gatc-
caagcttgccaccatg; tctagctctgccactccaag) and sequencing.

The transgene integration site was determined by whole 
genome sequencing according to standard protocols using 
the TruSeq DNA PCR-Free Library Preparation Kit and an 
Illumina HiSeq 4000 with 150 bp paired-end reads result-
ing in about 58× coverage from two lanes. Sequences 
mates mapping to different chromosomes were analyzed 
using the Integrative Genomics Viewer (IGV) [33].

Immunohistochemistry of mouse and patient tissue

After killing, 1-, 3-, 6-, and 12-month-old mice were transcar-
dially perfused with 1% sterile PBS and tissue was then forma-
lin fixated for 2 days. Histological stainings were performed on 
5–8 µm thick sections from paraffin-embedded tissue. For spi-
nal cord tissue, an additional decalcification step with 5% for-
mic acid for 5 days was performed after formalin fixation. After 
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München, Freising-Weihenstephan, Germany

15 Chair of Experimental Genetics, School of Life Science 
Weihenstephan, Technische Universität München, Alte 
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deparaffinization in xylene and dehydration in graded ethanol, 
the paraffin sections were treated with citrate buffer (pH 6) for 
20 min in the microwave. Mlf2 IHC staining was more promi-
nent when the citrate retreatment was followed by 20 min incu-
bation in 80% formic acid or 5–25 min incubation with 0.1 µg/
µl proteinase K in 10 mM Tris/HCl pH 7.6 at 37 °C. Afterwards 
the slides were incubated with primary antibody overnight at 
4 °C. For ChAT, an additional incubation with rabbit anti-goat-
IgG was performed the next day for 1 h at room temperature. 
The slides were detected by the DCS SuperVision 2 Kit (DCS 
innovative diagnostic-system, Hamburg, Germany) according 
to the manufacturer’s instructions. Iba1 and GFAP immuno-
histochemistry was performed with the Ventana BenchMark 
XT automated staining system (Ventana) using the UltraView 
Universal DAB Detection Kit (Roche). For Nissl staining, the 
deparaffinized slides were incubated in 70% ethanol overnight. 
After 30 min in Cresyl violet and 1 min in 96% ethanol the 
slides were processed in 100% ethanol with glacial acetic acid. 
Bright-field images were taken by CellD, Olympus BX50 Soft 
Imaging System (Olympus, Tokyo, Japan).

For immunofluorescence, after deparaffinization and 
citrate antigen retrieval, the slides were incubated with 
primary antibody overnight at 4 °C and the following day 
incubated for 1 h at room temperature with secondary 
Alexa Fluor labeled antibodies. For Mlf2 immunofluores-
cence staining, a 1 min treatment at 37 °C with 0.05 µg/
µl proteinase K in 10 mM Tris/HCl pH 7.6 was neces-
sary before citrate antigen retrieval. After the nuclei were 
counterstained with DAPI, the slices were incubated for 
1 min in 0.2% Sudan black B and mounted with Fluoro-
mount Aqueous Mounting Medium (Sigma, F4680). Fluo-
rescent images were taken using a LSM710 confocal laser 
scanning system (Carl Zeiss, Jena, Germany) with 20x or 
40x/63x oil immersion objectives.

Antibodies

α-GFP (1:1000, Clonetech 632592), α-GA clone 5F2 [20] 
(purified mouse monoclonal, WB unlabeled 1:50; IHC 
HRP labeled 5F2 1:2500, labeled by AbD Serotec HRP-
labeling Kit LNK002P; biotinylated 5F2 7 ng/µl; MSD-
labeled 5F2 10 ng/µl, labeled by Meso Scale MSD Sulfo-
Tag NHS-Ester R91AN-1), α-GA-CT (C-terminal tail) 
clone 5C3 [22] (rat monoclonal, 1:50), α-p62/SQSTM1 (IF 
1:100, IHC 1:1000, MBL, PM045), α-pTDP-43 (Ser409/
Ser410) clone 1D3 [20] (purified rat monoclonal, 1:50), 
α-TDP-43 (1:1000, Cosmo Bio, TIP-TD-P09), α-RanGAP1 
(1:100, Abcam, ab92360), α-nucleolin (1:1000, Abcam, 
ab50729), α-CD68 (1:1000, Abcam, ab125212), α-Iba1 
(1:500, Wako, 091-19741), α-GFAP (1:5000,Dako, 
Z0334), α-NeuN (1:1000, Abcam, ab177487), α-ChAT 
(IF 1:300, IHC 1:5000, Millipore, AB144P), α-Calnexin 
(1:3000, Enzo Life Science, SPA-860F), α-Calbindin 

(1:300, Abcam, ab49899), α-Calretinin (1:1000, Abcam, 
ab702) α-Parvalbumin (1:750, Abcam, ab11427), α-Mlf2 
#1 (1:1000, Sigma-Aldrich, HPA010811-100UL), α-Mlf2 
#2 (1:1000, Santa Cruz, sc-166874), α-Laminin (1:200, 
Abcam, ab11575), α-goat-IgG (1:400, Dako, E0466), 
α-mouse Alexa Fluor 488 (1:500, Thermo Fischer Scien-
tific, A11029), α-rabbit Alexa Fluor 488 (1:500, Thermo 
Fischer Scientific, A11034), α-rat Alexa Fluor 488 (1:500, 
Thermo Fischer Scientific, A11006), α-mouse Alexa Fluor 
555 (1:500, Thermo Fischer Scientific, A21424), α-rabbit 
Alexa Fluor 555 (1:500, Thermo Fischer Scientific, 
A21429), α-rat Alexa Fluor 555 (1:500, Thermo Fischer 
Scientific, A21434), Streptavidin Alexa Fluor 488 (1:500, 
Thermo Fischer Scientific, S11223), nuclei were stained 
with DAPI (Roche Applied Science, Penzberg, Germany).

Immunoassay analysis of poly‑GA in tissue 
homogenates

Mouse brainstem and spinal cord samples and C9orf72 
patient motor cortex samples were sonicated in 500–700 µl 
of cold RIPA buffer (137 mM NaCl, 20 mM Tris pH 7.5, 
10% Glycin, 1% Triton X 100, 0.5% Na-deoxycholate, 
0.1% SDS, 2 mM EDTA, protease and phosphatase inhibi-
tors). 100 µl of this homogenized tissue stock solutions were 
diluted to 300 µl with RIPA and centrifuged at 100,000×g 
for 30 min at 4 °C. To avoid cross contamination, the RIPA-
insoluble pellets were resuspended in 300 µl RIPA, re-son-
icated and re-centrifuged. Afterwards the RIPA-insoluble 
pellets were sonicated in U-RIPA (RIPA buffer contain-
ing 3.5 M Urea) and the protein concentration determined 
by Bradford assay. Streptavidin Gold multi-array 96-well 
plates (Mesoscale, L15SA-1) were blocked for 30 min with 
block solution (1% BSA, 0.05% Tween20 in PBS) and incu-
bated with biotinylated α-GA clone 5F2 overnight at 4 °C. 
Equal amounts of protein of all samples were added in 
duplicate wells for 2 h, followed by 2 h incubation with the 
secondary MSD-labeled α-GA clone 5F2. Serial dilution of 
recombinant GST-GA15 in blocking buffer was used to pre-
pare a standard curve. The wells intensity of emitted light 
upon electrochemical stimulation was measured using the 
MSD Quickplex 520 and the background corrected by the 
average response obtained from blank wells. Sensitivity and 
specificity of the immunoassay were confirmed using puri-
fied 15-mer DPRs fused to GST (Fig. S3a, b).

Phenotypic analysis of mice

The study was conducted in accordance with European and 
national guidelines for the use of experimental animals, 
and the protocols were approved by the governmental com-
mittee (Regierungspräsidium Oberbayern, Germany). All 
experimenters were blind to the genotype.
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Barnes maze (Stoelting Europe, Ireland) assay to test 
spatial, hippocampus-dependent long-term memory in mice 
was performed on a circular surface (diameter 91 cm) with 
20 circular holes (diameter 5 cm) around its circumference 
[3]. Under one hole was an “escape box” (diameter 4 cm, 
depth 15 cm). The table surface was brightly lit by over-
head lightning (900 lx). For each trial the mice had 3 min to 
find and hide in the “escape box”. For the statistical analy-
sis failed attempts were set to 3 min.

In the balance beam test, the mice were placed on a 
wooden beam (round surface, length 58 cm, diameter 
8 mm) and had 1 min to cross the beam. The test was fin-
ished either when the mice reached the end of the stick, 
they dropped down or the time ran out. For the statistical 
analysis failed attempts were set to 1 min. The experiment-
ers were blind to the genotype, and trials were either video 
documented or recorded by AnyMaze (Stoelting Europe). 
AnyMaze Software was used to track the mice and to ana-
lyze the data.

In the Rotarod test (Ugo Basile), we accelerated the 
spindle speed from 5 to 50 rpm over 5 min. The test fin-
ished either after 5 min or when the mouse dropped down. 
The average time of two trials with 1 h break in between 
was used.

Modified SHIRPA analysis and grip strength testing was 
performed as described [11].

The beam ladder consists of two Plexiglas screens con-
nected with several metal beams of variable distance. The 
test is used to evaluate skilled walking of the mice. Mice 
traverse the ladder and foot slips of fore paws and hind 
paws are counted separately as well as the time to traverse 
the beam.

The open field test as an assessment of spontaneous 
exploratory and anxiety-related behavior in a novel envi-
ronment was carried out as previously described [12, 14, 
39]. It consisted of a transparent and infra-red light permea-
ble acrylic test arena with a smooth floor (internal measure-
ments: 45.5 × 45.5 × 39.5 cm). Illumination levels were 
set at approximately 150 lx in the corners and 200 lx in the 
middle of the test arena. Each animal was placed individu-
ally into the middle of one side of the arena facing the wall 
and allowed to explore it freely for 20 min. For data anal-
ysis, the arena was divided by the computer in two areas, 
the periphery defined as a corridor of 8 cm width along 
the walls and the remaining area representing the center of 
the arena (42% of the total arena). Data were recorded and 
analyzed using the ActiMot system (TSE, Bad Homburg, 
Germany).

Acoustic startle and its prepulse inhibition were 
assessed using a startle apparatus setup (Med Associates 
Inc., VT, USA) including four identical sound-attenu-
ating cubicles. The protocol is based on the Eumorphia 
protocol (http://www.empress.har.mrc.ac.uk), adapted to 

the specifications of our startle equipment, and constantly 
used in the primary screen of the GMC [30]. Background 
noise was 65 dB, and startle pulses were bursts of white 
noise (40 ms). A session was initiated with a 5-min-accli-
mation period followed by five presentations of leader 
startle pulses (110 dB) that were excluded from statistical 
analysis. Trial types included prepulse alone trials at four 
different sound pressure levels (67, 69, 73, 81 dB), and 
trials in which each prepulse preceded the startle pulse 
(110 dB) by a 50 ms inter-stimulus interval. Each trial 
type was presented ten times in random order, organized 
in ten blocks, each trial type occurring once per block. 
Inter-trial intervals varied from 20 to 30 s.

DNA constructs and lentivirus production

cDNA of rat Mlf2 (NCBI Gene ID: 312709) containing an 
N-terminal HA-tag was expressed from a lentiviral vector 
driven by human ubiquitin promoter (FUW2-HA). Pre-
viously described (GA)175-GFP cDNA expressed from a 
synthetic gene lacking repetitive (ggggcc)n sequences with 
ATG start codon and EGFP was cloned in a lentiviral pack-
ing vector (FhSynW2) containing the human synapsin pro-
moter [21]. Lentivirus was produced in HEK293FT cells 
(Life Technologies) as described previously [10].

Cell culture, RNA isolation and immunoprecipitation

Primary hippocampal neurons from embryonic day 19 rats 
were cultured and transduced with lentivirus as described 
previously [32]. Immunofluorescence staining was per-
formed on 10 min PFA (4% paraformaldehyde and 4% 
sucrose) fixed primary neurons. The primary and second-
ary antibodies were diluted in GDB buffer (0.1% gelatin, 
0.3% Triton X-100, 450 mM NaCl, 16 mM sodium phos-
phate pH 7.4) and incubated over night at 4 °C or 1 h at 
room temperature. Confocal images were taken using a 
LSM710 confocal laser scanning system (Carl Zeiss, Jena, 
Germany) with 40× or 63× oil immersion objectives. RNA 
isolation and qPCR was performed as described previously 
[23] using the following primers (CD68 ttctgctgtggaaatg-
caag and gagaaacatggcccgaagt; Iba1 acagcaatgatgaggatctgc 
and ctctaggtgggtcttgggaac; GFAP tttctcggatctggaggttg and 
agatcgccacctacaggaaa; ACTB atggaggggaatacagccc and 
ttctttgcagctccttcgtt; GAPDH caacagcaactcccactcttc and 
ggtccagggtttcttactcctt).

Patient material

Tissue samples of patient autopsy cases were provided by 
the Neurobiobank Munich, Ludwig-Maximilians-Univer-
sity (LMU) Munich and collected according to the guide-
lines of the local ethics committee.
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Statistics and analysis

Statistical analysis was performed with GraphPad Prism 
software (version 7.01). For neuron and motoneuron 
count, images of the left and right anterior horns of the 
spinal cord were taken and all positively stained cells 
were manually counted. The count number represents 
the neurons/motoneurons averaged on one side. Experi-
ments with two groups were analyzed by t test (unpaired, 
two-sided, t = size of the difference relative to the varia-
tion; df = degrees of freedom). Behavioral data was ana-
lyzed by two-way ANOVA with Bonferroni post hoc test 
(F = equality of variances).

Phospho‑TDP‑43 immunoassays

For phosphorylated TDP-43 measurements, sarkosyl-soluble 
and urea-soluble fractions of mouse spinal cord tissues were 
prepared as previously described [5]. In brief, 25–60 mg 
of tissue were subjected to a sequential extraction protocol 
using Tris–EDTA buffer (50 mM Tris pH 7.4, 50 mM NaCl, 
1 mM EDTA), high salt Triton X-100 buffer, Triton X-100 
buffer + 30% sucrose, and sarkosyl buffer. Sarkosyl-insol-
uble material was further extracted in urea buffer. The pro-
tein concentrations of sarkosyl-soluble fractions were deter-
mined using a bicinchoninic acid assay (Thermo Scientific), 
whereas a Bradford assay was utilized to measure protein 
concentrations of urea-soluble fractions. Phosphorylated 
TDP-43 levels in both these fractions were evaluated using 
a sandwich immunoassay that utilizes MSD electrochemilu-
minescence detection technology [15]. A mouse monoclo-
nal antibody that detects TDP-43 phosphorylated at serines 
409 and 410 (Cosmo Bio, #CAC-TIP-PTD-M01, 1:500) was 
used as the capture antibody. The detection antibody was a 
sulfo-tagged rabbit polyclonal C-terminal TDP-43 antibody 
(Proteintech, 12892-1-AP, 2 µg/ml). Response values corre-
sponding to the intensity of emitted light upon electrochemi-
cal stimulation of the assay plate using the MSD QUICK-
PLEX SQ120 were acquired and background corrected 
using the average response from buffer only.

Results

Thy1 (GA)149‑CFP mice accumulate poly‑GA inclusions 
in the spinal cord and brainstem

We generated a Thy1-based vector to express (GA)149 using 
a synthetic sequence, which unlike the repeat expansion in 
patients has no extensive (ggggcc)n stretches, fused with 
a C-terminal fluorescent CFP tag (Figs. 1a, S1a). Since the 
relevance of the C-terminal tail of endogenous DPR prod-
ucts is unknown, we additionally included 31 amino acids 

translated from the endogenous locus in the poly-GA reading 
frame [22]. Using pronuclear injections into C57BL/6 mice, 
we generated a founder line (termed GA-CFP) with germline 
transmission and poly-GA expression. Transgenic mice were 
born at Mendelian frequency and did not differ in adult via-
bility. Sequencing confirmed transmission of the full length 
open reading frame in all analyzed animals (n = 3, data not 
shown) and genomic PCR from different tissues further con-
firmed the somatic stability of the synthetic repeat gene (Fig. 
S1b). We identified the integration site using whole genome 
sequencing and validated our findings by PCR and Sanger 
sequencing (Fig. S2). Several transgene copies integrated on 
chromosome 14 about 330 kb downstream of the nearest tran-
script, the long non-coding RNA 4930474H20Rik, strongly 
suggesting that no endogenous genes are disrupted.

Using immunohistochemistry, we characterized poly-
GA protein expression in different brain regions in 
4–6-month-old mice. Expression of the aggregated full 
length product was detected with antibodies targeting CFP, 
poly-GA or the C-terminal DPR tail (GA-CT) (Fig. S1c). 
While most of the poly-GA inclusions were cytoplasmic, a 
few inclusions were observed in the nucleus (Fig. S1d). In 
GA-CFP mice, poly-GA-inclusion pathology was restricted 
to neurons of brain stem, cerebellar nuclei and spinal cord. 
There were numerous poly-GA-immunopositive inclusions 
in large neurons of the brainstem, the lateral (dentate) and 
interposed cerebellar nuclei and (most abundantly) the 
anterior horn of the spinal cord, particularly in the cervical, 
thoracic and lumbar regions (Fig. 1b). Inclusion pathology 
was additionally observed in interneurons (Fig. S1e) in the 
laminae IV, V and VI of the posterior horn. No poly-GA 
inclusions were detected in the olfactory bulb, the molecu-
lar and granular layer of the cerebellum, the hippocampus 
or the neocortex, including the motor cortex (Fig. 1b).

Next, we analyzed the progression of poly-GA pathology 
in GA-CFP mice with age. Inclusions were visible by IHC 
in the spinal cord and brain stem at 1 month of age, and the 
number and size of inclusions increased with age (Fig. 1c). 
Consistent with these findings, levels of RIPA-insoluble 
poly-GA in brain stem and spinal cord lysates increased 
over time, as assessed using a poly-GA-specific immunoas-
say (Figs. 1d, e, S3a, S3b), whereas no signal was detected 
in non-transgenic littermates. No poly-GA was detectable 
in the RIPA-soluble fraction of the spinal cord and brain-
stem (Fig. S3c). Fair comparison of poly-GA levels in mice 
and patients is complicated by the different regional expres-
sion pattern in mice and patients and variable poly-GA lev-
els in patients. However, we measured the expression of 
poly-GA in spinal cord of 4–6-month-old GA-CFP mice 
and motor cortex of C9orf72 ALS/FTD patients with abun-
dant poly-GA pathology by immunoassay (Fig. S3d) and 
additionally counted the frequency of neuronal poly-GA 
inclusions in the most affected regions of GA-CFP mice 
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and the neocortex of C9orf72 patients (Fig. S3e, f). Both 
assays show that poly-GA expression is not grossly exag-
gerated in GA-CFP mice. Thus, GA-CFP mice are a suit-
able model to address the pathomechanisms of poly-GA in 
the motor system.

Poly‑GA co‑aggregates with p62, Rad23b and the 
chaperone‑associated protein Mlf2

To investigate potential downstream effects of poly-GA 
expression, we analyzed whether poly-GA co-aggregates 

with other proteins. Similar to findings in C9orf72 ALS/
FTD patients [23], the vast majority of poly-GA inclusions 
co-localized with p62 (Fig. 2a, b, first row and Table S1). 
Rad23b, a known poly-GA-interacting protein involved 
in the ubiquitin proteasome pathway, also aggregated in 
GA-CFP mice (Fig. 2a, b, second row) similar to previ-
ous reports [21, 37]. In contrast to overexpression of poly-
GA in rat primary neurons [21], GA-CFP mice showed no 
sequestration of Unc119 (Fig. S4a) and no mislocalization 
or co-localization of RanGAP1 with poly-GA (Fig. S4b 
first row, and Table S1), which is consistent with our cell 
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Fig. 1  Expression and distribution pattern of poly-GA aggregates 
in GA-CFP mice. a Schematic diagram of the construct containing 
the murine Thy1 promoter driving expression of a synthetic gene 
encoding (GA)149 with its endogenous C-terminal tail fused to CFP. 
(GA)149-CFP is replacing the endogenous coding region. b Distri-
bution of GA aggregates show many inclusions in the spinal cord 
and brainstem and no aggregates in cortical regions, hippocampus 
or molecular and granular layer of the cerebellum. BO olfactory bulb, 
BS brainstem, CA3 cornu ammonis fields 3, CBLgl cerebellar granu-
lar cell layer, CBLml cerebellar molecular cell layer, CBLncl lateral 
cerebellar nuclei, DG dentate gyrus, SCAl anterior horn of lumbar 

spinal cord, SCAt anterior horn of thoracic spinal cord, SCPl poste-
rior horn of lumbar spinal cord, SCPt posterior horn of thoracic spi-
nal corn. Scale bars represent 20 µm. c Increasing number and accu-
mulation of aggregates in spinal cord (SC; upper row) and brainstem 
(BS; lower row) of 1-, 3- and 6-month-old GA-CFP mice detected 
by immunohistochemical staining using GA-CT antibody. Scale bar 
represents 20 µm. Quantitative immunoassay of RIPA-insoluble poly-
GA in the spinal cord (d) and brainstem (e) of 1–6-month-old GA-
CFP mice (n = 3 mice per time-point; measured in duplicates) shows 
increasing amounts of poly-GA in a time dependent manner. AU arbi-
trary unit, data are shown as mean, minimum and maximum
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culture data [17]. We also found no evidence of nucleolar 
pathology using nucleolin immunostaining (Fig. S4b sec-
ond row).

Additionally, we analyzed whether poly-GA co-aggre-
gates with proteins identified in poly-GA immunoprecipi-
tates in primary hippocampal neurons in our recent mass 
spectrometry screen [21]. Among such proteins that had 
not been previously validated, the Hsp70-associated pro-
tein, Mlf2, showed the strongest co-aggregation with poly-
GA in the spinal cord of GA-CFP mice, whereas no Mlf2 
aggregates were detected in wildtype mice (Fig. 2a, b, third 
row). Co-transduction of HA-Mlf2 and (GA)175-GFP in 
primary hippocampal neurons of wildtype rats corroborated 
the sequestration of Mlf2 into poly-GA inclusions (Fig. 
S4c). Moreover, endogenous Mlf2 was sequestered into 

poly-GA inclusions in primary neurons transduced with 
(GA)175-GFP (Fig. S4d). These data led us to examine Mlf2 
aggregation in C9orf72 ALS/FTD patients. We detected 
Mlf2 pathology in the frontal cortex and hippocampus of 
C9orf72 ALS/FTD patients but not healthy controls using 
two independent Mlf2 antibodies (Figs. 2c, S4e). In addi-
tion, double immunofluorescence staining confirmed the 
co-aggregation of Mlf2 with poly-GA in C9orf72 patients 
(Fig. 2d, first row). While in GA-CFP mice Mlf2 was co-
aggregating in ~55% of the poly-GA inclusions, in C9orf72 
patients only 0.3–2.7% of the poly-GA aggregates showed 
Mlf2 sequestration, depending on the brain region (Table 
S2). However, we detected Mlf2 also occasionally in cyto-
plasmic phospho-TDP-43 inclusions in C9orf72 patients 
(Fig. 2d, second row). Thus, our GA-CFP mice recapitulate 
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Fig. 2  GA-CFP mice develop p62, Rad23b and Mlf2 pathology 
similar to human C9orf72 mutation carriers. a Immunohistochemistry 
shows p62, Rad23b and Mlf2 aggregates in the spinal cord (SC) of 
6-month-old GA-CFP mice but not of wildtype mice. b Immunoflu-
orescence stainings show p62, Rad23b and Mlf2 positive inclusions 
that co-localize with poly-GA in the spinal cord of 6-month-old GA-

CFP mice. c Immunohistochemistry detects specific Mlf2 aggregates 
in the frontal cortex (FCtx) and dentate gyrus (DG) of C9orf72 ALS/
FTLD patients. d Double immunofluorescence reveals colocalization 
of Mlf2 aggregates with poly-GA and phosphorylated TDP-43 inclu-
sions in C9orf72 patients. Scale bars represent 20 µm

83



 Acta Neuropathol

1 3

the poly-GA component of pathology in C9orf72 ALS/
FTD patients, including the co-aggregation of poly-GA 
with p62, Rad23b and Mlf2.

Poly‑GA triggers mild TDP‑43 phosphorylation but no 
overt neuron loss

We next analyzed whether poly-GA expression drives 
neurodegeneration. Consistent with the expression pattern 

of the Thy1 promoter, poly-GA was exclusively found in 
NeuN-positive neurons (Fig. 3a) and no expression was 
detectable in microglia or muscle fibers (Fig. S4f). How-
ever, Nissl staining and NeuN immunostaining revealed 
no overt neuron loss in the spinal cord (Fig. 3b, c). Poly-
GA was found in most choline acetyltransferase (ChAT) 
positive motoneurons in the anterior horn of the spinal 
cord (Fig. 3d), but ChAT immunostaining revealed no 
statistically significant loss of motoneurons at 6 months 
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Fig. 3  GA-CFP mice show no evidence for neuronal loss but 
increased TDP-43 phosphorylation. a Double immunofluorescence of 
6-month-old GA-CFP spinal cord tissue (SC) shows poly-GA inclu-
sions exclusively in NeuN-positive cells. Scale bar represents 20 µm. 
b, c Nissl staining and NeuN immunohistochemistry of 6-month-old 
GA-CFP and wildtype spinal cords. Scale bar represents 100 µm. 
Quantitative analysis of NeuN-positive neurons shows no significant 
difference between wildtype and GA-CFP mice (nGA-CFP/wt = 3). d 
Immunostaining of poly-GA aggregates in choline acetyltransferase 
(ChAT)-positive motoneurons. Scale bar represents 20 µm. e–g 
Immunohistochemistry and quantitative analysis of ChAT-positive 

motoneurons of 6-month-old mice in the anterior horn of the spinal 
cord revealed no statistically significant differences in neuron count 
(nGA-CFP/wt mice = 4) and size (nGA-CFP motoneurons = 228; nwt motoneu-

rons = 195). Neurons were counted as described in the “Statistics” 
section. Scale bar represents 100 µm. h Immunoassay for phos-
phorylated TDP-43 in sarkosyl (1%)-soluble or urea (7M)-soluble 
spinal cord fractions from 6-month-old GA-CFP or wildtype (wt) 
mice. n(wt) = 12; n(GA-CFP) = 8. Unpaired t test (two-tailed; sarkosyl 
t = 0.3034, df = 18; urea t = 4.172, df = 18). Data are shown as box 
plot with whiskers at the 1st and 99th percentile. ***p < 0.001, ns not 
significant
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(Fig. 3e–g). Furthermore, the size and shape of motoneu-
rons in GA-CFP mice did not show signs of degeneration 
and were not discernible from the corresponding neurons in 
wildtype mice.

Next, we analyzed another neuropathological hallmark 
of ALS, namely TDP-43 phosphorylation, in aged GA-CFP 
mice. We quantified levels of phosphorylated TDP-43 (at 
serines 409 and 410) in the spinal cord of mice at 6 months 
of age by ELISA. Phosphorylated TDP-43 levels were 
approximately threefold higher in the urea-soluble (but 
sarkosyl-insoluble) fraction of GA-CFP mice compared to 
wildtype mice, but no difference was detected in the sarko-
syl-soluble fraction (Fig. 3h). While mature TDP-43 inclu-
sions and cytoplasmic TDP-43 mislocalization were not 
observed in GA-CFP mice, even at 12 months of age (Fig. 
S4g, h; Table S1), these data may nonetheless indicate that 
poly-GA contributes to the onset of TDP-43 pathology.

Poly‑GA induces microglia activation 
without astrogliosis

Next, we analyzed the GA-CFP mice for signs of neuroinflam-
mation. Immunohistochemistry for CD68 and Iba1 in 1- and 
6-month-old mice revealed strong upregulation of these mark-
ers of phagocytic microglia in the spinal cord of 6-month-old 
GA-CFP mice (Fig. 4a, b) while little microglia activation 
was detectable at 1 month of age. Quantitative RT-PCR fur-
ther confirmed enhanced mRNA expression of CD68 and Iba1 
(Fig. 4c, d). In contrast, GFAP immunostaining and mRNA 
expression analysis revealed no signs of poly-GA-induced 
astrogliosis (Fig. 4e, f). Furthermore, in the neocortex of GA-
CFP mice, a region lacking poly-GA pathology, no activation 
of CD68, Iba1 or GFAP was detected (Fig. S5a). Thus, neu-
ronal poly-GA expression induces regional microglia activa-
tion in the absence of overt neuron loss in GA-CFP mice.

GA‑CFP mice develop progressive motor deficits

To analyze the functional consequences of poly-GA 
pathology and its downstream effects, we performed in 
depth phenotyping of mice at 3–4 months of age when 
poly-GA pathology starts building up. Open field testing 
revealed no signs of anxiety as GA-CFP and wildtype 
mice spent a similar time in the center of the arena, but 
the decreased rearing activity of GA-CFP mice may 
indicate decreased motor performance or alterations in 
the relevant brain circuits (Fig. 5a). The overall distance 
traveled was not significantly reduced in GA-CFP mice. 
However, when walking across a beam ladder with irreg-
ular step distance, male GA-CFP mice showed signifi-
cantly more hind paw slips, without a difference in total 
traversing time (Fig. 5b). In the SHIRPA analysis, the 
majority of GA-CFP mice showed hind paw clenching 

(84% compared to 35% of controls; Fig. 5c) and a broad, 
wagging gait (77% compared to 24% of controls). Grip 
strength of fore and hind limbs measured individually 
or combined was normal (data not shown). Decreased 
acoustic startle response and prepulse inhibition in GA-
CFP mice suggest impaired sensorimotor gaiting and 
recruitment ability (Figs. S5b/c).

We repeated a subset of tests in 13–14-month-old mice. 
At this age, both male and female mice took significantly 
longer to cross the beam ladder and slipped more often with 
their hind paws (Fig. 5d). In the SHIRPA analysis, 87% of 
GA-CFP mice showed hind paw clenching compared to 8% 
of controls and abnormal gait (93% compared to 38% of 
controls) (Fig. 5e). However, out of the sixty mice used for 
this study, only three control mice and one GA-CFP mouse 
had died unexpectedly until the age of 16 months.

We additionally used an independent, smaller cohort 
of mice from 2–6 months of age for a longitudinal study 
focusing on memory function and motor coordination. 
While GA-CFP and wildtype mice initially gained weight 
normally for the first 6 months (Fig. S5d), transgenic mice 
showed reduced body weight compared to wildtype litter-
mates after 15 months (male wildtype 38.6 g ± 3.1, male 
GA-CFP 32.1 g ± 1.7, female wildtype 31.1 g ± 4.0, 
female GA-CFP 26.4 g ± 2.3; ANOVA genotype effect 
p < 0.001). Hippocampus-dependent spatial memory of 
all mice was tested weekly using the Barnes maze; at all 
time-points, GA-CFP mice performed like their wildtype 
littermates, indicating that their spatial memory was not 
impaired (Fig. S5e). Moreover, we used the accelerated 
rotarod as a test for overall motor performance. Within 
6 months, no difference in the performance of motor plan-
ning and physical condition was observed between GA-
CFP mice and wildtype littermates (Fig. S5f). To measure 
balance and coordination more directly, mice were made to 
walk across a balance beam every week. The beam walk 
revealed progressive deficits in male and female transgenic 
mice (Fig. 5f, g). GA-CFP mice and their wildtype litter-
mates showed similar performance from week 8 to 17, but 
from week 20 onward GA-CFP mice took a significantly 
longer time to cross the beam (Fig. 5f) or failed the test 
entirely by dropping down (Fig. 5g).

Taken together, GA-CFP mice develop progressive gait 
and balance impairments, while muscle strength and spatial 
memory are spared. These findings are consistent with the 
poly-GA pathology found exclusively in spinal cord, brain-
stem and cerebellum.

Discussion

We generated the first germline transgenic mouse model 
of pure DPR pathology without (ggggcc)n repeat RNA 
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and analyzed the contribution of poly-GA to C9orf72 
ALS/FTD pathophysiology. We show that chronic accu-
mulation of poly-GA proteins in the spinal cord, brain 
stem and deep cerebellar nuclei in GA-CFP mice results 
in progressive gait and balance impairment. These deficits 

are associated with the sequestration of p62, Rad23b and 
the chaperone-associated protein Mlf2. Accompanying 
regional microglia activation and modest TDP-43 phos-
phorylation suggest that poly-GA inclusions impair neu-
ronal function prior to neuron loss in C9orf72 ALS/FTD.
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Fig. 4  Activation of phagocytic microglia in GA-CFP mice. a, b, e 
Immunohistochemistry of 1- and 6-month-old mice shows microglia 
activation detected by the markers CD68 and Iba1 in the spinal cord 
(SC) of 6-month-old GA-CFP mice compared to wildtype mice in 
the anterior horn of the spinal cord. No clear difference was observed 
for the astrocyte marker GFAP. Scale bars represent 100 µm. c, d, f 
Quantitative RT-PCR shows increased mRNA expression of CD68 
and Iba1 but not GFAP in 6-month-old GA-CFP mice compared to 

1-month-old GA-CFP mice and controls. Expression was normal-
ized to GAPDH and β-actin using the ∆∆Ct method. n(wt) = 3; 
n(GA-CFP) = 3; Statistical analyses were performed by an unpaired t 
test (two-tailed;  CD681-month t = 3.079, df = 4;  Iba11-month t = 2.385, 
df = 4;  GFAP1-month t = 0.4147, df = 4;  CD686-months t = 4.805, 
df = 4;  Iba1 6-months t = 6.399, df = 4;  GFAP 6-months t = 1.771, df = 4) 
and data are shown as mean ± SEM; *p < 0.05; **p < 0.01, ns not 
significant
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GA‑CFP mice model pure poly‑GA pathology

The Thy1-driven GA-CFP mice express poly-GA proteins 
at levels roughly similar to human C9orf72 ALS/FTD 
patients although with a different regional expression pat-
tern. GA-CFP mice develop poly-GA pathology in moto-
neurons and other neurons of the spinal cord and brain stem 

and in deep cerebellar nuclei. In patients, poly-GA inclu-
sions are found in the spinal cord, including motoneurons, 
but they are much more frequent in the neocortex, hip-
pocampus, thalamus and cerebellum [20, 23, 31]. This has 
led to speculations that spinal cord motoneurons in patients 
may be particularly vulnerable to DPR protein expression. 
However, expression of poly-GA in GA-CFP mice does not 
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Fig. 5  GA-CFP mice are less active and develop balancing deficits. 
a–e Neurological and behavioral analysis of GA-CFP and wildtype 
(wt) littermates at 3–4 months (a–c) and 14 months of age (d, e). a 
Open field analysis at 3 months. Automated analysis of the time spent 
in the center, the rearing activity (total count) and the total distance 
traveled within 20 min for the different genotypes and genders. b 
Beam ladder with irregular step distance. Automated analysis of aver-
age time needed to cross the ladder and the number of hind paw slips 
at the age of 4 months. c Gait analysis according to the SHIRPA pro-
tocol. Fraction of mice showing hindlimb clenching and abnormal 
gait is shown (at the age of 3.5 months). n(GA-CFP male) = 16; n(GA-CFP 

female) = 15; n(wt male) = 14; n(wt female) = 15 for all tests at 3 months 
of age. d, e Repetition of the beam ladder and SHIRPA analysis of 
GA-CFP and wildtype (wt) littermates at 14 months of age. n(GA-

CFP male) = 15; n(GA-CFP female) = 15; n(wt male) = 13; n(wt female) = 13. 
f, g Longitudinal analysis using a balance beam. GA-CFP males 

and females take more time to cross the beam and fall more often 
than wildtype mice starting at 4 months. n(GA-CFP male) = 4; n(GA-CFP 

female) = 4; n(wt male) = 6; n(wt female) = 6. Statistical analysis of open 
field and beam ladder assay was performed by a two-way ANOVA 
between sex and genotype followed by Bonferroni post hoc test. 
Statistical analysis of the beam walk was performed by a two-way 
ANOVA between time and genotype for each sex followed by Bon-
ferroni post hoc test. Asterisks for open field analysis and beam lad-
der traversing time depict significance of genotype effects [open field 
F (1, 56) = 7.579; beam ladder traversing time F (1, 52) = 10.2]. 
Asterisks for beam ladder hind paw trials, SHIRPA and beam walk 
depict significance of genotype and sex-dependent effects (Bonfer-
roni). Statistical analysis of hind paw clenching and gait was per-
formed by a Chi-square test. Data are shown as box plot with whisk-
ers at the 1st and 99th percentille (a–e,  g) or as mean ± SEM (f); 
*p < 0.05; **p < 0.01; ***p < 0.001
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cause a rapid loss of motoneurons. Our data indicate that 
poly-GA aggregates in neurons of the motor system disturb 
normal neuronal function in the absence of overt neuron 
loss, for example, by sequestration of cellular proteins.

We observed co-aggregation of poly-GA with p62 and 
Rad23 as reported previously [21, 23, 37]. For unknown 
reasons we did not detect sequestration of Unc119 into 
poly-GA inclusions in GA-CFP mice, which we had ini-
tially discovered in rat primary neurons and confirmed in 
C9orf72 patients [21, 31]. Furthermore, we discovered that 
the chaperone-associated protein Mlf2 co-aggregates with 
half of the poly-GA inclusions in the spinal cord of GA-
CFP mice, but only in 0.3–2.7% of the poly-GA inclusions 
in the cortex of C9orf72 ALS/FTD patients. The differen-
tial co-aggregation of Mlf2 and Unc119 in GA-CFP mice 
and C9orf72 cases highlights the importance of validating 
data from all model systems in patient tissue. The unex-
pected co-aggregation of Mlf2 and phospho-TDP-43 in 
C9orf72 patients needs to be investigated further. While the 
drosophila homolog of Mlf2 has been shown to co-aggre-
gate with poly-Q and modulate its toxicity in a Hunting-
ton’s disease model [16, 18], preliminary experiments in rat 
primary neuron culture did not show clear effects of Mlf2 
on poly-GA toxicity (data not shown).

Consistent with cellular models [21, 38], poly-GA 
expression by itself did not induce visible TDP-43 inclu-
sions. However, we did notice increased levels of phospho-
rylated TDP-43 in the urea-soluble fraction, indicating that 
poly-GA may contribute to the onset of TDP-43 pathology. 
Similarly, in an AAV-based model with much higher GFP-
(GA)50 expression, only very few TDP-43 aggregates were 
detected [37]. While C9orf72 patients show robust astro-
gliosis and microgliosis, the BAC transgenic and poly-GA 
expressing mice showed variable extent of astrocyte and 
microglia activation [15, 19, 26, 37]. The strong activation 
of microglia in the spinal cord of our GA-CFP mice may be 
due to neuronal dysfunction alarming microglia, extracellu-
lar release of poly-GA aggregates [35] or low levels of neu-
rodegeneration not detected by our quantitative analysis. In 
ALS patients, microglia activation correlates with disease 
progression, and C9orf72 carriers show higher microglia 
activation than non-carriers [4].

Motor deficits in GA‑CFP mice

So far, no transgenic C9orf72 model has robustly repli-
cated the full complement of ALS and/or FTD pheno-
types in animals. BAC transgenic mice with human-like 
C9orf72 expression levels show variable phenotypes and 
cannot differentiate between RNA and DPR toxicity [13]. 
Mice overexpressing poly-GA using AAV show signs of 
impaired nucleocytoplasmic transport and sequestration of 
Rad23b by poly-GA inclusions in the cortex [37]. Motor 

and balance deficits in these mice were attributed to the 
cerebellar poly-GA aggregation and neuron loss, because 
these mice rarely showed poly-GA inclusions in the spi-
nal cord. In contrast, the motor system is directly affected 
in our transgenic GA-CFP mice. The motor phenotype of 
GA-CFP mice is consistent with the predominant expres-
sion of poly-GA in spinal cord and brain stem. Poly-GA 
inclusions in the deep cerebellar nuclei may further con-
tribute to this phenotype. The impaired acoustic startle 
response and its prepulse inhibition, together with the 
distribution of poly-GA inclusions in the brainstem, sug-
gest that poly-GA inhibits activity of this complex circuit 
involving the brain stem [8, 36]. However, we cannot ret-
rospectively exclude that early deafness may have affected 
these measurement in GA-CFP mice, because C57BL/6 
mice commonly develop hearing loss at 3–6 months. By 
14 months all female mice were deaf, while male GA-CFP 
mice were more severely affected than controls (data not 
shown).

The most prominent phenotype of GA-CFP mice, how-
ever, is their impaired balance and gait, which particularly 
affected the hind limbs. This is consistent with the wide-
spread poly-GA pathology in the lumbar segments both in 
motoneurons and laminae IV, V and VI neurons implicated 
in proprioception. At 4 months of age, male mice slip more 
often with their hind paws on the beam ladder and show 
decreased rearing activity in the open field arena indicating 
deficits in motor control, which requires cortical input and 
proper function of the spinal cord circuits. Both male and 
female GA-CFP mice show enhanced hind limb clenching 
and an abnormal gait as well as progressive impairment on 
the balance beam starting at 3–4 months of age. Normal 
grip strength and endurance in the rotarod corroborates the 
absence of overt motoneuron loss and suggests poly-GA 
disturbs proper neuronal function and thus impairs coordi-
nation and motor control.

Summary

In patients, expression of poly-GA and the other DPR spe-
cies correlates poorly with regional neuron loss [20, 31] 
and DPR pathology precedes overt ALS/FTD symptoms 
by many years [2, 27]. Our findings suggest that poly-
GA-induced protein sequestration and regional microglia 
activation may be responsible for the prodromal cognitive 
deficits observed prior to complete ALS/FTD symptoms 
in C9orf72 mutation carriers [29]. Combined chronic DPR 
and RNA toxicity likely trigger the second disease stage 
with TDP-43 pathology and overt neuron loss [7]. Finally, 
GA-CFP mice are a good model to test poly-GA-based 
therapeutic approaches, because motor deficits appear early 
and homogeneously in all animals.
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Figure S1: Transgenic mice show germline transmission of a GA‐CFP construct 

(a) Coding sequence of the transgene expressing (GA)149‐CFP. The poly‐GA sequence with strongly 

reduced ggggcc content (red), the C‐terminal tail (CT) expressed from the endogenous C9orf72 repeat 

locus in the poly‐GA reading frame (black) and CFP (blue). (b) In GA‐CFP transgenic mice the full length 

poly‐GA sequence is detectable in genomic DNA extracted from brainstem, cortex, spleen, thymus and 

spinal cord. (c) Immunohistochemical staining of the spinal cord for CFP, GA (5F2‐HRP) and the C‐

terminal tail GA‐CT (5C3) in GA‐CFP mice (right column) and wildtype mice (left column) at 6 months of 

age. (d) Poly‐GA forms predominantly neuronal cytoplasmic inclusions (NCI) and rarely neuronal 

intranuclear inclusions (NII). (e) Double immunofluorescence staining shows poly‐GA inclusions in 

calbindin, calretinin and parvalbumin positive neurons in the spinal cord (SC). Scale bars represent 20 

µm. 
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Figure S2: Thy1 cassette is integrated at an intergenic site on chromosome 14 

(A) Schema of the transgene integration on chromosome 14. Whole genome sequencing at ~100x 

coverage revealed integration of two blocks of tandem repeats of the transgene integrated in 

chromosome 14 at position 90,607,627‐90,611,343 leading to a 3716bp intergenic deletion about 330 kb 

downstream of the nearest transcript a long non‐coding RNA (4930474H20Rik). The integration involves 

duplication of a 410kb stretch of chromosome 14 (including the 3’ part of 4930474H20Rik without the 

promoter region) and a 1577 nucleotide stretch from chromosome 4 (intronic region of Ospbl9). All 

genome coordinates are based on the GRC38/mm10 mouse genome assembly. Coordinates for the Thy1 

cassette correspond to the genomic numbering of the endogenous mouse Thy1 locus on chromosome 9, 

spanning chr9:44,041,811‐44,045,981 (5’ arm) and chr9:44,047,482‐44,050,120 (3’arm) in the transgene 

vector. The increased sequence coverage in that region suggests that at least 10 copies of the transgene 

are integrated in the block. The 3’ arm of the distal Thy1 cassette fused to the chromosome 4 duplication 

contains a 969 nucleotide inversion. Arrows indicate primers used for PCR validation. Primer sequences 

PCR1 (cctcccaccacctcaatgag, tgggctggagtacgaaacat), PCR2 (aggctctaatcactgcacaca, cctggcttgtttctgcttcc), 

PCR3 (acccatgatattttcctagatgca, cctggcttgtttctgcttcc), PCR4 (aattaccaccactcgctccc, attcccttgcctcctgtctc), 
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PCR5 (tcatctgttgtgtaaaaggcca, gggagcgagtggtggtaatt). Not drawn to scale. (B) Genomic PCR from 

wildtype and transgenic littermates confirms integration and chromosomal rearrangement. Bands 

specific to GA‐CFP mice were excised and sequenced. To analyze tandem inserts we additionally used 

primers facing outside of the Thy1 cassette (5'‐3' tcgttcactgtccttattctctctc, gtcaggcttgctggtagg; 3'‐3' 

tcgttcactgtccttattctctctc; 5'‐5' gtcaggcttgctggtagg) confirming the presence of head to tail tandem 

repeats. Other tandem orientations containing larger 5’ or 3’ deletions of the transgene cassette may 

exist. (C) Sequence at the chromosomal rearrangements involving the Thy1 cassette based on Sanger 

sequencing of the PCR products from (B).  
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Figure S3: Comparison of poly‐GA in GA‐CFP spinal cord and C9orf72 ALS/FTD patient neocortex 

(a) Poly‐GA sandwich immunoassay using biotinylated and sulfo‐tagged α‐GA 5F2 antibody shows the 

detection limit on recombinant GST‐GA15. (b) Anti‐GA immunoassay specifically detects GST‐GA15 and 

RIPA‐insoluble poly‐GA in the spinal cord of a GA‐CFP mouse. No signal was detected for other DPR 

antigens or in wildtype mice. Mean + SEM. (c) poly‐GA immunoassay from the RIPA‐soluble fraction of 

spinal cord (SC) and brainstem (BS) of 1 to 6 months old GA‐CFP mice (n = 3 mice per time‐point; 

measured in duplicates, box plot shows minimum, mean and maximum) detects no poly‐GA signal above 

background. Compare data from RIPA‐insoluble fraction in Figs. 2d/e. AU = arbitrary unit. (d) Poly‐GA 

protein levels in the RIPA‐insoluble fraction of the spinal cord of 4‐6 months‐old GA‐CFP mice are not 

grossly higher than in the motor cortex of C9orf72 mutation carriers. All tissues were analyzed in parallel 

following the same extraction protocol. Mean, minimum and maximum are shown. Due to the high 

variability of poly‐GA pathology in C9orf72 patients and the small cohort size we did not perform 

statistical analysis. Mean ± SD. (e, f) Double immunofluorescence with the neuronal marker NeuN shows 

that neuronal poly‐GA inclusions are less common in the spinal cord and brainstem of 6‐months‐old GA‐

CFP mice than in the motor cortex of C9orf72 patients. nGA‐CFP = 3; nC9orf72 = 3; For quantification 3‐4 

images (424.7 x 424.7 µm2) were taken and the fraction of poly‐GA inclusion bearing NeuN positive 

neurons were counted. Mean ± SD.  AU=arbitrary unit. Scale bar represents 20 µm. 
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Figure S4: poly‐GA does not affect TDP‐43, RanGAP1 and nucleolin but is co‐localized with Mlf2  

(a) Immunohistochemistry did not reveal Unc119 aggregates in the spinal cord (SC) of GA‐CFP mice. (b) 

Immunofluorescence in 12 month‐old GA‐CFP mice shows similar RanGAP1 and nucleolin localization in 

GA‐CFP mice and wildtype littermates. (c) Lentiviral co‐transduction of HA‐Mlf2 with either GA175‐GFP or 

GFP control in primary hippocampal neurons of wildtype rats at 6 days in vitro. Immunofluorescence 14 

days later (DIV6+14) detects specific co‐localization of HA‐Mlf2 with GA175‐GFP. (d) Mlf2 immunostaining 

in rat primary hippocampal transduced with GA175‐GFP or GFP detects specific co‐localization of 

endogenous Mlf2 with GA175‐GFP (arrow). (e) Immunohistochemistry using a second Mlf2 antibody 

(compare Figs. 2c,d) detects specific Mlf2 aggregates in the frontal cortex (FCtx) of C9orf72 ALS/FTLD 

patients. No inclusions were detectable in healthy controls.  Scale bar represents 20 µm. (f) 

Immunofluorescence staining showed no poly‐GA aggregates in laminin‐labeled muscle fibers 

(quadriceps femoris, left) or Iba1‐positive microglial cells (spinal cord, right). (g, h) Immunofluorescence 

analysis did not reveal cytoplasmic mislocalisation of TDP‐43 or phosphorylation at serine 409/410 in GA‐

CFP mice. Scale bars represent 20µm. 
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Figure S5: GA‐CFP mice show no microglia activation in the neocortex, normal spatial memory, but 

impaired prepulse inhibition 

(a) Immunohistochemistry of neocortex shows comparable levels of CD68, Iba1 and GFAP in GA‐CFP and 

control mice at 6 months of age. Scale bars represent 100µm.  (b, c) Neurological analysis of GA‐CFP and 

wildtype littermates at 3‐4 months of age. Box plot with whiskers at 1st and 99th percentile. n(GA‐CFP male) = 

16; n(GA‐CFP female) = 15; n(wt male) = 14; n(wt female) = 15. Acoustic startle response (b) and its prepulse inhibition 

(c) are decreased in GA‐CFP male and female mice at 13 weeks. Prepulse inhibition 67db F (1, 56) = 

4.588; 69db F (1, 56) = 10.52; 73db F (1, 56) = 18.35; 81db F (1, 56) = 40.56; global db F (1, 56) = 21.39). 

Asterisks for prepulse inhibition depict significance of genotype, asterisks for acoustic startle depict 

significance of genotype and sex‐dependent effects (Bonferroni). (d‐f) Longitudinal analysis of body 

weight (d), spatial memory (e) and motor performance (f) of GA‐CFP mice and wildtype littermates. (d) 

No differences in the body weight were observed between transgenic and wildtype male and female 

mice from birth until the age of 6 months. (e) Spatial learning and long‐term memory was normal in 2‐6 

months old transgenic or wildtype mice. Left panel shows the time needed to locate the escape box, the 
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right panel shows the time until the mice crawl into the escape box. (f) No differences in the rotarod 

performance of GA‐CFP mice up to 6 month compared to wildtype mice. Statistical analysis of the body 

weight and Barnes maze was performed by a 2‐way ANOVA between time and genotype for each sex 

followed by Bonferroni post hoc test. n(GA‐CFP male) = 4; n(GA‐CFP female) = 4; n(wt male) = 6; n(wt female) = 6. Data are 

shown as mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001. 
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Table S1: Colocalization of poly‐GA inclusions in GA‐CFP mice  

Quantitative analysis of double immunofluorescence stainings from GA‐CFP mice to address 

colocalization of poly‐GA with p62 and RanGAP1 and mislocalization of total TDP‐43 and TDP‐43 

phosphorylated at Ser409/410. Stainings were performed on spinal cord slices from three 12‐month‐old 

mice.  Mean percentages ± SD are shown. 

 

 Protein  counted GA aggregates  Mean ± SD 

p62  110  94.55 ± 5.13 % colocalization 

RanGAP1  112 
0.00 % colocalization or 

mislocalization 

TDP‐43  123  0.00 % mislocalization 

pTDP‐43  117  0.00 % mislocalization 

 

 

 

 

Table S2: Colocalization of Mlf2 and poly‐GA in C9orf72 patients and GA‐CFP mice  

Double immunostainings of Mlf2 and poly‐GA in C9orf72 patients and GA‐CFP mice. The fraction of poly‐

GA inclusions containing Mlf2 was manually quantified in the indicated regions. Three C9orf72 patients 

and three GA‐CFP mice (12‐month‐old) were analyzed. Mean percentages ± SD are shown. 

 Region  counted GA aggregates  % Mlf2  

C9orf72 FCtx  283  1.06 ± 1.08 % 

C9orf72 MCtx  162  0.62 ± 0.80 % 

C9orf72 OCtx  338  0.30 ± 0.35 % 

C9orf72 DG  677  2.66 ± 1.45 % 

GA‐CFP SC  116  55.17 ± 5.32 % 
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2.2 Contribution to the publication 

As first author of this publication, I had major contributions to the experimental work and 

study design. In detail, I performed all experiments shown in this publication except of the 

phospho-TDP-43 immunoassay in figure 3h, behavioral tests in figures 5a-e and S5b/c, 

genotyping in figure S1b, and the determination of the integration locus in figure S2. 
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