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Node-link or Adjacency Matrices: Old Question,
New Insights

Mershack Okoe, Radu Jianu, Stephen Kobourov

Abstract—Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results
of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency
matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the
two visualizations. Our work adds to existing research in several ways. First, we explore a broad spectrum of network tasks, many of
which had not been previously evaluated. Second, our study uses two large datasets, typical of many real-life networks not explored by
previous studies. Third, we leverage crowdsourcing to evaluate many tasks with many participants. This paper is an expanded journal
version of a Graph Drawing (GD’17) conference paper. We evaluated a second dataset, added a qualitative feedback section, and
expanded the procedure, results, discussion, and limitations sections.

Index Terms—Evaluation, user study, graphs, networks, node-link, adjacency matrices.
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1 INTRODUCTION

V ISUALIZING network data is known to benefit a wide
range of domains, including biology, engineering, and

social sciences [1]. The data visualization community has
proposed many approaches to visual network exploration.
By comparison, the body of work that evaluates the ability
of such methods to support data-reading tasks is limited.
We describe the results of a comparative evaluation of the
two most popular ways of visualizing networks: node-link
diagrams (NL) and adjacency matrices (AM). Specifically,
we consider two interactive visualizations (NL and AM),
using a crowdsourced, between-subjects methodology, with
864 distinct online users, 14 evaluated tasks, and 2 real-
world datasets; see Fig. 1.

Several earlier studies compared NL and AM visualiza-
tions on specific classes of networks and using a variety of
tasks [2], [3], [4], [5]. They show that the effectiveness of
the visualization depends heavily on the properties of the
given dataset and the given data-reading tasks. For example,
Ghoniem et al.’s evaluation [2] found that the two visualiza-
tions’ ability to support specific tasks depends on the size
and density of the network. Similarly, it is reasonable to
hypothesize that there might be differences depending on
the structure of the network (e.g., random networks, small-
world networks). Thus exploring the effectiveness of NL
and AM visualizations on different types of networks, and
using a broader spectrum of tasks, seems worthwhile.

Our study uses two real-world, scale-free datasets, one of
258 nodes and 1090 edges, the other of 332 nodes and 2126
edges. This makes our datasets different in structure and
larger than previously evaluated networks. For example,
Ghoniem et al. evaluated random networks with fewer
nodes , albeit somewhat denser. We argue (in section 3) that
our chosen datasets are worth studying as they exemplify a
large class of networks that occur in real applications.

Networks are used to solve increasingly complex prob-
lems and as a result, there is an expanding range of tasks
that are relevant in real applications and which are of
interest to the visualization community. Our study evaluates

14 different tasks, carefully chosen to span multiple task
taxonomies [6], [7]. Many of these tasks were not previously
investigated in the context of NL and AM representations.

Given the caveat that these results apply to the specific
underlying networks and the specific implementations of
NL and AM visualizations, some of our results confirm
prior observations in similar settings, while others are new.
NL outperforms AM for questions about graph topology
(e.g., “Select all neighbors of node,” “Is a highlighted node
connected to a named node?”). Of 10 such tasks in two
datasets, participants who used the node-link diagram were
more accurate in 5 and less accurate in 3. AM outperforms
NL in 2 of 4 tasks which tested the ability of the participants
to identify and compare node groups or clusters. Finally,
NL has a slight edge on 1 of 2 memorability tasks. The full
results are shown in Figures 6-9. This paper is an expanded
journal version of a Graph Drawing (GD’17) conference
paper [8], with an additional dataset, a qualitative feedback
section, and expanded procedure, results, discussion, limi-
tations sections.

2 RELATED WORK

Considerable effort has been expended on optimizing NL
and AM visualizations to remove clutter, increase the
saliency of visual patterns, and support data reading
tasks [1]. NL, AM, and slight variations thereof have long
been used in practice to support analyses of data in a broad
range of domains, including proteomic data [9], [10], [11],
[12], brain connectivity data [13], social-networks [14], and
engineering [15].

Static visual encodings were augmented by interaction to
support the exploration and analysis of large and intricate
datasets typical of real-life applications. Interactive systems
that visualize complex relational data use NL [9], [16],
[17], and AM [18], [19], [20], [21], [22], [23], [24], [25]. We
reviewed such systems to determine common interactions
and included them in our evaluated visualizations.
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Fig. 1. Evaluated visualizations: node-link diagram and adjacency matrix.

While the two types of visualizations have been used
broadly for a long time, studying how people parse them
visually and which visualization method supports specific
tasks and datasets, is ongoing. For example, studies by
Purchase et al. [26], [27], [28] consider how node-link layouts
impact data readability. Eye-tracking research by Huang et
al. [29], [30] reveal visual patterns and measure the cognitive
load associated with network exploration. More recently
Jianu et al. [12] and Saket et al. [31] consider the performance
of node-link diagrams with overlaid group information.

Our work is one in a series of studies that compare NL
and AM representations. Ghoniem et al. [2] evaluated the
two approaches on seven connectivity and counting tasks,
using interactive visualizations (e.g., node can be selected
and highlighted). Synthetic graphs of three sizes (20, 50, 100
nodes) and three densities (0.2, 0.4, and 0.6) were used. The
authors found that for small sparse graphs, NL was better
in connectivity tasks, but that for large and dense graphs,
AM outperformed NL for all tasks. Keller et al. [5] evalu-
ated six tasks on three real-life networks of varying small
sizes (8, 22, 50) and three densities (unspecified, 0.2, 0.5).
Using both static and interactive variants of NL and AM,
Abuthawabeh et al. [32] found that the participants were
equally able to detect structure in graphs representing code
dependencies. Alper et al. [13] found that in tasks involving
the comparison of weighted graphs, matrices outperform
node-link diagrams. Finally, Christensen et al. [33] evaluated
matrix quilts in addition to NL and AM in a smaller scale
study.

Our study adds to what is already known in several
ways. First, we explore a significantly broader range of
tasks than earlier studies. These were carefully selected
to cover the graph task taxonomy of Lee et al. [6] and
the general taxonomy of visualization tasks by Amar et
al. [7]. We also considered the task taxonomies for simple
graphs [6], clustered graphs [34], and more generally for
visualization tasks [7], [35], which have been found to be
useful in guiding research and informing user study task

choices [12], [31]. Second, our study uses two large real-
world networks, typical of many scale-free networks that
arise in practical applications.

Finally, unlike previous studies, we leverage crowd-
sourcing, via Amazon’s Mechanical Turk, to evaluate many
tasks with many participants. Mechanical Turk provides
access to a diverse participant population [36], [37], and is
considered a valid platform for evaluation in general [37],
[38], as well as specifically in the context of visualization
studies [39]. Many recent visualization studies are crowd-
sourced [12], [40], [41], [42], [43] and specific platforms for
online evaluations are developed, including GraphUnit, de-
signed for online evaluation of network visualizations [44].

3 STUDY DESIGN

3.1 Stimuli: Data
We evaluated two networks. The first has 258 nodes and
1090 edges, representing cooking ingredients connected by
edges when frequently used together in recipes. This net-
work had been explored previously by Ahn et al. [45]. In
its original form, the network is larger (381 nodes) but we
removed disconnected components and low-weight edges.
The second network has 332 nodes and 2126 edges, repre-
senting US airports with frequent flight connections [46].

The density of networks is measured and reported in
different ways. When considered as the fraction of edges
present compared to the maximum number of possible
edges (computed as 2#edges/#nodes2) our first network
has density 0.032 and the second network has density 0.019.
When measured as the ratio between the number of edges
and the number of nodes (which is exactly equal to half
the average degree) the first network has density 4.22 and
the second network has density 6.40. Table 1 describes the
properties of the two datasets.

Evaluating just two datasets allowed us to cover a broad
spectrum of tasks while keeping the size of the study man-
ageable, but naturally, this choice has several limitations,
discussed in section 5.
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TABLE 1
Properties of the Ingredients and Airports datasets used in the two

studies.

Ingredients Airports
Number of Vertices(V) 258 332

Number of Edges 1090 2126

Density (E/V ) 4.22 6.40

Density (2 ∗ E/(V ∗ (V − 1)) 0.032 0.039

Degree Assortativity 0.283 −0.208
Average Clustering Coef. 0.255 0.625

Global Clustering Coef. 0.284 0.396

Radius 5 3

Average Shortest Path Length 3.284 2.738

Rationale: Our motivation for choosing these networks was
three-fold. First, they are different than those evaluated already.
Our networks are approximately 2-3 times larger than those
evaluated by Ghoniem et al. and Keller et al.. Second, our
networks were chosen to be representative of several types of
real-world networks. Specifically, we reviewed 22 relational
datasets (e.g., trade exchanges between countries, the Les
Miserable dataset, TVCG paper co-authorships, protein-
interaction networks). We selected two from this set that
were sufficiently small to be shown in a browser and were
representative in terms of structure. Our networks have 4
and 6 times more edges than nodes. These edge/node ratios
capture those observed in the 22 networks we reviewed and
are also representative of many networks commonly found
in practice [47]. Third, we believe a dataset revolving around
concrete data such as cooking ingredients and airports
would have a greater appeal to participants. Relatable, concrete
dataset may help users understand tasks better [48].

3.2 Stimuli: Visual Encoding

We evaluated two visual encodings: a node-link diagram
(NL) drawn using the neato algorithm from graphviz [49],
and an adjacency matrix (AM) sorted to reveal continuous
groups of clusters using the barycenter and cluster algo-
rithms available in the Reorder.js library [18]. We clustered
the networks using modularity clustering from GMap [50]
and encoded this information in the two visual represen-
tations using color, as shown in Fig. 1. Both visualizations
were developed using the D3 [51] web-library.

Rationale: Neato is an exemplar multi-dimensional scaling
algorithm, which is at the core of many modern efficient
graph algorithms. It is also one of the two commonly used
layout algorithms in AT&Ts GraphViz package, which in
turn is among the most widely used graph layout packages.
Multi-dimensional scaling algorithms such as neato are
often among the best performers based on qualitative and
quantitative metrics [52], [53]. Moreover, neato is frequently
part of NL evaluations [2], [12]. We ordered our AM to
reveal structure, as we considered this more representative
of how matrices are used in practice, unlike Ghoniem et
al. [2], who used a lexicographical order.

3.3 Stimuli: Interactions

Both visualizations support panning and zooming, using
the mouse-wheel. Multiple nodes can be selected by clicking
on them, and deselected with an additional click. Select-
ing a node in NL colors both the node and its outgoing
edges in purple. Selections in AM operate on node labels
but change the color of the corresponding node’s row or
column. Similarly, node mouse-over in NL turns the node
and its edges green and shows the node label via tooltips.
Node mouse-over in AM colors the row or column. Note
that for both node selection and node mouse-over in AM,
if a row (column) is colored the complementary column
(row) is not. We chose this approach since Ghoniem et al.
mentioned that multiple markings for the same node can
confuse users [2].

To select a node as the answer to a task, the partic-
ipants double-click it. This marks the node with a thick
black contour. In both NL and AM this marking was re-
stricted to nodes and labels, without extending to edges
or rows/columns. The participants could also deselect an
answer by double-clicking it again.

Similar interactions apply to edge selection: An edge
mouse-over in NL turns the edge green, and if clicked it
is selected and so turns purple. In AM, hovering over an
edge-cell highlights its corresponding row and column in
green, and clicking it selects the edge.

Rationale: Like Ghoniem et al. or Keller et al. before us, we
chose to evaluate interactive visualizations as interactivity is
typical in real-world applications. Interactivity changes the
effectiveness of visual encodings significantly, however, and
a careful choice of interactive techniques is warranted.

Our goal was to use interactions that are ecologically valid
(i.e., capture interactions typical of NL or AM visualizations)
and fair (i.e., providing similar functionality and power in
both visualizations). To this end, we reviewed 9 systems
for network visualization (e.g., Gephi [17], Cytoscape [9],
Tulip [16]), 12 network evaluation papers (e.g., Ghoniem et
al. [2], Keller et al. [5], Okoe et al. [4]) and 6 systems and
papers for adjacency matrices (e.g., ZAME [54], TimeMa-
trix [55], work by Perin et al. [56], and work by Henry et
al. [57]). We cataloged the interactions described or available
in these systems, as well as their particular implementation,
and then selected the set of most common interactions.

This resulted in a set of interactions that both overlapped
and differed slightly from those implemented in previous
studies. Overlapping interactions were described above.
New interactions included zooming and panning, which
was required to solve some of the tasks. We believe the
addition of zooming and panning is valuable since such
basic navigation is an integral part of real-life systems. Our
node-link diagrams also allowed users to move nodes, an
interaction that can be used to disambiguate cases in which
nodes or edges overlap, and is ubiquitous in NL systems.
This interaction does not have an equivalent in AM but is
also not necessary as rows and columns are evenly spaced.

3.4 Tasks

We evaluated the 14 tasks described in Figures 6-9. Partic-
ipants solved multiple repeats (generally 5 or 10) of each
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Fig. 2. Participants mouse-over nodes to highlight them (green) and click
on nodes to select them (purple). Designating a node as the answer for
a task answer is accomplished via a double-click, which draws a black
contour around the node.

task. Task repeats were selected manually on each network
so as to cover multiple levels of complexity. For example,
our repeats included nodes with both low and large degrees
(e.g., T1, T2), short and long paths (e.g., T10, T13), or nodes
with few and many neighbors (e.g., T4).

Three of our tasks warrant a more detailed discussion.
We included two memorability tasks, (T11, T14). The for-
mer tested the ability of participants to recall data they had
looked for or accessed at an earlier time, and is similar
to memorability tasks evaluated by Saket et al. [58]. The
latter tested the ability of participants to recognize visual
configurations they had viewed previously and is more
similar to tasks used by Jianu et al. and Borkin et al. [12], [43].
Both memorability tasks were based on questions that the
participants had to answer early in their session (i.e., T9 in
group 4, and T12 in group 5) to prime the participants with
a particular piece of information or visual configuration.
A few minutes later, after performing a set of other tasks
(i.e, T10 in group 4, T13 in group 5), the participants were
asked about the information from the earlier task. Finally,
we added a path-estimation task (T5), which required the
participants to estimate how far two nodes are, in terms of
the shortest path between them. Timing constraints ensured
that participants used perceptual mechanisms to give a best-
guess response instead of “computing” the correct answer.

Rationale: Our overarching goal in selecting our tasks was
to cover a wide spectrum of different and realistic network
tasks. As shown in Figures 6-9, we selected tasks to cover
the graph objects they provide answers about (i.e., nodes,
edges, paths), as well as cover Lee et al.’s categories of
graph-reading tasks, and Amar et al.’s general types of visu-
alization tasks [6], [7]. Several of our tasks have been used
before but under slightly different conditions. Additionally,
we included tasks that go beyond previous studies compar-
ing NL and AM, such as tasks involving clusters. We also
included memorability tasks as they are a topic of growing
interest in the visualization community [43], [58]. We also
hypothesized there would be differences between the two
visualizations in this respect. We included a path-estimation
task [12], as it is a good representative of the “Overview”
category of graph tasks, and underlies perceptual queries
that users make on relational data.

3.5 Hypotheses

Based on previous results by Ghoniem et al. [2], Keller et
al. [5], Okoe et al. [44], Jianu et al. [12], and Saket et al. [31]
we devised the null hypotheses:

H1: There is no statistically significant difference in
time and accuracy performance between using NL
and AM for tasks involving the retrieval of informa-
tion about nodes and direct connectivity (T1, T2, T4,
T9, T12).
H2: There is no statistically significant difference
in time and accuracy performance between using
NL and AM for connectivity and accessibility tasks
involving paths of length greater than two (T5, T10,
T13).
H3: There is no statistically significant difference in
time and accuracy performance between using NL
and AM on group tasks (T3, T6, T7, T8).
H4: There is no statistically significant difference in
memorability between using NL and AM (T11, T14).

We expected H1 to hold and H2 not to hold. We also thought
H3 would hold, except for estimating group interconnectiv-
ity (T6), since estimating the number of non-overlapping
dots in a square (AM) should be easier than estimating
overlapping edges in an irregular 2D area (NL). Finally,
we anticipated memorability would be higher in node-link
diagrams due to its more distinguishable features. Results
for our four hypotheses are shown in Figure 6-9.

3.6 Design

The two datasets were evaluated independently in two
separate studies, the ingredients dataset before the airports
dataset, about two years apart. The structure of the two
studies was identical apart from the dataset used and the
fact that in the second study we collected more demographic
data about participants (see section 4.2).

In each study we used a between-subjects experiment
with two conditions. We divided our 14 task types into 5
experimental groups and evaluated each group separately.
Tasks 1− 3 were evaluated first (group 1), then tasks 4 and
5 (group 2), tasks 6 − 8 (group 3), tasks 9 − 11 (group 4),
and tasks 12 − 14 (group 5). Each participant was allowed
to participate in a single group and used just one of the
two visualizations. We assigned participants to groups and
conditions in a round-robin fashion. We aimed to collect
data from around 50 participants per condition in the first
study and 30 participants in the second study. As some
participants did not complete the study, the total number
of participants for whom we collected data varies slightly
between conditions. All tasks were timed, with time limits
determined experimentally through a pilot-study and cho-
sen to allow most participants to complete the tasks, while
moving the study along.

Rationale: Between-subject experiments are frequently used
in our community [12], [31], [37], [41], [59], [60], [61]. One
advantage of this design is the absence of learning effects
between evaluated conditions. A disadvantage is the need
for large numbers of participants, which is easily mitigated
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in a crowdsourced setting. Moreover, between-subjects de-
signs are quicker (since only one condition is evaluated at a
time) and online participants prefer shorter studies.

We divided the tasks into groups for the same reason.
Having each participant evaluate all tasks would have re-
sulted in excessively long sessions that participants would
have found tiring. Having participants solve only subsets of
tasks allowed us to reduce their time commitment. We used
estimated task completion times to group tasks, aiming for
an expected duration of about 15 minutes.

We aimed for 30 − 50 participants per condition in our
first study, matching numbers used in earlier crowdsourced
studies [12], [40]. We enforced short time-limits in order to
make uniform the total session duration across participants.

3.7 Procedure

We used Amazon’s Mechanical Turk (MTurk) to crowd-
source our study to a broad population. We followed best-
practices recommendations for crowdsourcing-based stud-
ies for visualization [62]. In the MTurk posting, we showed
participants a visual sample of the tasks they will be per-
forming with the NL or AM visualizations, informed them
they will be performing the study with either the NL or
AM visualization, and directed them to further information
available on the webpage for the study.

To account for variations in participant demographics
during the day, we published study batches throughout the
day. Moreover, to reduce the risk that participants would
not understand task instructions, we restricted participants
to Amazon Mechanical Turk users registered in the USA.
We ran conditions in parallel and directed incoming partic-
ipants to them using a round-robin assignment, to ensure
that the two conditions sampled participants from the same
populations. Our participants’ demographics overlap the
general demographics of Amazon Mechanical Turk [38],
[63]. We note that our procedure and result interpretation as-
sumes that this demographic has not changed significantly
in two years between our separate studies, an assumption
which may not hold entirely.

Each incoming participant was first presented with an
introduction to the study, dataset, and the visualization they
would see and use. We also described the tasks they would
perform and provided two sample questions with correct
answers for each task category (Figure 3). Since our interac-
tions relied on color, participants were also administered a
color-blindness test [64].

Next, participants were presented with training samples
of the tasks they would perform in the experiment (at least
two for each different task type). The training samples were
not timed and participants could check the accuracy of their
responses (Figure 4).

After the training phase, participants were presented
with the actual study. Here, task instances of each type
in an assigned group were shown to the participants. For
example, since group 1 involved three distinct task types,
participants assigned to it solved three consecutive sections
of ten task-instances each. Each task instance was shown
with a countdown clock which was used to enforce the time-
limits shown in Figures 6-9 by hiding the visualization once
time expired (Figure 5).

Fig. 3. We instructed participants on the appearance of and answers to
tasks.

Fig. 4. Participants solved a few training repeats of each task and could
check the accuracy of their answers.

At the very end, we asked participants for open-ended
comments. In the second study we also asked for participant
information such as age, gender, education level, and expe-
rience with network visualizations such as those evaluated.

We used GraphUnit [44] to create the study, deploy it,
and collect data. Visualizations were shown on the left,
while task instructions and answer widgets were shown
on the right. Depending on each task, users answered by
selecting nodes or by using interactive widgets (e.g., text-
boxes, check-boxes). To increase the chances of collecting
clean data we awarded a bonus to the best result in each
group and told participants that two of the task-instances
were control tasks easy enough for anyone to solve.

4 RESULTS

Our results include quantitative measurements of partici-
pants’ time and accuracy on each task, the qualitative feed-
back they offered at the end of the study, and the participant
information collected in the second study. We note that a
discussion of results is deferred to section 5.

We also provide the study materials (i.e., visual-
izations, dataset, task instances, instructional materials)
at https://github.com/mershack/Nodelink-vs-Adjacency-
Matrices-Study, which should facilitate future follow-up
studies (e.g., with additional datasets or tasks). Since we
evaluated visual encodings between participants, our study

https://github.com/mershack/Nodelink-vs-Adjacency-Matrices-Study
https://github.com/mershack/Nodelink-vs-Adjacency-Matrices-Study
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Fig. 5. Participants performed the tasks with a countdown time for each
task instance.

could also be extended to include additional visual en-
codings (e.g., AM-NL hybrids [65]) by evaluating the new
encoding using the same datasets and tasks.

4.1 Quantitative results

We collected data from 864 individual participants (557 in
the first study, 307 in the second) distributed across task
groups and conditions as shown in Figures 6-9. We removed
29 responses from participants who spent an average of 2
seconds per task and had accuracy in the bottom 10 per-
centile. We considered these likely to be random responses
by participants attempting to game the study.

To compute the accuracy of node selections (T1, T2, T4),
we used the formula Acc = (‖PS ∩ TA‖)/‖TA‖}, where
PS is the participant’s selection and TA is the true answer.
To compute answers for tasks involving numeric answers
(T6, T10, T13) we used the formula Acc = max(0, 1 −
‖PA − TA|/|TA|), where PA is the participant’s answer
and TA is the true answer. For other tasks we gave a 1 to
correct answers, and a 0 to incorrect answers. Since each
task type was represented in the study by several repeats,
we averaged the accuracies of a task’s individual repeats
into an accuracy for the task as a whole.

When data was normally distributed (determined by a
Shapiro-Wilk test), we used a t-test between conditions to
determine if observed differences were significant. Other-
wise we used a Mann-Whitney U test analysis.

Our results, including statistically significant differences
and effect sizes, are shown in Figures 6-9. Overall they show
that NL diagrams were better for more of our connectivity
tasks in terms of time and/or accuracy (T1 - time and
accuracy, T5 - accuracy, T9 - accuracy, T10 - accuracy, T13
- accuracy). Exceptions are found for tasks that involve
finding common neighbors (T4 and T12), in which AM out-
performed NL. We discuss possible explanations in Section
5. AM also outperformed NL in terms of time in T5 and
T10 but we believe that those results are anomalous and
provide more context in Section 5. Altogether, these results
lend support for the invalidation of both H1 and H2. The
fact that H1 seems to not hold is surprising given previous
results.

AM had an edge on group tasks and outperformed NL
in T3 (by accuracy), T6 (by accuracy and time), and T8 (by
time) thereby invalidating H3.

Finally, NL supported memorability tasks better (invali-
dating H4). In particular, NL users outperformed AM users
when recalling previously used data (T11).

4.2 Participant data
We collected demographic information about the partici-
pants in the second study. Of 307 participants, 165 were
males, and 138 were females. Participants were between 19
and 67 years old with a median age of 32. Regarding edu-
cational level attained, 28 participants indicated high school
diploma, 79 participants indicated some college courses, 116
participants had a bachelors degree, and 28 participants had
graduate degrees. Participants were generally unfamiliar
with network visualizations and rated themselves on av-
erage as a 2 on a scale of 1 - 5 (where 5 means expert).

4.3 Qualitative feedback
We analyzed the open-ended feedback participants pro-
vided using a coding process. In a preliminary scan of
all comments we identified 12 common themes such as
‘insufficient time’ or ‘too much navigation required’. In a
subsequent more detailed pass we identified and counted
occurrences of these themes in our participants’ comments.
In the process, we merged several themes to end up with
the 8 shown in Figure 10 and detailed below:
Fun or interesting: Many participants commented that the
study was either fun or interesting. We included in this
theme comments such as “This was really interesting, I
enjoyed participating”, “Cool”, and “Great and fun survey,
very different from other surveys posted on amazon turk!”.
Difficult: About 69 of the 864 participants described the
study as a whole or specific tasks as being difficult. Ex-
amples of comments in this theme include “I had a lot of
trouble with it”, “Very difficult tasks”, and “The first section
is easy but the second [path] seems almost impossible when
it’s more than 2 or 3 connections.”
Insufficient time: About 45 participants felt rushed by
our tasks’ time constraints. Comment examples include “I
almost never felt like I had enough time” and “I thought
that the timer was too short”.
Confusing: Some participants commented that task descrip-
tions and/or the terminology used were confusing and not
sufficiently explained, or that the tasks and visualizations
themselves were confusing. Comment examples include “I
am a little confused about what the ’shortest ingredient
path’ means... it doesn’t seem to mean fewest number of
shared ingredients” and “It took me a minute to realize that
the ingredient needed to be highlighted in black instead of
just highlighted purple”.
Zoom/Pan lag: We identified two common themes related to
zooming and panning. First, a small number of participants
reported technical issues, the most common of which was
lag in zooming and panning. Participants experienced this
in equal measures in the two visualizations.
Zoom/Pan tedious: Second, participants complained that
navigation was in some way tedious or added complexity
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Fig. 6. Hypothesis 1: task details and results, significant p-values highlighted. Times and accuracies for AM (light-gray) and NL (dark-gray) were
compared using the Mann-Whitney U-test (MWU) or the T-test. Effect sizes correspond to either Z/

√
N or Cohen’s d (details in section 4.1).
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Fig. 7. Hypothesis 2: task details and results, significant p-values highlighted. Times and accuracies for AM (light-gray) and NL (dark-gray) were
compared using the Mann-Whitney U-test (MWU) or the T-test. Effect sizes correspond to either Z/

√
N or Cohen’s d (details in section 4.1).

to the task. This was the second most common theme in our
participants’ feedback. Examples include: “Scrolling in and
out was a pain” and “I found that navigating the chart was
more time consuming than finding the answer.”

We merged into this theme comments about the visual-
izations showing too much data or being too complex such
as “Spread of the network [NL] was too large to be able to
see all the connections at the same time when zooming in”
and “The image is small and it needs more time to zoom.”

Suboptimal interactions: A small number of participants
commented on the particular ways interactions were im-
plemented (e.g., “Had some trouble with the ingredient
selection”, “Controls were a bit clunky”, “Was a little tricky
working this with the way it moved and stuff”, “Put a zoom
button on screen”).

Other technical issues: Finally, a few participants reported
other types of technical difficulties such as “Would not
zoom as instructed” or “I had to reload the page once”. We
identified surprisingly few such comments (14) given the
scale of our study (864 participants).

5 DISCUSSION

We now discuss several factors that may have played a
role in the observed results. We base this discussion on the
quantitative results and the qualitative feedback. We also
looked at performance on individual task repeats to see if
we can identify what about each repeat makes it easy or
difficult (e.g., visual presentation, number of required inter-
actions). This analysis was qualitative and based on our own
interactions with the visualizations and attempts to solve
the tasks. Note that we only provide possible explanations
of observed effects, rather than definitive findings.

NL diagrams require less zooming and panning. NL
layouts fully leverage the 2D area, while matrices are con-
strained to two 1D linear node orders. Matrices favor dense
networks but not sparse ones (empty matrices are as large
as a dense ones). As networks grow larger but not denser,
AM may incur increasing navigation overheads. Instead,
sparse NL diagrams can be packed tightly. At the extreme,
an empty network can be shown effectively using NL in a√
N ×

√
N square. The same empty network would require

a N×N square in an AM. The qualitative data also suggests



9

Fig. 8. Hypothesis 3: task details and results, significant p-values highlighted. Times and accuracies for AM (light-gray) and NL (dark-gray) were
compared using the Mann-Whitney U-test (MWU) or the T-test. Effect sizes correspond to either Z/

√
N or Cohen’s d (details in section 4.1).

that zooming and panning were more of a problem in AM
than NL. This could explain the differences in T1.

NL diagrams place a node’s glyph and connections to-
gether. Once a label is spotted in an NL diagram, its out-
going edges can be traced to other nodes and their labels.
Moreover, the presence of the edge aids this tracing. The AM
visualization shows node and edge information separately.
Finding the endpoints of an edge involves two potentially
long visual-traces along the horizontal and vertical axes.
Similarly, finding an edge of an identified node involves a
horizontal or vertical search.

We found that participants took longer and were less
precise on task T2 (find neighbors of selected node) in the
AM condition the farther the target node was from the
matrix labels. This is exemplified in Figure 12 and intuitively
makes sense because to solve this task participants identify
edges in the matrix and select nodes in the label areas. The
farther the two are, the more difficult the task.

Similarly, we expected that T9 (determine if there is a
connection between a highlighted node and a named node)
would be difficult in the AM condition. When zoomed out it
is easy to get an overview of all of a node’s connections (e.g.,
dots on its row) and scan through them, but the labels are
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Fig. 9. Hypothesis 4: task details and results, significant p-values highlighted. Times and accuracies for AM (light-gray) and NL (dark-gray) were
compared using the Mann-Whitney U-test (MWU) or the T-test. Effect sizes correspond to either Z/

√
N or Cohen’s d (details in section 4.1).

Fig. 10. Issues reported by participants as qualitative feedback.

barely visible. Hovering over labels would reveal them, but
the rows and columns are narrow and cursor movements
need to be very precise. Alternatively, zooming in makes
the labels visible but involves significant back-and-forth
navigation. In contrast, labels in NL are visible even at an
overview level. This may explain the effect observed in T9.

Distances are better represented with NL diagrams. While
matrices can also order rows and columns, they are con-
strained by the use of a single dimension. This could explain
the results of T5: when one pair of nodes were in the
same cluster and the other not, comparing their topological
proximity was possible in both visualizations, but in all
other cases NL outperforms AM.

Matrices eliminate occlusion and ambiguity problems.
In NL diagrams it is sometimes difficult to tell if an edge
connects to a node or passes through it, but this is not the
case in AMs.

Tasks that involve visual searches in unconstrained 2D
space are easier with AM. For example, finding a node in
an AM involves a linear scan in a list of labels. Counting

nodes with certain properties can also be done sequentially
by moving through the matrix’s headers. Such tasks are
difficult in NL diagrams as users have to search a 2D space
and keep track of already visited nodes.

This may account for T4 and T12, where AM out-
performs NL: participants could systematically scan two
selected AM node-rows and identify the columns where
both rows had an edge.

We also expected that T3, T6, and T7 would be easier
in the AM condition, since participants would compare dot-
densities (T3), or line segments (the extents of the groups
along an axis in T7), rather than counts of scattered 2D
points or edges (Figure 11). We indeed found AM supports
tasks T3 and T6 better, although that was not the case for
T7. It is possible that for T7 some participants might have
been looking at the number of edges (dots in the matrix)
rather than the number of nodes (rows or columns).

More people commented on tasks being fun or interesting
in NL than AM (Figure 10). Since we used a between-
subjects design we could not ask participants to compare
their preference for the two visualizations. We wonder if the
unprompted description of working with one visualization
or the other as fun might however provide a proxy for this
comparison.

The results from study 2 confirm those from study 1.
Considering solely statistically significant differences the
only difference is on T10. The average time of participants
performing path tasks (T10) using AM in our first study
is significantly smaller than that for NL. The results are
reversed in study 2. By looking at the quantitative data in
more detail we found that this was due to many study 1
participants who used AM giving up on solving the task
altogether. This may also be the task in T5 though the
difference between AM and NL is close. We also found
evidence of this in participants’ comments (e.g. “I had no
idea how to find the number of links between them so I
guessed”).
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Fig. 11. Comparing group sizes should be easier in AM as it involves
comparing lengths of line segments rather than counts of 2D points.
Surprisingly however, average accuracy for this repeat was .92 in NL
and .75 in AM.

6 LIMITATIONS

Several earlier studies comparing NL and AM considered
the effects of network size and density [3], [5]. We recognize
the value of this approach and therefore chose to evaluate
two datasets with slightly different densities. However, it
was beyond the scope of our study to investigate these
factors exhaustively. Instead, we aimed to understand how
the two visualizations support a more complete range of
tasks (14 versus previously 6 and 7) in datasets that are
representative of real-world networks in size and structure.
It is unclear whether our results would generalize to real-
world networks that are significantly larger or denser but
our work does provide additional experimental data for
networks unlike those evaluated earlier.

We use just two specific networks. This is a method-
ological drawback which we accepted, due to the over-
head associated with preparing multiple appropriate real-
world networks for evaluation, and with phrasing partici-
pant instructions using the semantics of different networks.
While the limitations of this approach are non-trivial, we

Fig. 12. We noticed that generally AM participants were less accurate
and took longer to select neighbors of a highlighted node (T2) when
the node was a the bottom of the matrix (right, acc=.5, time=27s), then
when it was closer to the top (left, acc = 0.79, time=22s).

attempted to balance them by using multiple task-repeats
of the same task type and focusing each repeat on different
parts of the network.

The densities of our networks were lower than [2],
[5]. However, Melançon points out that large real-world
networks with high densities are rare [47]. He argues that
the edge-to-node ratio is a better indicator for density in
real-world networks as it is less sensitive to the number of
nodes. Indeed, only 1 of the 22 networks we considered,
and 3 of the 19 networks Melancon considered had densities
higher than 0.2. In 3 of these 4 cases, these dense networks
were also the smallest in terms of number of nodes.

As in recent studies, we evaluated interactive visual-
izations. Given the different visual encoding in NL and
AM it is difficult to ensure that all interactions are fair to
both visualizations. To alleviate this concern, we relied on a
detailed review of the NL and AM literature, and selected
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the most common interactions and their implementations
(see Section 3.3). This ensured, at least to some degree, that
we evaluated the interactive visualizations as they appear
in practice.

In our first study we did not collect sufficient demo-
graphic data. We rectified this in our second study and
presented the data in section 4.2.

It would have been interesting to test learning effects
over time or task repeats. In other words, do participants
learn to use the visualizations more accurately over ten re-
peats of the same task? Our design does not allow us to test
this because task repeats differ in difficulty and performance
on the last repeat might have been best simply because this
last repeat was easiest. A likely better approach would have
been to use the same task instances for all participants, as we
did, but randomize the order in which we show them. This
would have allowed us to determine if an instance’s position
in the sequence correlates with participants’ performance on
that instance.

Crowdsourced studies have known inherent limitations,
one of which is the difficulty to control or account for
different work setup of participants. With this in mind, it
was good to see that only a few participants actively re-
ported technical issues (8). Also, the data we collected about
browser sizes showed that all but two participants used
reasonably large displays, such as laptops or tablets. We
note that despite their limitations, crowdsourcing studies
replicate prior controlled lab studies [39].

Finally, we point to the fact that a few participants
complained about insufficient time. While this may have
resulted in lower accuracy overall, both visualizations were
affected in relatively equal amounts so the comparative
results were likely unaffected.

7 CONCLUSION

We presented the results of a crowdsourced evaluation of
NL and AM network visualizations. Our study involved
864 online participants who used interactive versions of
the two encodings, to answer 14 varied types of questions
about two real-life networks, one with 256 nodes and 1090
edges, the other with 332 nodes and 2126 edges. We found
that NL is better than AM for questions about network
topology, connectivity, and memorability tasks, while AM
outperforms NL for group tasks. These findings apply
to visualizing datasets similar to the ones we evaluated,
provided a similar interaction set.
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