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Abstract — Verifiable secret sharing (VSS) is an impor-

tant technique which has been used as a basic tool in dis-
tributed cryptosystems, secure multi-party computations,

as well as safe guarding some confidential information such
as cryptographic keys. By now, some secure and efficient

non-interactive VSS schemes for sharing secrets in a fi-

nite field have been available. In this paper, we investi-
gate verifiably sharing of a secret that is an element of a

bilinear group. We present an efficient and information-
theoretical secure VSS scheme for sharing such a secret

which may be a private key for a pairing based cryptosys-

tem. Our performance and security analysis indicates that
the newly proposed scheme is more efficient and practical

while enjoys the same level of security compared with sim-
ilar protocols available. We also demonstrate two typical

applications of our proposed VSS scheme. One is the shar-

ing of a secret key of Boneh and Franklin’s identity-based
encryption scheme, and the other is the sharing or the dis-

tributed generation of a secret key of the leakage resilient
bilinear ElGamal encryption scheme.

Key words — Verifiable secret sharing, Threshold, Bi-

linear map, Bilinear group, Information-theoretical secure.

I. Introduction

Secret sharing[1] is a fundamental tool of threshold cryp-

tography and distributed computing[2−4]. A secret sharing

scheme involves a dealer D and a set P of participants. It

allows the dealer D to distribute shares of a secret among par-

ticipants of P in such a way that only some qualified subsets

of P can reconstruct the secret from their shares. Earlier basic

secret sharing schemes assume both the dealer and the partic-

ipants are honest. However this assumption may not be sound

in some real applications. In practice, a dealer may not trust

some participants, and some of the participants may not trust

the dealer either. To solve this kind of distrust, Verifiable

secret sharing (VSS)[5] is introduced. In a VSS scheme, par-

ticipants are able to verify whether the shares distributed to

them by the dealer are valid. VSS schemes for sharing secrets

in a finite field have been well established and widely used.

The first non-interactive verifiable secret sharing scheme was

presented by Feldman in Ref.[6]. In Ref.[7] Pedersen presented

the first non-interactive and information-theoretic secure VSS

scheme. These two VSS schemes for sharing secrets in a finite

field are generally known as Feldman-VSS and Pedersen-VSS

respectively. They have been used as basic building blocks in

distributed key generation and threshold cryptosystems based

on the discrete logarithm problem in finite fields. Recently, the

bilinear pairing-based cryptography has received much atten-

tion from the research community and many bilinear pairing-

based cryptographic schemes and protocols[8−17] have been

available. For some of these bilinear pairing-based crypto-

graphic schemes, the secret keys may come from a bilinear

group rather than a finite field. To share such secret keys,

we have to consider verifiably sharing an element of a bilinear

group. A notable work in this line was presented by J. Baek

and Y. Zheng. In Ref.[9], they showed two secure verifiable

secret sharing schemes for sharing secrets in bilinear groups

as building blocks of their expected ID-based threshold signa-

ture scheme. As the algebraic properties of groups are very

different from that of finite fields, we think it is not trivial

to generalize the verifiable secret sharing schemes over finite

field to secure verifiable secret sharing schemes over bilinear

groups. In this paper, we focus on establishing efficient and

information-theoretic secure verifiable secret sharing schemes

over bilinear groups. We demonstrate such a new VSS scheme.

The newly proposed scheme is more efficient compared with

J. Baek and Y. Zheng’s Unconditionally secure verifiable se-

cret sharing scheme based on the bilinear pairing (UVSSBP)[9].

Therefore, it is quite reasonable to believe that our scheme will

have practical applications in threshold cryptosystem such as

threshold decryption and threshold signature based on bilinear

groups.

II. Preliminaries and Definitions

In this section, we briefly describe the concept of bilinear

pairings and the notion of verifiable secret sharing.

1. Bilinear pairings

Let G1 and G2 be two groups with the same order q, where

q is a large prime. Here, we denote the operation in G1 addi-
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tion, while the operation in G2 is denoted multiplication. A

map ê: G1 × G1 → G2 is called a bilinear map (or a bilinear

pairing) if it satisfies the following three conditions:

(1) Bilinear: For all P, Q ∈ G1 and a, b ∈ Z∗
q , ê(aP, bQ) =

ê(P, Q)ab.

(2) Non-degenerate: There exist P, Q ∈ G1 such that

ê(P, Q) �= 1.

(3) Computable: For all P, Q ∈ G1, there exists an efficient

algorithm to compute ê(P, Q).

We say that a cyclic group G1 with prime order q is a bi-

linear group if there exists a group G2 with the same order q

and a bilinear map ê: G1 × G1 → G2. For more details about

bilinear pairing and bilinear groups, please refer to Refs.[9–17].

2. Modified generalized bilinear inversion problem

in (G1, G2, ê)

Let G1 and G2 be two cyclic groups with the same prime

order q, and ê: G1×G1 → G2 a bilinear pairing. The modified

generalized bilinear inversion problem in (G1, G2, ê) is: Given

a random γ ∈ G2 and a generator P of G1, compute W ∈ G1

such that ê(W,P ) = γ.

3. Verifiable secret sharing

At first, we review some basic notions about verifiable se-

cret sharing including the communication model, the basic

components and the security requirements for an information-

theoretic secure VSS scheme.

(1) Communication model

The communication model of a verifiable secret sharing

scheme is composed of a set of n players U1, U2, · · · , Un and

a dealer D that can be modeled by polynomial-time random-

ized Turing machines. We suppose they are connected by a

complete network of private point-to-point channels. In addi-

tion, all the players and the dealer have access to a dedicated

broadcast channel[7].

(2) Components of a VSS scheme

A VSS scheme is divided into four phases: initialization,

distribution, verification, and reconstruction.

(a) Initialization This phase produces necessary pa-

rameters of the scheme.

(b) Distribution The dealer publishes commitments

and distributes shares of the secret to all participants.

(c) Verification This phase is executed by the partici-

pants to verify whether the shares they received are valid.

(d) Reconstruction The participants who intend to re-

cover the secret execute the reconstruction phase together. Ac-

tually they need submit their shares and verify the validity of

shares supplied by the other participants before reconstruc-

tion.

(3) Notions of security

Here we consider a static and strong admissible

adversary[7,18]. That means the adversary has determined

which participants to corrupt at the start of the protocol, and

can corrupt less than participants totally. An information-

theoretic secure VSS scheme should satisfy the following re-

quirements.

(a) Consistency of the shares The dealer can not pass

through verification when he distributes inconsistent shares.

(b) Privacy of the secret No information about the

secret is revealed to the adversary. This means that: � The

public information does not reveal any information about the

secret. � A static and strong admissible adversary can get

no information about the share of any uncorrupted player and

the shared secret.

III. Review of Some Information-
theoretic Secure VSS Schemes

In this section we review the non-interactive and

information-theoretic secure verifiable secret sharing scheme

of Pedersen and UVSSBP scheme of J. Baek and Y. Zheng.

1. Pedersen-VSS

(1) Initialization

Assume that p and q are two large primes such that q di-

vides p−1. Let Gq be the unique subgroup of Z∗
p of order q, and

g, h be two generators of Gq such that nobody knows logg h.

The secret space is GF (q) and the share space is GF (q)2. Let

s ∈ GF (q) be the secret to be shared, n the number of players

and t the threshold with the restriction 1 ≤ t ≤ n < q.

(2) Distribution

(a) D publishes a commitment to the secret s: E0 =

E(s, r) = gshr for a randomly chosen r ∈ Z∗
q .

(b) D chooses a1, · · · , at−1 at random from Zq and con-

structs a polynomial f(x) = s+ a1x+ · · ·+ at−1x
t−1 of degree

t − 1. Compute si = f(i).

(c) D chooses b1, · · · , bt−1 ∈ Zq at random and publishes

commitments to ai for i = 1, · · · , t−1: Ei = E(ai, bi) = gaihbi .

(d) Let g(x) = r + b1x + · · · + bt−1x
t−1 and set ri = g(i).

D sends (si, ri) secretly to Ui for i = 1, · · · , n.

(3) Algorithm of verification

When Ui has received his share (si, ri) he verifies if

E(si, ri) =
t−1∏
j=0

Eij

j (1)

If the verification fails, the share (si, ri) assigned to Ui is in-

valid.

(4) Algorithm of reconstruction

Without loss of generality, we suppose U1, · · · , Ut be the t

players to reconstruct the shared secret. Each Ui broadcasts

his share (si, ri) to other cooperators, and every participator

can check its validity through Eq.(1). For i = 1, · · · , t, while

all (si, ri) have been verified to be valid, every cooperator can

reconstruct s by computing

s =

t∑
i=1

si

∏
1≤j≤t,j �=i

i

i − j
(2)

2. UVSSBP scheme of J. Baek and Y. Zheng

(1) Initialization

Suppose G1 and G2 are two groups with the same order

q and ê : G1 × G1 → G2 is a bilinear map. Assume P is a

generator of G1 and H , I are two random elements of G1 given

to D and no party knows a, b ∈ Z∗
q such that H = aP and

I = bP . The secret space is G∗
1 and the share space is G1×Zq.

Let S ∈ G1 be the secret to be shared. The number of players

is n and the threshold is t with the restriction 1 ≤ t ≤ n < q.

(2) Distribution

(a) D chooses a random r from Z∗
q and publishes a com-

mitment to S: E0 = E(S, r) = ê(S, P )ê(H, I)r.
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(b) D randomly chooses A1, · · · , At−1 from G∗
1. Construct

F (x) = S + A1x + · · · + At−1x
t−1 and compute Si = F (i) for

i = 1, · · · , n.

(c) D chooses a1, · · · , at−1 randomly from Z∗
q and con-

structs a polynomial f(x) = r + a1x + · · · + at−1x
t−1. Then

compute ri = f(i) for i = 1, · · · , n.

(d) For i = 1, · · · , t − 1, D broadcasts Ei = E(Ai, ai) =

ê(Ai, P )ê(H, I)ai and sends (Si, ri) secretly to Ui for i =

1, · · · , t − 1.

(3) Verification

When Ui has received his share (Si, ri) he verifies if

E(Si, ri) =

t−1∏
j=0

Eij

j (3)

If the verification fails, the share Si assigned to Ui is invalid.

(4) Algorithm of reconstruction

Without loss of generality, let U1, · · · , Ut be the t players

to reconstruct the shared secret. Each Ui broadcasts his share

(Si, ri) to other cooperators, and every participator can check

its validity through Eq.(3). For i = 1, · · · , t, while all (Si, ri)

have been verified to be valid, every cooperator can reconstruct

S by computing

S =

t∑
i=1

Si

∏
1≤j≤t,j �=i

i

i − j
(4)

IV. Our Scheme

In this section, we present our efficient and information-

theoretical secure verifiable secret sharing scheme from bilinear

groups. Then we analyze the security of the newly proposed

scheme. We prove that our new scheme satisfies the security

requirements for information-theoretic secure verifiable secret

sharing schemes. At last we discuss the efficiency of perfor-

mance of our new scheme. We compare the computational cost

of our scheme with that of J. Baek and Y. Zheng’s UVSSBP

scheme.

1. Description of the scheme

(1) Initialization

Let (G1, +) and (G2, ·) be cyclic groups with the same large

prime order q, P a generator of G1 and ê : G1 × G1 → G2 a

bilinear map. It is required that the discrete logarithm prob-

lem is intractable in both G1 and G2. Let α = ê(P, P ) be

a generator of G2. Denote by n the number of participants,

and t is the threshold. These parameters can be generated

cooperatively by the dealer D and all participants. To gener-

ate a random β ∈ G2 such that no party knows the discrete

logarithm of β with respect to the base α, the dealer and the

players cooperate as follows:

(a) For i = 1, · · · , n each Ui chooses uniformly at random

a βi ∈ G2 and sends it to D.

(b) On receiving all βi for i = 1, · · · , n, D sets β =
∏n

i=1 βi.

(c) D publishes (n, t, q, G1, G2, ê, P, α, β, β1, β2, · · · , βn) as

public parameters. The secret space is G1, and the share space

is G1 × Zq .

(2) Distribution

(a) To generate a secret S to be shared. D picks an s ∈ Z∗
q

and sets S = sP .

(b) D chooses a1, · · · , at−1, b0, · · · , bt−1 from Z∗
q uniformly

at random and defines f(x) = a0 + a1x + · · · + at−1x
t−1,

g(x) = b0 + b1x + · · · + bt−1x
t−1 where a0 = s.

(c) D computes and publishes Ei = E(ai, bi) = αaiβbi for

i = 0, · · · , t − 1 as the commitments of S and f(x).

(d) D computes Si = f(i)P , ri = g(i) and sends (Si, ri)

secretly to Ui for i = 1, · · · , n.

(3) Verification

When Ui has received his share (Si, ri) he verifies if

ê(Si, P )βri =
t−1∏
j=0

Eij

j (5)

If the verification fails, the share (Si, ri) assigned to Ui is in-

valid.

(4) Reconstruction

Without loss of generality, suppose U1, · · · , Ut are the t

participants to reconstruct the shared secret.

(a) Each Ui broadcasts his share Si to other cooperators,

and every participator can check its validity through Eq.(5).

(b) For i = 1, · · · , t, while all Si have been verified to be

valid, every cooperator can reconstruct S by computing

S =
t∑

i=1

Si

∏
1≤j≤t,j �=i

i

i − j
(6)

2. Security

We analyze the security of our scheme according to the

security notions given in Section II.

(1) Consistency of the shares

The following theorem shows that the dealer cannot pass

through verification if he distributes inconsistent shares under

the assumption that he cannot find logα β expect with negli-

gible probability in q.

Theorem 1 Under the assumption that Modified gener-

alized bilinear inversion problem in (G1, G2, ê) is intractable

and the discrete logarithm of β with respect to base α is un-

known, the dealer can not compute an inconsistent share that

passes the verification successfully with a non-negligible prob-

ability.

Proof Assume that D gives an invalid share (S′
i, r

′
i) to

participant Ui and (S′
i, r

′
i) satisfies the verification equation.

Then we have

ê(S′
i, P )βr′

i = αf(i)βg(i) (7)

and hence

ê(S′
i, P ) = αf(i)βg(i)−r′

i (8)

where f(x) and g(x) are the polynomials used by D in the dis-

tribution phase, and s′i �= f(i), r′i �= g(i). Set αf(i)βg(i)−r′
i = γ

where γ is the input of the Modified generalized bilinear in-

version problem in (G1, G2, ê), then D can output W = S′
i.

This implies that D can successfully find a solution for an in-

stance of the Modified generalized bilinear inversion problem

in (G1, G2, ê).

On the other hand, with S′
i = s′iP and ê(P, P ) = α we get

αs′iβr′
i = αf(i)βg(i) (9)
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from Eq.(7). Then we have

αs′i−f(i) = βg(i)−r′
i (10)

As s′i �= f(i), r′i �= g(i), D can calculate

logα β =
s′i − f(i)

g(i) − r′i
(11)

That means D knows the discrete logarithm of β with respect

to base α.

(2) Privacy of the secret

To prove that no information about the secret is revealed

to the adversary, we give the following two theorems. The

first theorem is very easy to prove and shows that the public

commitments do not reveal any usable information about the

secret, and the second one implies the privacy of the secret in

case there exists a static and strong admissible adversary who

corrupts up to k < t players.

Theorem 2 For any s ∈ Z∗
q and for randomly uniformly

chosen r ∈ Zq, E(s, r) is uniformly distributed in G2.

Proof As r is an element randomly chosen from Zq, it

is apparent that βr is uniformly distributed in G2 since β is

a generator of G2. And consequently E(s, r) = αsβr is uni-

formly distributed in G2.

This theorem shows that E(s, b0) does not reveal any infor-

mation about s and consequently the secret S = sP . Similarly

for i = 1, · · · , t− 1 each E(ai, bi) does not reveal any informa-

tion about ai. So the public commitments do not reveal any

information about the polynomial f(x).

Theorem 3 With the shares of those corrupted partici-

pants, a static and strong admissible adversary can not derive

any information about the share kept by any honest partici-

pant and consequently no information about the secret S.

Proof From Theorem 2, we learn that the adversary can

not get any information about the secret polynomial f(x) given

the public commitments. Nevertheless according to the algo-

rithm of distribution, to acquire the share owned by an honest

participant, the adversary has no choice but compute f(x)

merely using the shares of the corrupted participants. With-

out loss of generality we suppose that the corrupted players

are U1, · · · , Uk and k < t. The adversary has to compute all

coefficients a1, · · · , at−1 of f(x) from the following system of

equations:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0P + a1P + · · · + at−1P = S1

a0P + a12P + · · · + at−12
t−1P = S2

...

a0P + a1kP + · · · + at−1k
t−1P = Sk

(12)

i.e. ⎡
⎢⎢⎢⎣

P P · · · P

P 2P · · · 2t−1P
...

...
. . .

...

P kP · · · kt−1P

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0

a1

...

at−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

S1

S2

...

Sk

⎤
⎥⎥⎥⎦ (13)

Let Si = ciP , the above system of equations is equivalent to
⎡
⎢⎢⎢⎣

1 1 · · · 1

1 2 · · · 2t−1

...
...

. . .
...

1 k · · · kt−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0

a1

...

at−1

⎤
⎥⎥⎥⎦ P =

⎡
⎢⎢⎢⎣

c1

c2

...

ck

⎤
⎥⎥⎥⎦ P (14)

i.e. ⎡
⎢⎢⎢⎣

1 1 · · · 1

1 2 · · · 2t−1

...
...

...

1 k · · · kt−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0

a1

...

at−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c1

c2

...

ck

⎤
⎥⎥⎥⎦ (15)

This is a system of linear equations where the rank of the

coefficient matrix is less than the number of variables. That

means it has not less than qt−k solutions and the probability

for the adversary to dope out the genuine (a0, · · · , at−1) is not

more than 1/qt−k. Accordingly the probability for the adver-

sary to calculate the correct share of any uncorrupted player

is not more than 1/qt−k. As q is a large primer and t− k ≥ 1,

this probability is negligible. Hence, the adversary who cor-

rupts up to t − 1 participants gets no information about the

shared secret.

The three theorems above show that in our scheme the con-

sistency of the shares depends on a computational assumption

while the privacy of the secret is unconditional. This means

our scheme is information-theoretical secure.

3. Computational cost

To compare the computational cost of the newly proposed

scheme with that of J. Baek and Y. Zheng’s scheme, we count

the number of those time-consuming operations in different

phases of both schemes and list them in Table 1. We use P,

S and E to denote the operation of a bilinear pairing, a scalar

multiplication in G1 and an exponentiation in G2 respectively.

As in J. Baek and Y. Zheng’s UVSSBP the initialization

algorithm does not give definite procedures of generating the

parameters, we just consider the distribution phase, verifica-

tion phase and reconstruction phase in this table. And in the

reconstruction phase we assume there are t participants and

the cost of verification is not included as it is the same in the

two schemes.

Table 1. Comparison of computational cost

UVSSBP Our new scheme

Distribution phase tP + (t − 1)nS + tE (n + 1)S + 2tE

Verification phase tP + n(t + 1)E tP + n(t + 1)E

Reconstruction phase tS tS

The comparison reveals that in our scheme, the operations

of computing bilinear pairing and scalar multiplication in G1

are greatly reduced, although exponentiation in G2 increases.

As computing bilinear pairings is the most time-consuming op-

eration, it is quite reasonable to say that our newly proposed

scheme has a lower computational cost than J. Baek and Y.

Zheng’s UVSSBP. As the communication cost is the same in

the two schemes, our scheme is more efficient under the same

level of security.

V. Applications

Our information theoretic secret sharing scheme over bilin-

ear groups has wide applications especially in the case where

the secret S to be shared is in a bilinear group G1 and the

discrete logarithm of S to a given generator P of G1 is known

to the dealer. Here, we give two typical examples.

The first one is to share a secret key of the identity-based

cryptosystem of Boneh and Franklin[12] employing the Private
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key generation center (PKG) as a dealer. This is a preferable

choice for sharing the secret key of an identity for threshold

realization of decryption or signature in Boneh and Franklin’s

identity-based setting. For an identity ID, the secret key for

ID can be computed by the PKG as dID = sH(ID), where s

is the master secret key only known to the PKG. When asked

to share the secret key of identity ID in a set of n designated

participants with threshold t, the PKG can play the role of

the dealer and shares dID using our sharing scheme. Hav-

ing shared the secret key dID = sH(ID) of identity ID, t

or more than t participants can cooperate to decrypt cipher-

texts or sign messages on behalf of identity ID using threshold

decryption or signature techniques.

The second is the sharing or distributed generation of a

user’s secret key in the bilinear ElGamal encryption scheme[11]

which has been proved leakage resilient. This is necessary for

safe guarding the secret key or for the purpose of threshold de-

cryption. In the bilinear ElGamal encryption scheme, a user

picks uniformly at random an x ∈ Z∗
q , and sets its secret key

as SK = xP , public key as PK = ê(P, P )x. So, our shar-

ing scheme can directly be used to sharing such a secret key.

To distributed generate such a secret key, the n participants

P1, P2, · · · , Pn can execute in a parallel manner our sharing

scheme n times with the same threshold t. Each Pi acts as a

dealer once and shares its random choice of xiP . At last, the

generated secret key is the sum of all those correctly shared

xiP , and has been shared by the n participants with thresh-

old t. An attacker corrupts up to t− 1 participants can get no

information about the shared secret key, while the public key

can be computed by each participant.

VI. Conclusions

We concentrate on verifiably sharing a secret from a bi-

linear group. An efficient and information-theoretic secure

scheme for sharing such a secret has been presented. The

new scheme is more efficient compared with J. Baek and Y.

Zheng’s UVSSBP scheme while enjoys the same level of secu-

rity. Similar to Feldman VSS, Pedersen VSS, and the UVSSBP

scheme of J. Baek and Y. Zheng, our scheme is also homomor-

phic. This property makes it easy to convert our scheme into a

proactive verifiable secret sharing scheme and also makes our

scheme applicable to a number of real application environ-

ments. Thus it is quite reasonable to believe that our scheme

will have wide applications in multi-party computation in bi-

linear groups, distributed key generation and threshold cryp-

tosystems based on bilinear groups.
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