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1 Introduction

Secret sharing (Shamir, 1979; Blakley and Kabatianskii,
1994) is a significant technique for safeguarding very
confidential information such as cryptographic keys.
It has been identified as a fundamental tool in key
management, threshold cryptography, and secure multi-
party protocols, etc. In a secret sharing scheme, a dealer
who holds a secret distributes shares of the secret among
a set of participants in such a way that only some
qualified subsets of participants can later recover the
secret when pulling their shares together. Many of the
traditional linear secret sharing schemes are a type of
secret sharing schemes where the secret to be shared is
an element of a finite field F, and each share is computed
as a fixed linear function of the secret and some random
field elements chosen by the dealer. In a (t, n) threshold
secret sharing scheme, there are n participants, and t or
more participants form a qualified subset. The famous
Shamir (t, n) threshold secret sharing scheme(Shamir,
1979) is a typical linear threshold secret sharing scheme.

Verifiable secret sharing (VSS for short) is first
proposed by B.Chor et al in (Chor et al., 1985) to
deal with the problem of cheating from the dealer in
traditional secret sharing schemes. In a VSS scheme,
participants are able to verify whether the shares
they received from the dealer are valid. And in the
reconstruction phase, each participants can check if the
shares submitted by the other cooperators are correct.
Techniques for verifiably sharing a secret that is an
element of a finite field have been studied for many
years. By now, many schemes within this category,
either the threshold ones (Chor et al., 1985; Rabin
and Ben-Or, 1989; Feldman, 1987; Pedersen, 1991)
or the generalized ones (Zhang et al., 2002), have
been available. Nevertheless, there are only a few VSS
schemes for sharing a random element of a bilinear
group. In (Baek and Zheng, 2004), J.Baek and Y.Zheng
investigated such VSS for the first time. They introduced
two VSS schemes in bilinear groups as building blocks
of their expected ID-based threshold signature and
decryption schemes. Their work uses the polynomial
interpolation method proposed by A.Shamir to share the
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secret and consequently belongs to a particular case of
threshold linear VSS.

In this paper, we study the topic of threshold linear
verifiable secret sharing in bilinear groups. We generalize
the technique of threshold linear verifiable secret sharing
in finite fields to the case of bilinear groups. Our method
of threshold linear verifiable secret sharing in bilinear
groups results in a class of secret sharing schemes that
include J.Baek and Y.Zheng’s work as a special case. We
give analysis for the correctness and the security of the
newly proposed scheme in detail. Additionally, we also
show a modified version of our scheme that effectively
reduces the computational cost for sharing.

The rest of the paper is organized as follows. In
Section 2 we give some basic notions with respect
to bilinear pairing and verifiable secret sharing. Then
in Section 3 we shortly review J.Beak and Y.Zheng’s
VSS (Baek and Zheng, 2004) that uses the polynomial
interpolation in bilinear groups. In Section 4 we give
a detailed description of our VSS scheme in bilinear
groups and heuristically analyze its security. After that
in Section 5 we show a modified scheme with lower
computational cost and analyze its efficiency. At last in
Section 6 we just conclude this paper.

2 Preliminaries and Definitions

In this section we give some basic notions with respect
to bilinear pairing and verifiable secret sharing.

2.1 Bilinear Pairings

Let G and GT be two groups of order q for some large
prime q. Suppose G is an additive group and GT is a
multiplicative group respectively. A map
ê : G×G −→ GT is called a bilinear map or a bilinear
pairing if it satisfies the following conditions(Wu and
Tseng, 2011; Kiltz and Pietrzak, 2010; Boneh, D. and
Franklin, 2001; Gentry, 2006; Boneh, D. and Boyen,
2004):

1 Bilinear: For all P,Q ∈ G and a, b ∈ Z∗q ,

ê(aP, bQ) = ê(P,Q)ab.

2 Non-degenerate: There exist P,Q ∈ G such that
ê(P,Q) 6= 1.

3 Computable: For all P,Q ∈ G, there exists an
efficient algorithm to compute ê(P,Q).

We say that G is a bilinear group if there exists a group
GT and a bilinear map ê : G×G −→ GT as above, where
ê and the group action in G and GT can be efficiently
computed.

2.2 Notation for Operation

Let G be a group of prime order q, K = Zq be the
finite field with q elements. Assume α = (a1, ..., at),
β = (b1, ..., bt) are vectors with a1, ..., at, b1, ..., bt ∈ K

and B = (B1, ..., Bt) is a vector with B1, ..., Bt ∈ G.
Suppose M = (mij) = (M1,M2, ...,Mn) is a t by n
matrix in K, where Mj(j = 1, ..., n) denotes the jth
column vector of M . In our construction, we use the
operation of inner product α • β in K, an operation
α ◦B of a t-dimensional vector α in K with a
t-dimensional vector B in G, an operation α ∗M of a
t-dimensional vector α in K and a t× n matrix M in
K, and an operation B ?M of a t-dimensional vector B
in G with a t× n matrix M in K. These operations are
defined in a very simple and natural way as follows.

• α • β = β • α = a1b1 + a2b2 + · · ·+ atbt,

• α ◦B = B ◦ α = a1B1 + a2B2 + · · ·+ atBt,

• α ∗M = (α •M1, α •M2, ..., α •Mn) =
(
∑t

i=1 aim1i,
∑t

i=1 aim2i, ...,
∑t

i=1 aimni

• B ?M = (B ◦M1, B ◦M2, ..., B ◦Mn) =
(
∑t

i=1m1iBi,
∑t

i=1m2iBi, ...,
∑t

i=1mniBi)

2.3 Verifiable Secret Sharing

A verifiable secret sharing(VSS) scheme is a secret
sharing scheme that requires the dealer to broadcast
some verification information such that each participant
can verify the validity of his share. Here we briefly review
the the communication model, the building blocks and
the security requirements of a VSS scheme.

2.3.1 Communication model.

A verifiable secret sharing scheme involves n participants
P1, ..., Pn and a dealer D. They are connected by a
complete network of private point-to-point channels and
have access to a dedicated broadcast channel.

2.3.2 Building blocks.

A VSS scheme contains three basic algorithms as follows:

• Algorithm of distribution: This algorithm is
executed by the dealer to publish commitments
that used for verification and distribute shares to
the participants.

• Algorithm of verification: The participants run
this algorithm to verify whether the shares they
received are valid.

• Algorithm of reconstruction: A qualified
subset of participants execute this algorithm to
recover the shared secret together.

2.3.3 Security requirements.

Assume a static and strong admissible adversary
(Gennaro, 1996), i.e. the adversary has determined which
participants to corrupt at the start of the protocol, and
can corrupt less than t participants totally. A secure VSS
scheme should satisfy the following requirements.
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• The adversary cannot acquire the secret from
public information.

• The adversary cannot calculate the secret from the
shares of those corrupted participants.

• The adversary cannot prevent the t or more honest
participants from reconstructing the secret.

3 Related Works

In this section we briefly review the method of sharing
a point in a group G(Baek, J. and Zheng, 2004) and
J.Beak and Y.Zheng’s VSS (Baek and Zheng, 2004) that
uses the polynomial interpolation in bilinear groups.

3.1 Secret Sharing over G

• Parameters

Let G be a group of a prime order q. Suppose
the dealer D holds a random secret S ∈ G∗ to be
shared among n participants P1, ..., Pn and t is the
threshold such that 1 ≤ t ≤ n < q.

• Distribution phase

1 Pick A1, ..., At−1 uniformly at random from
G∗. Construct a polynomial
F (x) = S +A1x+ · · ·+At−1x

t−1.

2 Compute Si = F (i) for i = 1, ..., n and
secretly send Si to Pi.

• Reconstruction phase

Suppose Φ ⊆ {1, ..., n} be a set such that |Φ| ≥ t
where | · | denotes the cardinality of a given set.
The secret can be reconstructed by computing S =∑

i∈Φ c
Φ
0iSi where cΦ0i =

∏
j∈Φ,j 6=i

j
j−i ∈ Zq.

3.2 J.Beak and Y.Zheng’s VSS in Bilinear
Groups

• Parameters

Let (G,GT , q, P, ê) be a set of parameters as
defined in Section 2, that is, G is a bilinear group
of a lager prime order q, P is a generator of
G such that computing discrete logarithm with
respect to the basis P is infeasible in G and ê is a
bilinear map. Suppose S ∈ G∗ is the secret to be
shared. The number of participants is n and the
threshold is t with the restriction 1 ≤ t ≤ n < q.
Note that here the operation in group G is denoted
by addition.

• Algorithm of sharing

1 D chooses A1, ..., At−1 uniformly at random
from G∗. Construct
F (x) = S +A1x+ · · ·+At−1x

t−1 and
compute Si = F (i) for i = 1, ..., n.

2 Send Si secretly to Pi for i = 1, ..., n.
Broadcast E0 = ê(S, P ) and Ei = ê(Ai, P )
for i = 1, ..., t− 1.

• Algorithm of verification

When Pi has received his share Si he verifies if

ê(Si, P ) =

t−1∏
j=0

Ej
ij (1)

If the verification fails, the share Si assigned to Pi

is invalid.

• Algorithm of reconstruction

Without loss of generality, we suppose P1, ..., Pt

be the t participants to reconstruct the shared
secret. Each Pi broadcasts his share Si to the other
cooperators, and every participator can check
its validity through Equation 1. For i = 1, ..., t,
while all Si have been verified to be valid, every
cooperator can reconstruct S by computing

S =

t∑
i=1

Si

∏
1≤j≤t,j 6=i

i

i− j
(2)

4 Linear Threshold VSS in Bilinear Groups

In this section we integrate the techniques of linear
threshold VSS in finite field and J.Beak and Y.Zheng’s
VSS in Bilinear Groups to get a method of linear
threshold VSS in bilinear groups. In what follows we give
a detailed description of the resulted VSS scheme and a
heuristic analysis on its security.

4.1 Description of the Scheme

• Parameters

Let G be an additive cyclic group of a large prime
order q, GT a multiplicative group of the same
order, and ê : G×G −→ GT a bilinear map. Let
P be a generator of G such that the discrete
logarithm problem with basis P in G and the
discrete logarithm problem with basis ê(P, P ) in
GT are intractable. We denote by D the dealer,
P1, P2, ..., Pn the n participants (or share holders),
and t the threshold. Both the secret space and
share space are G. Suppose the secret to be shared
is a random element S ∈ G.

• Distribution

1 D chooses a random non-zero vector
α = (a1, ..., at) with a1, ..., at ∈ GF (q) and a
t× n matrix C = (cij) with cij ∈ GF (q),
where any t column vectors of C are linearly
independent and any t− 1 column vectors of
C cannot linearly express α.
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2 D randomly chooses a vector B = (B1, ..., Bt)
from U(S) = {(B1, ..., Bt) ∈ Gt|α ◦B =∑t

i=1 aiBi = S}.

3 D Calculates Ai = ê(Bi, P ) for i = 1, ..., t,
(S1, S2, ..., Sn) = B ? C =
(B ◦ C1, B ◦ C2, ..., B ◦ Cn) =
(
∑t

i=1 ci1Bi,
∑t

i=1 ci2Bi, ...,
∑t

i=1 cinBi)
where Ck(k = 1, ..., n) denotes the kth
column vector of C.

4 D sends Sj to Pj secretly and publishes
α,C,Ai for i = 1, ..., t.

• Verification

Each Pj can verify the validity of his share through

ê(Sj , P ) =

t∏
k=1

Ak
ckj . (3)

If the equation does not hold, then the share Sj

given to Pj is invalid.

• Reconstruction

When the distribution is verified to be correct,
any t or more participants can cooperatively
reconstruct the secret. Assume Pi1 , ..., Pik are
k participants to recover S where k ≥ t, they
firstly calculate γ = (r1, ..., rk) from r1Ci1 +
r2Ci2 + · · ·+ rkCik = α, where Cij denotes the
ijth column vector of C for j = 1, ..., k. Then
every Pij provides his share Sij to the other
cooperators, and each participator can verify the
validity of Sij through Equation 3. If all shares
of those cooperators are correct, the secret can be
computed from

S = γ ◦ (Si1 , ..., Sik) =

k∑
j=1

rjSij . (4)

The new scheme proposed above is a generalization
of J.Baek and Y.Zheng’s scheme in Section 3. Obviously
J.Baek and Y.Zheng’s VSS scheme based on bilinear
groups in Section 3 can be seen as such a linear VSS
scheme by taking α = (1, 0, ..., 0), B = (S,A1, ..., At−1)
and C = (C1, ..., Cn) where Ci = (1, i, ..., it−1)T for i =
1, ..., n.

4.2 Correctness

To show the correctness of our scheme, we need to
check the correctness of the equation for verification and
correctness of the formula for reconstructing the shared
secret.

4.2.1 Correctness of verification

On one hand, if D performs the algorithm of distribution
correctly, then the following equation holds:

(S1, ..., Sn) = B ? C

= (

t∑
k=1

ck1Bk,

t∑
k=1

ck2Bk, ...,

t∑
k=1

cknBk).

So we have

ê(Sj , P ) = ê(

t∑
k=1

ckjBk, P )

= ê(B1, P )c1j · · · ê(Bt, P )ctj

=

t∏
k=1

Ak
ckj (j = 1, ..., n)

On the other hand, if the equation for verification holds,
that is ê(Sj , P ) =

∏t
k=1Ak

ckj . Then

ê(Sj , P ) =

t∏
k=1

Ak
ckj

= ê(B1, P )c1j · · · ê(Bt, P )ctj

= ê(c1jB1, P ) · · · ê(ctjBt, P )

= ê(c1jB1 + · · ·+ ctjBt, P )

So we have Sj = c1jB1 + · · ·+ ctjBt = Cj ◦B. This
means the share Sj is valid if and only if ê(Sj , P ) =∏t

k=1Ak
ckj .

4.2.2 Correctness of reconstruction

From the distribution algorithm we have S = α ◦B
and Sj = Cj ◦B where Cj denotes the jth column
vector of C, j = 1, ..., n. As any k ≥ t column vectors
of C can linearly express α, there must be a vector
x = (x1, ..., xk) such that x1Ci1 + · · ·+ xkCik = α for
any k column vectors of Ci1 , · · · , Cik of C. Here
we assume the k correct shares used to recover
the secret is S1, ..., Sk, and γ = (r1, ..., rk) satisfies
r1C1 + · · ·+ rkCk = α, i.e. (a1, ..., at) = (r1c11 + · · ·+
rkc1k, ..., r1ct1 + · · ·+ rkctk). Then

S = α ◦B
= (r1c11 + · · ·+ rkc1k)B1 + · · ·+

(r1ct1 + · · ·+ rkctk)Bt

= r1(c11B1 + · · ·+ ct1Bt) + · · ·+
rk(c1kB1 + · · ·+ ctkBt)

= r1S1 + · · ·+ rkSk

= γ ◦ (S1, ..., Sk).

Thus, the reconstruction algorithm is correct.

4.3 Security

We analyze the security of our scheme according to the
security requirements given in Section 2.

Theorem 1: Under the difficulty of calculating
discrete logarithm to the basis P in G, the probability
for the adversary to acquire the secret from public
information is 1/q.
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proof: The public information is α,C,Ai(i = 1, ..., t).
As the discrete logarithm to the basis P is difficult to
calculate in G, the discrete logarithm to basis ê(P, P )
in GT is intractable too. Thus the adversary cannot
calculate Bi from Ai = ê(Bi, P ) for i = 1, ..., t. Without
knowing B = (B1, ..., Bt), the adversary has to guess S
from the secret space G. That is, the probability for the
adversary to acquire the secret from public information
is 1/q. �

As q is a large prime, the probability 1/q can be
neglected. We can conclude that under the intractability
of calculating discrete logarithm to the basis P in G,
the adversary cannot acquire the secret from public
information.

Theorem 2: An adversary who corrupts up to t− 1
participants cannot get any information about the shared
secret except what is implied by the public information.

proof: According to the algorithm of reconstruction, to
acquire the secret S, the adversary has to get t or more
shares. Thus he need to calculate at lest one more shares
of honest participants from the shares of those corrupted
ones. From Theorem 1 we know that the adversary
cannot acquire the vector B from public information.
However, according to the algorithm of distribution,
to acquire the shares of those honest participants,
the adversary has no choice but compute B merely
using the shares of the corrupted ones. Without loss of
generality we suppose that the corrupted participants
are P1, ..., Pt−1, the adversary has to compute B1, ..., Bt

from the following system of equations:

lS1 = C1 ◦B = c11B1 + c21B2 + · · ·+ ct1Bt

S2 = C2 ◦B = c12B1 + c22B2 + · · ·+ ct2Bt

...

St−1 = Ct−1 ◦B = c1,t−1B1 + c2,t−1B2 + · · ·
+ ct,t−1Bt

(5)

This system of equations has t unknowns (B1, ..., Bt)
and t− 1 equations. Let Si = siP, i = 1, 2, ..., t− 1, Bj =
xjP, j = 1, 2, ..., t. Then the above system of equations
is reduced to the following system of linear equations in
GF (q):

ls1 = c11x1 + c21x2 + · · ·+ ct1xt

s2 = c12x1 + c22x2 + · · ·+ ct2xt
...

st−1 = c1,t−1x1 + c2,t−1x2 + · · ·+ ct,t−1xt

(6)

It is obvious that this system of linear Equation 6
has a solution x1 = b1, x2 = b2, ..., xt = bt if and only
if the former system of Equation 5 has a solution
B1 = b1P,B2 = b2P, ..., Bt = btP . As the rank of the
coefficient matrix of Equation 6 is t− 1, it has exactly q

solutions. Thus the system of Equation 5 has also exactly
q solutions. In these q solutions, only one is the correct
B1, ..., Bt used by the dealer in the distribution phase.
So the probability for the adversary to get the correct
B1, ..., Bt, and hence get the shared secret is 1/q. �

Theorem 3: When t ≤ (n+ 1)/2 the adversary
cannot prevent t or more honest participants from
reconstructing the secret.

proof: From the definition of static and strong
admissible adversary we know that the adversary has
determined which participants to corrupt at the start of
the protocol, and can corrupt less than t participants
totally. This means there are at least n− t+ 1 honest
participants. As t ≤ (n+ 1)/2, the number of honest
participants is not less than n− t+ 1 > t. So we can
conclude that the adversary cannot prevent the t or more
honest participants from reconstructing the secret when
t ≤ (n+ 1)/2. �

4.4 Computational Cost

To analyze the computational cost of our scheme, here we
just count those time-consuming operations in different
phases. Let P, S and E denote the operation of bilinear
pairing from G2 to GT , scalar multiplication in G and
exponentiation in GT respectively. In the distribution
phase we consider the computational cost of D in
calculating all the public information and shares, in
verification phase we consider the cost for all of the n
participants in verifying their shares, and at last in the
reconstruction phase we assume there are t participants
and the cost of verification is not included. The result is
listed in the following table.

Table 1 Computational cost of the new scheme in
different phases.

P S E

Distribution phase t nt 0

Verification phase n 0 nt

Reconstruction phase 0 t 0

From Table 1 we can see that in the distribution
phase the new scheme takes t bilinear pairings and
nt scalar multiplications in G, and in the verification
phase it needs n bilinear pairings and nt exponentiations
in GT . The reconstruction phase just needs t scalar
multiplications in all.

5 A Modified Scheme With Improved
Efficiency

In this section we show a modified scheme with higher
efficiency compared with the previous one. This scheme
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demands the dealer knows the discrete logarithm of the
secret, thus it applies to situations where the secret
can be generated by the dealer firstly choosing its
discrete logarithm. We just give the description of the
modified scheme and analyze its efficiency. The analysis
of correctness and security are similar to that of the
previous one and hence is omitted.

5.1 Description of the Scheme

• Parameters
The common parameters (G,GT , ê, q, P, ê(P, P ), n, t) are
defined the same as before.G andGT are groups with the
same large prime order q where G is an additive group
and GT is a multiplicative group. P is a generator of G
such that computing discrete logarithm to the basis P
in G is intractable. ê : G×G −→ GT is a bilinear map.
Both the secret space and the share space are G. D is
the dealer and P1, ..., Pn are the n participants. t is the
threshold.
Before executing the algorithm of distribution, the dealer
first chooses an element s from Z∗q and sets S = sP be
the secret to be shared.

• Distribution

1 D uniformly chooses a random non-zero vector
α = (a1, ..., at) with a1, ..., at ∈ GF (q) and a t× n
matrix C = (cij) over GF (q), where any t column
vectors of C are linearly independent and any t− 1
column vectors of C cannot linearly express α.

2 D chooses a random vector β = (b1, ..., bt) such
that α • β =

∑t
k=1 akbk = s.

3 D computes
(s1, s2..., sn) = β ∗ C = (β • C1, β • C2, ..., β • Cn)
where Ck(k = 1, ..., n) denotes the kth column
vector of C, Ai = ê(P, P )bi for i = 1, ..., t.

4 For j = 1, ..., n, D sets Sj = sjP and sends Sj to Pj

secretly. D the broadcasts α,C,Ai for i = 1, ..., t.

• Verification
Each Pj can verify the validity of his share through

ê(Sj , P ) =
∏t

k=1Ak
ckj for j = 1, ..., n.

• Reconstruction
When the distribution is verified to be correct, any
t or more players can cooperate to reconstruct the
secret. Assume P1, ..., Pk are k(k ≥ t) participants intend
to recover S, they firstly calculate a vector γ =
(r1, ..., rk) from (C1, ..., Ck)(r1, ..., rk)T = r1C1 + r2C2 +
· · ·+ rkCk = α, where Cj(j = 1, ..., k) denotes the jth
column vector of C. Then every Pj provides his share Sj

to the other cooperators, and each participant can verify
the validity of Sj through ê(Sj , P ) =

∏t
i=1Ai

cij . If all
shares of those cooperators are correct, the secret can be
computed from S = γ ◦ (S1, ..., Sk) =

∑k
j=1 rjSj .

5.2 Computational Cost

To compare the computational cost of the newly
proposed scheme with J.Baek and Y.Zhang’s scheme in
Section 3 and the scheme proposed in Section 4, we count
those time-consuming operations in different phases and
list them in the following table. The notation is defined
the same as in Section 4.

Table 2 Comparison of the three schemes in
computational cost.

Section 3 Section 4 Section 5

distribution tP + n(t− 1)S tP + ntS nS + tE
verification nP + ntE nP + ntE nP + ntE
reconstruction tS tS tS

From Table 2 we see the modified scheme takes less
bilinear pairings totally than the former two, and scalar
multiplications in this scheme is reduced. As computing
bilinear pairings is the most time-consuming operation,
it is reasonable to say that the modified scheme has a
smaller computational cost.

6 Conclusion

In this paper, we have investigated verifiable secret
sharing in bilinear groups. Two linear threshold verifiable
secret sharing schemes in bilinear groups have been
presented. The first scheme is a general one for sharing
any randomly chosen secret in a bilinear group. And the
second one is a modified scheme with improved efficiency
for sharing a secret whose discrete logarithm is known
to (and only to) the dealer. Our sharing method is a
generalization of the technique of linear verifiable secret
sharing in finite fields to the case of bilinear groups.
And hence our schemes can be applied in safeguarding
the secret keys of some pairing based cryptosystems,
distributed key generation for cryptosystems with secret
keys in some bilinear groups and public keys in the range
groups of the corresponding bilinear pairings.
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