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Abstract—Distributed key generation is a method for a set
of players to generate a pair of public key and private key
together, such that the public key is output publicly while
the private key is distributed among the players by a secret
sharing method. Secure distributed key generation in finite
field for discrete-log based cryptosystems has been studied for
many year and many protocols have been proposed and widely
used in threshold cryptosystems and distributed cryptographic
computing. In this paper we focus on secure distributed key
generation in bilinear groups and propose such protocol on
vector space access structures. The new proposed distributed
key generation protocol is secure and has a wide application.
We give detailed proof for its security.
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security;

I. INTRODUCTION

Distributed key generation(DKG for short) [1], [2] is an

essential component of threshold cryptosystem [3], [4], [5]

and distributed cryptographic computing. It is mainly used

to generate a pair of public key and private key for a

cryptosystem by the players together in such a way that

the public key is output in the clear while the private key is

shared by the players via a secret sharing [6] method.

The first distributed key generation protocol is introduced

by T.Pedersen in [7], and it is proofed to be insecure in [1].

R.Gennaro et al. specially studied distribute key generation

for discrete-log based cryptosystems in [1], [2] and showed

a method to establish such secure DKG protocol. Their

DKG protocol is for threshold access structure and has been

widely used in many threshold cryptosystems. As threshold

access structure demands every player an identical power

and position, DKG protocol on threshold access structure has

some restrictions in practice consequently. For this problem

F.Zhang et al. studied secure distributed key generation on

non-threshold access structure in detail. They proposed a

DKG protocol based on vector space access structure in

[8] and a DKG protocol based on generalized verifiable

secret sharing in [9]. By then, distributed key generation

for generating a pair of keys that are elements of finite

field, either on threshold access structure or on non-threshold

access structure, has been well established.

Recently, pairing-based cryptography has received much

attention from cryptographic researchers and many schemes

have been proposed [10], [11], [12], [13], [14], [15], [16].

In most pairing-based threshold cryptosystems, the pair of

public key and private key are elements from bilinear groups,

thus distributed key generation protocol in bilinear groups

is an essential component of such cryptosystem. J.Baek and

Y.Zheng focused on this topic and proposed such distributed

key generation protocol in [17] as a building block of

their identity-based threshold signature scheme. Their DKG

protocol is for threshold access structure and bilinear group

based DKG protocol on non-threshold access structure has

not been studied yet.

In this paper we focus on distributed key generation

on vector space access structure for generating a pair of

keys that are elements of bilinear groups. We propose such

protocol and specially discuss its security from two aspects:

correctness and secrecy. The new proposed protocol has a

wide application in practice.

The rest of the paper is organized as follows. In Section

2 we mainly review the concepts of bilinear pairings, access

structure and secure DKG. Then in Section 3 we show the

building blocks of our DKG protocol. In Section 4 we give

our secure distributed key generation protocol with vector

space access structure in bilinear groups in detail. We also

specially analyze its security from correctness and secrecy.

At last in Section 5 we just conclude this paper.

II. PRELIMINARIES AND DEFINITIONS

In this section, we briefly review the concepts of bilinear

pairings and access structure. Besides we consider two op-

erations on vector space which will be used in the following

sections.

A. Bilinear Pairings

Let G1 and G2 be two groups with the same order q,

where q is a large prime. Here, we assume that G1 is
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an additive cyclic group, and G2 is a multiplicative cyclic

group. A map ê: G1 ×G1 −→ G2 is called a bilinear map

if it satisfies the following three conditions:

1) Bilinear: For all P,Q ∈ G1 and a, b ∈ Z∗q ,

ê(aP, bQ) = ê(P,Q)ab.

2) Non-degenerate: There exist P,Q ∈ G1 such that

ê(P,Q) �= 1.

3) Computable: For all P,Q ∈ G1, there exists an

efficient algorithm to compute ê(P,Q).

We say that G1 is a bilinear group if there exists a group G2

and a bilinear map ê : G×G1 −→ G2 as above, where ê and

the group action in G1 and G2 can be computed efficiently.

B. Access Structure

Assume D is the dealer who holds a secret to distribute

among a set of n participants H = {H1, ..., Hn}. An

access structure Γ on H specifies a family of qualified

subsets that can reconstruct the shared secret. We denote by

Γ0 = {A1, ..., At} the basis of Γ, that is the set of minimal

elements of Γ under inclusion. Here we briefly describe the

notion of the most common threshold access structure and

the more general vector space one which actually involves

the threshold one.

• Threshold access structure: The access structure of

a (t, n) threshold secret sharing scheme consists of all

the subsets with at least t of n participants.

• Vector space access structure: Let the secret space

K = GF (q) be a finite field and E = Kt a vector

space. The access structure Γ is said to be a vector

space access structure if there exists a function

ψ : {D} ∪H → E

such that A ∈ Γ if and only if the vector ψ(D) can be

expressed as a linear combination of the vectors in the

set {ψ(P )|P ∈ A}.
C. Operations on Vector Space

Assume α = (a1, ..., at), ν = (v1, ..., vt), V =
(V1, ..., Vt), where a1, ..., at, v1, ..., vt are elements of a

finite field K and V1, ..., Vt are elements of an additive

group G1. In our construction, we use the operation of inner

product in Kt, and an operation of an element of Kt with

an element in Gt
1.

• α • ν = a1v1 + · · ·+ atvt
• α ◦ V = a1V1 + · · ·+ atVt

Obviously the result of the first operation is an element

in K and the second belongs to G1.

D. Secure DKG for Discrete-Log Based Cryptosystems

A distributed key generation protocol is implemented

among a set of players H1, H2, ..., Hn to generate the secret

key and public key of the cryptosystem. The secret key is

shared by H1, H2, ..., Hn via an access structure, and the

public key is output in the clear. A DKG protocol mainly

contains two phases:

• Generating the secret key: In this phase each partici-

pant chooses a random value and distributes it through

all the players via a verifiable secret sharing scheme as

a dealer. In the end, every player gets his share of the

secret key.

• Extracting the public key: This phase outputs the

corresponding public key in the clear.

Consider a static and strong admissible adversary[18], i.e.

the adversary has determined which players to corrupt before

the protocol being implemented, and can corrupt all but one

player in each authorized subset. The only constraint on this

adversary is that at least one authorized subset must remain

pure i.e. composed of all uncorrupted players. A secure DKG

protocol should satisfy the requirements of correctness and

secrecy:

• Correctness:
1) All qualified subsets composed by honest players

define the same unique secret key.

2) All honest players have the same value of public

key about the secret key guaranteed by 1.

3) The secret key is uniformly distributed(and hence

the public key).

• Secrecy:
No information on the secret key can be learned by the

adversary except for what is implied by the public key.

For more details about distributed key generation, please

refer to [1], [2], [8].

III. BUILDING BLOCKS FOR OUR DKG PROTOCOL

A. Secret Sharing in Bilinear Groups on Vector Space
Access Structures

The participants of this system consist a dealer D and a

set of n players H = {H1, ..., Hn}. Suppose Γ is the vector

space access structure with basis Γ0 defined on H . Both the

secret space and the share space are K = G1, where G1 is

an additive group of a prime order q.

To share a random secret S of G1, the dealer D firstly

publishes a map ψ: {D} ∪ H → Zt
q . Then D randomly

chooses a secret vector V = (V1, ..., Vt) from Kt such

that ψ(D) ◦ V = a1V1 + · · · + atVt = S where ψ(D) =
(a1, ..., at) = α. Let ψ(Hj) = (aj1, ..., ajt) = αj , then

the share distributed to Hj by D is Sj = ψ(Hj) ◦ V =
aj1V1 + · · ·+ ajtVt.

When a qualified subset A = {Hi1 , ..., Hil} of Γ intends

to reconstruct the secret, members of A firstly compute χ
from χψ(A) = ψ(D), where χ is a vector in Zl

q and ψ(A) is

a matrix establishes its row vectors by ψ(Hj1), ..., ψ(Hjl).
Then the secret can be calculated from S = χ ◦ SA with

SA = (Sj1 , ..., Sjl).
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B. Information-Theoretical Secure Verifiable Secret Sharing
in Bilinear Groups on Vector Space Access Structures

• Parameters:
Assume G1, G2 are two groups with the same prime

order q and ê is the bilinear map as we refer previously

in Section 2. Let P be a random generator of G1

such that the discrete logarithm problem with basis

P in G1 is intractable, and γ be a random element

of G2 where nobody knows the discrete logarithm of

γ. The secret space and the the share space are G1

and G1 × Zq respectively. The access structure Γ is a

vector space access structure with basis Γ0. Assume S
is the secret randomly chosen from G1 to be shared

among n participants and t is the maximum order of

the minimum qualified subset.

• Algorithm of sharing:
– The dealer D publishes a map ψ: {D} ∪ H →
Zt
q . Assume that ψ(D) = (a1, ..., at) = α and

ψ(Hj) = (aj1, ..., ajt) = αj .

– Choose a secret vector V = (V1, ..., Vt) from Gt
1

such that ψ(D) ◦ V = a1V1 + · · ·+ atVt = S.

Choose another secret vector β = (b1, ..., bt) from

Zt
q and set r = ψ(D) • β = a1b1 + · · ·+ atbt.

– Compute and broadcast Ek = ê(Vk, P )γ
bk for k =

1, ..., t.
– D computes

Sj = ψ(Hj) ◦ V = aj1V1 + · · ·+ ajtVt,

rj = ψ(Hj) • β = aj1b1 + · · ·+ ajtbt

and sends (Sj , rj) secretly to Hj for j = 1, ..., n.

• Algorithm of Verification:
When Hj has received his share (Sj , rj) he checks if

ê(Sj , P )γ
rj =

t∏
k=1

Ek
ajk (1)

• Algorithm of Reconstruction:
Suggest A = {Hi1 , ..., Hil} is a subset of Γ to

reconstruct the shared secret. Each participant Hj(j =
i1, ..., il) broadcasts his share (Sj , rj) to others in A.

Every one can verify the validity of shares provided by

others through Eq. (1).

After receiving all the valid shares of a qualified subset,

the participants firstly compute χ from χψ(A) = ψ(D)
where χ is a vector in Zl

q and ψ(A) is a matrix

establishes its row vectors from ψ(Hi1), ..., ψ(Hil).
Then the secret can be calculated from S = χ◦SA with

SA = (Si1 , ..., Sil). Actually as long as they obtain

the shares whose holders are enough to determine

a minimum qualified subset in A, the secret can be

reconstructed effectively.

IV. OUR SECURE DKG PROTOCOL WITH VECTOR SPACE

ACCESS STRUCTURE ON BILINEAR GROUPS

A. The Protocol

• Parameters:
Assume G1, G2 are two groups with the same order

q and ê : G1 × G1 → G2 is a bilinear map. Let

P be a generator of G1 where the discrete logarithm

problem with basis P is intractable in G1, and γ be

a random element of G2 such that no one knows the

discrete logarithm of γ. The participants of the system

are a set H of n players H1, ..., Hn. Before the phase

of generating secret key, the players decide a vector

space access structure Γ on H together, i.e. the map

ψ : {D}∪H → GF (q)t as we defined in Section 2. In

fact, there does not exist a real dealer D in our system

and the players just need determine the vectors ψ(D) =
α = (a1, · · · , at), ψ(Hi) = αi = (ai1, · · · , ait) for

i = 1, ..., n such that α can be expressed as a linear

combination of the vectors in the set {ψ(P )|P ∈ A},
where A denotes the qualified subset.

• Generating X:
1) – Each Hi chooses a random value Si from G1

and a value ri from Zq . Then choose a vector

Vi = (Vi1, · · · , Vit) from Gt
1 and a vector βi =

(bi1, · · · , bit) from Zt
q such that Si = α ◦ Vi =

a1Vi1 + · · ·+ atVit and ri = α • βi = a1bi1 +
· · · + atbit. Publish Eik = ê(Vik, P )γ

bik for

k = 1, · · · , t.
Compute Sij = ψ(Hj) ◦ Vi = aj1Vi1 + · · · +
ajtVit and rij = ψ(Hj) • βi = aj1bi1 +
· · · + ajtbit for j = 1, · · · , n. Then Hi sends

(Sij , rij) secretly to Hj .

– When Hj has received his share (Sij , rij) he

checks if

ê(Sij , P )γ
rij =

t∏
k=1

Eik
ajk (2)

If Eq.(2) fails, Hj broadcast a complaint a-

gainst Hi.

– Each Hi who received a complaint from Hj

broadcast (Sij , rij) that satisfy Eq.(2).

– Each player marks as disqualified any player

that either

∗ received complaints of all players in one

qualified subset or

∗ answered to a complaint with values that do

not satisfy Eq.(2).

2) Each player builds the set of non-disqualified

players QUAL.

3) Each player Hi computes his shares Xi =∑
j∈QUAL Sji and xi =

∑
j∈QUAL rji. The dis-

tributed secret value X is not explicitly computed

by any party, but it equals to X =
∑

i∈QUAL Si.
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• Extracting Y = ê(X,P ):
1) Each Hi in QUAL broadcasts Aik = ê(Vik, P )

for k = 1, · · · , t.
2) For j = 1, ..., n, every Hj verifies the value broad-

cast by players in QUAL through the following

equation

ê(Sij , P ) =
t∏

k=1

Aik
ajk . (3)

If the check succeeds, set Ỹi =
∏t

k=1Aik
ak . Else

Hj broadcasts a complaint against Hi and publish

Sij , rij .

3) For players Hi who receive at least one valid

complaint, the other players run the reconstruction

phase to compute Si and set Ỹi = ê(Si, P ).
4) Compute Y =

∏
i∈QUAL Ỹi.

B. Security

We proof the security of our protocol from the two

aspects: correctness and secrecy as we mentioned in Section

2.

• Correctness:

Theorem 1 All qualified subsets composed by honest
players define the same unique secret key X .

Proof: From the definition of the adversary, we

know that there is at lest one qualified subset composed

by honest players. Suppose A = {H1, H2, ..., Hl} is

a qualified subset where H1, H2, ..., Hl are all uncor-

rupted players. The share of X possessed by Hi is

Xi =
∑

j∈QUAL Sji =
∑

j∈QUAL αi ◦ Vj . The secret

determined by A can be reconstructed as following:

– Players in A calculate out μ = (u1, u2, ..., ul) such

that u1α1 + u2α2 + · · ·+ ulαl = α.

– The secret X is determined by X = μ ◦
(X1, ..., Xl) = u1X1 + · · ·+ ulXl.

As Xi =
∑

j∈QUAL Sji =
∑

j∈QUAL αi ◦Vj , we have

X = u1X1 + · · ·+ ulXl

= u1
∑

j∈QUAL

Sj1 + · · ·+ ul
∑

j∈QUAL

Sjl

= u1
∑

j∈QUAL

α1 ◦ Vj + · · ·+ ul
∑

j∈QUAL

αl ◦ Vj

=
∑

j∈QUAL

u1α1 ◦ Vj + · · ·+
∑

j∈QUAL

ulαl ◦ Vj

=
∑

j∈QUAL

(u1α1 + · · ·+ ulαl) ◦ Vj

=
∑

j∈QUAL

α ◦ Vj

=
∑

j∈QUAL

Sj .

Obliviously, the secret determined by any qualified

subset with all players being honest equals to the X
generated by our protocol. That means all qualified

subsets composed by honest players determine the same

unique secret key X .

Theorem 2 All honest players have the same value
of the public key Y = ê(X,P ) with X guaranteed by
Theorem 1.

Proof: From the algorithm of extracting the public

key we know that Y =
∏

i∈QUAL Ỹi. In the proto-

col the values Ỹi are calculated either through Ỹi =∏t
k=1Aik

ak if the public values Aik has been verified

to be correct through Eq.(3), or else by Ỹi = ê(Si, P )
where Si is reconstructed by the players. As

Ỹi =
t∏

k=1

Aik
ak =

t∏
k=1

ê(Vik, P )
ak

=

t∏
k=1

ê(aikVik, P ) = ê(

t∑
k=0

aikVik, P )

= ê(Si, P ),

then

Y =
∏

i∈QUAL

Ỹi =
∏

i∈QUAL

ê(Si, P )

= ê(
∑

i∈QUAL

Si, P ) = ê(X,P ).

This means the players who act correctly get the same

value of public key.

Theorem 3 The secret key X is uniformly distributed in
G1, and hence the public key Y is uniformly distributed
in G2.

Proof: The secret key X is defined as X =∑
i∈QUAL Si, thus as long as there is one value Si in

this sum is chosen at random from G1, X is uniformly

distributed in G1. In the protocol we can see that the

set QUAL is determined by all the honest players and

some of the corrupted players who executed correctly

in Step 1-2 of Generating X in the protocol. Thus

there must be at least one Si with i ∈ QUAL is

uniformly distributed in G1, which guarantees that

X =
∑

i∈QUAL Si is uniformly distributed in G1 and

consequently Y = ê(X,P ) is uniformly distributed in

G2.

• Secrecy:
We employ the same concept of simulatability to state

the secrecy of our DKG protocol as in [1]: for every

static and strong admissible adversary A, there exists a

simulator SIM such that on input an element Y in G2

produces an output distribution which is polynomially

indistinguishable from A’s view of a run of the DKG

protocol that ends with Y as its public key output.
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We firstly provide a simulator SIM for our DKG

protocol, and then we will show that the view of the

adversary A that interacts with SIM on input Y is the

same as the view of A that interacts with the honest

players in a regular run of the protocol that outputs the

given Y as the public key.

– Algorithm of simulator SIM Denote by B =
{Hi1 , ..., Him} the set of players controlled by the

adversary, and by G the set of honest players run

by the simulator SIM . Note that no subset of B is

a qualified subset and there is at least one subset in

G is a qualified subset. The algorithm of simulator

is implemented as follow.

∗ Input public key Y .

∗ Perform Step 1-2 of Generating X in protocol

DKG on behalf of the uncorrupted players in

G. At the end of Step 2 the following holds:

1) The set QUAL is well defined and G ∈
QUAL. For i ∈ G all the Vi, βi are chosen

at random.

2) The view of the adversary consists of the

secret vectors Vi, βi for i ∈ B, the shares

(Sij , rij) for i ∈ QUAL and j ∈ B, and all

the public values Eik for i ∈ QUAL, k =
1, ..., t.

3) SIM knows all the vectors Vi, βi for i ∈ G
and thus possesses the shares (Sij , rij) for

i ∈ G, j = 1, ..., n. For i ∈ QUAL
⋂B,

as there is at least one qualified subset in G
that run by SIM , the shares (Sij , rij) for

j = 1, ..., n can be reconstructed by SIM .

In a word, SIM knows all the (Sij , rij) for

i ∈ QUAL, j = 1, ..., n.

∗ Perform the following computations:

· Compute Aik = ê(Vik, P ) for i ∈ QUAL \
{h}, k = 1, ..., t, where h can be any random

element in QUAL
⋂G.

· Set Ỹh
∗
= Y

∏
i∈QUAL\{h} Ỹi

−1

· Compute the vector A∗hk = ê(V ∗hk, P ) for k =
1, ..., t from the following equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ê(α ◦ V ∗h , P ) = ê(S∗h, P ) = Ỹh
∗

ê(αi1 ◦ V ∗h , P ) = ê(Shi1 , P )
...

ê(αim ◦ V ∗h , P ) = ê(Shim , P )

(4)

i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ê(V ∗h1, P )
a1 · · · ê(V ∗ht, P )at

= Ah1
a1 · · ·Aht

at = Ỹh
∗

ê(V ∗h1, P )
ai11 · · · ê(V ∗ht, P )ai1t

= Ah1
ai11 · · ·Aht

ai1t = ê(Shi1 , P )
...

ê(V ∗h1, P )
aim1 · · · ê(Vht, P )aimt

= Ah1
aim1 · · ·Aht

aimt = ê(Shim , P )
(5)

∗ Broadcast Aik for i ∈ G \ {h} and A∗hk for

k = 1, ..., t.
∗ Perform Step 2-4 of Extracting Y in protocol

DKG on behalf of the honest players.

– Analysis of simulatablility The probability distri-

bution of A’s view from the uncorrupted parties in

a regular run of our DKG protocol is as following:

∗ The shares Sij and rij for i ∈ G, j ∈ B are

uniformly distributed in G1 and Zq respectively.

∗ Public values Eik, Aik for i ∈ G, k = 1, ..., t
satisfy the verification equations (2) and (3)

respectively for all j ∈ B.

In the algorithm of simulator SIM with the

uncorrupted players implements Step 1-2 of Gen-
erating X as in our real DKG protocol. Note

that at the end of Step 2 the shares (Sij , rij) for

i ∈ G, j ∈ B have been determined and the veri-

fications for public values Eik, i ∈ G, k = 1, ..., t
have finished. Thus the distribution of Sij , rij is

polynomially indistinguishable from our real DKG

protocol and the public values Eik satisfy Eq. (2).

Then consider the public values A∗ik, i ∈ G, k =
1, ..., t. For i ∈ G \ {h}, k = 1, ..., t, as A∗ik equal

to the corresponding Aik, they can pass through

the verification equation (3). For i = h, note that

A∗hk is calculated from the set of equations (4),

and thus satisfy every equation in (4) and (5).

Obviously in (5) every equations except the first

one is actually a verification equation from Eq.(3)

where j = i1, ..., im ∈ B, that means those A∗hks

satisfy the verification equation (3). In a word, the

public values A∗ik, i ∈ G, k = 1, ..., t satisfy Eq.(3).

Now we can conclude that simulator SIM that on

input an element Y in G2 produces an output dis-

tribution which is polynomially indistinguishable

from A’s view of a run of the DKG protocol that

ends with Y as its public key output, i.e. our DKG

protocol satisfy the requirement of secrecy.

V. CONCLUSION

In this paper we proposed a secure DKG protocol on

vector space access structures. The new proposed protocol

is run by a set of players on vector space access structures
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to generator a pair of public key and secret key that are ele-

ments of bilinear groups. We specially discussed it security

from two aspects: correctness and secrecy in our paper. Our

work has a wide application for generating distributed keys

in situation that the users do not possess exactly the same

power and position.
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