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Abstract

We consider the problems of online and stochastic packet queuing in a distributed system of n nodes
with queues, where the communication between the nodes is done via a multiple access channel. In the
online setting, in each round, an arbitrary number of packets can be injected to nodes’ queues. Two
measures of performance are considered: the total number of packets in all queues, called the total load,
and the maximum queue size, called the maximum load. We develop a deterministic distributed algorithm
that is asymptotically optimal with respect to both complexity measures, in a competitive way. More
precisely, the total load of our algorithm is bigger than the total load of any other algorithm, including
centralized online solutions, by only an additive term of O(n2), while the maximum queue size of our
algorithm is at most n times bigger than the maximum queue size of any other algorithm, with an extra
additive O(n). The optimality for both measures is justified by proving the corresponding lower bounds,
which also separates nearly exponentially distributed solutions from the centralized ones. Next, we show
that our algorithm is also stochastically stable for any expected injection rate smaller or equal to 1. This
is the first solution to the stochastic queuing problem on a multiple access channel that achieves such
stability for the (highest possible) rate equal to 1.
Keywords: distributed algorithms, online algorithms, multiple access channel, contention resolution,
shared channel, stochastic queuing, stability

1 Introduction

Multiple Access Channel is one of the fundamental models for distributed communication. It has been widely
studied and used in the context of theoretical analysis of Ethernet and wireless protocols, contention resolu-
tion in systems with buses, and in other emerging technologies. Roughly speaking, a multiple access channel
models environments in which distributed nodes/resources compete for access to the shared communication
and distribution channel, and in case of contention, no contender wins the access.

Distributed queuing on a multiple access channel is one of the most essential problems, widely studied
by both theoreticians (cf. [12]) and practitioners (cf. [8]). In this problem, packets arrive continuously at
nodes, and the goal is to maintain bounded queues and latency, whenever possible. The main two lines of
research include design and analysis of protocols in two scenarios: for restricted adversarial injections and for
stochastic ones. The best up-to-date results guarantee bounded queues only for bounded packet burstiness,
in case of the former setting, and only for stochastic injection rates strictly smaller than 1 in the latter one.
This work aims to resolve the remaining cases of heavy traffic, by pursuing a distributed online approach
(cf. [6, 1]), and later adapting it also to the stochastic scenario (cf. [17, 12, 20]. We believe that the newly
developed and analyzed distributed scheduling techniques could substantially improve flow stability in heavy
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of Wroc law, Poland; M. Korzeniowski, (Current address) MicroscopeIT, Wroc law, Poland; D. R. Kowalski, Department of
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traffic systems, such as data and video streaming under WLAN (Wireless Local Access Network) standard
802.11aa.

The model We follow the classical model of multiple access channel, cf. surveys by Gallager [17] and
Chlebus [12]. That is, we consider the scenario where n nodes with pairwise disjoint identifiers (IDs) in
{1, 2, . . . , n} broadcast packets and communicate through a multiple access channel (MAC). Each node has
a buffer, also called a queue, of potentially infinite capacity. We assume slotted time, where time points
are numbered from 0. At time 0, the adversary may inject an arbitrary number of packets, each placed at
an arbitrary node. Then, for t = 1, 2, 3, . . ., the following happens:

• In round t, defined as an interval between time t − 1 and time t, any node may transmit a message
containing at most one packet. A transmission is successful if exactly one node transmits in the round;
in such case, the transmitted packet is removed from the queue of the transmitting node.

• Then, at time t, the adversary injects an arbitrary number of packets and place them in arbitrary
queues.

Sometimes, to avoid ambiguity, we will use notion of t− and t+ to denote the time t right before and right
after the adversary injects the packets.

We assume Ethernet-like capabilities of MAC, i.e., each node can simultaneously listen and transmit,
and thus knows whether the transmission was successful or not. However, our positive results hold also
in the model, where a station sending a message cannot listen at the same time. We assume that nodes
can communicate only through MAC, but they are allowed to append control bits to the sent packets. We
do not impose any restriction on the number of such bits, however our algorithm appends only O(log n)
additional bits of information to a transmitted packet. Note that control bits are inevitable in order to
achieve competitiveness even for restricted adversaries and n ≥ 3 [13].

We consider two models of analysis of online queuing on a multiple access channel: competitive and
stochastic. The former approach is new, in the sense that only injections of bounded burstiness have been
considered so far, without comparison to the optimal solution.

Competitive ratio For any algorithm Alg and a packet injection pattern I, let QALG(I, t, i) denote the
length of the queue (the number of pending packets) at node i at time t+. Let LALG(I, t) =

∑n
i=1QALG(I, t, i)

be the total load of Alg at time t under injection pattern I. Finally, let MALG(I, t) = maxiQALG(I, t, i)
be the maximum load under injection pattern I.

We call an online distributed algorithm (R,A)-competitive for minimizing the total load if for any adver-
sarial pattern of packet injections I and any time t it holds that LALG(I, t) ≤ R ·LOPT(I, t) +A where Opt
is the optimal offline centralized solution for injection pattern I until time t. For randomized algorithms, in
the definition above we replace LALG(I, t) by E[LALG(I, t)], where the expectation is taken over all random
choices of the algorithm up to the time t. That is, we consider oblivious adversaries [9] that cannot ob-
serve random choices made by an online algorithm and use this knowledge for generating an input sequence.
We define competitiveness for minimizing the maximum load analogously, by replacing LALG and LOPT by
MALG and MOPT, respectively, in the definitions above.

We emphasize that the relation between Alg and Opt has to hold for and any injection pattern I at
any time t. Unlike in the traditional approach of competitive analysis [9], we explicitly give the additive
term in the competitive ratio.

Stochastic queuing In the stochastic queueing, an adversary dictating the injection patterns is replaced by
a stochastic process. Precisely speaking, such process is defined by a sequence of numbers p1, . . . , pn ∈ (0, 1).
At each time t ≥ 0, for each queue independently, one packet is injected into the queue i with probability
pi and no packet is injected to this queue with probability 1 − pi. The amount

∑n
i=1 pi is called injection

rate. This way of modelling stochastic arrivals is popular in so called “queuing models” [20, 12], in which
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the number of queues is fixed and for each packet a specific queue must be selected; this is the case of our
model.1

The goal in such a scenario — for possibly largest injection rate — is to construct a distributed algorithm
that achieves stability. Namely, we require that the algorithm reaches the state with empty queues infinitely
many times with probability 1, regardless of the initial distribution of packets. We also introduce a similar
notion of strong stability, meaning that from any initial distribution of packets the state of empty queues is
reached in finitely many steps in expectation. Note that if the random execution defines a Markov Chain,
then the stability is guaranteed once the Markov Chain is irreducible and recurrent, while the strong stability
holds if the Markov Chain is irreducible and positive recurrent, which corresponds to ergodicity of Markov
Chains, cf. [18].

1.1 Previous and related work

To the best of our knowledge, this is the first work studying online distributed queuing problem for unre-
stricted packet injection patterns. We analyze the competitive ratio of minimizing two important complexity
measures: total load and maximum load. In what follows, we describe a related work including online queu-
ing in the centralized model and queuing under restricted adversarial injection patterns. Next we provide a
summary of stability results of protocols, so far obtained only for injection rates smaller than 1, cf. [20].

Online queuing in the centralized model The optimization problems considered in this paper were
also analyzed in the setting where central coordination is assumed and all nodes have global knowledge
about all injected packets. Clearly, minimizing the total load is no longer a challenge in such setting as
any work-conserving algorithm (i.e., one that transmits packets from non-empty queue whenever possible) is
optimal with respect to the total load minimization. However, minimizing the length of the maximal queue
is non-trivial and known in the literature under the name of balanced scheduling. In particular, Fleischer
and Koga [16], and independently Bar-Noy et al. [7], proved that any algorithm serving always a longest
nonempty queue achieves the competitive ratio of O(log n). This ratio is asymptotically optimal even if we
allow randomized solutions [16, 7]. Fleischer and Koga [16] proved additionally that the popular round-robin
algorithm is Ω(m)-competitive, where m is the number of injected packets. Note that it means that the
round-robin algorithm is non-competitive in case of unbounded number of injected packets. The results for
the centralized model and the distributed one, obtained in this work, is given in Table 1. In particular, one
can see that the lack of central coordination significantly affects the performance of the whole system.

Online queuing in the distributed setting under restricted adversaries Inspired by adversarial
queuing problems in store-and-forward packet networks [4, 10], several papers analyzed distributed queuing
on a multiple access channel under restricted adversarial injection patterns. Previous works by Chlebus et
al. [13, 14] and Anantharamu et al. [2] considered adversaries that were (ρ, b)-restricted, also called (ρ, b)-
leaky-bucket, for ρ ≤ 1 and b ≥ 1. Such an adversary may only inject ρ · |I| + b packets into all queues in
any time interval I. In [3] the authors considered a variant of this model in which each queue has its own
restriction on arrival rate. Restricted adversaries were also used for modelling jamming on a multiple access
channel [21].

We emphasize that the unrestricted adversary considered in this work may not only generate all injection
patterns allowed for the restricted case, but also patterns with periods of“burstiness”growing arbitrarily large
that were not allowed by the restricted adversary. Moreover, the previous results for the restricted adversary
provided only time-global bounds on queue sizes, expressed as functions of parameters n, ρ, b, while the
competitive analysis provided in this work compares the created solution to the optimal algorithm at any time.
That is, for each time point t, the online solution is compared with the optimal offline centralized solution
for injection pattern until t. Although algorithms designed and analyzed under the restricted adversarial

1Slightly different modelling, by Poisson arrivals, is used in so called “queue-free models”, in which each packet is a separate
queue and therefore it would be meaningless to decide to which “queue” it arrives, cf., a thorough discussion about models and
results in surveys [12, 18].
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Table 1: The bounds on the competitiveness in the centralized and distributed settings, for the two complexity
measures: minimization of total load and maximum load.

centralized distributed
total load Opt (straightforward) Opt + Θ(n2) (this paper)
maximum load Θ(log n) ·Opt a n ·Opt +O(n) (this paper)

injection patterns may not imply similar results in the more general competitive model considered in this
work, some lower bounds can be adopted. In particular, Chlebus et al. [13] proved that, even in the (1, 1)-
restricted setting, no algorithm achieves bounded latency. This implies that no algorithm is competitive with
respect to the latency measure, and motivates our focus on the total and maximum load measures instead.

The scenario considered in this paper could also be seen as an online extension of the well-studied
contention resolution problem. There, every node has a single packet and the goal is to transmit them all
successfully on a shared channel. The focus is on minimizing packet latency as the queue loads are explicitly
bounded by the problem definition. However, it is known that the packet latency is connected to the queues’
lengths in the dynamic extension of this problem [14]. For recent developments, see [5, 15] and the references
therein.

Stochastic queuing There is a rich history of research on stochastic queuing on a multiple access chan-
nels, i.e., when packets are injected subject to statistical constraints. See the surveys by Gallager [17] and
Chlebus [12] for an overview of early research. In particular, H̊astad et al. [20] proved that, for any fixed
injection rate smaller than 1, polynomial backoff protocols are stable and exponential backoff ones are not
stable. To the best of our knowledge, all the previous results concerning stability were proved for expected
fixed injection rates strictly smaller than 1. Ours is the first deterministic distributed online algorithm
achieving stability also for the (highest possible) injection rate 1.

1.2 Our Results

We develop a deterministic distributed online algorithm ScanTrim, which is (n, 5n)-competitive for the
maximum load measure and (1, n2 + 4n)-competitive for the total load measure. That is, the total load
of our algorithm is, in each round, larger by an additive term of O(n2) than the total load of the best
offline algorithm (taken for the same adversarial injection pattern). Moreover, the maximal queue size of our
algorithm is, in each round, at most n times larger than the maximal queue size of the best offline algorithm,
plus an additive term O(n).

We show that both ratios are asymptotically optimal in the following sense. First, for any (R,A)-
competitive algorithm minimizing maximum load, it holds that R ≥ n and A = Ω(n). Second, for any
deterministic (R,A)-competitive algorithm minimizing total load, it holds that R ≥ 1 and A = Ω(n2). In
both cases, bounds on R hold even for randomized algorithms.

See Table 1 for a summary of results concerning competitiveness of distributed online queuing on a
multiple-access channel versus centralized online queuing. Although one can argue that such big bounds
on the optimal values of competitiveness parameters diminish importance of our model, observe that these
bounds do not depend on an execution length (number of rounds) of a protocol (which might be arbitrarily
large).

Furthermore, we demonstrate the efficiency of our algorithm ScanTrim for the stochastic queuing prob-
lem, showing that it is stable for any injection rate not larger than 1. (Note that the injection rate 1 is the
highest possible to obtain stability defined this way.) All previous solutions to this variant of the problem
guaranteed such property only for the injection rate strictly smaller than 1. For this case, we show even
a stronger property called strong stability : the expected number of rounds needed to reach the state with
empty queues is finite.
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1.3 Distributed online solution: challenges and ideas

Our main online algorithm ScanTrim is designed to overcome two fundamental challenges imposed by the
shared channel: (i) delay in updating information (there is at most one node transmitting successfully at a
time, hence most of the nodes transmitted Ω(n) rounds ago, and therefore other nodes may not know their
current state) and (ii) wasted rounds (defined as rounds without successful packet transmission) that may
occur during information gathering.

To demonstrate these issues, consider the behavior of already studied protocols. Probably the simplest
one is the round-robin protocol, in which nodes transmit (and gather information) periodically according to
a fixed order. It generates an unbounded number of wasted rounds when the adversary injects all packets to
a single node, one packet per round. To reduce the number of wasted rounds, one could modify this protocol
to empty the whole queue while visiting a node. However, an unbounded number of wasted rounds are then
generated in a slightly more sophisticated scenario where the adversary injects one packet per round to a
fixed node i until this node starts to be processed; then packets are injected to the node preceding i (again,
one packet per round), and so on.

Another idea would be to use a queue to amortize the generated wasted rounds by checking the queues
of potentially empty nodes: such an idea was introduced by Chlebus et al. [13], who proposed algorithm
Move-Big-To-Front. In this algorithm, the round-robin procedure is applied until a node with a queue larger
than n is found; in such case, the queue is moved to the beginning of the round-robin list and emptied in
consecutive rounds down to the level of exactly n pending packets. Then, the round-robin sub-routine is
applied again, and the whole process is repeated in a loop. Observe however that the adversary can first fill
each node to the level of at least n/2 packets, by injecting one packet per round on average (see also the
proof of the lower bound in [13]), and then — by injecting packets always to the last node on the list —
create queues of size Ω(n2). For such injection pattern, the optimum solution has always at most one packet
in its queues.

The above examples are token-based protocols. Bianchi [8] argued that randomized backoff protocols
are not stable under highly saturated injection patterns. In general, as we also demonstrate in the proof of
one of our lower bounds, using non-coordinated transmission pattern may cause even more wasted rounds
compared to the best offline solution, as collisions may occur due to simultaneous transmissions.

Our solution introduces a specific potential function that efficiently trades a delay in obtaining information
about queue sizes for the (wasted) silent rounds. More precisely, the algorithm runs in two modes: scanning
and trimming. The main goal of the former is to update the information, while in the latter the algorithm
transmits packets in order to compete with the optimal solution. Based on the potential function, we define
the order of scanned and trimmed nodes and the conditions for switching between the two modes.

The result in the stochastic injection setting is obtained by proving that an underlying Markov chain is
(positive) recurrent. We show this in two steps. First, we define and analyze an Markov chain corresponding
to the behavior of an offline solution. In particular, we show that prove that properties of this Markov chain
imply stability and strong stability of the optimal offline protocol in the stochastic injection setting. Next, by
applying the competitiveness result from the worst-case online analysis, we argue that the stochastic process
corresponding to the execution of our online algorithm ScanTrim satisfies stability and strong stability.

2 Competitive Algorithm Scan-Trim

In this section, we construct a protocol ScanTrim and analyze its competitive ratio. We start with a
high-level description and intuitions. Then, we provide the pseudo-code and the analysis.

The number of nodes n and the ID of a node are the only input parameters for the algorithm executed at
the node. The protocol is collision-avoiding : it schedules transmissions in such a way that collisions never
occur. To this end, it builds on a token-passing paradigm, in which a unique node with the “token-holder”
status transmits a message. Recall that in the considered setting, a message contains at most one packet
and a number of additional bits of information. In our protocol, the transmitting node attaches only the
current size (i.e., the number of packets) of its queue computed right before the transmission (i.e., including
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the transmitted packet).
We assume that if in a round the token holder has no packet to transmit, it still transmits a message,

but it contains no packet, only the number zero representing its empty queue. Such a round we call void.
This is for notational simplicity only — the same effect could be achieved by not transmitting anything in
such rounds.

Our algorithm works with any local queuing policy (such as Fifo, Lifo, Sis, etc.) as it does not influence
the considered measures of performance. In practice, Fifo queue could be seen as the most “fair” queuing
policy.

Global state There is a certain number of variables stored by the algorithm at each node. In particular,
each node keeps information which node holds the token, the current mode of operation (scanning or trim-
ming, to be specified later), and the ordered list of all the nodes together with their queue sizes (taken at the
time of their last transmission). While the exact description of these variables is given later, we emphasize
that the values of these variables are the same for all nodes. This is achieved by (i) initializing all these
variables to the same values, (ii) ensuring that their evolution is deterministic and depends solely on their
current value and the information transmitted in a given round. Note that the information heard by all
nodes is the same by the definition of the channel.

Hence, we call these variables global, keeping in mind that, in fact, they are stored locally, but their
coherence is easily ensured.We also emphasize that except for these global variables and its own packet
queue, no node holds any other information.

The most important global variable is a list L of nodes. It contains IDs of all the nodes stored in a certain
order; the positions of L are numbered from 1 to n. Whenever we write “node i”, we mean the node with
the i-th position on list L. Additionally, L stores three pieces of information for each node i:

• Key ki, equal to the queue size of node i right after its last transmission. If node i has not yet
transmitted, the key is set to zero.

• Queue non-emptiness indicator pi equal to 1 if queue of node i was non-empty when it transmitted its
last message (i.e., the round was non-void and an actual packet was sent) and 0 otherwise.

• Threshold value ϕi for node i equal to a non-negative integer, whose value will be determined later
(and modified only at some particular rounds of the protocol).

Note that the amount ki + pi is the number of packets in the queue of i right before the transmission
(and the number actually transmitted in a message of node i), while ki is the number of packets in this
queue right after it. Apart from L, there are two global variables, described in detail in the definition of the
algorithm:

• token, a number i from [1, n] denoting that the current token holder is the i-th node from L;

• mode, which can be either scanning or trimming.

An intuition behind modes is as follows. In the scanning mode, a token is passed along the list L of all
nodes. A node that has the token transmits one of its packets (if it has any) along with the current size of
its packet queue and the token is adopted by the next node from L. If the total number of the learned queue
sizes is sufficiently large, all nodes switch to the trimming mode. Otherwise, after reaching the end of the list
L, the scanning mode continues from the first node of L. In both cases, all nodes recompute the list L and
threshold values ϕi based on the learned queue sizes. In the trimming mode, the token is passed also along
the list L, but only to nodes whose queue sizes are known to be larger than the fixed thresholds. In this
mode, however, a token may be held by a node for multiple consecutive rounds until the number of packets
in its queue reaches the threshold. All nodes switch back to the scanning mode once the total number of
known packets becomes equal to the sum of all thresholds.

The main problem faced by the algorithm is the information delay: the keys stored in L are usually
outdated as the nodes do not have the information about the recent changes to the queues made by packet
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Figure 1: Example values of keys k1 ≥ k2 ≥ . . . ≥ k5 and computed thresholds. Non-overhead packets are
shaded. The values of Si − Si−1 (assuming S0 = 0) are shown as dashed lines.

injections. Instead, L contains information about the queue sizes of a specific node from the round this node
last transmitted. A great advantage of the global variables (representing only a partial knowledge) is that
they allow for more coordinated approach, which is easier to analyze.

Potentials and their properties For any n non-negative integers x1, x2, . . . , xn sorted in non-increasing
order, we define a potential function π : {1, . . . , n} → N ∪ {0}. Function π is defined iteratively, from i = 1
up to i = n, as

π(i) = min
{
xi, Si −

∑i−1
j=1 π(j)

}
,

where Si =
∑i

j=1 2(n+ 1− j) = (2n+ 1− i) · i. In particular, π(1) = min{x1, 2n}. We also define the total

potential as π =
∑n

i=1 π(i).
An alternative, equivalent description of potentials computations is as follows. We keep a budget that is

initially equal to zero. We iterate over all values of i from 1 to n. When considering index i, we first increase
the budget by Si − Si−1 = 2(n + 1 − i). Then, we set π(i) ≤ xi to be as large as possible, but the amount
π(i) has to be covered from the current budget.

The following facts are easily derived from the definition.

Fact 1. For the potential function π of any values, it holds that

1. 0 ≤ π(i) ≤ 2n for any i ∈ [1, n],

2. π(i) ≥ π(i+ 1) for any i ∈ [1, n− 1],

3.
∑i

j=1 π(j) ≤ Si for any i ∈ [1, n].

Fact 2. Sb − Sa = (b− a) · (2n+ 1− a− b) for any a, b ∈ [1, n].

Thresholds The algorithm uses the potential function to compute thresholds. (Recall that thresholds
are recomputed, by all nodes simultaneously, only upon changing the mode from scanning to trimming and
at the end of a scanning cycle.) At these points of time, L is sorted in the non-increasing order of keys.
Ties are broken according to IDs, which ensures that the ordering is the same at all the nodes. Note that
k1, k2, . . . , kn, denoting the values of keys, are now a non-increasing sequence. The potential π is computed
on the values of keys ki and is stored in the thresholds ϕi, i.e., we simply set ϕi := π(i) for all i ∈ [1, n].
At any time, the packets at node i above the threshold ϕi are called overhead packets, i.e., node i with `
packets has max{`−ϕi, 0} overhead packets and min{ϕi, `} non-overhead packets. An example is presented
in Figure 1.

7



Algorithm 1: Update of global variables at time t

case mode = scanning do

if
∑token

i=1 (ki + pi − ϕi) ≤ token and token < n then
token← token+ 1

else
sort L in a non-increasing order of keys
ϕ← the potential function of keys
if there exists i such that ki > ϕi then

token← min{i | ki > ϕi}
mode← trimming

else
token← 1

end

end

end
case mode = trimming do

if
∑n

i=1(ki − ϕi) > 0 then
if ktoken ≤ ϕtoken then

token← min{i > token | ki > ϕi}
end

else
token← 1
mode← scanning

end

end

Algorithm definition At time 0, the algorithm initializes its global variables. Namely, L is populated
with all nodes sorted by their IDs. Thresholds and keys for all nodes are set to zero, token is set to 1,
and mode is set to scanning. Some packets may be already injected at time 0 by the adversary. Then, for
t = 1, 2, 3, . . ., the following happens (cf. Section 1 with the description of the model).

• In round t, the node whose position in L is equal to token transmits. It sends a message containing a
packet from its queue (if it has any) along with the size of its queue (computed before removing the
transmitted packet from the queue). All nodes, including the transmitting one receive this message.

• At time t, these three actions are performed at the nodes:

1. All nodes update variables ktoken and ptoken on the basis of the message they heard in round t.
Recall that ktoken + ptoken is the number of packets in the queue of node token (and hence equal
to the number transmitted in the message) and if this number was non-zero, then ptoken = 1.

2. The adversary injects an arbitrary number of packets; they are appended to particular queues.

3. Each node executes Algorithm 1. Depending on the mode, all nodes execute the instructions from
one of the two corresponding cases.

By this description, it is straightforward that all nodes are capable of tracking the values of global variables.

A remark on message size In the algorithm ScanTrim, a node holding a token attaches the current
number of packets in its queue to the transmitted packet. The number of attached bits can be further
optimized by restricting the attached number to the minimum from the current queue size and 2n+ 1. This
modification may cause heavily overloaded nodes to be considered in different order than the one defined by
their queue sizes. It can however easily be checked that the basic properties guaranteed by the execution
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remain unchanged, as they are defined based on threshold values of at most 2n, and consequently the whole
analysis based on these properties still holds. This allows the algorithm to restrict the number of additional
bits attached to each message to O(log n).

2.1 Framework of the Analysis

The goal of this and the remaining subsections is to show that the algorithm ScanTrim is optimal with
respect to both complexity measures (maximum load and total load).

Consider an execution of algorithm ScanTrim. Its rounds can be grouped into scanning and trimming
cycles in the following way. A trimming cycle is just a contiguous sequence of rounds in which ScanTrim
is in the trimming mode. On the other hand, the contiguous sequence of rounds in which ScanTrim is in
the scanning mode consists of one or more consecutive scanning cycles. Precisely, in the first round of the
scanning cycle, the first node from L has the token, and the scanning cycle ends when the outer else branch
is executed, i.e., when

∑token
i=1 (ki + pi − ϕi) > token or token = n. If the former condition occurs, then

we call such scanning cycle balanced. Intuitively, a scanning cycle is balanced if during this cycle we find
sufficiently many new packets.

As described previously, all packets in the queues of the algorithm are classified either as overhead or
non-overhead packets. Intuitively, the total value of the potential (i.e., the total number of non-overhead
packets) describes the number of packets which have very limited impact on competitiveness of our algorithm
(the values of the potential are at most 2n, hence if the algorithm has only non-overhead packets it would
be trivially (0, 2n)-competitive for the maximum load measure). Thus, in the remaining part of this section,
we focus on bounding the number of overhead packets. Two possible issues may occur. First, the number
of overhead packets may increase rapidly, because the adversary is allowed to inject an arbitrary number
of packets in each round. However, in such case even Opt has these packets in its queues. Second, when
ScanTrim recomputes thresholds at the end of some scanning cycle, if a new total threshold is lower than
the current one, some of the packets may change their status from non-overhead to overhead. Showing that
this occurs very rarely poses the main difficulty in our analysis.

A remark on the potential function It can be observed that when one simplifies the used potential
function by choosing Si =

∑i
j=1(n + 1 − j) instead of Si =

∑i
j=1 2(n + 1 − j), the competitive ratio for

maximum load minimization grows by a factor of Ω(n) (both in multiplicative and additive components),
i.e., the resulting algorithm would be (Ω(n2),Ω(n2))-competitive. This demonstrates the subtlety of the
chosen potential function, which is essential to control scanning and trimming processes.

More precisely, the adversary could fill the queues of the algorithm to the level of n/2− 1, while keeping
the queues of Opt empty (this is in fact possible for both variants of the potential). Afterwards, the
adversary keeps adding packets to the last node. During this period, the algorithm operates in Θ(n) stages,
each consisting of a scanning cycle and trimming of the most overloaded node (this is the node that was
last in the preceding scanning cycle and has been moved to the front of L at the end of that cycle). In each
stage, the number of packets in the last node grows by Θ(n), resulting in the maximum queue having Ω(n2)
packets, while the queues of Opt are empty (as the injection rate is 1 packet per round).

We note that our algorithm ScanTrim with the non-simplified variant of the potential (that uses Si =∑i
j=1 2(n+ 1− j)) efficiently handles this scenario. Namely, it never runs a trimming cycle, and thus all its

queues are always at most 2n.

2.2 Semi-potentials

By the algorithm definition, at the end of a scanning cycle the list L becomes sorted according to the
key values, and thresholds are set to the current values of the potential function. To establish a relation
between the old and new values of thresholds, we want to be able to compare these potential functions. As a
direct comparison might be quite complex, we introduce an auxiliary intermediate concept: a semi-potential
function.
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A function ψ is a semi-potential function with respect to non-negative integers x1, x2, . . . , xn if the
following two properties hold: (i) 0 ≤ ψ(i) ≤ xi for any 1 ≤ i ≤ n, and (ii) for any i the sum of any i values
among ψ(1), . . . , ψ(n) is at most Si. The total semi-potential is defined as ψ =

∑n
i=1 ψ(i).

Unlike in the definition of the potential function, we do not require that the values of xi are sorted.
Moreover, for a fixed sorted set of values, the potential function is defined uniquely, while there might be
various semi-potential functions.

Observe that for sorted keys their potential function is also a semi-potential function. (By Fact 1, the
values of potentials are non-increasing and hence the sum of an arbitrary set of i potential values is dominated
by the set of i first potential values, which by the definition is at most Si.) Moreover, it is also the “largest”
possible semi-potential, as stated next.

Lemma 1. Fix any non-negative integers x1, . . . , xn sorted in non-increasing order and let π be their po-
tential. For any semi-potential ψ of these integers, it holds that ψ ≤ π.

Proof. We inductively show that
∑i

j=1 ψ(j) ≤
∑i

j=1 π(j) for any i ∈ {0, . . . , n}. The induction basis (i = 0)

holds trivially. Assume that the inductive claim holds for i < n. Then,
∑i+1

j=1 ψ(j) ≤ min{Si+1, xi+1 +∑i
j=1 ψ(j)} ≤ min{Si+1, xi+1 +

∑i
j=1 π(j)} =

∑i+1
j=1 π(j).

Lemma 1 implies the following useful property. Assume that just before sorting the keys of L, we can
construct their semi-potential of some total value. Then the total potential of these keys (after sorting) is
at least that value.

2.3 Cycles of ScanTrim

The following crucial lemma is the heart of our analysis; it shows that it is possible to control the thresholds
(potentials) for balanced scanning cycles.

Lemma 2. Consider a balanced scanning cycle C in the execution of algorithm ScanTrim. Let π be the
potential at the beginning of C. Then the total potential at the end of C is at least π + y, where y is the
number of void rounds during C.

We defer its proof to Section 2.4 and here we show how this lemma can be used to prove the competi-
tiveness of ScanTrim. We will compare the actual number of overhead packets to the number of packets
in queues of Opt at any round. Given a particular adversarial pattern of packet injections up to some fixed
time t, we denote the actual number of packets exceeding the thresholds of the algorithm ScanTrim at
time t+ by ovrt, and the number which Opt has in queues at time t+ by optt. We compute these values
at time t+ after the adversary injects packets at time t and also after the algorithm computes new values
of thresholds (if it does so). Note that at time 0, all thresholds are equal to zero and as the queues of Opt
and ScanTrim are equal, it holds that ovr0 = opt0. In the following lemma we show that the difference
between the number of overhead packets and the number of packets in the queues of Opt increases only in
non-balanced scanning cycles (i.e., in scanning cycles which do not result in finding sufficiently many new
packets in order to switch to the trimming mode and therefore were finished with token = n).

Lemma 3. Consider any scanning or trimming cycle C starting at time t and ending at time t+ r. Then,

1. ovrt+r − optt+r ≤ ovrt − optt + n if C is a non-balanced scanning cycle and

2. ovrt+r − optt+r ≤ ovrt − optt if C is a balanced scanning cycle or a trimming cycle.

Proof. Let πt, πt+r be the thresholds (potential functions) at the beginning of a cycle C and at the end of C,
respectively. Assume that y rounds of C are void and the adversary injected s packets during C. Then, the
total number of packets in queues of ScanTrim at the end of C is πt+r + ovrt+r = πt + ovrt + s− (r − y),
and thus ovrt+r = ovrt + (πt − πt+r) + s + y − r. As Opt transmits at most r packets in r rounds of C,
optt+r ≥ optt + s− r, and therefore

ovrt+r − optt+r ≤ ovrt − optt + (πt − πt+r) + y. (1)
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If C is a balanced scanning cycle, then Lemma 2 states that πt+r ≥ πt + y, and thus ovrt+r − optt+r ≤
ovrt − optt.

If C is a trimming cycle, then the thresholds remained unchanged within C, by the definition of ScanT-
rim. That is, πt = πt+r. Moreover, ScanTrim successfully transmits one packet in each round of a trimming
mode, which implies that no round is void during a trimming cycle and therefore y = 0. Hence, (1) implies
ovrt+r − optt+r ≤ ovrt − optt.

It remains to consider the case when C is a non-balanced scanning cycle. In such case r = n. If the
i-th round of C was void, node i had zero packets at that time, which means that its threshold was zero
as well. Thus, πt(i) = 0 for at least y values of i. We define a function ψ, such that ψ(i) = πt(i) − 1
if the i-th round of C is non-void and ψ(i) = πt(i) = 0 otherwise. Note that for all i, it holds that
ψ(i) ≤ πt(i), and ψ(i) is not larger than the key value of node i at the end of C. Therefore, ψ is a
semi-potential function for key values at the end of C, and thus by Lemma 1, πt+r ≥ ψ. On the other
hand, ψ = πt − (n − y) by the definition of ψ. Substituting this bound on πt+r in (1), we obtain that
ovrt+r − optt+r ≤ ovrt − optt + y + (n− y) ≤ ovrt − optt + n.

Now, we may show that ScanTrim keeps the number of overhead packets small at all queues, which will
lead to the desired upper bound on its competitive ratio. Namely, we show that if the value of ovrt− optt is
already large, then the subsequent cycle is either a trimming or a balanced scanning one, and therefore, by
Lemma 3, this value does not grow.

Lemma 4. For any scanning or trimming cycle C starting at time t, it holds that ovrt ≤ optt + 2n.

Proof. We show this lemma inductively. Clearly, it is the case for the very first cycle, as ovr0 = opt0. Now
assume that it holds for a cycle C starting at time t and ending at time t+ r; we show it for the next cycle
C ′ starting at time t+ r. We use Lemma 3 to observe that:

• If C is a trimming cycle, then ovrt+r − optt+r ≤ ovrt − optt ≤ 2n.

• If C is a scanning cycle and ovrt ≤ optt + n, then ovrt+r − optt+r ≤ ovrt − optt + n ≤ 2n.

• If C is a scanning cycle and ovrt > optt +n, then we claim that C is a balanced scanning cycle. This is
clearly the case if C ended with token < n, so we assume that at the end of C we have token = n. Let xi
be the number of packets at node i at time t, and ϕi be the value of the threshold at node i during cycle
C. Then,

∑n
i=1(xi − ϕi) = ovrt > n. Furthermore, ki + pi ≥ xi as ki + pi is the number of packets at

node i at time (t+i)− (i.e., right before node i transmits) and between time t+ and (t+i)− the number
of packets at node i may only grow. Therefore,

∑n
i=1(ki + pi − ϕi) ≥

∑n
i=1(xi − ϕi) > n = token,

which shows that C is a balanced scanning cycle. In this case, ovrt+r − optt+r ≤ ovrt − optt ≤ 2n.

Hence, in either case the inductive claim holds.

Theorem 1. The algorithm ScanTrim is (1, n2 + 4n)-competitive for the total load measure and (n, 5n)-
competitive for the maximum load measure.

Proof. Fix any time t+ r belonging to a cycle C starting at time t. By Lemma 4, ovrt ≤ optt + 2n. If C is
a trimming cycle, then ScanTrim transmits an overhead packet in each round, i.e., the number of packet
transmitted by ScanTrim is not smaller than that of Opt. Hence ovrt+r ≤ optt+r + 2n. If C is a scanning
cycle, then its length is at most n, and thus even if ScanTrim does not transmit any overhead packets,
ovrt+r − optt+r ≤ ovrt − optt + n, and thus ovrt+r ≤ optt+r + 3n.

In either case, ovrt+r ≤ optt+r + 3n. The number of non-overhead packets is at most Sn = n(n + 1).
Therefore, the total number of packets at time t+ r is at most optt+r + n2 + 4n, which shows the first part
of the theorem. Furthermore, the number of non-overhead packets at any node is at most 2n and hence the
maximum load at time t + r is at most optt+r + 3n + 2n = n · (optt+r/n) + 5n. As the maximum load of
Opt at time t+ r is at least optt+r/n, the second part of the theorem follows.
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2.4 Proof of the Crucial Lemma

In this section, we provide the proof of Lemma 2. We start with a technical claim.

Lemma 5. Let π be a potential function and 0 < i1 < . . . < im = r, where 0 < m ≤ r ≤ n. Then,∑m
k=1 π(ik) ≤ Sm +m− r − z, where z = |{j ≤ r |π(j) = 0}|.

Proof. In the proof, we extensively use the properties of Fact 1. In particular, recall that π(1) ≥ · · · ≥ π(n).
We consider two cases.

First we show that
∑m

k=1 π(ik) ≤ Sm +m− r, i.e., a bound that is sufficient for z = 0. We observe that∑m−1
k=1 π(ik) ≤

∑m−1
k=1 π(k) and

∑r
k=m π(k) ≥ (r −m+ 1) · π(r). Hence,

∑m
k=1 π(ik) =

∑m−1
k=1 π(ik) + π(r)

≤
∑m−1

k=1 π(k) + 1
r−m+1 ·

∑r
k=m π(k)

=
(

1− 1
r−m+1

)
·
∑m−1

k=1 π(k) + 1
r−m+1 ·

∑r
k=1 π(k)

≤
(

1− 1
r−m+1

)
· Sm−1 + 1

r−m+1 · Sr

= Sm−1 + 2n+ 1− r − (m− 1)

= Sm +m− r ,

where the last two equalities follow by Fact 2 and by the definition of Sm, respectively.
It remains to show the lemma when z > 0. As π are sorted in non-increasing order, π(im) = π(r) = 0.

Observe that there are at most q = min{m−1, r−z} non-zero elements among π(i1), . . . , π(im). Indeed, there
are at most m−1 non-zero elements because π(im) = 0 and there are at most r−z non-zero elements because
there are exactly r − z non-zero elements among the whole set π(1), π(2), . . . π(r). Hence,

∑m
k=1 π(ik) ≤∑q

k=1 π(k) ≤ Sq.
It remains to show that Sq ≤ Sm +m− r − z or equivalently Sm − Sq ≥ r −m+ z. By Fact 2,

Sm − Sq = (m− q) · (2n+ 1−m− q)
≥ 2n+ 1−m− q
≥ 2n+ 1−m+ z − r
≥ r + 1−m+ z ,

where in the last inequality we used r ≤ n.

Proof of Lemma 2. Let k′1, . . . , k
′
n be the values of keys at the beginning of a balanced scanning cycle C.

Potential π is computed for these keys.
Let ` be the position (on the list L) of the last node that transmitted during C. Let k1, . . . , kn be the

values of keys at the end of the cycle, before they are sorted by ScanTrim and let p1, . . . , pn be the queue
non-emptiness indicators at the end of C (also before sorting). Then,

• k′i ≤ ki + pi for i ≤ ` as ki + pi is the number of packets at queue i right before the transmission from
queue i;

• k′i = ki ≤ ki + pi for i > ` as there was no transmission from queue i within C.

As π is the potential for k′1, . . . , k
′
n, it is also a semi-potential for values k1 + p1, . . . , k` + p`, k`+1, . . . , kn.

We will construct a semi-potential function ψ with respect to k1, . . . , kn, such that ψ = π+ y. (Recall that y
is the number of void rounds in C.) This will immediately conclude the proof as the total potential for the
sorted values k1, . . . , kn is at least ψ by Lemma 1.
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The function ψ is defined as

ψ(i) =


ki for i < ` ,∑`

i=1 π(i)−
∑`−1

i=1 ki + y for i = ` ,

π(i) for i > ` .

The relationship ψ = π + y follows directly from the definition of ψ, and thus it remains to show that ψ is
indeed a semi-potential function for values k1, . . . , kn.

Since we consider a balanced scanning cycle and the threshold values are given by π, the following two
properties hold (cf. Algorithm 1):∑`′

i=1(ki + pi − π(i)) ≤ `′ for any `′ < `, (2)∑`
i=1(ki + pi − π(i)) > ` . (3)

We start with showing the following auxiliary relation:

π(`) ≤ ψ(`) < k` . (4)

To this end, we observe that y = `−
∑`

i=1 pi as
∑`

i=1 pi is the number of non-void rounds of C. Applying it

to the definition of ψ(`) yields ψ(`) = `+ π(`)− p` +
∑`−1

i=1 (π(i)− ki − pi). Thus, using (2) with `′ = `− 1,

we obtain that ψ(`) ≥ ` + π(`) − p` − ` + 1 ≥ π(`), and using (3), ψ(`) = k` + ` +
∑`

i=1 (π(i)− ki − pi) <
k` + `− ` = k`.

Now, it is easy to verify that ψ satisfies the first property of the semi-potential function which states that
0 ≤ ψ(i) ≤ ki for all i. This condition holds trivially for i < `, for i = ` it follows by (4) and non-negativity
of π, and for i > ` we have ψ(i) = π(i) ≤ k′i = ki.

The second property of the semi-potential function states that the sum of anym values among ψ(1), . . . , ψ(n)
is at most Sm. To show it, we fix a set I = {i1, . . . , im}, where 1 ≤ i1 < i2 < . . . < im = r ≤ n and show
that

∑
i∈I ψ(i) ≤ Sm. To this end, we split the sum in question into three parts and bound separately each

of them: ∑
i∈I

ψ(i) =
∑
i∈I

π(i) +
∑

i∈[1,r]

(ψ(i)− π(i)) +
∑

i∈[1,r]\I

(π(i)− ψ(i)) . (5)

We also define yr = r −
∑r

i=1 pi, i.e., yr is the number of void rounds in the first r transmissions,

Bounding the first summand. Observe that if a round i is void, then π(i) ≤ k′i ≤ ki + pi = 0, i.e., π(i) = 0.
Hence, yr ≤ |{j ≤ r |π(j) = 0}|, and thus by Lemma 5,∑

i∈I π(i) ≤ Sm +m− r − |{j ≤ r |π(j) = 0}| ≤ Sm +m− r − yr . (6)

Bounding the second summand. We consider two cases. If r ≥ `, the definition of ψ implies that
∑r

i=1(ψ(i)−
π(i)) = y = yr. If r < `, (2) implies

∑r
i=1(ψ(i)− π(i)) =

∑r
i=1(ki − π(i)) ≤ r−

∑r
i=1 pi = yr. Therefore, in

either case, ∑r
i=1(ψ(i)− π(i)) ≤ yr . (7)

Bounding the third summand. Recall that for i < ` it holds that π(i) ≤ ki + pi ≤ ki + 1 = ψ(i) + 1.
Furthermore, π(`) ≤ ψ(`) by (4) and π(i) = ψ(i) for i > ` by the definition of ψ. Hence, π(i) ≤ ψ(i) + 1
holds for any i. Therefore, ∑

i∈[1,r]\I (π(i)− ψ(i)) ≤ r −m . (8)

By bounding terms in (5) using (6), (7) and (8), we immediately obtain that
∑

i∈I ψ(i) ≤ Sm, which shows
that ψ is a semi-potential for values k1, . . . , kn and concludes the proof.
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3 Lower Bounds for Online Queuing

In this section, we show that our algorithm ScanTrim is essentially optimal. First, we argue that it is
optimal when we consider the total load minimization, later we show it for the maximum load case.

3.1 Total Load Minimization

Theorem 2. For any deterministic algorithm Alg which is (R,A)-competitive for total load minimization,
it holds that R ≥ 1 and A ≥ (n/2− 1)2 − 1. The bound on R holds also for randomized algorithms.

Proof. First, we observe that R < 1 is not possible as the adversary may place an arbitrary number of
packets in the queues at once and make the additive term A negligible.

Second, suppose for a contradiction that A < (n/2 − 1)2 − 1. Then, by Theorem 9 of [13], the (1, 1)-
restricted adversary can cause any deterministic distributed algorithm to have the total load of at least
(n/2− 1)2. Recall that for any given injection pattern generated by this adversary, the optimum algorithm
has always the total load at most 1. Therefore, if the adversary waits one more round without injecting a
packet, we get LOPT = 0 and LALG ≥ (n/2− 1)2 − 1, which contradicts the choice of A.

3.2 Maximum Load Minimization

The lower bound for maximum load minimization is more involved. We say that an adversarial strategy
I clears at time t if it is defined up to time t, exactly t packets are injected till time t (inclusively) and
LOPT(I, t) = 0. We do not express explicitly which adversarial strategy is considered in this notation, but
it will always be clear from the context.

For a randomized algorithm Alg, let xi be the indicator random variable that is equal to 1 if there is
a collision or silence in round i and 0 otherwise. Informally speaking, round i with xi = 1 under an injection
strategy that clears is “wasted” by Alg. “Silence” denotes also the situation in which a node transmits a
message, but this message does not contain a packet (since the queue of the transmitting node is empty).

Lemma 6. Fix any time t, any integer B, any ε > 0, and an adversarial strategy I that clears at time t.
For any randomized algorithm Alg, there exist time points t′′ ≥ t′ ≥ t and a finite adversarial strategy I ′′
that extends I, clears at t′′, and for which it holds that

1. either E[
∑t′′

i=t+1 xi] ≥ ε/2,

2. or MOPT(t′) = B and E[MALG(t′)] ≥ (1− ε)nB.

Proof. Let A denote the subset {v1, v2, . . . , vn−1} of all nodes except vn. We consider an infinite extension
of I, denoted RR(I). Namely, RR(I) injects packets to nodes from A in round-robin fashion starting at
time t, i.e., for i ≥ 0, at round t+ i it injects one packet to the queue of node v(i mod (n−1))+1. Note that if
we cut RR(I) after the injection of a packet at any time τ ≥ t, then RR(I) clears at time τ + 1.

In addition to xi’s, we define two groups of indicator random variables:

• ci = 1 if no node from A transmits a packet in round i,

• yi = 1 if vn successfully transmits in round i.

For i ≥ 0, let Xi =
∑i

j=1 xj and X∞ = limi→∞E[Xi]. Random variables Ci, Yi and values C∞, Y∞ are
defined analogously.

If there is an infinite number of silent or collision rounds in the definition of RR(I), i.e., X∞ =∞, then
the first condition of the lemma holds for sufficiently large t′′ and the injection sequence RR(I) cut at time
t′′ − 1. Thus, in the rest of the proof we assume that X∞ <∞.

As at most t packets are injected during I, vn can have at most t packets at time t+ in Alg’s solution.
In RR(I) no packet is injected to vn after time t, and therefore the number of successful transmissions from
node vn is finite and bounded by t. That is, Yi ≤ t for any i, and hence Y∞ ≤ t <∞.
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Fix any round i. If no node from A transmits at round i, it implies either silence or a successful
transmission by vn. Hence, ci ≤ xi + yi and therefore C∞ ≤ X∞+Y∞ <∞. This means that the number of
rounds in which no node from A transmits is finite. The intuition behind the rest of the proof is as follows.
First, we pick an appropriate time r, such that after this time Alg transmits essentially only from A. Then
we modify RR(I) by injecting nB packets to vn. From a perspective of nodes from A, the newly created
strategy is indistinguishable from RR(I). Therefore, to avoid discrepancy between its maximum loads of
Alg and Opt, vn has to signal that it has new packets, in the only way possible, that is by transmitting
them. The latter action inevitably creates a collision.

Formally, let r ≥ t be such that E[Cr] ≥ C∞ − ε/2. Let t′ = r + (n− 1)B and t′′ = r + (2n− 1)B. Let

E be the event that
∑t′

i=r+1 ci = 0, i.e., that at least one element of A = {v1, . . . , vn−1} transmits in each
round from r + 1, . . . , t′ under strategy RR(I). Then

C∞ ≥ E[Ct′ ] ≥ E[Cr] + Pr[¬E ] ≥ C∞ − ε/2 + Pr[¬E ] ,

and therefore P [¬E ] ≤ ε/2, i.e., P [E ] ≥ 1− ε/2,
Now, we analyze the behavior of Alg under a following modification of the strategy RR(I), denoted

I ′′, which is a finite strategy ending at time t′′. Namely, at time r, the adversary additionally injects n · B
packets to the queue of vn and at time points t′, . . . , t′′ no packets are injected. Note that I ′′ clears at t′′.
We now show that I ′′ satisfies the conditions of the lemma.

We look at the actions of Alg for node vn in rounds r + 1, . . . , t′ of I ′′. Let F be the event that vn
transmits at least once within these rounds (under strategy I ′′). We consider two cases, depending on the
value of Pr[F ].

1. Pr[F ] ≤ ε. We analyze the state of queues at time (t′)+ under event ¬F (vn does not transmit in
rounds r + 1, . . . , t). Independently of actions of nodes from A, it holds that MALG(t′) ≥ n · B as the
load at vn is at least n · B. As ¬F occurs with probability at least 1 − ε, E[MALG(t′)] ≥ (1 − ε)nB.
On the other hand, Opt can transmit (n− 1)B packets from vn in rounds r+ 1, . . . , t′, ending time t′

with all queues of size B, i.e. MOPT(t′) = B. Hence, the second condition of the lemma follows in this
case.

2. Pr[F ] > ε. We prove that with probability at least ε/2, there is at least one collision within rounds
r + 1, . . . , t′, and hence also within rounds t + 1, . . . , t′′. For this part of the proof, let τ be the
random variable denoting the first round from r + 1, . . . , t′ in which vn transmits, and equal to t′

if vn does not transmit within these rounds. In these terms, the event F means that vn actually
transmits at round τ . We also define event E ′ denoting that at least one node from A transmits in
each round from r + 1, . . . , τ . In rounds r + 1, . . . , τ (inclusively) no node from A can distinguish
between strategies RR(I) and I ′′ and hence E ′ ⊇ E , which means that Pr[E ′] ≥ Pr[E ] ≥ 1 − ε/2.
The event E ′ ∩ F implies that there is a collision at round τ , and such event occurs with probability
Pr[E ′ ∩ F ] ≥ Pr[E \ ¬F ] ≥ Pr[E ′] − Pr[¬F ] ≥ (1 − ε/2) − (1 − ε) = ε/2. Hence, the first condition of
the lemma follows in this case.

Theorem 3. For any deterministic algorithm Alg which is (R,A)-competitive for maximum queue mini-
mization, it holds that R ≥ n and A = Ω(n). The bound on R holds also for randomized algorithms.

Proof. We start from zero-length adversarial strategy that does not inject anything and iteratively apply
Lemma 6. This way, either we generate a strategy that clears at some time t (MOPT(t) = LOPT(t) = 0) for
which E[

∑t
i=1 xi] is arbitrarily high (and hence the maximum load of Alg is arbitrarily high), or we find a

step t′ such that E[MALG(t′)] ≥ (1 − ε)Bn = (1 − ε)n ·MOPT(t′). Since B may be chosen arbitrarily large
and ε arbitrarily small, it diminishes the importance of the additive constant A and proves that R ≥ n.

In order to provide a lower bound for A, recall that by Theorem 2 it is possible to create an adversarial
strategy that leads to LOPT = 0 and LALG ≥ (n/2)2 − 1. At such time, it also holds that MOPT = 0 and
MALG ≥ LALG/n = Ω(n).
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4 Stability of Scan-Trim in the Stochastic Model

As defined in the introduction, we now assume a stochastic model in which packets are injected according to
a random distribution, defined by the sequence of numbers p1, . . . , pn ∈ (0, 1). In each round, for each node
independently, one packet is injected into the queue of node i with probability pi and no packet is injected
to this queue with probability 1 − pi. Our goal is to analyze the total load of deterministic distributed
algorithms in such a scenario.

4.1 Stability of the Centralized Solution

First, we focus on the centralized algorithm Opt which has the full knowledge on the queue sizes and chooses
an arbitrary (and exactly one) packet to be transmitted in each round, provided at least one queue is not
empty. As Opt is centralized, the actual distribution of packets is unimportant, and we simply analyze its
total load. We want to investigate the conditions sufficient and necessary for reducing the total load to zero,
i.e., emptying all queues.

The evolution of the Opt’s total load can be described by a time-homogeneous Markov chain (also
denoted Opt) whose states are non-negative integers corresponding to the total load. Furthermore, for any
time point i ≥ 0, Si is the random variable being the state of Opt at time i; in particular, S0 is the initial
number of packets in all queues. For any time-homogeneous Markov chain C and any two states S and
S′, we denote the probability that C ever reaches state S′ when it starts from S by PC(S → S′) and the
expected number of steps to hit S′ for the first time by EC(S → S′).

We are interested in the event of reaching the empty queues state, and therefore we focus on estimating
the values of PC(S0 → 0) and EC(S0 → 0). In these terms, stability means that PC(S0 → 0) = 1 for any
initial state S0 and strong stability means that EC(S0 → 0) <∞. Note that strong stability trivially implies
stability.

The goal of this section is to present tight conditions on
∑n

i=1 pi that ensure stability and strong stability
of Opt. To this end, let Zt be the random variable denoting the number of packets injected at time t. Recall
that by the definition of our process, all Zt are identically and independently distributed, their support is
the set {0, . . . , n} and their mean is equal to

∑n
i=1 pi. As Opt transmits a packet in round t if it has any

(St−1 > 0), the transitions between consecutive states are defined by

St =

{
St−1 + Zt − 1 if St−1 > 0 ,

St−1 + Zt if St−1 = 0 .
(9)

Clearly, the Markov chain Opt is irreducible as for any two states S and S′ and large enough τ , there is
a positive probability that Opt changes state from S to S′ within τ steps. As there is a positive probability
that the number of packets remains the same (i.e., the state does not change), Opt is also aperiodic.

Opt is a particular case of a Repair Shop Markov chain (see page 59 of [11]): this chain is also defined
by (9), but allows any i.i.d. random variables Zt of support {0, 1, . . . , n}, while Zt are sums of n independent
Bernoulli variables in the case of Opt. By the results for the Repair Shop Markov chain (see page 188
of [11]), it follows that:

• if
∑n

i=1 pi < 1, Opt is positive recurrent, i.e., EOPT(S → S) <∞ for any state S;

• if
∑n

i=1 pi = 1, Opt is null recurrent, i.e., POPT(S → S) = 1 and EOPT(S → S) =∞ for any state S;

• if
∑n

i=1 pi > 1, Opt is transient, i.e., POPT(S → S) < 1 for any state S.

As an irreducible Markov chain can be either positive recurrent, null recurrent or transient, the above three
conditions are both sufficient and necessary. An irreducible chain is recurrent if it is positive recurrent or
null recurrent. Thus, OPT is recurrent if and only if

∑n
i=1 pi ≤ 1.

Lemma 7. If
∑n

i=1 pi ≤ 1, then Opt is stable. Moreover, if
∑n

i=1 pi < 1, then Opt is strongly stable.
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Proof. We fix any starting state S0.
If
∑n

i=1 pi ≤ 1, then Opt is recurrent, and thus POPT(S0 → S0) = 1. Then POPT(S0 → 0) = 1 follows
immediately by irreducibility of Opt.

If
∑n

i=1 pi < 1, then Opt is positive recurrent, and thus EOPT(S0 → S0) <∞. For a positive recurrent
Markov chain on a countable set of states it holds that EOPT(S0 → 0) + EOPT(0 → S0) = EOPT(S0 →
S0)/θ(S0, 0), where θ(S, S′) denotes the probability that Opt, starting from S, reaches state S′ at least once
before returning to S [19]. As Opt is irreducible, θ(S0, 0) > 0, and therefore EOPT(S0 → 0) < ∞, which
concludes the proof.

We note that the implications in Lemma 7 are in fact equivalences. Assume that POPT(S0 → 0) = 1
for all states S0 ≥ 0, i.e., OPT is stable. As this condition holds also for S0 = 0, state 0 is recurrent. By
irreducibility, the chain is recurrent, which implies

∑n
i=1 pi ≤ 1. In the same way, we may show that if

EOPT(S0 → 0) <∞ for all states S0 ≥ 0, then the chain is positive recurrent, which implies
∑n

i=1 pi < 1.

4.2 Stability of the Distributed Solution

Now, we move our attention to studying stability and strong stability of online distributed (deterministic)
algorithms.

Lemma 8. Fix any monotonic functions f, g : N → N. Assume that a deterministic distributed online
algorithm Alg is (1, f(n))-competitive with respect to total load. Assume that given arbitrary placement of
m packets in its queues, Alg transmits them all in the next g(m) rounds, provided no packet is injected in
this period. If Opt is stable, then so is Alg.

Proof. For the proof, we run Opt and Alg on the same input sequence. Assume that Opt has empty queues
at time t and there is no packet injection at time points t + 1, t + 2, . . . , t + g(f(n)). The competitiveness
of Alg implies that it has at most f(n) packets in its queues at time t+, and thus at time (t + g(f(n)))+

it has no packet. As Opt is stable, it empties its queues infinitely many times with probability 1. We show
that after some of those time points there exist a period of length g(f(n)) during which nothing is injected.

To formalize this intuition, we consider the stochastic process of injecting packets. It defines the proba-
bility space Ω, whose elements are infinite injection patterns (called patterns for short). With each element
of Ω, we associate a sequence of states of Opt, describing the number of packets Opt has on such injection
pattern at particular time points.

For any time t, we define an event It denoting that at least one packet is injected at time points t+ 1, t+
2, . . . , t+ g(f(n)). Note that Pr[It] = 1− qg(f(n)), where q > 0 is the probability that nothing is transmitted
in a single round. In other words, Pr[It] is a constant smaller than 1 and independent of t, which we will
denote by Q. We say that zero occurs at time t ≥ 0 if Opt is in state 0 at time t. We call a zero occurring
at time t weak if additionally event It occurs, and strong otherwise.

We partition Ω into three disjoint sets: F : the set of all injection patterns that have finitely many zeros,
T : the set of all injection patterns that have infinitely many zeros and at least one of these zeros is strong,
and W : the set of all injection patterns that have infinitely many zeros and all these zeros are weak.

As already mentioned at the beginning of the proof, for any injection pattern from set T , there is a time
at which Alg has empty queues. Therefore, it is sufficient to show that the probability measure of set T is 1,
or alternatively that probability measures of sets F and W are equal to zero. Pr[F ] = 0 follows immediately
by the stability of Opt.

For showing Pr[W ] = 0, for any k ≥ 0 and time j ≥ 0, we define the event Rj
k denoting that (i) there are

exactly k · g(f(n)) zeros at time points 0, 1, 2, . . . , j − 1, (ii) for 0 ≤ i ≤ k − 1 the (i · g(f(n)) + 1)-st zero is
weak (the remaining zeros may be strong or weak), and (iii) there is (the k · (g(f(n)) + 1)-st) zero (strong or
weak) at time j. Note that

W ⊆
⋂∞

k=1

⋃∞
j=0

Rj
k ,

because the right hand side describes patterns that have infinitely many zeros, such that the (i·g(f(n))+1)-st
zero is weak for i ≥ 0. Another important property (that clarifies the cumbersome definition of Rj

k) is that
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Rj
k depends only on the injections up to time j as the last zero for which we require that it is weak occurs

no later than at the position j − g(f(n)).
In the following, we build a recursive bound on Pr[

⋃∞
j=0R

j
k] for any k. As

⋃∞
j=0R

j
0 is the event of having

at least one zero in the sequence, Pr[
⋃∞

j=0R
j
0] = 1 by the stability of Opt. Next, we observe that⋃∞

j=1
Rj

k+1 ⊆
⋃∞

j=1

(
Rj

k ∩ Ij
)
.

This follows as the left side denotes the set containing all patterns having at least k · g(f(n)) + 1 zeros, while
the right side the set with patterns having at least (k − 1) · g(f(n)) + 1 zeros, and for both left and right
side, the (i · g(f(n)) + 1)-st zeros are weak for 0 ≤ i ≤ k − 1. Therefore,

Pr
[⋃∞

j=1
Rj

k+1

]
≤ Pr

[⋃∞
j=1

(
Rj

k ∩ Ij
)]

≤
∞∑
j=1

Pr
[
Rj

k ∩ Ij
]

=

∞∑
j=1

Pr[Rj
k] · Pr [Ij ]

= Q ·
∞∑
j=1

Pr
[
Rj

k

]
= Q · Pr

[⋃∞
j=1

Rj
k

]
.

The first equality follows by the independence of Rj
k and Ij and the last one because Rj

k and Ri
k are disjoint

for i 6= j. By a simple induction, Pr[
⋃∞

j=1R
j
k] ≤ Qk for any k ≥ 0, and thus

Pr[W ] = Pr
[⋂∞

k=1

⋃∞
j=0

Rj
k

]
= lim

k→∞
Pr
[⋃∞

j=1
Rj

k

]
≤ lim

k→∞
Qk = 0 .

This finishes the proof.

Lemma 9. Fix any monotonic functions f, g : N → N. Assume that a deterministic distributed online
algorithm Alg is (1, f(n))-competitive with respect to total load. Assume that given arbitrary placement of
m packets in its queues, Alg transmits them all in the next g(m) rounds, provided no packet is injected in
this period. If Opt is strongly stable, then so is Alg.

Proof. We define the event It, value of Q, and the notions of strong and weak zeros exactly as in the proof
of Lemma 8. In these terms, we need to show that for any initial state S0, the expected time until the
occurrence of a strong zero is finite.

Assume that at some time t a zero occurs. Let K be the random variable denoting the number of
additional rounds till the occurrence of a strong zero. With probability 1 − Pr[It], the zero at time t is
already strong and then K = 0. With the remaining probability, the zero at time t is weak. As at most n
packets are injected in a single time, the total number of packets in Opt queues at time (t + g(f(n)))+ is
at most n · g(f(n)). Thus, the additional expected number of rounds till Opt reaches state zero again is
m := maxj≤n·g(f(n)){EOPT(j → 0)}. Afterwards, in expectation, we still need E[K] rounds. Hence,

E[K] ≤ (1− Pr[It]) · 0 + Pr[It] · (g(f(n)) +m+ E[K]) , (10)

Solving (10) for E[K] and substituting Pr[It] = Q yields E[K] ≤ (g(f(n)) +m) ·Q/(1−Q).
Finally, we observe that EALG(S0 → 0) = EOPT(S0 → 0)+E[K]. As Opt is strongly stable, EOPT(S0 →

0) <∞ and m <∞. As Q is a well defined constant, E[K] is finite and the lemma follows.

Theorem 4. ScanTrim is stable for
∑n

i=1 pi ≤ 1 and strongly stable for
∑n

i=1 pi < 1.

Proof. By Lemma 7, Opt is stable for
∑n

i=1 pi ≤ 1 and strongly stable for
∑n

i=1 pi < 1. Hence, it is sufficient
to fix the functions f and g satisfying the conditions of Lemma 8 and Lemma 9.

By Theorem 1, f(n) = O(n2). Now assume that ScanTrim hasm packets in its queues and no subsequent
packet is injected. Note that in a trimming cycle, a packet is sent in each round. Furthermore, at least one
packet is transmitted in a scanning cycle (which consists of at most n rounds). Therefore, all m packets are
transmitted in at most g(m) = O(n ·m) rounds.
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5 Conclusion and Open Problems

We studied competitiveness of deterministic distributed algorithms with respect to two important perfor-
mance measures: total and maximum load. Our solution is asymptotically optimal with respect to both
measures. All our competitive results regarding distributed environment can be contrasted with centralized
online queuing, and the obtained picture suggests that there is no simple way of transforming centralized on-
line algorithms into distributed ones. We also show a transformation from the world of competitive analysis
of distributed online queuing into distributed stochastic queuing.

This work opens several new directions in the area of online distributed queuing on a multiple-access
channel. For instance:

• analysis of other performance measures, e.g., related to timing or energy efficiency,

• studying similar online distributed frameworks for streaming of dependable packets, messages of dif-
ferent sizes or deadlines,

• considering channel with dependencies, e.g., SINR.
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