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ABSTRACT: Cyclometalation of [Cp*IrCl2]2 with methyl (S)-2-phenyl-4,5-dihydrooxazole-4-carboxylate in the presence 
of NaOAc selectively led to a N,C- or N,O-chelated Cp*Ir(III) complex, depending on whether or not water was present in 
the reaction. Whilst derived from the same precursor, these two complexes behaved in a dramatically different manner in 
asymmetric transfer hydrogenation (ATH) of ketones by formic acid, with the N,O-chelated complex being much more 
selective and active. The sense of asymmetric induction is also different, with the N,O-complex affording S whilst the 
N,C-analogue R alcohols. Further study revealed that the nature of the base additive impacts considerably on the 
enantioselectivity and the effective HCOOH/amine ratios. These observations show the importance of ligand 
coordination mode and using the right base for ATH reactions. 
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N,C-Chelated half-sandwich iridium complexes of 
type 1 have received a great deal of attention in the past 
decade, finding numerous applications in catalysis 
among others (Figure 1).1 In 2008, Ikariya and 
co-workers reported that complex 2 catalyzes the 
aerobic oxidation of alcohols.2 When the metalacycle 
was made chiral with a simple chiral amine, oxidative 
kinetic resolution of racemic alcohols was shown to be 
feasible. In the same year, Pfeffer, Janssen, Feringa, de 
Vries et al found that complex 3 with a simple amine 
ligand is a good catalyst for racemization of alcohols.3 In 
2009, Crabtree and co-workers disclosed complex 4 with 
2-phenylpyridine as a ligand for water oxidation.4 In 
2010, one of our groups demonstrated that the 
ketimine-ligated complexes 5 are powerful catalysts for 
the reductive amination of a wide variety of carbonyl 
compounds.5 The following years have witnessed 
flourishing applications of half-sandwich cyclometalated 
iridium complexes in catalysis, including hydrogenation, 
reductive amination, dehydrogenation, oxidation, 
alkylation, racemisation, hydrosilylation, 
hydroamination, polymerization and related reactions.1,6 

The somewhat related N,O-chelated half-sandwich 

complexes of iridium derived from - and β-aminoacids, 
2-pyridylacetic acid, picolinic acid, or even peptide 
ligands have been known for decades.7 They have, 

 

Figure 1. Selected examples of N,C- and N,O-chelated 
half-sandwich iridium complexes. 
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however, only scarcely been used in catalysis. Examples 

are found in the -aminoacid derived N,O-chelated 
complex 6 which catalyzes ATH of ketones7n and 
complex 7 as a highly reactive and selective catalyst for 
the alkylation of amines with alcohols.7p The iridium 
complex 8 bearing a 2-pyridylacetic acid-derived ligand 
is an efficient catalyst for the dehydrogenation of 
alcohols.7o  
  

 

Figure 2. Target catalyst and proposed mode of asymmetric 
reduction of imines involving secondary interactions. 

In continuing our exploration of N,C-chelated iridium 
complexes in catalysis,1d we targeted a simple chiral 
complex 9, anticipating that it might enable asymmetric 
reduction of imines. The imino substrate could be 
activated by the carboxylic acid (R = H) or the ester (R = 
alkyl) via hydrogen bonding and thereby positioned, 
facilitating enantioselective hydride transfer as 
illustrated in Figure 2.8 The outcome of our endeavor is, 
however, totally unexpected. The oxazoline ligand was 
found to form, surprisingly, either a N,C- or a 
N,O-chelated half-sandwich Ir(III)-complex and 
remarkably, this mode of chelation has a dramatic effect 
on the enantioselectivity of the Cp*Ir(III) 
complex-catalyzed ATH of ketones. Whilst both N,C- 
and N,O-chelated half-sandwich complexes have been 
well documented in the literature, little is known of how 
the difference in the coordination mode of the ligand 
may affect their catalytic activity and selectivity. 

Cyclometalation through C–H activation is a 
well-established method for the synthesis of transition 
metal complexes bearing η2-C,X (X = C, N, O) ligands.1 
According to a general procedure for the preparation of 
cyclometalated complexes,5,9 methyl 
(S)-2-phenyl-4,5-dihydrooxazole-4-carboxylate 10 was 
reacted with [Cp*IrCl2]2 at room temperature in the 
presence of anhydrous NaOAc. The reaction afforded a 
mixture of two half-sandwich Cp*Ir(III) complexes, the 
expected N,C-chelated complex 11a and an “abnormal” 
N,O-chelated complex 11b, in a ratio of 11a:11b = 1:3.5 
(entry 1, Table 1). Delightfully, the ratio of 11a to 11b was 
found to be variable with the amount of water in the 
solvent. Thus, when CH2Cl2 dried over CaH2 was used, 
the ratio of 11a increased with 11a:11b = 1:1 (entry 2, Table 
1), and introducing 4 Å  molecular sieves to this reaction 
afforded the N,C-chelated complex 11a as the sole 
product (entry 3, Table 1). In sharp contrast, using wet 
CH2Cl2 led to the exclusive formation of the 
N,O-chelated complex 11b (entry 4, Table 1). Most likely, 
11b is formed via initial coordination of the ester moiety 
to the Lewis acidic Ir(III) center followed by hydrolysis 
with water, as illustrated in Table 1. In the absence of an 
ester group, cyclometalation takes place with or without 

Table 1. Synthesis of cyclometalated Cp*Ir(III) 
complexes 11a and 11b.a 

 

Entry Solvent Additive 
Yield 
(%)b 

11a:11bc 

1 CH2Cl2
d no 94 1:3.5 

2 Dried CH2Cl2
e no 92 1:1 

3 Dried CH2Cl2
e 4 Å  MS (50 mg/mL) 89 >99:1 

4 CH2Cl2
d H2O (2%, v/v) 97 <1:99 

aConditions: ligand (0.49 mmol), [Cp*IrCl2]2 (0.22 mmol), 
NaOAc (4.9 mmol), DCM (10 mL), rt, 24 h. bIsolated yield. 
cProduct ratio determined by 1H NMR of the crude reaction 
mixture. dUsed as received. eDried over CaH2.  

 
11a             11b 

Figure 3. Molecular structures of 11a and 11b determined by 
single crystal X-ray diffraction. 11a: selected bond distances 
(Ȧ): Ir1-Cl1 2.4138(10); Ir1-N1 2.078(5); Ir1-C1 2.056(6); 
Ir1-avgC(Cp*) 2.189(15). Selected bond angles (°): N1-Ir1-Cl1 
87.47(15); C1-Ir1-Cl1 86.84(18); C1-Ir1-N1 77.7(3). 11b: solvent 
omitted for clarity; selected bond distances (Ȧ): Ir1-Cl1 
2.404(2); Ir1-O3 2.152(7); Ir1-N1 2.092(8); Ir1-avgC(Cp*) 
2.142(23). Selected bond angles (°): O3-Ir1-Cl1: 83.6(2); 
N1-Ir1-Cl1 88.3(3); N1-Ir1-O3 77.0(2). 

water (See Section 8 of the SI). Both 11a and 11b are 
air-stable complexes. Attempts to convert one to the 
other under various conditions, e.g. by adding an acid or 
a base or raising the temperature, have not been 
successful. The structures of 11a and 11b were determined 
by single crystal X-ray diffraction and are shown in 
Figure 3.    

Pure 11b exists in solution as a mixture of two 
diastereomers (ratio of 9.8:1) due to the presence of 
chiral centers at iridium and the ligand. 1H NMR 
monitoring of the freshly prepared solution of 11b in dry 

CDCl3 or CD3OD in the –50 to +40 C range indicated 
that the diastereomeric ratio does not change noticeably 
with varying of the temperature or solvent even after 24 h. 
No changes in the diastereomeric ratio was also observed 
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upon addition of [Bu4N]Br or [Bu4N]I (5 equivs). 
Prolonged heating of the mixture with [Bu4N]Br or 

[Bu4N]I (40 C, longer than 1 h) resulted in the gradual 
change of the solution color from orange to red, 
indicating presumably the replacement of the chloride 
with Br or I. Addition of an excess amount of acetic acid 
(5 equivs) or a mixture of acetic acid and isopropylamine  
did not alter the structure of 11b or its diastereomeric 
ratio either. Similarly, 11a appears as a mixture of two 
diastereomers, the ratio of which is, however, 
considerably higher (>20:1), and addition of acetic acid 
and isopropylamine to a solution of 11a in CDCl3 brought 
about no notable effect, as shown by 1H NMR (see 
Section 7 of the SI).      

The fact that 11a and 11b differs mainly in the 
coordination mode of the chiral ligand prompted us to 
compare their ability of catalyzing ATH reactions.10 
Firstly, we tested the catalytic performance of 11a and 11b 
in the ATH of ketones, choosing the reduction of 
p-nitroacetophenone as a model reaction. As can be seen 
from Table 2, in the presence of 1% of 11a or 11b 
p-nitroacetophenone could be reduced by using an 
azeotropic mixture of formic acid/triethylamine (F/T) in 
CH2Cl2 at room temperature. The outcome is remarkably 
different, however. Thus, whilst the N,C-chelated 11a  
showed a very low catalytic activity (75% conversion in 15 
h) and extremely low enantioselectivity (4% ee), the 
N,O-analogue 11b was much more active and 
enantioselective (100% conversion in 2 h, 73% ee). Of 
further notice is that the configuration of the products 
obtained with 11a and 11b is opposite. This sharp 
difference was repeated in other solvents as well,  

 
Table 2. Comparison of ATH of p-nitroacetophenone 
under various conditions.a 

 

Entry Catalyst Solvent 
Time 
(h) 

Conversion 
(%)b 

Ee 
(%)c 

1 11a CH2Cl2 15 75 4 (R) 
2 11b CH2Cl2 2 100 73 (S) 
3d 11a F/T 15 61 2 (R) 
4d 11b F/T 15 96 38 (S) 
5 11a MeOH 15 80 4 (R) 
6 11b MeOH 15 97 53 (S) 
7 11a iPrOH 15 71 2 (R) 
8 11b iPrOH 15 99 40 (S) 
9 11a toluene 15 42 2 (R) 
10 11b toluene 15 100 42 (S) 
11 11a H2O 15 54 3 (R) 
12 11b H2O 15 85 27 (S) 

13e 11a 
aq. solution of 

HCO2H/HCO2Na 
15 58 0 

14e 11b 
aq. solution of 

HCO2H/HCO2Na 
15 100 37 (S) 

aConditions: substrate (0.2 mmol), catalyst (0.002 mmol), 
azeotropic F/T solution (0.5 mL), solvent (2 mL), room 
temperature. bDetermined by 1H NMR of the crude reaction 
mixture. cDetermined by HPLC. dAzeotropic F/T solution 
(2.5 mL) was used with no additional solvent. eAqueous 
formate solution used (pH 4.5).   

reinforcing the contrast brought about by a simple 
change in ligand coordination mode and the superiority 
of the N,O-chelated 11b (entries 5-14, Table 2). The best 
enantioselectivity was observed in CH2Cl2 with 11b. 
These observations suggest that although 11a and 11b 
bear chiral ligands of similar original structure, the 
differing coordination mode of the ligands impacts on 
the mechanism of how they effect the ATH and 
particularly on the step of hydride transfer, where the 
enantioselectivity is likely to be determined.  

Bearing in mind that ratio of F/T may affect the 
enantioselectivity of ATH of ketones11, we also examined 
the effect of this parameter on the ATH with the more 
effective catalyst 11b. As shown in Figure 4, the F/T ratio 
indeed impacts on the ee of the ATH in question, with 
the highest ee observed in a narrow widow of ca 2.5-3. 
More interestingly, variation of the nature of the amine 
used brought about a hitherto little-noticed finding, i.e. 
both the nature of the amine and its ratio with HCOOH 
affect considerably the enantioselectivity of the ATH. 
Among the tested amines, the HCO2H-iPrNH2 (2:1) 
mixture gave the highest enantioselectivity, with a 
significantly widened window of effective 
HCOOH/amine ratios. Whilst the reason for the varying 
effect of amines on the ee is not entirely clear at the 
moment, the observation calls for attention when 
examining other catalysts for ATH reactions with formic 
acid, where NEt3 has been used as a base almost 
exclusively in the past decades.10a-d,g-n  
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Figure 4. Effect of amines and the molar ratio of 
HCOOH/amine on the enantioselectivity of the ATH with 
catalyst 11b. Conditions: p-nitroacetophenone (0.2 mmol), 
catalyst (0.002 mmol), HCOOH/amine solution (0.5 mL), 
DCM (2 mL), room temperature. The ee value was 
determined by HPLC.  

Under the optimized conditions, we made further 
comparison of 11a with 11b in the ATH of acetophenones 
bearing either electron-donating or 
electron-withdrawing substituents on the aromatic 
(Table 3). As with the reduction using an azeotropic 
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Table 3. Comparison of ATH of aromatic ketones 
catalyzed by 11a and 11ba 

 

Entry R Catalyst 
Conversion 

(%)b 
Ee (%)c 

1 H 11a 6 4 (R) 
2 H 11b 23 98 (S) 
3 o-OMe 11a 8 6 (R) 
4 o-OMe 11b 20 93 (S) 
5 p-OMe 11a 10 7 (R) 
6 p-OMe 11b 23 92 (S) 
7 p-Br 11a 20 3(R) 
8 p-Br 11b 65 99 (S) 
9 p-NO2 11a 30 5 (R) 
10 p-NO2 11b 100 93 (S) 

aConditions: substrate (0.2 mmol), catalyst (0.002 mmol), 
HCOOH/amine (2:1) solution (0.5 mL), DCM (2 mL), room 
temperature, 3 h. bDetermined by 1H NMR of the crude 
reaction mixture. cDetermined by HPLC. 

 

 

Figure 5. ATH of various aromatic ketones with complex 11b. 
Isolated yields are given. For more details, see the SI.  

mixture of F/T as hydrogen source, the 11b-catalysed 
ATH of all four tested acetophenones with the 
HCO2H-iPrNH2 (2:1) mixture gave excellent 
enantioselectivity in each case (entries 2, 4, 6, 8 and 10, 
Table 3), whilst the performance of 11a was much poorer 
(entries 1, 3, 5, 7 and 9, Table 3). These observations 
substantiate further the assertion that the coordination 
mode of ligands can exert significant effect on the 
activity and enantioselectivity of ATH reactions.        

The scope of substrates was subsequently examined 
with complex 11b using the HCO2H-iPrNH2 (2:1) mixture 
as hydrogen source (Figure 5). All aromatic ketones could 
be reduced with excellent enantioselectivities (90-99% 
ee). However, the catalyst shows a low activity towards 
acetophenones which bear highly electron-donating 
substituents or sterically more demanding ones, e.g. 

4-hydroxyacetophenone and -substituted 
acetophenones. We note that electron-rich ketones have 
been challenging for ATH catalysts in general, and only a 
few examples of ATH of hydroxyacetophenones are 
known.12 Still disappointingly, neither 11b nor 11a was 
found to be enantioselective in the ATH of imines. 

 

Figure 6. Suggested mechanism for the ATH of ketones 
with the N,O-chelated iridium complex. The ammonium 
cation may hydrogen bond with the N,O-ligand throughout 
the catalytic cycle. The suggested transition state of hydride 
transfer is supported by a DFT calculation (Ar = Ph. For 
details, see Section 13 of the SI).           

A plausible mechanism for the 11b-catalyzed ATH is 
shown in Figure 6. The steps leading to the 
iridium-hydride from 11b would be expected to be 
similar to those proposed for the N,C-chelated 
iridacycles.13 It is the hydride transfer step that sets this 
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catalyst apart from other N,O- or N,C-chelated iridium 
catalysts. We hypothesize that the ammonium cation 
participates in the transition state of this 
enantioselectivity-determining step, hydrogen-bonding 
both the N,O-ligand via its carboxylate oxygen and the 
ketone substrate through its carbonyl oxygen. Such a 
hydrogen bonding network would be expected to lower 
the barrier of the transition state and enhance the 
enantioselectivity of the hydride transfer. DFT modelling 
of the hydride-transfer step revealed that the 
isopropylammonium cation can indeed participate in the 
transition state and further showed, in line with the 
experiment, that it is the S alcohol that is to be favored 

(G≠ = 1.8 kcal/mol). As shown in Figure 6, the 
transition state of the hydride transfer involves two 
protons of the ammonium cation strongly 
hydrogen-bonding with the oxygen atom of the 
carboxylate ligand (a; O…H distance 1.92 Å ) and the 
acetophenone oxygen (c; O…H distance 1.25 Å , indicating 
significant O-H bond formation) simultaneously. There 
also appear to be weaker interactions between these two 
protons and the ligand oxygen (b; 2.91, 2.90 Å , 
respectively) (See Section 13 of the SI for more details). 
The existence of the hydrogen bonding in question may 
not be unexpected, as ammonium cations are widely 
known to form moderately-strong hydrogen bonds with 
various carbonyl compounds.14 In ATH reactions, 
ligand-induced hydrogen bonding has been well 
established since the pioneering work of Noyori and 
co-workers;15 however, examples of hydrogen bonding 
enabled by carboxylate ligands are relatively rare.16 The 
calculated transition state in Figure 6 also indicates why 
the nature of the ammonium cation affects significantly 
the enantioselectivity, with the cation directly involved in 
the enantioselectivity-determining step. What remains 
to be delineated is how the other cations, e.g. Et3NH+, 
participate in the transition state and thereby affect the 
ee, although primary ammonium cations appear to form 
stronger hydrogen bonds with ketones than tertiary 
ones.14     

In summary, we have demonstrated that 1) a N,C- or a 
N,O-chelated  half-sandwich Cp*Ir(III)-complex can be 
selectively prepared from the reaction of methyl 
(S)-2-phenyl-4,5-dihydrooxazole-4-carboxylate with 
[Cp*IrCl2]2 by simply changing the reaction conditions; 2) 
the mode of chelation has a dramatic effect on the 
enantioselectivity of the Cp*Ir(III) complex-catalyzed 
ATH of ketones; 3) The nature of the amine and its ratio 
with HCOOH significantly affect the enantioselectivity 
of the N,O-complex-catalyzed ATH reaction.    
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