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Abstract 

 

 

Structural characteristic deflection shapes (CDS’s) such as mode shapes and 

operational deflection shapes which contain spatial information of structures are 

highly sensitive for damage detection and localisation in beam- or plate- type 

structures. Despite substantial advances in this kind of methods, several issues must 

be addressed to boost their efficiency and practical applications, including the 

following: (1) The estimation of CDS’s involves substantial inaccuracies and is mainly 

affected by operational, environmental, measurement and computational uncertainties. 

(2) The curvature estimation of CDS’s is much more sensitive to measurement noise. 

(3) The extraction of damage-caused singularities from CDS’s or their curvatures is 

difficult when the baseline data of healthy structures is not available. (4) Damage index 

for multi-damage identification is challenging due to the different damage location 

sensitivities of each CDS. These problems have been investigated and the objective of 

this study is to enhance the accuracy and noise robustness of baseline-free damage 

detection and localisation.  

The original contributions of this study have been made in several aspects. Firstly, 

common principal component analysis is proposed to enhance accuracy of mode shape 

estimation in operational modal analysis, which statistically evaluates the common 

subspace bases of a set of covariance or power spectral density matrices as the mode 

shapes. Secondly, without the baseline data of healthy structures, polynomial fitting 

approaches and low-rank models are investigated for damage localisation, which 

extract the damage-induced local shape singularities by using only mode shapes or 

mode shape curvatures of damaged structures. Thirdly, in order to fairly incorporate 

damage information of several modes, two robust damage indexes are proposed for 

beam-type structures and plate-type structures, respectively. The above studies focus 
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on linear damage such as open cracks in beam or plate structures without nonsmooth 

mass and stiffness distribution. Apart from these, the identification of fatigue cracks 

in stepped beam-type structures is investigated as well.  

In the theoretical aspect, the relationship between damage and structural characteristic 

deflection shapes is explained. Then, the finite element models of beams and plates 

are coded in MATLAB, which are validated by comparing corresponding results with 

the commercial software ABAQUS. Moreover, the numerical models of beams and 

plates with multiple damage are used to verify the feasibility and efficiency of the 

proposed methods in damage identification. Here, the damage is introduced by 

reducing the depth of beams or thickness of plates. In the experimental aspect, beams 

and plates with multiple damage are tested to demonstrate the proposed damage 

detection and localisation methods. In order to acquire the data of a large number of 

measurement points, the advanced scanning laser Vibrometer is used.  

It is found that the proposed mode shape estimation approaches are demonstrated to 

be more accurate and noise robust than the traditional frequency domain 

decomposition and time domain decomposition methods. Additionally, the noise 

effects on spatial domain features such as mode shape and mode shape curvatures can 

be significantly reduced by the polynomial fitting or multi-scale approaches. 

Furthermore, the developed robust multi-damage indexes for beams and plates are 

validated to be effective by using numerical simulations and experimental results. 

Finally, the proposed breathing crack identification approaches are effective in 

localising the breathing cracks but insensitive to the steps of the beams.   
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Chapter 1  

 

Introduction 

 

1.1 Background 

The fast development of modern societies depends more and more on engineering 

structures or mechanical systems such as aircraft, bridges, nuclear power plants, oil 

platforms, large ships and satellites. However, they all have finite life spans and will 

experience degradation or even damage such as corrosion, fatigue, erosion, wear and 

overloading during their service life due to natural causes or human activities [1]. Thus, 

it is critically important to monitor the health state of these structural and mechanical 

systems, as any existing damage could compromise the performance or even cause 

failures of service life.   

Here, damage is defined as unwanted changes to structural material or geometric 

properties including boundary conditions and subsection connections. For example, 

damage can be a fracture crack, erosion of engineering components or loss of critical 

components. Traditionally, a structure can still operate satisfactorily with damage but 

not in its ideal or design condition [2]. While for a fault, the performance of the 

structure will exceed the acceptable operation range.  

Damage identification techniques have been investigated in several closely related 

disciplines such as condition monitoring, non-destructive testing/evaluation and 

structural health monitoring [3]. Structural health monitoring aims to provide the 

approaches for the constant or periodic monitoring of critical structural assets in order 

to determine the need for remedial action, and to prevent catastrophic failures. 

Condition monitoring is similar to structural health monitoring but normally used on 

damage detection in rotating and reciprocating equipment such as internal combustion 
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engines and power generation devices [2]. Non-destructive testing/evaluation is 

usually conducted off-line around the vicinity of damage for severity check, which 

belongs to well-developed local inspection methods. Some typical non-destructive 

testing techniques include magnetic field, eddy-current, ultrasound and thermal field, 

which often demand bulky instrumentation and long measurement time [4].  

It is apparent that with the approximate location information of damage, non-

destructive testing is suitable for the quantification of damage and methodologies of 

fracture mechanics can be adopted for damage prognosis by predicting the remaining 

service life of structures [5, 6]. Hence, global detection methods are primarily required 

for the information of damage positions, which usually rely on the damage-induced 

changes in structural vibration characteristics such as modal parameters and 

transmissibility [7, 8, 9]. Therefore, vibration-based structural damage identification 

plays a significant role in structural health monitoring and has experienced a rapid 

development in the past several decades [10]. 

The fundamental techniques of vibration-based structural damage identification are 

data acquisition and signal processing. Sensors are required to acquire the responses 

of structures whilst signal processing is applied to derive features for damage detection 

and quantification. In recent years, with developments of sensing technologies such as 

Scanning Laser Vibrometer (SLV) and full-field measurement using image processing, 

data acquisition of a large number of measurement points is simple and convenient, 

which facilitates the process for damage identification [11, 12, 13]. Furthermore, the 

developments in advanced signal processing methods such as multi-scale approaches 

(including wavelet analysis and Gaussian smoothing), blind source separation and 

robust principal component analysis enable establishment of more reliable and robust 

damage identification methods [14, 15, 16].  

Apart from the data acquisition and signal processing, another crucial procedure for 

damage identification is feature selection and extraction [3]. Without using the 

damage-sensitive features, even the most advanced data acquisition and signal 

processing techniques can not significantly improve damage identification accuracy. 

For linear damage such as open cracks, modal parameters such as natural frequencies 

and mode shapes are decent damage features, which contain global and local 

information of structure dynamic responses [17, 18]. Furthermore, evaluating the 
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modal parameters enables the interpretation of structural characteristics and dynamic 

behaviours. For non-linear damage like fatigue cracks, vibration-based nonlinear 

response characteristics such as distortions of frequency response function, deviations 

of probability function and harmonic distortions are commonly used for damage 

feature extraction [19, 20].  

The task of damage feature extraction is to reduce the dimension of the original 

vibration data without compromising the damage information while supressing the 

effects of operational, environmental and measurement uncertainties. Once the 

changes of these damage features are dominated by damage only, the problem of 

damage identification will be easily addressed. Nevertheless, the changes of damage 

features are readily affected by various uncertainties, which degrade the identification 

of damage, especially when the damage is not severe. To alleviate the effects of 

operational, environmental and measurement uncertainties on damage features, 

statistical data reduction methods such as principal component analysis and kernel 

principal component analysis are widely utilised [21, 22]. In addition, before damage 

feature extraction, the process of vibration data cleansing is necessary to detect and 

correct the inaccurate or missing measurement data. Nowadays, this procedure is 

normally integrated into the advanced acquisition system such as speckle tracking and 

signal enhancement in the PSV-500 Scanning Laser Vibrometer.   

With the damage features, damage identification in the forms of damage detection, 

damage localisation and severity quantification can be achieved by pattern recognition 

(requiring setting up of a damage feature bank of various damage scenarios), model 

updating (requiring the physics-based structural model), distance measure (requiring 

the damage features of intact structures) or deviation detection (requiring some 

properties of intact structures).  There are two types of errors in damage identification: 

false-positive damage identification and false-negative damage identification. The 

former one happens when there is no damage but the damage index indicates the 

existence of damage, whilst the latter situation is a failure to detect damage when it 

occurs.  Both types of errors are undesirable, as the first type error leads to the 

overestimate of the state of damage while the second type error causes the 

underestimate of the state of damage. In practical application, the consequences of the 

second type error is much more severe than the first type error.  
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The research of this dissertation focuses on the vibration-based structural damage 

identification using only vibration data of damaged structures, especially for multi-

damage localisation. The non-contact PSV-500 Scanning Laser Vibrometer is applied 

to acquire the experimental data of beams and plates. Structural characteristic 

deflection shapes such as mode shapes and operational deflection shapes are taken as 

the basic damage features for damage detection, localisation and relative damage 

severity quantification.  

1.2 Motivations  

With wide-spread use of metallic and composite structures in modern society, a major 

challenge is to secure their normal operation by inspection and maintenance. Therefore, 

the monitoring of the structural health state is significantly important.  Among the 

various non-destructive structural health monitoring techniques, vibration-based 

structural damage identification is one of the few methods that could provide both the 

global and local damage features, which is widely applied in buildings, bridges or 

aerospace structures [23].    

Vibration-based structural damage identification is an inverse problem and the basic 

idea is through monitoring damage-induced changes of structural characteristics. 

However, during this process, a noticeable drawback of deriving damage features is 

that they are easily compromised by various uncertainties, which generally come from 

four sources: operational, environmental, measurement and computational [24]. 

Another challenge is that the baseline data of healthy structures is practically 

unavailable or hard to obtain.  Moreover, the study of multi-damage identification is 

more and more desirable, which introduces new challenging problems.  

In addition, the principles of nonlinear damage identification are different from the 

traditional linear damage identification and the linear damage features are not suitable 

for nonlinear damage identification. Therefore, it is necessary to interpret the 

characteristics of nonlinear damage and develop efficient nonlinear damage 

localisation methods.  

1.3 Aim and objectives  

The aim of this PhD project is to develop effective and reliable multi-damage 

identification approaches for beam- and plate- type structures by using advanced signal 
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processing techniques based on only vibration data of damaged structures, which 

should be sensitive to damage while robust to operational, environmental and 

measurement uncertainties. Moreover, the proposed damage identification methods 

should be able to provide the existence, locations and relative severity of damage. In 

addition, they should be more accurate and robust when compared with current 

damage identification algorithms.  

1.4 Original contributions  

In this research, the most significant original contribution is to statistically estimate 

the robust damage features in spatial domain and apply advanced signal processing 

techniques such as multi-scale analysis and robust principal component analysis to the 

spatial domain damage features for robust multi-damage identification. The main 

original contributions are summarised in the following five aspects: 

(1) Robust structural mode shape estimation is proposed by using the common 

principle component analysis based on output-only vibration response (operational 

modal analysis), which enhances the estimation accuracy and noise robustness of mode 

shape-related features.  

(2) For plate-type structures, apart from the traditional curvatures along x and y 

directions, the principal curvatures, mean principal curvature and Gaussian curvature 

are determined for damage identification. Moreover, robust curvature estimation 

approaches are investigated by using multi-scale approaches (such as wavelet 

transform and Gaussian smoothing) and polynomial fitting technique.  

(3) Instead of using signal processing methods such as wavelet transform and fractal 

dimension methods to manifest the damage-induced changes of spatial domain 

damage features such as mode shapes and mode shape curvatures, surrogate models 

and low-rank models are utilised to extract the damage-induced shape changes. By 

doing this, the damage-induced shape changes of several modes are combined to 

define a robust damage identification index without using the baseline data of healthy 

structures.  

(4) Robust multi-damage identification indexes for beam- and plate-type structures, 

which combine the normalised damage-induced changes of several modes, are 

established localising the damage and indicating the relative damage severity. 
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(5) Nonlinear multi-damage identification of stepped beam structures is studied in two 

approaches by taking advantage of the damage-induced nonlinear vibration responses. 

The first approach evaluates the deviations between empirical probability distributions 

of vibration responses of damaged structures to localise the damage. The second 

approach detects the sudden shapes changes of operational deflection shapes 

corresponding to the super-harmonic frequencies.  

Finally, the original contributions about baseline-free linear multi-damage 

identification in beams have been published in two journal papers and two conference 

papers. In addition, another journal paper about this work has been submitted for 

review. Furthermore, the proposed nonlinear multi-damage identification for beams 

has contributed to a conference paper and two published journal papers on damage 

identification of cracked rotors with the student being a co-author. Lastly, the original 

contribution of baseline-free multi-damage identification in plates is being written into 

new journal papers.  

1.5 Outline of the dissertation 

This dissertation includes eight chapters and the overall structure of this dissertation is 

shown in Figure 1.1 and the outline of each chapter is given as follows: 

Chapter 1 introduces the background of vibration based damage identification and 

structural healthy monitoring, the motivations and objectives of this dissertation, and 

the outline of this dissertation.  

Chapter 2 provides a comprehensive literature review on the damage modelling 

approaches, challenges and methods for damage feature estimation, damage 

identification categories and common damage identification methods, especially for 

beam-type and plate-type structures.   

Chapter 3 proposes two robust mode shape estimation approaches using only output 

vibration responses, which are termed enhanced time domain decomposition method 

and enhanced frequency domain decomposition method. In both methods, the common 

principal component analysis is applied to diagonalise a set of covariance or power 

spectral density matrices to determine the common subspace bases as the mode shapes, 

which statistically improves the noise robustness of estimated mode shapes.   
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Figure 1.1The structural flowchart of the dissertation 

Chapter 4 develops a baseline-free robust damage identification index for beam-type 

structures, which is evaluated using only output vibration responses of damaged 

structures. An adaptive gapped smoothing method (GSM) is proposed based on cross-

validation approach to determine the optimal polynomial fitting order, which is more 

noise robust than the traditional gapped smoothing method. The damage-induced 

shape changes of mode shape curvatures are assessed by the adaptive GSM. 

Furthermore, the proposed damage index incorporates the damage information of 

several modes instead of depending on a certain single mode, which is robust for multi-

damage localisation. In addition, the damage information of each mode shape is 

normalised to avoid one mode from dominating the damage index. 

Chapter 5 studies the localisation of breathing cracks in stepped beam-type structures. 

Two approaches, deviations between empirical probability distributions and 
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irregularities of CDS’s associated with super-harmonic components, are proposed to 

identify breathing cracks of stepped structures. In addition, a comparative study with 

a method using the deviations from normal distribution is conducted to show the better 

damage identification performance of the present method based on deviations between 

empirical probability distributions.  

Chapter 6 investigates the noise robust curvature estimation techniques of structural 

characteristic deflection shapes for plates. Firstly, apart from the traditional curvatures 

along the x and y coordinates, the principal, mean and Gaussian curvatures are 

investigated for damage identification in plates. Secondly, to alleviate the noise effects, 

a 2-D Laplacian of Gaussian approach is employed to enhance the curvature estimation 

along the x and y coordinates. For the principal, mean and Gaussian curvatures, a local 

bivariate polynomial fitting technique is proposed to boost their noise robustness. 

Chapter 7 proposes a robust multi-damage index for plate-type structures by using 

low-rank models and surrogate models based on only the vibration data of damaged 

structures. In the low-rank models, the mode shape curvature matrix of damaged 

structures is decomposed into a low-rank matrix (corresponding to the mode shape 

curvature of healthy state) and a sparse component matrix (associated with damage-

induced changes). For the surrogate models such as polynomial fitting approach and 

Kriging regression, they try to construct the mode shape curvature of the healthy state 

by using mode shape curvature of damaged state based on the assumption that the 

mode shape curvature of the healthy structure must be smooth.  

Chapter 8 provides the key conclusions of this PhD project and some suggestions 

for the future work.    
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Chapter 2  

 

Literature review  

 

 

 

In this chapter, the literature review focuses on four aspects: damage modelling, 

common damage feature estimation, categories of vibration-based damage 

identification and damage identification methods. For damage modelling, the 

traditional models for open cracks and fatigue cracks are reviewed. For damage feature 

estimation, the major sources of uncertainty and variability are discussed and some 

common estimation methods for mode shapes and mode shape curvatures are 

presented. For categories of vibration-based damage identification, a new 

classification criterion is proposed, which categorises the vibration-based damage 

identification methods based on the degrees of available baseline information. For 

vibration-based damage identification, the literature review is first categorised 

according to the types of damage-sensitive features. Then, for a specific damage 

feature, damage identification is discussed depending on the practically available 

baseline information.  
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2.1 Damage modelling 

Modelling of damage in structures is an essential task, as damage identification 

methods are normally validated by using simulated damage in numerical analysis. 

Moreover, the modelling of damage is helpful to interpret the characteristics of damage 

in order for better damage identification. In addition, damage identification methods 

based on model updating require an accurate analytical/numerical structural model as 

well as the damage model.   

Damage in the form of open cracks (linear damage) and fatigue cracks (nonlinear 

damage) is widely studied. A comprehensive review of crack modelling in beams was 

presented by Dimarogonas [25]. Broda et al. [26] reviewed various nonlinear crack 

modelling such as bilinear stiffness and clapping contacts. Moreover, the physical 

mechanisms associated with different crack models were also discussed.  

Generally, open cracks are modelled as a local stiffness reduction, as they increase the 

local structural flexibility [27]. In an FE model of beams or plates, open cracks are 

simulated by decreasing the local Young’s Modulus or thickness but this kind of 

methods cannot establish the relationship between the reduced stiffness and crack 

depth. Hence, Christides and Barr [28] proposed an exponential function to represent 

the element stiffness of damaged beams, which directly associated the crack depth and 

location with the reduced element stiffness. An alternative approach is to compute the 

local element stiffness reduction via a fracture mechanics approach, which uses the 

empirical expressions of stress intensity factors to explicitly associate the reduced 

stiffness matrix with crack depth [29].  

Fatigue cracks widely exist in structures such as aircraft frames and beams of bridges 

that bear oscillatory and/or impact loads. For beam-type structures, a bilinear stiffness 

model is one of the most popular and simple approaches to simulate the nonlinear 

behaviour of fatigue cracks [30, 31]. To avoid the sudden stiffness changes of a bilinear 

stiffness model, a rotational spring is normally used to simulate the continuously 

varying stiffness of a crack but this still does not take into account the practical 

physical structure of fatigue cracks [32, 33, 34]. Moreover, the fatigue cracks could be 

modelled as a frictionless surface-to-surface contact in a 2-D FE model, which defines 

the stiffness as a function of the distance between two contact surfaces  [35].  
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Another remarkable damage of nonlinear response is delamination in bonded, layered 

materials such as fibre reinforced composite plates and shells. There are many 

approaches of modelling delamination, which could be found in related references [18, 

36, 37].  

2.2 Damage-sensitive feature estimation 

The purpose of this section is to review some challenging problems and methods of 

damage-sensitive feature estimation. In vibration-based damage identification, 

damage-sensitive features are normally evaluated in three domains: time domain, 

frequency domain and time-frequency domain [38, 39].  

Extracting damage features in terms of simple statistics such as mean value and 

variance are simple and easy, but they are difficult to use to identify damage due to 

their high dependence on inputs and susceptibility to various uncertainties. Thus, the 

crucial task of structural damage identification is to evaluate the robust, accurate and 

damage-sensitive features. It is well known that modal parameters and their derivatives 

are common damage-sensitive features for damage identification. In addition, some 

other parameters such as frequency responses functions (FRFs) and transmissibility 

are commonly utilised as well.  

2.2.1 Uncertainty and variability in damage feature estimation 

Uncertainty describes quantities that cannot be determined with precision due to 

measurement noise or estimation errors and are quantified by a probability distribution, 

whereas variability refers to quantities that are inherently variable and cannot be 

described by a single value at different locations or times, such as the temperature and 

humidity of experimental environments. There are many sources of both uncertainty 

and variability in the process of damage feature estimation [24], which are mainly 

categorised into four aspects: operational, environmental, measurement and 

computational. Figure 2.1 illustrates the flowchart and the uncertainty or variability 

sources of damage feature estimation (including damage index calculation), where B. 

C. denotes boundary conditions.  
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Figure 2.1  Flowchart and the sources of uncertainty or variability in damage feature 

estimation. 

A thorough understanding of the effects of uncertainty and variability on damage 

features is necessary, as the changes of damage features due to uncertainty or 

variability should be discriminated from changes caused by damage. Uncertainty is 

mainly present during data acquisition (measurement noise) and data processing 

(estimation errors) whilst variability normally origins from the operational and 

environmental conditions.   

For the measurement uncertainty, it is naturally inevitable even for the most advanced 

sensor techniques. A common solution is to include the measurement noise in the 

theoretical model during the estimation process of damage features. Moreover, the 

measurement noise sensitivity of modal parameter identification has been studied, 

which considered the measurement noise white noise [40, 41]. In addition, the noise 

uncertainty quantification of frequency response function and transmissibility have 

been presented by Zhu and Todd [42, 43]. In terms of computational uncertainty, it is 

naturally due to the assumptions of mathematical models. Therefore, advanced 

modelling and signal processing methods are necessary to deal with the measurement 

and computational uncertainties.  

For the operational and environmental variability, the effects of excitation sources and 

temperature on damage feature estimation have been investigated by several authors. 

Cornwell et al. [44] studied the effects of temperature on natural frequencies of 

Alamosa Canyon Bridge, which showed that the modal frequencies could vary up to 

6% over a 24-hour period. Peeters et al. [45, 46] investigated the effects of excitation 

forces and temperature on modal parameters. They concluded that the ambient 

excitation provided the comparable results with band-limited noise excitation and 

impact excitation, and the effects of temperature on modal frequencies were 
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undeniable. Yu and Zhu [47] studied the operational variability by changing the shaker 

input level and the measured data were normalised to eliminate effects caused by the 

operational variability. It was concluded that the extracted damage features were 

robust to the changes of excitation levels. 

2.2.2 Methods of damage feature identification  

In this section, the estimation methods of damage-sensitive features in the form of 

modal parameters are mainly discussed. An emphasis is given on the estimation of 

mode shapes and mode shape curvatures, which are useful spatial domain features for 

damage localisation. Some other common damage features or their extraction methods 

are reviewed in references [3, 48].  

2.2.2.1 Modal analysis methods 

The approaches of modal parameter identification can be categorised according to the 

availability of measurement data [49]. For input-output measurements, the 

deterministic input-output model could be established and it is commonly applied in 

the experimental modal analysis (EMA). When only the output measurements are 

available, the stochastic output-only model will be applied and this method is well 

known as operational modal analysis (OMA). 

Experimental modal analysis has been a common technique to study the dynamic 

characteristics of mechanical and civil structures [50]. Normally, in EMA, the 

structural components, instead of the complete system, are tested with artificial 

excitation and the frequency response functions are used as primary data. However, 

for practical engineering structures, the excitation forces are difficult or impossible to 

be measured. Furthermore, it is desirable to identify the modal parameters under the 

operational conditions. Hence, the OMA becomes more and more attractive [51, 52].  

A comprehensive review of various methods for OMA was presented in [53]. Among 

them, two common methods of OMA are stochastic subspace identification in time 

domain and frequency domain decomposition in frequency domain, which deal well 

with the closely spaced modes and measurement noise. A recent trend of OMA is 

applying second-order blind source identification (SOBI) to estimate modal 

parameters, which extends the concepts of sources and mixing matrix into modal 

analysis to evaluate modal coordinates and mode shape matrix [54, 55]. In addition, 
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the Bayesian operational modal analysis developed by Yuen and Au can not only 

provide the most probable values of modal parameters but also their associated 

uncertainties [56, 57]. A disadvantage of the above OMA methods is that they assume 

that the input excitation is statistically random (white noise). In order to overcome this 

limitation, a transmissibility-based OMA was proposed [49, 58], which does not 

require any assumption about the nature of excitation forces. 

2.2.2.2 Mode shape estimation 

Compared with natural frequencies, mode shapes are less sensitive to environmental 

variability such as temperature and humidity. But mode shapes are more prone to 

measurement uncertainties, as the data acquisition of discrete spatial points is easily 

affected by measurement noise. 

For EMA, the mode shapes are traditionally estimated by connecting the FRF peak 

values of measurement points at resonant frequencies. While in OMA, mode shapes 

are generally estimated as the Eigen structure (eigenvectors or singular vectors) of 

matrices such as covariance matrix (or derived matrix based on covariance matrix), 

power spectral density matrix and transmissibility matrix.  

In stochastic subspace method, the state matrix and observation matrix are first 

evaluated via covariance-driven or data-driven methods. Then, the mode shape matrix 

is calculated as the product of observation matrix and eigenvector matrix of state 

matrix [59]. In frequency domain decomposition method, the mode shapes are 

estimated individually as the dominant singular vector of the power spectral density 

matrix at each resonant frequency [60]. Similarly, for the transmissibility based OMA, 

mode shapes are computed as the dominant singular vector of the transmissibility 

matrix at each resonant frequency [58]. For Bayesian OMA in frequency domain, the 

mode shapes are determined individually as the dominant singular vector of a linear 

combination of power spectral density matrices corresponding to a narrow frequency 

band around each resonance frequency [61]. In the second-order blind source 

separation method, a whitening procedure is required primarily to transform the 

covariance matrix at a certain time-delay to unit matrix before joint diagonal 

decomposition is applied to determine the orthogonal matrix that diagonalises a set of 

whitened covariance matrices. Then the mode shapes are estimated as the product of 

the whitening matrix and the orthogonal matrix [62].  
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The afore-mentioned mode shape estimation indicates that mode shapes can be 

computed from a matrix, some linear combinations of matrices or using a set of 

matrices. In practice, due to limited measurement data and various uncertainties in the 

data, the matrices do not exactly share the same Eigen structure. But from a statistical 

point of view, it is necessary to define a kind of ‘averaged Eigen structure’ by using a 

set of matrices, which promises an accurate and robust mode shape estimation [63].  

Therefore, robust mode shape estimation methods are required, which are based on a 

set of covariance matrices or PSD matrices.  

2.2.3 Estimation of curvature mode shapes 

Normally, the curvature of mode shapes is much more sensitive to damage than the 

mode shapes themselves [64]. Traditionally, the curvature of mode shapes is readily 

computed form mode shapes by using the second-order central difference approach.  

Nevertheless, this approach is susceptibly affected by the density of measurement 

points and the measurement noise. To overcome the noise vulnerability, de-noising 

techniques such as polynomial smoothing or fitting are commonly adopted to enhance 

the noise robustness of mode shape curvature estimation.  

Multi-scale approaches such as wavelet transform and Gaussian smoothing are well 

developed to represent the import features at multiple scales in time or spatial domain 

[65, 66]. Hence, the curvature of mode shapes could be estimated at a certain scale or 

by using the differentiation property of convolution integral to boost the noise 

robustness. The differentiation property of convolution integral is expressed as  

 ∇2(𝛷(𝑥, 𝑦)⨂𝑔(𝑥, 𝑦; 𝜎) ) = ∇2𝛷(𝑥, 𝑦)⊗ 𝑔(𝑥, 𝑦; 𝜎)  

 =  𝛷(𝑥, 𝑦)⨂∇2𝑔(𝑥, 𝑦; 𝜎)  (2.1) 

where 𝛷(𝑥, 𝑦) is the mode shape value at location (𝑥, 𝑦), and 𝑔(𝑥, 𝑦; 𝜎) indicate the 

Gaussian function at scale 𝜎 . ∇2 represents Laplace operator and ⨂  denotes 

convolution operator, which is expressed as 

 𝛷(𝑥, 𝑦)⨂𝑔(𝑥, 𝑦; 𝜎) = ∫ ∫ 𝛷(𝑥 − 𝑢, 𝑦 − 𝑣)𝑔(𝑢, 𝑣; 𝜎)d𝑢d𝑣
+∞

−∞

+∞

−∞
 (2.2) 

The negative normalised second derivative of Gaussian function is the Mexican hat 

wavelet. Therefore, the Mexican hat wavelet transform of mode shapes will acquire an 

equivalent form of mode shape curvature.  
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Moreover, for plate-type structures, apart from the curvatures of mode shapes along x 

and y directions, other types of curvatures such as the principal curvatures, mean 

principal curvature and Gaussian curvature are also damage-sensitive features. For 

these kinds of curvatures, the curvature estimation methods are classified as discrete 

and continuous. The discrete methods compute the mode shape curvatures by 

formulating a closed form for differential geometry operators, which deal directly with 

the discrete mode shape data, whereas the continuous methods first fit the discrete 

mode shape data locally by using the neighbouring points and then interrogate the 

fitted mode shape for curvature estimation, which are more accurate and noise robust 

[67].  

The above discussed curvature estimation techniques are not constrained to mode 

shapes, but can also be extended to other types of structural characteristic deflection 

shapes such as operational deflection shapes and proper orthogonal modes [68].  

2.3 Classification of vibration-based damage identification 

Vibration-based structural health monitoring and damage identification can be applied 

continuously under various operational and environmental conditions and have been 

studied for the last several decades [8, 69]. Numerous vibration-based damage 

identification methods have been proposed and validated. Generally, they are 

categorised according to different criteria such as levels of damage identification, 

linear or nonlinear vibration responses and whether using physics-based models or not 

[3, 70]. Here, a new classification criterion is proposed, which categorises the 

vibration-based damage identification methods based on the degrees of available 

baseline information. In addition, two typical classification methods (damage 

identification levels and linear / nonlinear damage identification) are also presented. 

2.3.1 Damage identification levels 

A basic classification of vibration-based damage identification is according to the 

damage identification levels, which was presented by Rytter [71] as follows: 

 Level 1: Detection of the existence of damage in the structure 

 Level 2: Determination of the location of the damage 

 Level 3: Quantification of the size or severity of the damage 

 Level 4: Evaluation of the remaining service life of the structure 
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Level 1 is often referred to as novelty detection or anomaly detection, which generally 

does not need the physics-based structural model or baseline data of healthy structures. 

Nevertheless, damage identification always aims to obtain further information about 

the damage: damage location (level 2) or size of damage (level 3). The identification 

methods to accomplish Level 2 and Level 3 can be categorised into non physics-

model-based methods and physics-model-based methods. 

Non physics-model based identification methods for Level 2 and Level 3 rely on the 

local damage information in spatial domain damage features such as mode shapes and 

operational deflection shapes. For this kinds of methods, it is possible to localise the 

damage and indicate the relative damage severity of damage but impossible to quantify 

the size of damage. To overcome this, physics-model-based identification methods are 

traditionally applied for vibration-based damage identification through model 

updating. But when the location information of damage is available, a more promising 

approach for damage severity quantification is the application of non-destructive 

testing techniques such as acoustic emission, magnetic resonance imaging and 

ultrasonic testing. For level 4, the assessment of remaining service life is closely 

associated with the fields of fracture mechanics, which will not be discussed in detail 

in this thesis [72].  

2.3.2 Linear and nonlinear damage identification 

According to the effects of damage on structures, structural damage identification 

methods can be classified as linear and nonlinear. The basic idea of linear-response-

based methods is that damage-induced changes in structural physical properties (mass, 

damping or stiffness) alter the structural dynamic characteristics such as modal 

parameters, FRFs and transmissibility, which are used to indicate damage [73]. For 

nonlinear damage, linear damage features are not suitable or less sensitive. Hence, 

nonlinear response characteristics such as distortions of frequency response function, 

deviations of probability function and harmonic distortions are efficiently utilised for 

nonlinear damage identification [19, 20]. 

2.3.3 Damage identification depending on available baseline information 

One purpose of this study is to accomplish multi-damage detection, localisation and 

relative severity quantification without baseline data, which means using only the 
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vibration data of damaged structures. The relative severity quantification is not the 

quantification of damage size but to indicate the relative severity of different damage 

on the same structure. Basically, the practical availability of baseline information 

could determine the types of damage identification methods. Therefore, a new 

classification criterion about the degrees of available baseline information is presented. 

Generally, structural damage identification can be considered a pattern recognition 

problem as shown in Figure 2.2, which compares the extracted features of current state 

of structures with the benchmark features to determine the damage state [3, 74, 75].  

The damage feature bank contains the damage features of various possible damage 

scenarios, which are normally obtained experimentally. However, establishing the 

damage feature bank for pattern recognition is challenging due to the vast number of 

possible damage scenarios.   

 

Figure 2.2  Statistical pattern recognition based structural damage identification. 

An alternative solution is to build the physics-based models of structures such as FE 

models to simulate the various possible damage scenarios for a damage feature bank. 

But with the physics-based models of structures, a more efficient damage identification 

approach is via model updating techniques [76, 77, 78], as shown in Figure 2.3. 

Nevertheless, a well correlated structural model and the accurate initial state of the 

structure are primarily required before using physics-based damage identification. 

Moreover, for model-updating based damage identification, the large number of 

updating parameters and the non-uniqueness of updated models increase its difficulties 

and degrade the accuracy [79, 80]. 
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Figure 2.3  Model updating based structural damage identification. 

When only the baseline data of healthy structures is available, damage identification 

can be accomplished by comparing the damage features of damaged structures with 

baseline damage features of heathy structures, which is illustrated in Figure 2.4 [81, 

82, 83]. The baseline data of healthy structures could be provided by either 

experiments or physics-based structural models. In addition, the distance measure or 

similarity measure is used during the damage feature comparison to identify the 

damage.  

 

Figure 2.4  Structural damage identification with baseline data of healthy state. 

Even when the baseline data of healthy structures is not available, structural damage 

identification in the form of detection, localisation and relative severity quantification 

can still be achieved by measuring the deviations from some properties of healthy 

structures such as normal distribution of probability density function under random 

excitation and smoothness of mode shapes for geometrically uniform and material 

isotropic structures [84, 85, 86]. The process of baseline-free damage identification is 

diagrammed in Figure 2.5.  
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Figure 2.5  Structural damage identification without baseline data. 

In conclusion, damage identification depending on the practical available baseline 

information can be categorised as pattern recognition (requiring setting up of a damage 

feature bank of various damage scenarios), model updating (requiring the physics-

based structural model), distance measure (requiring the damage features of intact 

structures) or deviation detection (requiring some properties of intact structures). 

Pattern recognition: For damage identification, patterns mainly represent the 

different damage scenarios corresponding to different locations or severities. The 

primarily step of pattern recognition approach is to establish a relationship model 

between damage features and their associated damage cases. Then, the extracted 

damage features of current state of structures is the input to the established relationship 

model for damage state prediction [3]. There are traditionally two categories of pattern 

recognition approaches, supervised learning and unsupervised learning. Without 

supervised learning, the pattern recognition approach can only indicate the presence 

of damage [87]. With supervised learning, the pattern recognition approach is able to 

provide the damage locations or severities, which is desirable and promising for 

practical applications. Moreover, computational techniques like artificial neural 

networks, support vector classification or fuzzy logic are popularly applied to establish 

the relationship between damage features and their associated damage cases [88, 89, 

90] . 

Model updating: Model updating aims to modify the structural model parameters or 

matrices (such as mass, stiffness and damping) of an FE model in order to obtain better 

dynamic response agreement between the FE model and the tested structure, which is 

essentially an optimisation problem [80]. During the process, an objective function is 

primarily formed to measure the dynamic response discrepancy between the FE model 

and the tested structure. Here, the dynamic response is normally represented by modal 

parameters, FRFs, transmissibility or a combination of these. For damage 
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identification, the damage locations or severities are determined by comparing the 

updated mass or stiffness matrices with the original correlated matrices [91, 92].  

Traditionally, the model updating methods are categorised as: direct methods and 

iterative methods [93]. Moreover, according to different implementation techniques, 

model updating methods are commonly discussed as matrix update methods, optimal 

matrix methods, sensitivity-based methods, iterative optimization methods or 

computational intelligence methods (such as genetic algorithm, particle-swarm 

optimisation and simulated annealing) [94]. 

Distance measure: Distance or similarity measure evaluates the distance or similarity 

between two sequences or datasets, which plays an important role in the fields of 

pattern recognition, optimisation and estimation [95].  For damage identification, the 

distance of damage features between damaged structures and healthy structures are 

basically used to detect, localise or quantify the damage. The typical distance measure 

approaches are rectilinear distance ( ℓ1 norm), Euclidean distance ( ℓ2 norm), 

Mahalanobis distance, Minkowski distance ( ℓ𝑝 norm) and weighted squared 

Euclidean distance [96].  

Deviation detection: Deviation detection or outlier detection is the method to detect 

the unexpected patterns or outlier values. For damage identification, it is normally 

limited to the detection of damage presence. But when applied to spatial domain 

features, it enables the localisation and relative severity quantification of damage. For 

example, detecting the damage-induced local shape singularities in mode shapes or 

mode shape curvatures is an effective approach for damage localisation in beam-type 

and plate-type structures.  

2.4 Review of damage identification methods 

Some comprehensive literature reviews about the important advances in vibration-

based damage identification and health monitoring can be found in Doebling et al. [97], 

Sohn et al. [98], Montalvao et al. [18], Fan and Qiao [99] and Cao et al. [100]. This 

section is organised according to the types of damage-sensitive features. Moreover, for 

a specific damage feature, damage identification is discussed according to the practical 

available baseline information.   
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2.4.1 Natural frequencies 

Natural Frequencies are a global dynamic feature, which are readily measured without 

dependence on the measurement positions. The change of natural frequencies has been 

extensively studied for damage identification for several decades.  

Salawu [101] presented a comprehensive literature review of natural frequency based 

damage identification methods, which concluded that natural frequencies had the 

potential for damage identification but maybe not sufficient for  an unique damage 

localisation. The detection of damage presence is simply achieved by comparing the 

natural frequencies of current state of structures with the natural frequencies of healthy 

structures, while the localisation of damage based on natural frequencies is achieved 

via FE model updating or pattern recognition by requiring a finite element model of 

structures and a set of natural frequency associated with different damage scenarios. 

Related papers using natural frequency based damage localisation include Cawley and 

Adams [102], Cerri and Vestroni [103], Sinha et al. [9] and Gao et al. [104].  

However, the natural frequency shifts are demonstrated to be not sensitive to local 

damage and more easily contaminated by operational and environmental variability 

[105]. Due to these drawbacks, the application of natural frequency shifts are mainly 

in numerical analysis or small simple laboratory structures.  

2.4.2 Frequency response functions  

FRF data provides much more information on damage than the modal parameters, 

which represents the dynamic characteristics between structural response and 

excitation in a certain frequency range. Moreover, FRFs can be acquired directly in 

experiments to avoid the extraction errors during modal analysis. Therefore, the use of 

FRFs is a very promising damage feature for damage identification.  

Firstly, FRF-based model updating for damage identification is discussed. Wang et al. 

[106] proposed a damage vector for detecting location and magnitude of damage by 

updating the undamaged and damaged system matrices based on the FRF data, which 

could be extended to the cases when measured coordinates were incomplete. Lee and 

Shin [83] developed a damage localisation and quantification approach for beam-type 

structures by using analytical model and FRF data. With the help of mode shapes and 
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natural frequencies of intact structures, the damage was identified by solving dynamic 

equations.  

When only the FRFs of healthy structures are available, frequency response vector 

assurance criterion proposed by Heylen and Lammens [107] is effective for damage 

identification. Zang et al. [108] presented two criteria, global shape correlation and 

global amplitude correlation function, for correlating measured frequency responses, 

which were damage sensitive indicators for structural damage detection. Sampaio and 

Maia [109] utilised frequency domain assurance criterion and the response vector 

assurance criterion based on frequency response function for effective damage 

identification. 

In the absence of FRFs of healthy structure, the application of frequency response 

function curvature method was presented by Saravanan and Sekhar [110], which 

detected the damage-caused sudden shape changes for damage detection, localisation 

and relative damage severity quantification in rotors. Moreover, without baseline data, 

principal component analysis was applied to FRF matrix to evaluate the robust spatial 

shape features and then gapped smoothing method was adopted to localise the damage 

by Salehi et al. [111].   

One disadvantage of FRF-based damage identification method is the requirement of 

excitation information, as FRFs is defined as the spectrum ratio between the outputs 

and inputs.  

2.4.3 Transmissibility 

Generally, transmissibility function represents the ratio relationship of two response 

spectra, which does not require the information of input excitation. By this definition, 

transmissibility only contains the zeros of FRFs, which are associated with local 

structural quantities. Similar to FRFs, transmissibility could be also used in modal 

analysis [49], damage identification [112] and FE model-updating [113].  

With the baseline transmissibility of healthy structures, the application of 

transmissibility for damage identification has been studied widely. Multiple response 

vector assurance criterion was proposed by Maia et al. [8], which was demonstrated to 

be capable of damage detection and relative severity quantification. Zhou et al. [114] 

applied transmissibility based coherence analysis and modal assurance criterion  for 
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damage detection and relative severity quantification, which was possible to detect 

nonlinear damage-induced changes. Principal component analysis of transmissibility 

matrices was conducted to reduce the environment variability of transmissibility and 

damage indicator for damage detection was proposed by using Mahalanobis distance 

of transmissibility between the damage state and the healthy state [96]. In addition, 

Fan et al. [115] proposed a novel concept of wavelet-based transmissibility and outlier 

analysis was used for damage detection without requiring the baseline data of healthy 

structures.  

In terms of transmissibility-based damage localisation, one approach is via FE model-

updating. The other approach is based on the extracted spatial shape features from 

transmissibility such as mode shapes and operational deflection shapes, which contain 

the local information of structures. 

2.4.4 Mode shapes 

In comparison with natural frequencies, mode shapes are effective for damage 

localisation, since they contain the spatial information of structures, especially the 

damage-induced local shape singularities. Moreover, the estimation of mode shapes 

are robust to the operational and environmental variability but prone to pollution of 

measurement uncertainties due to a large number of discrete measurement points.  

With the help of analytical or numerical models of structures, damage detection, 

localisation and severity quantification can be achieved via model updating 

approaches or pattern recognition. But accurate structural models are hard to be 

established due to the uncertainties in boundary conditions, material properties, and 

connection types. Shi et al. [116] proposed a damage localisation method for truss 

structures by using the incomplete mode shapes and analytical structural model, which 

was an extension of the multiple damage location assurance criterion. Chen and 

Bicanic [117] applied Gauss-Newton Least-Squares technique for damage localisation 

and quantification, which was based on incomplete mode shapes and characteristic 

equations of structural dynamic systems. Xiang and Liang [118] applied wavelet 

transform to mode shapes to localise the local singularities for damage location and 

then the natural frequencies were used for severity quantification with the help of finite 

element model updating. Lee et al. [119] utilised the differences and ratios of mode 
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shapes between before and after damage as the inputs of neural networks for damage 

detection, which required a baseline finite element model to train the neural networks. 

To measure the mode shape changes due to damage, the Modal Assurance Criterion 

(MAC) and Coordinate Modal Assurance Criterion (COMAC) are commonly utilised 

based on the mode shapes before and after damage [120]. Salawu and Williams [121] 

identified the damage of a bridge using MAC and COMAC and indicated that mode 

shapes were effective in localising the damage whilst the reduction of natural 

frequencies was less than 3%.  

Without the baseline mode shapes of healthy states, damage identification, especially 

for localisation, could be accomplished by detecting the damage-induced singularities 

of mode shapes.  Khan et al. [122] investigated the discontinuities of mode shapes for 

damage localisation, which indicated that that method was not sensitive to incipient 

damage. They also pointed out that the mode shapes acquired by continuously 

scanning laser Vibrometer were easily contaminated by speckle noise. Pawar et al. 

[123] applied  Fourier transform to mode shapes and showed that the changes of 

Fourier coefficients could be used to locate the damage.  

Moreover, wavelet analysis of mode shapes has been applied extensively for damage 

localisation, which could describe the mode shape in multi-scales [124, 125, 126]. 

Douka et al.  [65] adopted 1-D wavelet transform of mode shapes for beam-type 

structures and the sudden changes of wavelet coefficients were used to indicate the 

damage location. Gentile and Messina [85] studied the Gaussian wavelet transforms 

in localising open cracks of beams and concluded that high-order Gaussian derivative 

wavelets were more sensitive to damage detection. The effects of edge and noise were 

also discussed. Cao and Qiao [127] employed stationary wavelet transform to improve 

the noise robustness of mode shapes and then continuous wavelet transform to localise 

the damage.  

Another common approach to examine the local singularities of mode shapes for 

damage localisation is fractal dimension analysis. Fractal dimension analysis was 

applied to the fundamental vibration mode of beams and plates and the sudden changes 

in the value of fractal dimension were used for damage localisation [128, 129]. Bai et 

al. [130] investigated the application of fractal dimension analysis to high-order  mode 

shapes of plates,  which validated that fractal surface singularities were efficient for 
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damage localisation. Moreover, fractal dimension analysis could be combined with 

wavelet analysis to improve the noise robustness of damage localisation [131].  

The majority of baseline-free mode shape based damage identification methods 

depends on a certain mode shape and rarely combines several modes together. It is 

well known that a single mode shape is sensitive to damage at some locations but 

insensitive to damage at some other locations. Thus, it is desirable and promising, for 

accuracy and robustness, to localise damage by integrating damage information of 

several mode shapes.  For this purpose, polynomial fitting techniques can be used to 

approximate mode shapes of the healthy state based on the mode shapes of damaged 

state. Consequently, the difference between them could be calculated and the damage 

information of several modes could be combined together. Xu and Zhu [132] used 

polynomial fitting approach to construct the mode shapes of undamaged plates and the 

square of  absolute differences between mode shapes of damaged plates and  the 

constructed mode shapes of undamaged structures were used to localise the damage in 

plates. Cao and Ouyang [86] proposed a robust damage localisation index by fairly 

incorporating the damage information of several modes, which used gapped smoothing 

method to extract the irregularities of mode shapes. 

In addition, Pandey and Biswas [133] compared the modal flexibility before and after 

damage to detect the damage, which used the first several natural frequencies and  

mode shapes. Zhang and Aktan [134] demonstrated that uniform load surface, which 

was defined as the deflection vector of the structure under uniform load, was more 

robust to measurement noise than the modal flexibility. Wang and Qiao [135] applied 

fractal dimension analysis to uniform load surface of beam-type structures and the 

damage was localised by detecting the singularities of uniform load surface.  

2.4.5 Mode shape curvatures 

In comparison with mode shapes, mode shape curvatures are more sensitive to the 

damage-induced local shape singularities, especially for less severe damage.  

Moreover, the mode shape curvatures are directly associated with the bending 

moments of beams and plates. The mode shape curvature based damage identification 

methods are mainly categorised into two groups: with the baseline mode shape 

curvatures of healthy state and without bassline data of healthy state.    
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When the baseline mode shape curvature of healthy state are available, Pandey, et al. 

[64] demonstrated that absolute changes in mode shape curvature before and after 

damage was an efficient indicator of damage. Hu and Afzal [136] proposed a statistical 

algorithm for damage detection in timber beam structures using difference of the 

curvature mode shapes before and after damage. Wahab and Guido [137] combined 

the curvature differences before and after damage of several modes for damage 

identification and this method was validated by localising damage in a real bridge.  

Although it is simple to identify the damage by comparing the mode shape curvatures 

before and after damage, it is promising to identify damage by using signal processing 

techniques to examine the damage-induced curvature singularities without using 

bassline data of healthy state in practical application. Moreover, these advanced signal 

techniques could be classified into two groups. One group uses multi-scale approaches 

(such as wavelet analysis and Gaussian smoothing) or fractal dimension analysis to 

reveal the sudden changes/peaks of mode shape curvatures for damage localisation. 

The second group of methods such as gapped smoothing method and low rank 

modelling predict the approximated mode shape curvatures of healthy state based on 

the mode shape curvatures of damaged state. After this, the differences between them 

of several modes are employed to form a damage index for robust damage localisation, 

which is more sensitive to incipient damage.  

For the first group of baseline-free damage identification, Cao et al. [138] investigated 

the application of complex-wavelet analysis of mode shape curvatures of beam-type 

structures for detecting multiple cracks and this method was verified to be noise robust 

and accurate. Xu et al. [139] improved the curvature mode shape estimation of plates 

by estimating an equivalent mode shape curvature using Mexican hat wavelet and then 

the Teager energy operator was applied to clearly indicate the local singularities for 

damage localisation.  

For the second group of baseline-free damage identification, Ratcliffe [140] proposed 

the gapped smoothing method to localise less severe damage by using the mode shape 

curvature of damaged structures, which was demonstrated to be sensitive to damage 

simulated by reducing thickness by 0.5%. Yoon et al. [141] extended the gapped 

smoothing method to two-dimensional plates and damage localisation was achieved 

by examining the singularities in mode shape curvatures. Rucevskis et al. [142] defined 
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a damage localisation index for plates using the difference between the mode shape 

curvature of damaged structures, and the mode shape curvature of healthy structures 

approximated by smoothed polynomial approach. 

In addition, the modal strain energy (MSE) is directly associated with mode shape 

curvatures for beam-type or plate-type structures, which has shown to be promising 

for damage localisation. The modal strain energy for a Bernoulli-Euler beam of the 𝑟-

th mode is expressed as  

 𝑀𝑆𝐸𝑟 = 1 2⁄ ∫ 𝐸𝐼 (
𝜕2𝜑𝑟

𝜕𝑥2
)
2

d𝑥
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0
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where 
𝜕2𝜑𝑟

𝜕𝑥2
 can be also written as 𝜑𝑟

′′ . Stubbs et al. [143] proposed a damage 

localisation index by using the modal strain energy changes before and after damage. 

Maia et al. [144] developed the discrete forms of the damage localisation index 

proposed by Stubbs et al. [143] and it was expressed as 

 𝐷𝐼𝑙,𝑟 =
(𝜑𝑙,𝑟

d′′2+∑ 𝜑𝑙,𝑟
d′′2𝑁m

𝑙=1 )∑ 𝜑𝑙,𝑟
u′′2𝑁m

𝑙=1

(𝜑𝑙,𝑟
u′′2+∑ 𝜑𝑙,𝑟

u′′2𝑁m
𝑙=1 )∑ 𝜑𝑙,𝑟

d′′2𝑁m
𝑙=1

 (2.4) 

where the superscripts u  and d  indicates the undamaged state and damaged state, 

respectively. Also a comparison of damage localisation by methods of using mode 

shape changes, mode shape curvature changes was presented. Li et al. [145] developed 

a damage index based on fractal dimension and modal strain energy, which was 

effective in damage localisation and relative damage extent quantification of beams. 

Moreover, a comprehensive literature review of strain-based indicators for structural 

damage identification was presented by Li [146], which concluded that the selection 

of damage index relied on not only the requirements of damage identification quality 

but  also the experimental conditions. 

2.4.6 Nonlinear damage-sensitive features  

Since nonlinear damage such as fatigue cracks introduces nonlinearities to the 

structures, the traditional linear damage features are naturally not suitable or less 

sensitive for nonlinear damage identification. Therefore, nonlinear damage features 

should be evaluated from the nonlinear vibration responses for effective damage 

identification.  
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A number of nonlinear damage features have been proposed such as distortions of 

frequency response function, deviations of probability function, Hilbert-Huang 

transform, Volterra series and harmonic distortions, which are mainly validated in 

cases involving fatigue cracks. Moreover, the majority of nonlinear damage 

identification methods uses only the test data of damaged structures. 

Asnaashari and Sinha [147] used the deviation from normal distribution of vibration 

responses under sinusoidal excitation to localise breathing cracks in beam-type 

structures, which was also possible to indicate the relative damage severity. Douka and 

Hadjileontiadis [148] applied empirical mode decomposition and Hilbert transform to 

obtain instantaneous frequency of vibration responses, which could reveal the 

breathing process of a crack. In addition, the various instantaneous frequencies trends 

could be an indicator of crack size. Andreaus [35] modelled a breathing crack as a 

frictionless contact problem using two-dimensional finite elements. Sub- and super-

harmonic components of vibration responses were used to illustrate the response 

characteristics due to the presence of breathing cracks. Chatterjee [31] applied a 

bilinear model to simulate a breathing crack and a nonlinear dynamic model was 

established by using Volterra series. The amplitudes of computed harmonic responses 

were found to indicate the crack severity. Lu et al. [149] proposed a super-harmonic 

characteristic deflection shapes to localise breathing cracks in stepped rotors, which 

was demonstrated to be robust to noise and steps in the structures.   

Moreover, nonlinear systems can behave chaotically under certain forcing conditions. 

Thus, the indicators of chaotic phenomenon such as fractal attractor dimensions and 

Lyapunov exponents can be employed to detect the nonlinearity and further to identify 

the damage. Todd et al. [150] developed the local attractor variance ratio, which 

measured the state space geometry changes, to indicate the damage. Epureanu and Yin 

[151] proposed a multiple simultaneous damage detection method based on probability 

density functions of sampled attractors of the system dynamics.  

 

2.5 Conclusions 

A review of damage modelling, damage feature estimation, damage identification 

categories and common damage features for damage identification has been presented. 
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It provides a basic understanding of the problems and approaches for damage 

identification, which enable the development of new or improved damage 

identification methods in this project. In the next chapter, robust estimation of damage 

sensitive features will be investigated to assure the robust damage identification. 
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Chapter 3  

 

Robust mode shape estimation via common principal 

component analysis  

 

 

Mode shapes are highly sensitive to damage and thus effective for damage detection 

and localisation, but they are vulnerable to measurement noise and computational 

errors, which degrade their accuracy in damage identification. To enhance estimation 

accuracy of mode shapes and mode shape-based damage identification, common 

principal component analysis (CPCA) is investigated in this chapter for operational 

modal analysis, which evaluates the mode shape by finding a common subspace of a 

set of covariance or power spectral density matrices. Moreover, the common principal 

component analysis is conducted via joint approximation diagonalisation (JAD) or 

joint singular value decomposition according to the least-squares criterion.  

First, one enhanced mode shape estimation approach is proposed based on the 

traditional time domain decomposition (TDD). Instead of using a digital band-pass 

filter to isolate the targeted mode, a set of digital band-pass filters are designed to 

extract the targeted mode. Then, CPCA is applied to a set of covariance matrices 

associated with the set of digital filters of the targeted mode for mode shape estimation. 

Secondly, another enhanced mode shape estimation approach is proposed based on the 

traditional frequency domain decomposition (FDD), which applies CPCA to a set of 

power spectral density matrices corresponding to a narrow frequency band around a 

certain resonant frequency. The estimated mode shapes will be statistically more noise 

robust. Finally, comparisons with the traditional methods will be presented to 

demonstrate the advantages of the proposed mode shape estimation methods in terms 

of noise robustness and accuracy. 
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3.1 Introduction 

Structural damage is normally identified by model-based or non-model-based 

approaches [70, 98, 152]. Here, the model means the theoretical or numerical model 

of the structures. For model-based damage identification, a well-correlated structural 

model and the accurate initial state of the structure are required [27, 104, 153]. 

Furthermore, the large number of updating parameters and the non-uniqueness of 

updated models increase the difficulties of model updating-based damage 

identification methods [80]. For non-model based methods, damage detection and 

localization can be accomplished using input-output or only output responses. The 

majority of this kind of approaches is based on differences in structural modal 

parameters between damaged structures and healthy structures [22, 77]. However, in 

practical engineering applications, the baseline information of healthy structures is 

rarely available. Due to this, a kind of damage detection and localisation methods is 

very popular and attractive, which utilises the damage-induced local shape distortions 

of mode shapes or operational deflection shapes to identify damage without baseline 

data of healthy structures [84, 147, 154].  

The identified structural characteristic deflection shapes (CDS’s) possessing spatial 

information of structures are highly sensitive for damage localisation [155, 156, 157]. 

Here, CDS’s refer to vector features that contain spatial structural information such as 

operational deflection shapes and mode shapes [68]. Basically, there are two 

approaches to increasing the accuracy and noise robustness of damage identification 

when using CDS’s. One is to improve the noise robustness of CDS’s during the 

estimation procedures and a robust mode shape evaluation method will be studied in 

this chapter. The other way is to apply signal processing techniques such as fractal 

dimension method, wavelet transform and gapped smoothing method to CDS’s for 

noise reduction and damage feature extraction [131, 138, 158], which will be discussed 

in Chapter 4.  

Mode shapes are generally estimated as the Eigen structure of matrices, which are 

functions of a number of vibration responses of available measurement locations. 

Generally, the Eigen structure could be evaluated from any member of the set of 

matrices or linear combinations of them. But, from a statistical point of view, mode 

shapes determined using a single matrix or two matrices are not satisfactory and tend 
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to be vulnerably contaminated by noise, which will lead to inaccurate damage 

identification. Therefore, it is necessary to acquire enhanced mode shapes by using a 

group of covariance or powers spectral density matrices. Common principal 

component analysis is one such method, which provides a common subspace of several 

matrices.   

3.2 Subspace decomposition techniques 

3.2.1 Subspace decomposition of a single matrix 

Principal component analysis (PCA) is a statistical technique, which aims at 

representing the original data using low-dimensional subspace while preserving as 

much “energy” or variance as possible. Depending on the field of application, it is 

equivalent to proper orthogonal decomposition (POD) or discrete Karhunen–Loève 

transform [159, 160, 161].  Moreover, the principal components or principal modes of 

variation are normally computed by singular value decomposition (SVD) or 

Eigenvalue decomposition. They are an uncorrelated orthogonal basis set and are 

known as proper orthogonal modes (POM) in some literatures [162]. In addition, 

singular spectrum analysis (SSA) is an extension of PCA to a time series by embedding 

them in a vector space of a certain dimension, which is especially effective for 

extracting non-linear and non-harmonic components [163, 164, 165]. 

3.2.1.1 Singular value decomposition 

For any 𝑛1 × 𝑛2 matrix 𝐀 (provided that 𝑛1 ≥ 𝑛2), there exists a factorisation, termed 

as singular value decomposition, in the form of  

 𝐀 = 𝐔𝚺𝐕H = ∑ λ𝑖𝐮𝑖𝐯𝑖
H𝑛2

𝑖=1  (3.1) 

where superscript H denotes the conjugate transpose, 𝐔 = [𝐮1, 𝐮2, ⋯ , 𝐮𝑛1] ∈ ℝ
𝑛1×𝑛1 

and 𝐕 = [𝐯1, 𝐯2, ⋯ , 𝐯𝑛2] ∈ ℝ
𝑛2×𝑛2 are orthogonal matrices (if 𝐀 is a real matrix) or 

unitary matrices (if 𝐀  is a complex matrix), and 𝚺 ∈ ℝ𝑛1×𝑛2  is a non-negative 

rectangular matrix with top 𝑛2 rows forming a diagonal matrix containing singular 

values in a decreasing order: λ1 ≥ λ2 ≥ ⋯ ≥ λ𝑛2 ≥ 0  and all zeros for the other 

(𝑛1 − 𝑛2) rows [166].  

Moreover, the truncated SVD is a common approach for noise reduction and signal 

approximation, as the small singular values are mainly associated with noise. In 

https://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem
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addition, it has extensive applications in modal analysis and damage identification [60, 

159, 167, 168].   

3.2.1.2 Eigenvalue decomposition 

The eigenvalue decomposition (EVD) of a diagonalisable matrix 𝐀 ∈ ℝ𝑛×𝑛 is 

 𝐀 = 𝐔𝚺𝐔−𝟏 (3.2) 

where 𝐔 = [𝐮1, 𝐮2, ⋯ , 𝐮𝑛] ∈ ℝ
𝑛×𝑛 contains the eigenvectors which are orthonormal 

with each other and 𝚺 = diag(λ1, λ2, ⋯ , λ𝑛)  is a diagonal matrix with eigenvalues of 

ascending order, which correspond to eigenvectors in  𝐔.  

Eigenvalue decomposition is commonly used to calculate the eigenvalues and 

eigenvectors of the structural system. For instance, it is employed in stochastic or 

deterministic subspace identification algorithms to evaluate the natural frequencies, 

damping ratios and mode shapes based on experimental data [59, 169].   

3.2.2 Subspace decomposition of two matrices 

For generalised eigenvalue problem of two 𝑛 × 𝑛  matrices 𝐀1  and  𝐀2 , the 

factorisation is in the form of  

 𝐀𝟏𝐔 = 𝐀𝟐𝐔𝚺 (3.3) 

If 𝐀2 is non-singular, Eq. (3.3) is equivalent to EVD problem by multiplying 𝐀2
−1 on 

the left. A generalised eigenvalue problem is solved to give the common eigenvectors 

of two matrices and has many applications such as complexity pursuit-based blind 

source separation [170] and smooth orthogonal decomposition [171]. 

3.2.3 Subspace decomposition of a group of matrices 

Common principal component analysis is an extension of the traditional principal 

component analysis to simultaneously diagonalise a set of matrices, which finds a 

common low-dimensional subspace for accurately representing all the matrices while 

preserving as much “energy” or variance as possible. For example, in modal analysis, 

each covariance matrix may have some degenerate Eigen structure, but a set of 

covariance matrices will provide an accurate common Eigen structure. Moreover, the 

dominant or the first several subspace bases are a good estimation of the mode shapes. 

According to the least-squares criterion, the joint approximation diagonalisation or the 

https://en.wikipedia.org/wiki/Diagonalizable_matrix
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joint singular value decomposition is employed to determine the common principal 

components.   

3.2.3.1 Joint approximation diagonalisation 

Joint approximation diagonalisation (JAD) approach aims to estimate an orthogonal 

or unitary matrix that diagonalises a set of symmetric (Hermitian) square matrices 

according to the least-squares or weighted least-squares criteria, which performs better 

in determining the  joint subspace,  especially for data with low signal to noise ratio 

[86, 172]. For a set of symmetric (Hermitian) 𝑛 × 𝑛 matrices 𝐀𝑖 (𝑖 = 1, 2,⋯ , 𝐾 ), the 

JAD is expressed as 

 𝐀𝑖 = 𝐔𝚺𝑖𝐔
H + 𝐄𝑖 (3.4) 

where 𝐔 = [𝐮1, 𝐮2, ⋯ , 𝐮𝑛] ∈ ℝ
𝑛×𝑛  is the joint orthogonal (unitary) matrix, 𝚺𝑖 

indicates the diagonal matrix and 𝐄𝑖  denotes the noise matrix. For any 𝐾 > 2, the 

problem in Eq. (3.4) is over determined and an exact solution 𝐔 with 𝐄𝑖 = 0, ∀𝑖 is not 

available. A common approach for solving this problem is the least-squares criterion 

and Eq. (3.4) is converted to find 𝐔 and 𝚺𝑖 that minimise cost function 𝐽 

 𝐽(𝚺𝑖, 𝐔) = ∑ ‖𝐀𝑖 − 𝐔𝚺𝑖𝐔
𝐇‖𝐾

𝑖=1  (3.5) 

where ‖∙‖ denotes ℓ2 norm. The details about the solution of Eq. (3.5) are given in 

Appendix A. In addition, JAD is an essential technique for independent component 

analysis and second-order blind identification, which have been investigated in 

operational modal analysis by many authors [54, 173, 174].  

3.2.3.2 Joint singular value decomposition 

Joint singular value decomposition (Joint SVD) is a problem of finding a pair of 

orthogonal matrices which simultaneously diagonalise a group of rectangular matrices. 

Generally, for a set of 𝑛1 ≥ 𝑛2  matrices  𝐀𝑖(𝑖 = 1,2,⋯ , 𝐾 ) , the Joint SVD is 

expressed as  

 𝐀𝑖 = 𝐔𝚺𝑖𝐕
H + 𝐄𝑖 (3.6) 

Pesquet-Popescu et al. [175] proposed a Jacobi-like algorithm to solve Eq. (3.6) and 

apply it to image representation. Hori [176] investigated matrix gradient flows to 

address Joint SVD. Here, a direct approach is presented, which solves the Joint SVD 

via JAD in the form of  



36 

 

 
𝐀𝑖𝐀𝑖

H = 𝐔𝚺𝑖
𝟐𝐔H + 𝐄𝑖𝐄𝑖

H

𝐀𝑖
H𝐀𝑖 = 𝐕𝚺𝑖

𝟐𝐕H + 𝐄𝑖
H𝐄𝑖

 (3.7) 

Joint SVD is a natural extension of the singular value decomposition to a set of 

matrices. And it is a more general tool for non-symmetric, possibly rectangular 

matrices while JAD method is restrained to a Hermitian or a symmetric matrix set 

[177].  

3.3 Robust mode shape estimation 

In this section, common principal component analysis will be combined with some 

current operational modal analysis methods to enhance noise robustness and accuracy 

of mode shape estimation by using output-only data under random excitation. 

Consequently, the proposed methods are suitable for operational modal analysis as 

well.  

Estimating mode shapes requires a set of spatial measurement locations along the 

structure. Moreover, the damage localisation accuracy largely depends on the density 

of measurement points. Fortunately, with the advanced measurement techniques such 

as embedded sensors or non-contact scanning laser scanning Vibrometer, experimental 

data of many measurement points are readily acquired.  

Consider the equation of motion of an 𝑛  degree-of-freedom system subjected to 

general excitation forces:  

 𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐱(𝑡) = 𝐟(𝑡) (3.8) 

where 𝐱(𝑡) ∈ ℝ𝑛×1is displacement vector, 𝐟(𝑡) ∈ ℝ𝑛×1indicates the excitation force 

vector, and 𝐌 ∈ ℝ𝑛×𝑛, 𝐂 ∈ ℝ𝑛×𝑛 and 𝐊 ∈ ℝ𝑛×𝑛 denote the mass matrix, damping 

matrix and stiffness matrix, respectively. According to the modal expansion theorem 

of structural response, vibration responses can be expressed in terms of mode shapes 

and modal coordinates as 

  𝐱(𝑖)(𝑡) = 𝚽𝐪(𝑖)(𝑡) (3.9) 

where 𝚽 ∈ ℝ𝑛×𝑛 represents the modal matrix with the 𝑟-th column indicating the 𝑟-

th mode shape), 𝐪(𝑡) ∈ ℝ𝑛×1  is the vector of modal coordinates and 𝑖 = 0,1,2 
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indicates the interested responses are displacement, velocity or acceleration, 

respectively.  

In order to use the experimental velocity measurements from a scanning laser Doppler 

Vibrometer, the following equations are derived in terms of velocity. The measured 

velocity response 𝐲(𝑡) ∈ ℝ𝑁m×1  of random vibration using Scanning Laser 

Vibrometer is acquired at 𝑁m locations with 𝑁 samples as 

 𝐲(𝑡𝑗) = 𝚽𝐲𝐪
(1)(𝑡𝑗) + 𝐞(𝑡𝑗) , 𝑗 = 1, 2,⋯ , 𝑁 (3.10) 

where𝐪(1)(𝑡𝑗)  indicates the velocity response of modal coordinate vector at time 

instant 𝑡𝑗 , 𝚽y = [𝛗1, 𝛗2, ⋯ ,𝛗𝑁m]  represents the matrix of mode shape vectors 

corresponding to the measured degrees of freedom and 𝐞(𝑡𝑗)  denotes a vector of 

measurement noise.  

Before computing the covariance matrix of vibration responses, a zero mean procedure 

is required. Provided that 𝐞(𝑡) and 𝚽y𝐪
(1)(𝑡) are uncorrelated, covariance matrix of 

the responses should be computed from covariance matrices of the modal coordinates 

and noise as 

 𝐑yy(𝜏) = 𝚽𝐲𝐑q(1)q(1)(𝜏)𝚽y
T + 𝐑ee(𝜏) (3.11) 

where 𝜏 (= 0,1,2⋯ , 𝑁 − 1) represents time-delay (which is an integer multiple of the 

sampling period).  

It is clear in Eq. (3.11) that 𝐑yy(𝜏) possesses the same mode shape matrix 𝚽y for all 

the time-lags (time-delays). Traditionally, 𝐑q(1)q(1)(𝜏)  is a diagonal matrix at any 

time-lag 𝜏, as the modal coordinate responses are assumed to be mutually uncorrelated. 

However, a necessary and sufficient condition for 𝐑q(1)q(1)(𝜏) to be exactly diagonal 

is that the structural system is conservative, which means that there is zero damping 

[54]. To overcome this restriction, the mode shapes can be determined using the 

covariance matrices of mode-isolated responses in time domain or using power 

spectral density matrices around a resonant frequency in frequency domain, which will 

be discussed in detail in the following sections.   
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3.3.1 Enhanced mode shape estimation based on TDD  

3.3.1.1 Time domain decomposition  

Time domain decomposition method is an operational modal analysis method to 

extract the mode shapes and natural frequencies for undamped or lightly damped 

structures [178].  There are three steps in the TDD method. First, a digital band-pass 

filter is designed to extract the filtered responses of the targeted mode. Secondly, based 

on the filtered responses, the covariance matrix is constructed. Finally, applying 

singular value decomposition to diagonalise the covariance matrix at zero time-delay, 

the first singular vector is a good estimation of the targeted mode shape.  

It is assumed that there are 𝑁r  dominant and well separated poles present in the 

measured discrete velocity response. Equation (3.10) should be rewritten as 

 𝐲(𝑡𝑗) = ∑ 𝛗𝑟
𝑁r 
𝑟=1 𝑞𝑟

(1)(𝑡𝑗) + 𝐞(𝑡𝑗)  (3.12) 

where 𝛗𝑟 = [𝜑𝑟1, 𝜑𝑟2, ⋯ , 𝜑𝑟𝑁m]
T
 is the 𝑟-th mode shape of the measured degrees of 

freedom and 𝑞𝑟
(1)(𝑡𝑗) indicates the r-th modal velocity.  

With the help of the digital band-pass filter, the 𝑟-th mode-isolated velocity response 

�̃�𝑟(𝑡𝑗) can be expressed as  

 �̃�𝑟(𝑡𝑗) = 𝛗𝑟𝑞𝑟
(1)(𝑡𝑗) + �̃�𝑟(𝑡𝑗)  (3.13) 

where �̃�𝑟(𝑡𝑗) denotes the noise vector caused by the digital filter and measurement 

noise. 

The covariance matrix of filtered mode isolated response is  

 𝐑ỹỹ
𝑟 (𝜏) = 𝛗𝑟𝐑𝑞𝑟

(1)
𝑞𝑟
(1)(𝜏)𝛗𝑟

T + 𝐑ẽẽ
𝑟   (3.14) 

The singular value decomposition of 𝐑ỹỹ
𝑟 (0) is  

 𝐑ỹỹ
𝑟 (0) = 𝐔𝑟𝚺𝐔𝑟

T = 𝐮1𝜆1𝐮1
T + 𝐔noise𝚺noise𝐔noise

T (3.15) 

Therefore, 𝐮1 is a good estimation of 𝛗𝑟. The advantage of this TDD method is that it 

is an operational modal analysis method and is efficient when a large number of 

excited modes are involved in the measured velocity responses.   
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However, for obtaining the mode isolated vibration data, designing an appropriate 

digital filter with the right order and band width is very important, which is very hard 

to do. Therefore, it is a little arbitrary to estimate the mode shape using a single digital 

band-pass filter. In the next section, an enhanced mode shape estimation is proposed, 

which designs a bank of digital band-pass filters to extract the targeted mode and 

common principal component analysis will be applied to determine the mode shape as 

the common singular vector of a set of covariance matrices.    

3.3.1.2 The enhanced method of TDD 

The first step of the proposed method is to acquire filtered data around a certain 

resonant frequency. Then, a set of covariance matrices can be constructed by a bank 

of suitably designed digital filters.  

 𝐑ỹ�̃�
𝑟,𝑖 (0) = 𝚽𝐑

𝑞𝑟
(1)
𝑞𝑟
(1)

𝑟,𝑖 (0)𝚽𝐓 + 𝐑ẽẽ
𝑟,𝑖

 (3.16) 

where 𝑟 represents the interested mode and 𝑖(= 1, 2,⋯ , 𝐾) indicates the number of 

covariance matrix of different digital band-pass filter.  

Define an orthogonal basis 𝐔𝑟 = {𝐮𝑗 ∈ ℝ
𝑁m×1, 𝑗 = 1,⋯ ,𝑁m }  with 𝐮1 = 𝛗𝑟  and 

{𝐮2, 𝐮3, ⋯ , 𝐮𝑁m}  is orthogonal complementary vector basis. Assuming that the 

experimental data is not contaminated by noise, the spatial orthogonal basis of each 

covariance matrix 𝐑ỹ�̃�
𝑟,𝑖 (0), ∀𝑖 in Eq. (3.16) can be calculated by SVD as  

  𝐑ỹ�̃�
𝑟,𝑖 (0) = 𝐔𝑟,𝑖𝚺𝑟,𝑖 𝐔𝑟,𝑖

T , 𝐔𝑟,𝑖 = (𝐮𝑟
c , 𝐔𝑟,𝑖

s ), ∀𝑖   (3.17) 

In Eq. (3.17), 𝐮𝑟
c=𝛗𝑟 is the common singular vector while 𝐔𝑟,𝑖

s = {𝐮2, 𝐮3, ⋯ , 𝐮𝑁m} is 

not guaranteed to be identical for all covariance matrices. According to the hierarchy 

of similarities among several covariance matrices, this is a partial common eigenvector 

problem. The hierarchy of similarities between 𝐾 covariance matrices of dimensions 

𝑁m × 𝑁m is presented in Table 3.1 [179]. 
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Table 3.1  Hierarchy of similarities between 𝐾 covariance matrices.  

Level Similarities Number of parameters 

1 Equality 
1

2
𝑁m(𝑁m − 1) + 𝑁m 

2 Proportionality 
1

2
𝑁m(𝑁m − 1) + 𝑁m + 𝐾 − 1 

3 Common eigenvectors 
1

2
𝑁m(𝑁m − 1) + 𝐾𝑁m 

4 
Partial common eigenvectors 

of  number 𝑛c 

1

2
𝑁m(𝑁m − 1) + 𝐾𝑁m 

+
1

2
(𝐾 − 1)(𝑁m − 𝑛c)(𝑁m − 𝑛c − 1) 

5 Arbitrary covariance matrices 𝐾 (
1

2
𝑁m(𝑁m − 1) + 𝑁m) 

 

Although SVD deals well with the noise but it does not consider the additional noise 

matrix during singular vector estimation. In order to take into account the noise effects 

in covariance matrices as shown in Eq. (3.16), common principal component analysis 

is employed here. For this partial common eigenvector problem in Eq. (3.16), it is 

reasonable to assume that the covariance matrices 𝐑ỹ�̃�
𝑟,𝑖 (0), ∀𝑖 share all 𝑚 common 

eigenvectors, because the mode shape 𝛗𝑟 plays a dominant role in each covariance 

matrix  𝐑ỹ�̃�
𝑟,𝑖 (0), ∀𝑖  while the contribution of 𝐔𝑟,𝑖

s  is small. Now, the equation of 

applying the common principal component analysis to obtain the close solution of 

partial common eigenvector problem is formulated as 

  𝐑ỹ�̃�
𝑟,𝑖 (0) = 𝐔𝑟𝚺𝑟,𝑖𝐔𝑟

T + 𝐄𝑖, ∀𝑖  (3.18) 

If more than one mode is present in the selected frequency band 𝜔𝑟1 ≤ 𝜔𝑟 ≤ 𝜔𝑟2, the 

estimated mode shapes for closely spaced modes will be biased due to the 

orthogonality of CPCA and the bias mainly affects the weak mode whilst the dominant 

mode shape is still robust. And the bias depends on the gap between the first and 

second singular values: the bigger the gap, the smaller the error. In order to keep the 

robustness of the estimated mode shapes, only the largest dominant common singular 

vector in the selected frequency band is estimated and used for subsequent multi-

damage localisation. 



41 

 

3.3.2 Enhanced mode shape estimation based on FDD  

Taking discrete Fourier transform of Eq. (3.11), the power spectral density (PSD) 

matrix should be obtained as 

 𝐒yy(𝜔) = 𝚽𝐲𝐒q(1)q(1)(𝜔)𝚽𝐲
H + 𝐒ee(𝜔) (3.19) 

where 𝜔 indicates the discrete frequency of excitation.  

3.3.2.1 Frequency domain decomposition method 

In Eq. (3.19), PSD matrix 𝐒yy(𝜔) ∈ ℝ
𝑁m×𝑁m is a Hermitian (positive definite) matrix 

having the common mode shape matrix 𝚽y at the measurement degrees of freedom. 

The factorization of 𝐒yy(𝜔𝑟) by SVD is  

 𝐒yy(𝜔𝑟) =  𝐔𝚺(𝜔𝑟)𝐔
𝐇 (3.20) 

where 𝐔 = [𝐮1, 𝐮2, ⋯ , 𝐮𝑁m] is an unitary matrix and 𝚺(𝜔𝑟) is a diagonal matrix with 

non-negative singular values. If only one mode plays a dominant role at the response 

of this frequency, the first singular value 𝐮1is a good estimate of the mode shape 𝛗𝑟. 

If more than one mode is present in the response of this frequency, the estimated mode 

shapes will be biased due to the orthogonal property and the bias mainly affects the 

weak modes whilst the dominant mode shape is still robust [53].  

Statistically, as far as accuracy and noise robustness are concerned, estimating the 

dominant mode shape using merely a single PSD matrix is often not satisfactory. 

Moreover, the dominant mode shape that contributes to the responses of several 

adjacent frequencies around the resonant frequency does not change much. Therefore, 

PSD matrices associated with a narrow frequency band around the resonant frequency 

can be used simultaneously for a better mode shape estimation. In addition, by doing 

this, the effect of leakage error can be minimised as well. 

3.3.2.2 The enhanced method of FDD 

Common principal component analysis is the right tool to extract the information of 

several PSD matrices corresponding to frequencies around a resonant frequency and 

obtain a common unitary diagonaliser. Equation (3.21) shows the simultaneous 

diagonalisation of a set of PSD matrices to find the common unitary matrix 𝐔𝑟: 
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 𝐒yy(𝜔𝑟+𝑘) = 𝚽𝐲𝐒q(1)q(1)(𝜔𝑟+𝑘)𝚽𝐲
H + 𝐒ee(𝛚𝑟+𝑘) = 𝐔𝑟𝚺𝑟+𝑘𝐔𝑟

H + 𝐄𝑟+𝑘 (3.21) 

where 𝑘 (𝑘 = [−𝐾,−𝐾 + 1,⋯ ,𝐾]) denotes the adjacent frequency around  ω𝑟  and 

𝐒yy(ω𝑟+𝑘) represents a set of 2𝐾 + 1 PSD matrices. The joint unitary diagonalizer 

 𝐔𝑟 ∈ ℝ
𝑁m×𝑁m  is identical but diagonal matrix 𝚺𝑟+𝑘 ∈ ℝ

𝑁m×𝑁m  and noise matrix  

𝐄𝑟+𝑘   ∈ ℝ𝑁m×𝑁m  are different at different  𝑘 . For any 𝐾  >0, the decomposition 

problem is over determined and generally an exact unitary matrix 𝐔𝑟  with 𝐄𝑟+𝑘 =

0, ∀𝑘 is not available. A natural and common approach is to apply the least-squares 

criterion and the over-determined diagonalisation is formulated as a minimisation 

problem of variables 𝐔𝑟 and 𝚺𝑟+𝑘: 

 𝐽(𝐔𝑟 , 𝚺𝑟+𝑘) = ∑ ‖𝐒yy(ω𝑟+𝑘) − 𝐔𝑟𝚺𝑟+𝑘𝐔𝑟
𝐇‖𝐾

𝑘=−𝐾  (3.22) 

The details about the solution of Eq. (3.22) are presented in Appendix A. The non-

diagonalisation of 𝐒q(1)q(1)(ω𝑟+𝑘)  caused by damping and noise effects mainly 

deteriorates the singular vectors in 𝐔𝑟 associated with the smaller singular values of 

𝚺𝑟 while the singular vector corresponding to the largest singular value is robust to 

these effects. As a consequence, only the estimated dominant mode shape at each 

resonant frequency will be used for structural damage identification.  

3.4 The criteria to assess the noise robustness of mode shapes 

In order to assess noise robustness of the evaluated mode shapes, Gaussian white noise 

is added to contaminate the simulated velocity responses 𝐘 ∈ ℝ𝑁m×𝑁 in the form of  

 𝐘𝑙 = 𝐘𝑙 + 𝐧n𝑛level𝜎(𝐘𝑙), 𝑙 = 1, 2,⋯ ,𝑁m (3.23) 

where 𝐧n ∈ ℝ1×𝑁 contains normally distributed random values with a zero mean and 

a unit variance, 𝑛level is the noise level range of [0 1] and 𝜎(𝐘𝑙) denotes standard 

deviation of vibration responses at 𝑙th measurement point. 

Moreover, two indicators: the averaged relative error and coefficient of variation, are 

introduced are adopted to assess the noise robustness of the proposed two mode shape 

estimation methods 

3.4.1 Averaged relative error 

The averaged relative error (ARE) is calculated according to Eq. (3.24) 
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 𝐴𝑅𝐸φ𝑟,𝑙 =
1

𝑁a 
∑

|𝜑𝑟,𝑙−𝜑𝑟,𝑙̅̅ ̅̅ ̅
𝑗
|

|φ𝑟,𝑙|

𝑁a 
𝑗=1  (3.24) 

where φ𝑟,𝑙  and φ̅𝑟,𝑙  denote the mode shape values at measurement point 𝑙  without 

noise and with noise, respectively. 𝑁a indicates the number of noise realisation. 

3.4.2 Coefficient of variation 

The coefficient of variation (CV) is defined as  

 𝐶𝑉(φ̅𝑟,𝑙) = std(�̅�𝑟,𝑙) mean(�̅�𝑟,𝑙)⁄  (3.25) 

where ‘std’ and  ‘mean’ stand for standard deviation  and mean operator, respectively.   

3.5 Numerical studies 

A cantilever beam is simulated to demonstrate the noise robustness of the proposed 

mode shape estimation methods. This cantilever beam is modelled using 40 elements 

in MATLAB according to Euler-Bernoulli beam theory with Rayleigh damping, 𝐂 =

𝛼𝐌+ 𝛽𝐊 (𝛼 = 4.0136 and 𝛽 = 5.0850 × 10−6), which leads to a modal damping 

level of 1% for the first and third modes and 0.5% for the second mode of this beam. 

Its geometrical and material properties are tabulated in Table 3.2. Random excitation 

is applied at point 20 and velocity time series are ‘measured’ at the prescribed 20 nodes 

along the beam at an equal distance of 0.035m, as shown in Figure 3.1. 

 

Figure 3.1  A steel cantilever beam. 

Table 3.2  Material properties of steel beam. 

Properties Value 

Length (m) 0.7 

Cross-section (m×m) 0.02×0.02 

Young’s modulus (GPa) 210 

Mass density (kg/m3) 7850 

Poisson ratio 0.33 
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Noise of the same level of 5% is added independently of 𝐘 1000 times. With each 

noise realisation, the first three mode shapes are estimated by the proposed methods, 

respectively. The comparisons with other popular mode shape estimation methods are 

presented as well. 

3.5.1 Numerical study of the enhanced TDD method 

An example of the enhanced TDD method is given here to show its noise robustness, 

which combines the infinite impulse response (IIR) filters and JAD approach. There 

are three steps: (1) identify the resonant frequencies; (2) design a set of infinite impulse 

response (IIR) filters with different orders and bandwidths to extract the targeted mode 

and compute the covariance matrices of the filtered data; (3) apply JAD approach to 

the covariance matrices in step 2 to estimate the mode shape.  

An estimate of the number of resonant frequencies in the output measurements can be 

made in a few ways, for instance, using the number of peaks in the trace plot of power 

spectral density matrix or in the singular value spectrum plot obtained by SVD of 

power spectral density matrix. Here, the latter is adopted and the singular value 

spectrum using the velocity responses is presented in Figure 3.2. 

 

Figure 3.2  Singular value spectrum plot of numerical study. 

At a resonant frequency 𝜔𝑟 such as peaks 1, 2 and 3 in Figure 3.2, two parameters, the 

filter orders and the band-pass widths  ((1 − 𝑘%)𝜔𝑟 ≤ 𝜔𝑟 ≤ (1 + 𝑘%)𝜔𝑟) , are 
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adjusted to obtain a series of IIR filters. An IIR filter includes both feedback and feed-

forward terms, which is expressed as 

  �̂�(𝑗) = ∑ 𝑎ℎ1
𝑁1
ℎ1=1

�̂�(𝑗 − ℎ1) + ∑ 𝑏ℎ2
𝑁2
ℎ2=0

𝑦(𝑗 − ℎ2) (3.26) 

where 𝑁1 denotes the feedback filter order, 𝑁2 indicates the feed-forward filter order 

and �̂�(𝑗) is the output signal. Taking the Z-transform of Eq. (3.26), the IIR filter is 

converted to 

 𝐻(𝑧) =
∑ 𝑏ℎ2
𝑁2
ℎ2=0

𝑧−ℎ2

1−∑ 𝑎ℎ1𝑧
−ℎ1𝑁1

ℎ1=1

 (3.27) 

And its frequency response form is  

 𝐻(ej𝜔) =
∑ 𝑏ℎ2
𝑁2
ℎ2=0

e−jℎ2𝜔

1−∑ 𝑎ℎ1e
−jℎ1𝜔𝑁1

ℎ1=1

 (3.28) 

In this study, the filter order 𝑁1 = 𝑁2 = 8,10,12, 14  and the band-pass control 

parameter 𝑘 = 2,4,6,8 are used. Thus a total number of 16 IIR filters is designed to 

isolate each targeted mode. Figure 3.3 shows an example of the eighth-order IIR filter 

with band-pass 28-35Hz.  

 

(a) (b) 

Figure 3.3  Eighth-order IIR filter with band-pass 28-35Hz: (a) the whole frequency 

band (b) local magnification; the red line indicates the designed filter in theory while 

the blue line denotes the practical filter. 

Now, the covariance matrices of filtered vibration data associated with the 𝑟-th mode 

shape is 

0 200 400 600 800

-250

-200

-150

-100

-50

0

Frequency (Hz)

M
a
g

n
it
u

d
e
 (

d
B

)

Magnitude Response (dB)

20 25 30 35 40

-20

-15

-10

-5

0

5

Frequency (Hz)

M
a
g

n
it
u

d
e
 (

d
B

)

Magnitude Response (dB)



46 

 

 𝐑�̃��̃�
𝑟,𝑖 (0) = 𝚽𝐑

q(1)q(1)
𝑟,𝑖 (0)𝚽T + 𝐑ẽẽ

𝑟,𝑖(0) (3.29) 

where 𝑖  indicates the covariance matrix calculated using the 𝑖 -th IIR filter and 𝑟 

denotes the targeted mode. Figure 3.4 presents the mode shape estimation results over 

1000 independent simulation. 

 

(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 3.4  Mode shapes and their CVs over 1000 noise realisations. 

It is clear in Figure 3.4 (b), (d) and (f) that the identified mode shapes of the proposed 

enhanced TDD method are much more accurate and noise robust than those by the 

traditional TDD method, as they have smaller CV values. Hence, CPCA performs 

better in mode shape estimation than the traditional PCA.  
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3.5.2 Numerical study of the enhanced FDD method 

Figure 3.5 illustrates the mode shapes and their CVs of FDD method and enhanced 

FDD method.  

 

(a) (b) 

  

(c) (d) 

 

(e) (f) 

Figure 3.5  Mean real part of MS’s and CV of absolute MS’s. 

It is indicated in Figure 3.5 (d)-(f) that the identified MS’s of JAD method are more 

robust to noise than those of FDD method due to their smaller CV values.  
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3.6 Conclusions 

In this chapter, two enhanced mode shape estimation methods are proposed based on 

common principal component analysis of multiple covariance matrices and power 

spectral density matrices, respectively. The advantage of doing this is that these 

methods provide a kind of ‘average Eigen structure’ shared by a group of matrices, 

which statistically deals better with the measurement noise than methods base on a 

single matrix such as principal component analysis or SVD method. Moreover, in 

frequency domain, using the PSD matrices associated with a narrow frequency band 

can minimise the leakage effects as well.  

Numerical simulation of responses contaminated by Gaussian white noise 

demonstrates that the proposed common principal component analysis of multiple 

matrices perform better in estimation of mode shapes. The noise robustness of the 

estimated mode shapes promise a good accuracy of damage identification.  

Moreover, the identified CDS’s are an estimate of mode shapes and this indicates that 

common component analysis method has the potential to improve the accuracy of 

operational modal analysis, compared with traditional modal identification methods 

using one or two matrices. 
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Chapter 4  

 

Robust multi-damage identification of beams using 

only output responses of damaged structures 

 

 

 

The robust estimation of mode shapes from output-only responses has been studied in 

Chapter 3. The purpose of this chapter is to develop a baseline-free robust damage 

index for multi-damage identification by using damage-induced curvature changes of 

estimated mode shapes in Chapter 3. Although baseline-free damage identification 

methods have great advantages in practical applications, they face two main challenges: 

(1) the lack of baseline data of healthy structures for damage information extraction 

and (2) the demand of robust index for multi-damage localisation. For the first problem, 

an adaptive gapped smoothing method (GSM) is proposed to overcome the noise 

susceptibility and low accuracy of traditional GSM. For the second problem, a robust 

multi-damage index is developed based on damage-induced curvature changes of 

several modes, which is capable of damage localisation and relative severity 

quantification. Finally, numerical and experimental examples of beams with multi-

cracks are studied to verify the effectiveness and advantages of the proposed baseline-

free robust multi-damage index. Moreover, a comparison with some typical damage 

localisation methods is presented to demonstrate the better damage localisation 

performance of the new robust multi-damage index.  
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4.1 Introduction  

The popular approaches of non-model-based damage identification are through a 

distance or similarity measure, which discerns the differences between damage 

features before and after damage for damage detection, localisation and severity 

quantification. For examples, Pandey et al. [64] demonstrated that absolute changes of 

mode shape curvatures before and after damage was an efficient indicator of damage. 

Galvanetto and Violaris [180] utilised the differences of proper orthogonal modes 

(POM) between healthy and damaged structures to localise damage in beams.  

However, the drawback of this kind of methods is that they require the CDS’s of 

undamaged structures, which are difficult or impossible to be acquired in practical 

application. Moreover, even when the CDS’s of healthy structures are available, the 

operational and environmental variability or various uncertainties increases the CDS 

discrepancy between the healthy and damaged structures, which degrades the accuracy 

of extracting damage-induced CDS changes. Therefore, it is desirable and promising 

to develop a kind of baseline-free robust multi-damage identification methods that 

only require information of output responses of damaged structures [154, 181, 182].  

In some studies [183, 184, 185], the localisation of structural damage is achieved 

directly by detecting the positions of sudden CDS curvature changes. However, this 

kind of approaches is vulnerably affected by the density of measurement points and 

measurement noise. Nowadays, the vibration responses of a large number of 

measurement points are readily acquired by non-contact scanning laser Vibrometer 

with high accuracy but the measurement noise is inevitable. Furthermore, the 

measurements of continuously scanning laser Vibrometer are easily contaminated by 

speckle noise [122]. To boost the efficiency and accuracy of damage identification 

using the damage-induced curvature singularities of CDS’s, some advanced spatial 

feature processing approaches such as fractal dimension method, multi-scale 

approaches and Teager energy operator are widely utilised to examine the damage-

induced local shape singularities while suppressing the effects of measurement noise.   

Moreover, it is worth to notice that methods like fractal dimension, multi-scale 

approaches or Teager energy operator still use the sudden shape changes of a single 

CDS for damage identification. For instances, Hadjileontiadis et al. [129] developed a 

fractal dimension based crack indicator based on fundamental vibration mode, which 
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could localise and relatively quantify the crack. Rucka and Wilde [14] applied 

continuous wavelet transform to fundamental mode shapes of beams and plates, which 

detects the shape singularities of a single mode shape for damage localisation. Cao et 

al. [186] employed the Teagar energy operator to manifest the damage-caused local 

mode shape curvature changes. And wavelet transform was applied to reduce the noise 

effects on the mode shape curvature estimation. 

It is well known that a certain CDS (such as a mode shape) is sensitive to damage at 

some locations whilst less sensitive to damage at some other locations. Hence, a multi-

damage index relying on a single CDS is not reliable and accurate. A robust multi-

damage index should be defined based on damage information of several CDS’s. In 

this case, polynomial fitting/smoothing methods like GSM are able to extract damage-

induced changes of CDS’s for a baseline-free robust multi-damage index, as they can 

approximate the CDS’s of healthy structures based on CDS’s of damaged structures 

[140].  

Nevertheless, when using the GSM, the polynomial order is usually determined 

without taking into consideration the data of CDS’s. In order to enhance the accuracy 

and noise robustness of extracted damage-induced shape changes, an adaptive GSM is 

proposed, which adopts the cross validation method to obtain the optimal polynomial 

order. Moreover, before applying GSM method, de-noising methods such as wavelet 

transform and moving average filtering can be used to improve the noise robustness. 

4.2 Baseline-free robust multi-damage index 

With the estimated CDS’s 𝚽d = (𝛗1
d, 𝛗2

d, ⋯ ,𝛗𝑁r
d ) of damaged structures, damage 

identification is conventionally accomplished by comparing with the CDS’s 𝚽 =

(𝛗1, 𝛗2, ⋯ ,𝛗𝑁r) of healthy structures. The difference or distance between 𝚽 and 𝚽d 

at measurement point 𝑙 is measured by   

 𝐷𝐼𝑙(𝚽 ∥ 𝚽d) = ∑ 𝑤𝑟,𝑙|𝜑𝑟,𝑙 − 𝜑𝑟,𝑙
d |

2𝑁r
𝑟=1  (4.1) 

where 𝑤  denotes the weighting coefficient, 𝑟  indicates the 𝑟 -th CDS 𝛗𝑟  and 

𝑁r  represents the total number of CDS’s concerned for damage identification. 

Normally, the absolute CDS difference ∆𝛗𝑟 = |𝛗𝑟 −𝛗𝑟
d|  has a big variation in 

magnitude for different CDS’s (|vector| denotes the absolute value of each term of a 
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vector not the traditional Euclidean distance in this thesis). If they are simply added 

together, the contribution of each ∆𝛗𝑟 to the multi-damage index is not even. Table 

4.1 tabulates some common damage identification indexes. 

Table 4.1  Some typical damage identification indexes. 

Method Damage index 

Co-ordinate modal assurance 

criterion [121] 

|∑ 𝜑𝑟,𝑙
u 𝜑𝑟,𝑙

d𝑁r
𝑟=1 |

2

∑ (𝜑𝑟,𝑙
u )

2𝑁r
𝑟=1

∑ (𝜑𝑟,𝑙
d )

2𝑁r
𝑟=1

 

Mode shape difference method ∑ |𝛗𝑟
d −𝛗𝑟

u|
𝑁r
𝑟=1   

Weighted mode shape difference 

method ∑|
𝝋𝑟
d

𝜔𝑟
d
−
𝝋𝑟
u

𝜔𝑟
u|

𝑁r

𝑟=1

 

Mode shape curvature difference 

method 
 ∑ |𝛗d

𝑟

′′
−𝛗u

𝑟
′′|

𝑁r
𝑟=1  

Damage index method [144] ∑
(𝜑𝑟,𝑙

d′′2+∑ 𝜑𝑟,𝑙
d′′2𝑁m

𝑙=1 )∑ 𝜑𝑟𝑙
u′′2𝑁m

𝑙=1

(𝜑𝑟,𝑙
u′′2+∑ 𝜑𝑟,𝑙

u′′2𝑁m
𝑙=1 )∑ 𝜑𝑟𝑙

d′′2𝑁m
𝑙=1

𝑁r
𝑟=1   

Flexibility matrix changes method 

[133] ∑(
𝛗𝑟
d𝛗𝑟

dT

(𝜔𝑟
d)
2 −

𝛗𝑟
u𝛗𝑟

uT

(𝜔𝑟
u)2

)

𝑁r

𝑟=1

 

 

It is shown in Table 4.1 that the damage indexes normally combine the damage 

information of several mode shapes or mode shape curvatures, which are simply added 

up or weighted by natural frequencies. In order to evenly using the damage information 

of each CDS, a robust multi-damage index (DI) is proposed in Eq. (4.2) by 

incorporating the damage-induced curvature changes of several CDS’s. Furthermore, 

the proposed robust multi-damage index is baseline-free, which is defined as the 

distance between smoothed CDS curvature �̂�′′ and original CDS curvature 𝚽d′′ of 

the damaged structure. 

 

𝐷𝐼𝑙 = 𝜌𝑙𝛾𝑙𝛿𝑙 ,    

𝜌𝑙 = (∏ max(|�̂�𝑟
′′ −𝛗𝑟

d′′|)
𝑁r
𝑟=1 )

1

𝑁r

𝛾𝑙(�̂�
′′  ∥ 𝚽d′′) = ∑ 𝑤𝑟 |�̂�𝑟,𝑙

′′ − 𝜑𝑟,𝑙
d ′′

|
𝑁r
𝑟=1

𝛿𝑙(�̂�
′′  ∥ 𝚽d′′) = ∑ 𝑤𝑟

2 |�̂�𝑟,𝑙
′′ − 𝜑𝑟,𝑙

d ′′
|
2

𝑁r
𝑟=1

 (4.2) 

where the weighing coefficient 𝑤𝑟 is 1 max∆𝛗𝑟
′′⁄  (∆𝛗𝑟

′′ = |�̂�𝑟
′′ −𝛗𝑟

d′′|). Moreover, 

𝛾𝑙 and 𝛿𝑙  denote the normalised first-order and second-order moments of shape 
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distortions ∆𝜑𝑟,𝑙
′′ . In addition, 𝜌𝑙 provides a global magnitude measure, which enables 

the proposed multi-damage index to quantify the relative damage severity. 

In Eq. (4.2), the curvature of CDS’s is used as it is more sensitive to damage than the 

CDS’s themselves, which is computed through the second-order central difference 

approach as 

 𝜑𝑟,𝑙
d ′′

=
𝜑𝑟,𝑙+1
d −2𝜑𝑟,𝑙

d +𝜑𝑟,𝑙−1
d

𝑑x
2  (4.3) 

where 𝑑x represents the distance between two successive measurement points and a 

prime indicates differentiation with respect to the spatial coordinate. Although it is 

fairly straightforward to compute the curvature of CDS’s using Eq. (4.3), the accuracy 

is affected by the density of measurement points and noise level. Basically, to achieve 

good accuracy of CDS curvature estimation, a dense measurement grid and an accurate 

extraction of CDS’s are required.  

The purpose of this chapter is to develop baseline-free robust multi-damage 

identification index. In this case, 𝚽 of healthy structures is not available and 𝚽 is 

approximated by applying polynomial smoothing approach to the CDS’s 𝚽d of 

damaged structures.  

4.3 Estimate �̂�′′ based on CDS’s of damaged state 

Now, the crucial work is to estimate the smoothed CDS �̂�𝑟
′′ and shape distortion ∆𝛗𝑟

′′. 

In theory, there are two approaches to calculate �̂�′′ : one is to fit the CDS first and 

then calculate its curvature and the other one is to fit the curvature of CDS’s directly. 

The latter approach is selected due to its higher damage sensitivity and accuracy. 

Ratcliffe [140] proposed a gapped smooth method, which is  

 �̂�𝑟
′′(𝑥, 𝐜) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 + 𝑐3𝑥
3 (4.4) 

where 𝑥 indicates location of the measured CDS curvature along a beam-type structure 

and 𝐜 = [𝑐0, 𝑐1, 𝑐2, 𝑐3]  are coefficients of the cubic polynomial. The two CDS 

curvature values 𝜑𝑟,𝑙−2 
′′ and  𝜑𝑟,𝑙−1

′′  before measurement point 𝑙   and the two CDS 

curvature values 𝜑𝑟,𝑙+1
′′  and 𝜑𝑟,𝑙+2

′′  after measurement point 𝑙 are used to compute 𝐜 

and predict �̂�𝑟,𝑙
′′  at measurement point 𝑙.  
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If damage-induced shape distortions are present at several adjacent measurement 

points, the damage index determined by GSM cannot detect and localise the damage 

accurately. As an improvement, an adaptive gapped smoothing method is proposed in 

Eq. (4.5) to enhance the noise robustness and accuracy of damage identification.  

 �̂�𝑟
′′(𝑧, 𝐜, 𝑝) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 +⋯+ 𝑐𝑝𝑥
𝑝 (4.5) 

where 𝐜 = [𝑐0, 𝑐1, 𝑐2, ⋯ , 𝑐𝑝] contains the polynomial coefficients and 𝑝 indicates the 

adaptive polynomial order. Figure 4.1 illustrates the calculation of CDS curvature 

difference ∆𝜑𝑟,𝑙
′′  by adaptive GSM.  

 

Figure 4.1  Illustration of adaptive gapped smoothing method.  

In fact, the greater the order of polynomial in Eq. (4.5), the more accurate and flexible 

the fitting is. However, over fitting the training data with a great order causes poor 

generalisation and leads to inaccurate  �̂�𝑟,𝑙
′′ , which also degrades the accuracy of 

damage identification. In order to obtain the optimal polynomial order 𝑝  for 

polynomial approximation and generalisation, cross-validation method is adopted to 

determine 𝑝  in the range of [0, 𝑝max]  for different skipped points of each CDS 

curvature. In this chapter, the cross-validation subsets  𝑘c = 3  is used and the 

maximum order 𝑝max is calculated as 

  𝑝max = ⌊(𝑘c − 1) 𝑘c⁄ (𝑁m − 2) − 1⌋  (4.6) 

where ⌊ ⌋ is the floor operator. If the number of measurement points 𝑁m is large, it is 

better to separate them into several segments.   
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4.4 Numerical examples 

4.4.1 A beam with two open cracks 

A cantilever beam with two open cracks is first studied to demonstrate the damage 

identification performance of the proposed adaptive GSM and multi-damage index. 

The material properties of the cantilever beam are listed in Table 4.2 and the crack 

configurations are tabulated in Table 4.3.  

Table 4.2  Material properties of steel beam.  

Property Value 

Cross-section dimensions (m×m) 0.02×0.02 

Young’s modulus (GPa) 210 

Mass density (kg/m3) 7861 

Poisson ratio 0.33 

Table 4.3  Information of crack configurations. 

Cracks Location Measurement points Width Depth percentage 

Crack 1 0.2m 10~11 0.001m 2%, 5%, 20% 

Crack 2 0.4m 20~21 0.001m 2%, 5%, 20% 

 

A cantilever beam of length 0.7m with two open cracks is modelled in ABAQUS using 

672 CPS8R elements as shown in Figure 4.2. CPS8R is an 8-node biquadratic plane 

stress quadrilateral element with reduced integration. It is selected as the quadratic 

approximation tends to be better than the linear one and reduced integration is used to 

decrease the computational costs. During the simulation, Rayleigh damping, 𝐂 =

𝛼𝐌+ 𝛽𝐊 with 𝛼 = 4.0136 and 𝛽 = 5.0850 × 10−6 is considered, which leads to a 

modal damping level of 1% for the first and third modes and 0.5% for the second mode 

of this beam. Pseudo-random excitation in frequency range of 0-800Hz is applied at 

the free end of the beam and velocity time series are ‘measured’ at the prescribed 35 

red points with an equal distance of 0.02m. The singular value spectrum plot is 

presented here to show the number of excited modes, which is computed by applying 

SVD to the PSD matrix at each frequency. In Figure 4.3, the first five singular values 

at each frequency are plotted to indicate the first three excited modes.  In addition, the 
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numerical simulation is solved by using 215, 672 and 3746 CPS8R elements to assure 

that 672 CPS8R elements are enough to promise a convergence solution.   

 

Figure 4.2  Meshed cantilever beam with two open cracks of 20% depth. 

 

 

Figure 4.3 Singular value spectrum plot of PSD matrices. 

The first three mode shapes and their associated curvatures are presented in Figure 4.4, 

which are estimated by the enhanced TDD method in Chapter 3. By comparison 

between Figure 4.4 (a) and Figure 4.4 (b), it is concluded that mode shape curvatures 

are much more sensitive to damage, since the damage locations are manifested clearly 

in the mode shape curvature plots. Moreover, a certain mode shape is demonstrated to 

be sensitive to damage at specific positions. For instance, the curvature of second mode 

shape (Figure 4.4 (d)) is sensitive to crack 2 whilst the curvature of first and third mode 

shape (Figure 4.4 (b) and Figure 4.4 (f)) are more sensitive to crack 1. In addition, the 

magnitude of mode shape curvatures in Figure 4.4 (b), (d) and (f) indicates that the 

second and third mode shapes are much more sensitive to damage than the first mode 

shape, which can be further validated by Figure 4.5 (a), (c) and (e).  
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(a) First mode shape (b) First mode shape curvature 

   

(c) Second mode shape (d) Second mode shape curvature 

  

(e) Third mode shape (f) Third mode shape curvature 

Figure 4.4  Mode shapes and their curvatures of numerical study of 20% depth. 

4.4.1.1 Comparison between adaptive GSM and traditional GSM  

In this example, for the adaptive GSM, only one window is used, which means all the 

measurement points are used to find the optimal polynomial order. The extracted 

damage features of the first three mode shape curvatures are presented in Figure 4.5.  
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(a) First mode shape curvature (b) First mode shape curvature 

   

(c) Second mode shape curvature (d) Second mode shape curvature 

   

(e) Third mode shape curvature (f) Third mode shape curvature 

Figure 4.5  Damage identification using adaptive GSM and traditional GSM. 

It is clear from Figure 4.5 that damage index values around the damage locations have 

sharp peaks for the adaptive GSM whereas there are several distortion points for the 

traditional GSM, which is not accurate for the damage localisation in this example. 

Furthermore, Figure 4.5 also implies that different mode shapes are sensitive to 

damage at different positions. Therefore, it is not accurate and robust to detect damage 

just using damage information of a single mode shape. The proposed damage index 

for multi-damage localisation is shown in Figure 4.6, which combines the damage 

information of the first three mode shapes. In comparison with the damage 
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identification base on an individual mode shape curvature, the integrated damage index 

is sensitive to both cracks.  Moreover, the damage index magnitudes of adaptive GSM 

is larger than these of traditional GSM, which demonstrates that the damage index 

based on adaptive GSM is more sensitive to damage.  

    

(a) (b) 

Figure 4.6  Integrated damage index based on first three mode shapes. 

4.4.1.2 Damage index of different crack depths and noise levels  

Figure 4.7 presents the damage index values of a beam with two open cracks of 2%, 

5% and 20% depths, respectively. Moreover, different levels of Gaussian white noise 

are added to study the noise robustness of the proposed multi-damage index. 
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(a) 2% depth (b) 2% depth 

    

(c) 5% depth (d) 5% depth 

    

(e) 20% depth (f) 20% depth 

Figure 4.7  Damage index values of three damage depth and noise levels. 

Without noise effects, the two cracks of all the three depths can be accurately localised 

by using either adaptive GSM or traditional GSM. But the comparison between Figure 

4.7 (e) and Figure 4.7 (f) shows that damage identification of adaptive GSM is much 

more accurate and noise robust than traditional GSM. Furthermore, Figure 4.7 (a), 

Figure 4.7 (c) and Figure 4.7 (e) indicate that the deeper the crack is, the bigger the 

magnitude of the damage index values and the more noise robust it is. Thus, the 

proposed multi-damage index is effective to localise the damage positions and indicate 

the relative damage severity. 
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4.4.2 A beam with two breathing cracks 

In section 4.4.1, the proposed multi-damage index is validated to be effective for a 

beam with multiple open cracks. In this section, the proposed damage identification 

method will be applied to localise breathing cracks in a beam to test its feasibility and 

efficiency for breathing crack identification.  

A cantilever beam with two breathing cracks is simulated and tested under the same 

condition as the example of a beam with two open cracks in section 4.4.1. The 

breathing cracks are modelled in ABAQUS using 2-D FE model as shown in Figure 

4.8. More details about breathing crack modelling will be presented in Section 5.2.2 

of Chapter 5.  

 

Figure 4.8  Meshed cantilever beam with two breathing cracks of 20% depth. 

Figure 4.9 shows the damage index values of a beam with two breathing cracks of 2%, 

5% and 20% depths, respectively, which are based on adaptive GSM not the traditional 

GSM.  
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(a) 2% depth using adaptive GSM (b) 5% depth using adaptive GSM 

  

 

(c) 20% depth using adaptive GSM 

Figure 4.9 Damage index values of a beam with two breathing cracks. 

In comparison with Figures 4.7 (a), (c) and (e), the damage index values for the 

breathing cracks in Figure 4.9 are much smaller than those of the open cracks with the 

same depths. Moreover, it is harder to localise the smaller depth of breathing cracks 

than open cracks. For instance, the first breathing crack in Figure 4.9 (a) is hard to be 

detected whilst the open crack can be clearly localised in Figure 4.7(a), especially for 

noisy data. In conclusion, the proposed damage index is less sensitive for the 

identification of breathing cracks. 

4.5 Experimental studies 

The purposes of this section are threefold. First, the proposed adaptive GSM and robust 

multi-damage index will be validated. In addition, a comparison with some traditional 

damage indexes will be presented. Secondly, the damage identification performance 

of real part, imaginary part and the absolute values of modes shape curvatures will be 

investigated. The mode shapes are evaluated by proposed enhanced FDD method in 

Chapter 3 and the mode shape curvatures are calculated by second-order central 

difference approach. Finally, by comparison with the damage identification results 
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based on traditional FDD method, damage identification results using the enhanced 

FDD method are demonstrated to be much more accurate and noise robust.  

Two steel beams having dimensions of 0.7 × 0.02 × 0.02 m3 with two open cracks 

are tested. Experimental set-up and the test beam sample are presented in Figure 4.10 

and Figure 4.11, respectively. A PSV-500 scanning laser Vibrometer is used to acquire 

velocity responses of the prescribed 21 points (see the blue dots) along the beams as 

shown in Figure 4.11. Although the accuracy of damage localisation is highly 

dependent on the density of measurement points, for the demonstration of the proposed 

CDS estimation method and the new damage localisation index, a few measurement 

points are enough.  In this experiment, a low measurement point density strategy is 

adopted. The highest frequency concerned is the third natural frequency and its mode 

shape is graphed in Figure 4.4 (e), which can be regarded as 1.25 cycles of a sinusoidal 

signal. In order to capture the damage-induced local mode shape changes, 16 

measurement points are used for each cycle. Thus, a number of measurement points 

around 20 is used.  

Pseudo-random excitation of frequency range 0-800Hz is generated by the PSV-500 

integration system and applied to the free end of cantilever beam by a shaker (LDS 

V406). Damage is cut as small slots at different locations and depths. The information 

of cracks in two experimental examples are listed in Table 4.4 and the cracks are 

located on the back surface and marked by red lines on the front surface in Figure 4.11.  

 

  

Figure 4.10  Experimental set-up. 
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Figure 4.11  A cantilever beam with two open cracks.  

Table 4.4  Information of crack configurations for experiments. 

Examples Cracks Location Measurement 

points 

Depth 

percentage 

Width 

1 Crack 1 0.2m 6~7 20% 0.001m 

1 Crack 2 0.4m 12~13 20% 0.001m 

2 Crack 1 0.2m 6~7 30% 0.001m 

2 Crack 2 0.4m 12~13 30% 0.001m 

 

Before performing damage identification, the drop-out phenomenon under random 

excitation and its effects on the proposed damage identification method are discussed. 

Figure 4.12 presents power spectral density comparison between the output signal of 

PSV-500 system to the shaker and the practical input force from the shaker to the 

cantilever beam. It is clear that decreases occur in the vicinity of resonant frequencies 

in Figure 4.12 (b) due to the shaker-structure interactions [42]. 

   

(a)  (b)  

Figure 4.12  Power spectral density: (a) Output signal of system (b) Input force. 
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Under the effects of exciter-structure interactions, the frequencies of singular peak 

values are not the exact resonant frequencies of the cantilever beam but they are the 

resonant frequencies of the integrated system of shaker and cantilever beam. Thus, the 

estimated mode shapes still contain the damage information of the cantilever beam and 

the proposed damage identification method is still feasible and effective in this case. 

First, a beam with two open cracks (both 20% of the beam depth) is tested under 

pseudo-random exaction. Figure 4.13 presents the singular value spectrum calculated 

by SVD of PSD matrices. The three peak points, which correspond to the resonant 

frequencies of the combined beam-shaker system, are selected to estimate the 

associated mode shapes.  

 

 Figure 4.13  Singular value spectrum plot of experimental example 1. 

4.5.1 Real part of mode shapes for damage identification 

Figure 4.14 presents the first three mode shapes and their curvatures evaluated by FDD 

method and enhanced FDD method, respectively. From Figure 4.14 (b), (d) and (f), it 

is shown that mode shape curvatures estimated by enhanced FDD method are smoother 

than these by FDD method, which indicates the better noise robustness of enhanced 

FDD method during mode shape estimation. With the smoother mode shape curvatures, 

enhanced FDD method is able to enhance the accuracy of damage detection and 

localisation. 
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(a)  (b)  

 

(c)  (d)  

 

(e)  (f)  

Figure 4.14  Mode shapes and their curvatures of the first three modes. 

The damage index values calculated using adaptive GSM and GSM based on mode 

shape curvatures are presented in Figure 4.15. The comparison of Figure 4.15 (a) with 

Figure 4.15 (b) shows that the damage identification results by adaptive GSM are more 

accurate and noise robust than those of traditional GSM. Another conclusion is that 

damage identification of enhanced FDD method tends to be more sensitive to damage 

and robust to noise, which correctly identifies the two cracks. 
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(a) Adaptive GSM (b) Traditional GSM 

Figure 4.15  Damage index values of a beam with two cracks of 20% depth. 

Experimental example 2 is tested to make some further discoveries. Figure 4.16 shows 

the damage identification results based on the first three mode shapes. From the 

comparison of damage index magnitude with Figure 4.15, it is depicted that the 

damage index is able to indicate the relative damage severity. 

  

(a) Adaptive GSM (b) Traditional GSM 

Figure 4.16  Damage index values of a beam with two cracks of 30% depth 

Moreover, by increasing the depth of the two cracks, all the two mode shape estimation 

methods are shown to be effective in detecting and localising the damage in Figure 

4.16 (a). For smaller cracks in Figure 4.15, the identification results are sensitive to 

noise. Therefore, it is essential, for the sake of accurate and robust identification of 

smaller cracks, to investigate noise-robust mode shape estimation and damage-induced 

shape distortion extraction methods.  

4.5.2 Imaginary part and absolute value of mode shapes 

In the above study, damage identification is studied using the real part amplitude 

changes of mode shapes without considering the imaginary part or the absolute value 
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of mode shapes. However, the imaginary part of mode shapes corresponds to the out-

of-phase vibration and should be more sensitive to phase changes and the absolute 

value of mode shapes includes the total vibration information and thus can be also used 

to detect the damage-induced local stiffness reduction [187, 188]. Thus, a damage 

identification performance comparison of the real part, imaginary part and the absolute 

value of mode shapes should be conducted. Before investigating the imaginary part 

and the absolute value of mode shapes, the approach to improve damage identification 

accuracy using the real part of mode shapes is presented firstly. 

4.5.2.1 Improvements of real part of mode shapes for damage identification.  

In order to measure the relative vibration magnitude (RVM) between the real part and 

imaginary part of mode shapes, a criterion is defined as 

 𝑅𝑉𝑀𝛗𝑟 =
‖real(𝛗𝑟)‖

‖imag(𝛗𝑟)‖
 (4.7) 

where ‘real’ implies the real part of  mode shapes and ‘imag’ denotes the imaginary 

part of mode shapes. Then the relative vibration magnitude results in experimental 

examples 1 and 2 are listed in Table 4.5.  

Table 4.5  Relative vibration magnitude measure 𝑅𝑉𝑀𝛗𝑟.  

Methods 
Experimental example 1 Experimental example 2 

𝑅𝑉𝑀𝛗1 𝑅𝑉𝑀𝛗2 𝑅𝑉𝑀𝛗3  𝑅𝑉𝑀𝛗1 𝑅𝑉𝑀𝛗2 𝑅𝑉𝑀𝛗3 

Enhanced FDD 572.2 111.4 28.72 966.4 62.43 32.41 

FDD method 12.28 5.491 3.372 8.647 2.919 4.535 

Rotated FDD 586.5 97.24 39.07 871.6 89.05 46.39 

It is clear from Table 4.5 that the relative vibration magnitude measure  𝑅𝑉𝑀𝛗𝑟 of 

enhanced FDD method is much larger than traditional FDD method. In order to 

validate that maximizing  𝑅𝑉𝑀𝛗𝑟  is possible to improve the damage identification 

accuracy of the real part of mode shapes, a rotated FDD method is proposed to increase 

 𝑅𝑉𝑀𝛗𝑟 of mode shapes provided by FDD method through a plane rotation. In this 

method, the best straight line fit to all the elements of a mode shape plotted on a 

complex plane is determined and then the whole mode shape vector is rotated to make 

this best line to align with the horizontal (real) axis, which will boost  𝑅𝑉𝑀𝛗𝑟 of mode 
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shapes from FDD method.  𝑅𝑉𝑀𝛗𝑟  of the rotated FDD method is also tabulated in the 

last row of Table 4.5 and  𝑅𝑉𝑀𝛗𝑟  increase is remarkable when compared with the 

traditional FDD method.  

In addition, Figure 4.17 presents the damage identification comparison between 

enhanced FDD method and the rotated FDD method using the curvature of the real 

part of mode shapes. It is clear in Figure 4.17 that the rotated FDD method pinpoints 

the damage locations whereas the traditional FDD method provides inaccurate damage 

identification results in Figure 4.15 (a) and Figure 4.16 (a), which confirms that 

maximizing  𝑅𝑉𝑀𝛗𝑟  is a feasible way to enhance damage identification accuracy 

when using the curvature of the real part of mode shapes. Nevertheless, the damage 

identification results of enhanced FDD method is still better than the rotated FDD 

method as the rotated FDD method provides false damage alarms around measurement 

point 5 in Figure 4.17 (a) and measurement point 19 in Figure 4.17 (b).  

  

(a) Two cracks of 20% depth (b) Two cracks of 30% depth 

Figure 4.17  Damage identification results using real part of mode shapes. 

4.5.2.2 Imaginary part of mode shapes for damage identification.  

The imaginary part of mode shapes contains the out-of-phase vibration due to the 

phase differences between vibrations of measurement points of the original structure, 

and the phase differences between vibrations of measurement points of the damaged 

structure induced by the local damage. For practical engineering structures, the phase 

differences should be considered a sensitive damage feature since the local damage 

tends to cause unsynchronized movements [188]. In this study, the imaginary part 

curvature of mode shapes in experimental example 1 (two open cracks of 20% depth) 

is shown in Figure 4.18. 
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  (a)  (b)  (c)  

Figure 4.18  Curvature of the mode shape imaginary part of experimental example 1.  

It can be seen that the imaginary part does not provide reliable damage detection due 

to the uncertainties caused by measurement noise. The other reason for this is that the 

damage in the beams under study is linear damage (open cracks), which mainly affect 

the vibration amplitudes by reducing the local stiffness and the resultant local 

unsynchronised vibrations are not obvious. However, when using the complex mode 

shapes for damage identification, the imaginary part should be always investigated due 

to its sensitivity to phase changes. 

4.5.2.3 Absolute value of mode shapes for damage identification 

It is worth noting that the rotated FDD method is merely a plane rotation of mode 

shapes from FDD method and has the same absolute value. Thus, the rotated FDD 

method will not be discussed here. The absolute mode shapes of experimental example 

1 are presented in Figure 4.19. 

   

  (a) (b)  (c)  

Figure 4.19  Absolute value of mode shapes in experimental example 1.  

The absolute mode shape value plots show irregular shape features in mode shapes 

caused by taking absolute value (Figure 4.19 (b) and Figure 4.19 (c)), which lead to 

false damage alarms and as a result adaptive GSM is difficult to be applied. But in this 

case, damage could be identified by comparing the absolute mode shapes of 

undamaged structures with these of the damaged state. In order to apply adaptive GSM 

to the absolute value of mode shapes for damage identification without baseline data 
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of the healthy structures, the signed absolute value of mode shapes (having the same 

sign as the real part of mode shapes) is adopted. Then the damage identification index 

values are calculated and shown in Figure 4.20. 

  

(a) Experimental example 1 (b) Experimental example 2 

Figure 4.20  Damage identification results using the curvature of signed absolute 

value of mode shapes. 

Figure 4.20 illustrates that the signed absolute value of mode shapes can improve the 

damage identification results of traditional FDD method but the improvement for 

enhanced FDD method is not obvious when compared with the results in Figure 4.15 

(a) and Figure 4.16 (a). Moreover, it is demonstrated that enhanced FDD method 

performs better than FDD method when using the signed absolute value of mode 

shapes, as FDD method gives false damage detection around measurement points 4, 

11 and 18 in Figure 4.20 (a) and measurement point 19 in Figure 4.20 (b). In addition, 

the magnitude of the damage index values in Figure 4.20 (a) and Figure 4.20 (b) 

indicates the relative damage severity. It is apparent that the damage of experiential 

example 2 is more severe than damage of experiential example 1.   

4.5.3 The advantages of the proposed multi-damage index 

In order to validate the proposed weighing criterion and evaluate the performance of 

the proposed multi-damage index, a comparison with co-ordinate modal assurance 

criterion method (COMAC), mode shape curvature difference method (MSCD) and 

damage index method (DIM) is presented in Figure 4.21. Moreover, the formulations 

of these traditional damage indexes are tabulated in Table 4.6. 
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Table 4.6  A list of some common damage identification methods 

Method Damage index 

Co-ordinate modal assurance criterion 

[121] 

|∑ 𝜑𝑟,𝑙
u 𝜑𝑟,𝑙

d𝑁𝑟
𝑟=1 |

2

∑ (𝜑𝑟,𝑙
u )

2𝑁𝑟
𝑟=1

∑ (𝜑𝑟,𝑙
d )

2𝑁𝑟
𝑟=1

 

Mode shape difference method  ∑ |𝛗𝑟
d −𝛗𝑟

u|
𝑁𝑟
𝑟=1   

Mode shape curvature difference 

method  
 ∑ |𝛗d

𝑟

′′
−𝛗u

𝑟
′′|

𝑁𝑟
𝑟=1  

Damage index method [144] ∑
(𝜑𝑟,𝑙

d′′2+∑ 𝜑𝑟𝑙
d′′2𝑁m

𝑙=1 )∑ 𝜑𝑟,𝑙
u′′2𝑁m

𝑙=1

(𝜑𝑟,𝑙
u′′2+∑ 𝜑𝑟,𝑙

u′′2𝑁m
𝑙=1 )∑ 𝜑𝑟,𝑙

d′′2𝑁m
𝑙=1

𝑁𝑟
𝑟=1   

 

It can be observed that all the damage identification methods except COMAC method 

show some peaks around the damage positions, but the proposed damage index is the 

most robust to noise and provides fewer false alarms than other presented methods. 
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(a) Experimental example 1 (b) Experimental example 2 

 

(c) Experimental example 1 (d) Experimental example 2 

 

(e) Experimental example 1 (f) Experimental example 2 

 

(g) Experimental example 1 (h) Experimental example 2 

Figure 4.21  Damage identification results of different damage indexes  
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4.6 Conclusions 

This chapter studied two vital problems for mode shape based non-destructive damage 

identification: damage feature extraction without baseline information and robust 

multi-damage index. First, an adaptive GSM is proposed for better damage feature 

extraction. The better damage identification performance of adaptive GSM is validated 

numerically and experimentally using a beam with two open cracks by comparing with 

the traditional GSM. Secondly, the proposed multi-damage identification index 

combines the damage-induced curvature changes of several modes and a weighting 

criterion is applied to normalise the damage information contribution of each mode. In 

the numerical study, the proposed damage index is shown to be sensitive to smaller 

cracks of 2% of the beam depth and robust to the additive Gaussian white noise. The 

experimental studies validate that the proposed damage index is able to indicate the 

relative damage severity and it is more accurate and noise robust than some popular 

damage identification methods.   

Moreover, the damage performance of the real part, imaginary part and absolute value 

of mode shapes are discussed based on the experimental studies and the damage 

identification results of enhanced FDD method is proved to be better than these of 

traditional FDD method. In addition, other advantages of the proposed damage 

identification method include that (1) this method is applicable under various 

environmental and operational conditions and does not require prior knowledge about 

excitation forces and (2) this method is capable of identifying multiple damage 

locations. 
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Chapter 5  

 

Identification of breathing cracks in stepped beam-

type structures  

 

 

 
For open cracks, the damage-induced singularities of structural characteristic 

deflection shapes are investigated for robust multi-damage identification in Chapter 4. 

However, for breathing cracks, the damage-caused singularities will be much smaller 

and thus harder to be detected, as the breathing cracks mainly affect the vibration 

responses during the open state whereas the open cracks affect dynamic responses all 

the time (in relation to the undamaged beam). Fortunately, the identification of 

breathing cracks can take advantage of the inherent nonlinearity of breathing cracks to 

enhance its efficiency.  

In this chapter, two approaches are investigated to identify breathing cracks of stepped 

beam structures, which are sensitive to breathing cracks while insensitive to the steps. 

For the first approach, the deviations between the empirical cumulative distributions 

of output responses at different locations are evaluated to indicate the damage locations, 

which is only based on the vibration data of damaged structures. For the second 

approach, the super-harmonic deflection shapes are used to identify the breathing 

cracks of stepped beam structures. In order to reduce the noise effects, singular value 

decomposition is adopted to extract the dominant singular vector associated with the 

largest singular value as the super-harmonic defection shape at each super-harmonic 

frequency. Finally, three numerical case studies of a stepped beam with one or two 

breathing cracks are made to validate the feasibility and advantages of the two 

proposed approaches.  
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5.1 Introduction  

Cracks are a typical kind of damage and many studies have been carried out on the 

dynamic response of structures with cracks. Generally, open cracks are the most 

studied kind of structural damage and the resulting changes in modal parameters or 

their derivatives are applied to detect, localise or quantify the damage [17]. However, 

the assumption of cracks being constantly open is far from realistic situations. Fatigue 

cracks, normally modelled as breathing cracks, exist widely in structures that 

experience cyclic loads, which introduce nonlinearity to the structures due to the 

changing between open and closed states. Moreover, the physical principles of a 

fatigue crack and an open crack are obviously different. An open crack always has a 

measurable gap between the two crack surfaces, which never get into contact during 

vibration process. Chondros et al. [189] indicated that the crack severity of breathing 

cracks would be underestimated if the open-crack assumption was made to interpret 

vibration measurements. In addition, the application of linear multi-damage 

identification methods to identify breathing cracks has been demonstrated to be less 

sensitive in section 4.4.2 of Chapter 4. Overall, linear damage features are not suitable 

or less sensitive to identify fatigue cracks due to their nonlinearity [35].  

Essentially, the nonlinear damage identification problem can be equivalent to the 

detection of nonlinearity in structures, provided that the nonlinear damage is the only 

source of nonlinearity. In this chapter, identification of breathing cracks in stepped 

beam-type structures is investigated, as stepped beam-like structures are widely used 

in various engineering fields. It is clear that the presence of steps in beams will increase 

the difficulties of damage localisation. For a stepped beam with open cracks, both the 

steps and open cracks will cause local shape singularities to spatial characteristic 

deflection shapes, which can be identified by the proposed damage identification 

method in Chapter 4. Thus, further examination is required to check if there is damage 

presence around the stepped positions. However, for a stepped beam with breathing 

cracks, the nonlinearity of breathing cracks makes it possible to avoid the interference 

of steps in damage identification, as the steps do not produce nonlinearity. In this case, 

the identification of nonlinear damage can be extended to more geometrically complex 

structures. 



77 

 

In literature, many nonlinear damage identification methods have been proposed by 

utilising nonlinear characteristics like distortions of frequency response function, 

deviations of probability density function or the presence of super-harmonic 

components.  Rzeszucinski [190] suggested a condition indicator based on changes in 

the magnitude of normal probability density function, the increasing trend of which 

was much more robust and sensitive to fault propagation than kurtosis. Asnaashari 

[147] proposed a crack localisation method by using deviations from normal 

distribution of vibration responses. A normal distribution plot was adopted to calculate 

the deviations between the probability distribution of acceleration and the theoretical 

normal distribution. Nevertheless, the underlying theoretical probability distribution 

function of measured vibration data is not known. Hence, methods based on deviations 

between cumulative distribution and theoretical normal distribution of vibration may 

be unsuitable or less sensitive for non-random vibration. Todd [150] proposed a local 

attractor variance ratio approach to reveal damage-induced changes of geometric 

properties of the associated attractors. But it is not easy and takes much time to obtain 

the attractors, especially for complex structures. 

Inspirited by Asnaashari [147] and Todd [150], the first nonlinear damage 

identification method is proposed by using deviations between empirical cumulative 

distributions of vibration responses at different measurement points, which is effective 

to detect and localise the breathing cracks in stepped beam-type structures. The idea 

behind this is that the nonlinearity due to breathing cracks results in much bigger 

changes in empirical cumulative distributions of nearby measurement points of 

breathing cracks than those of the points further away from the breathing cracks. 

Traditionally, super-harmonic components of a sinusoidal excitation are used to 

indicate the presence of nonlinear damage in structures [19, 35]. Asnaashari and Sinha 

[184] applied the operational deflection shapes associated with the frequency of 

excitation and its higher harmonics to identify the location of the breathing cracks in 

beam structures. Inspired by this kind of methods, the super-harmonic deflection 

shapes estimated through frequency domain decomposition method is developed to 

localise breathing cracks in stepped beam structures.  

The structure of this chapter is organised as follows. In section 5.2, the modelling of 

fatigue cracks is presented first. In section 5.3, the first nonlinear damage identification 



78 

 

method is proposed and validated, which is based on the deviations between the 

empirical cumulative distributions of vibration responses at different measurement 

points. Then, in section 5.4, the second nonlinear damage identification method is 

developed and validated, which is based on the super-harmonic deflection shapes. 

Finally, the conclusions of nonlinear damage identification in stepped structures are 

summarised in section 5.5.  

5.2 Fatigue crack modelling  

While a beam is vibrating, the state of its cracked section varies from detachment to 

compression. This results in a modification of the local stiffness, and the stiffness value 

changes constantly during vibration process [71]. For many practical applications, a 

fatigue crack can be introduced in the form of the so-called “breathing crack”, and 

such a system can be considered bilinear. 

5.2.1 Discrete spring system  

The system shown in Figure 5.1 consists of a mass block 𝑚b and two linear springs. 

The mass block is attached to a linear spring 𝑘1 and contacts with the linear spring 𝑘2 

only when 𝑥 ≤ 0. The motion of the mass block starts at 𝑥 = 0, when the linear spring 

𝑘2 and the mass block touch but without any reaction force at this point. 

 

Figure 5.1  The one-degree-of freedom system. 

The equations of motion for this system are 

   {
𝑚b�̈� + 𝑘1𝑥 = 0   for 𝑥 > 0

𝑚b�̈� + (𝑘1 + 𝑘2)𝑥 = 0   for 𝑥 ≤ 0
   (5.1) 

And the two frequencies are 

 𝜔o = √
𝑘1

𝑚b
  for 𝑥 > 0, 𝜔c = √

𝑘1+𝑘2

𝑚b
  for 𝑥 ≤ 0 (5.2) 
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The natural frequency 𝜔b of this piecewise-linear single-degree-of-freedom system is 

calculated as 

 𝜔b =
2𝜔o𝜔c

𝜔o+𝜔c
   (5.3) 

For the beam, 𝜔o𝑖 and 𝜔c𝑖 represent the 𝑖–th frequency of the open and closed states, 

respectively. Analogous to Eq. (5.3), the effective natural frequencies (𝜔𝑖 ) of the 

breathing cracked beam is  

 𝜔𝑖 =
2𝜔o𝑖𝜔c𝑖

𝜔o𝑖+𝜔c𝑖
   (5.4) 

It is clear that 𝜔o𝑖 < 𝜔𝑖 < 𝜔c𝑖, which indicates that the natural frequency of a structure 

with a breathing crack is smaller than the closed state (healthy state) but bigger than 

the open state.  

5.2.2 2-D FE model of breathing cracks  

Numerous FE models have been developed to study the nonlinear behaviour of fatigue 

cracks. Qian et al. [191] derived the element stiffness matrix of breathing-cracked 

beam by integrating the stress intensity factor of the crack, which was obtained by 

means of Castigliano’s theorem in fracture mechanics. Simulation results of this FE 

model were in good agreement with experimental results. Andreaus et al. [35] 

addressed the breathing crack by a contact model using 2-D FE method, which 

discretised the contact surfaces to a series of linear contact segments. But each segment 

is only bounded by two nodes. In comparison with the node-to-node discretisation, 

ABAQUS Standard adopts surface-to-surface contact discretisation to define the 

contact constraints, which involves more master nodes per constraint to promise a 

better performance. Figure 5.2 presents the surface-to-surface discretisation of the 

contact surfaces, which allows the relative slide of the two contact surfaces.   

 

Figure 5.2  Surface-to-surface discretisation [192]. 
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In this research, the breathing cracks are modelled as 2-D transverse edge cracks in 

ABAQUS using CPS8R plane stress element with reduced integration. In the model, 

the two surfaces of a breathing crack are allowed to contact in longitudinal direction 

without interpenetrating (corresponding to hard contact model in ABAQUS) and slide 

against each other without friction in the lateral direction. The lateral motion of the 

breathing crack is considered here but the relative lateral movement of the two 

interfaces is slight. It is the behaver of the breathing crack in the longitudinal direction 

that causes the nonlinear vibration response. Three steps are taken to model a breathing 

crack in a 2-D FE model. First, a line is drawn to represent the crack, which is normal 

to the up-edge. Then, a seam is assigned to the line in interaction module to form an 

open crack. Finally, hard frictionless contact is applied to the two surfaces of the crack 

and the definition of hard contact is as 

 
𝑝c = 0 for 𝑑c  < 0
 𝑑c = 0 for 𝑝c  > 0 

  (5.5) 

where 𝑝c is the contact pressure and 𝑑c is overclosure between two side surfaces of a 

breathing crack. Figure 5.3 illustrates the open and closed states of a breathing crack. 

    

(a) (b) 

Figure 5.3. An example of a breathing crack (a) open state and (b) closed state. 

In order to demonstrate the feasibility and effectiveness of the proposed 2-D breathing 

crack model, a beam of dimensions 0.7 × 0.02 × 0.02 m3 with a breathing crack of 

50% depth at its mid-span is modelled and excited by a sinusoidal force of 𝜔F =52.19 

Hz at the free end of the beam. Super-harmonic components can be clearly observed 

in Figure 5.4, which are an indication of the presence of nonlinear stiffness (due to 

contact of the breathing cracks). 
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Figure 5.4  FFT spectrum of a beam with a breathing crack under a sinusoidal 

excitation at 𝜔F =52.19 Hz.  

5.3 The first breathing crack identification method 

In this section, deviations from normal distribution will be primarily presented to 

understand the fundamental theory. However, the theoretical distribution of practical 

measured responses is hard to obtain. Thus, a new breathing crack identification 

approach is proposed, which uses the deviations between empirical cumulative 

distributions of vibration responses at different measurement points, which is only 

based on the output responses of damaged structures.  

5.3.1 Deviations from normal distribution (DND) 

When a linear structure is subject to a random excitation, the vibration responses can 

be described by a normal distribution. But the presence of nonlinearity due to breathing 

cracks will disrupt the normal distribution. Therefore, the deviations from normal 

distribution can be used to detect the location of nonlinearity or localise the breathing 

crack.  

The normal probability plot is a graphical technique to determine the DND, which 

represents the ordered vibration response of certain measurement point against the 

theoretical normal distribution. Consider 𝐘𝑙 = {𝑦𝑙(1), 𝑦𝑙(2),⋯ , 𝑦𝑙(𝑁)}  denote an 

ascending ordered sample of vibration response at measurement point 𝑙 and the order 

statistic medians are defined as: 

 𝑌(𝑘) = 𝐺(𝑈(𝑘)) (5.6) 
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where 𝐺(∙) donates the percent point function of normal distribution, which is the 

inverse of normal cumulative distribution. 𝑈(𝑘) is the uniform order statistic medians 

[193], which is defined as 

 {
𝑈(𝑘) = 1 − 0.5(1 𝑁⁄ ) , for 𝑘 = 1

𝑈(𝑘) = (𝑘 − 0.3175) (𝑁 + 0.365)⁄ , for  𝑘 = 2,⋯ ,𝑁 − 1

𝑈(𝑘) = 0.5(1 𝑁⁄ ) , for 𝑘 = 𝑁

 (5.7) 

An example of normal probability distribution plot is presented in Figure 5.5. The 

vertical coordinate is the ordered response values while the horizontal coordinate is 

the normal order statistic medians. If the probability distribution of vibration response 

is a normal distribution, the points in normal probability plot will locate along a 

straight line. If not, the departures form this straight line indicate the deviations from 

normal distribution, which are calculated based on the dashed area in Figure 5.5. 

 

Figure 5.5  Normal Probability Plot. 

 𝐷𝑁𝐷𝑙 = ∑ (
|𝑦𝑙(𝑘−1)−�̃�𝑙(𝑘−1)|+|𝑦𝑙(𝑘)−�̃�𝑙(𝑘)|

2
)𝑁

𝑘=2 |𝑌(𝑘) − 𝑌(𝑘 − 1)|  (5.8) 

where �̃�𝑙(𝑘) represents the theoretical value of 𝑦𝑙(𝑘) according to normal distribution, 

which is the corresponding value of 𝑦𝑙(𝑘) in the red reference line.  

Although applying DND for damage identification is not limited in the case of random 

excitation, it is sensitive to the stepped geometry of structures and can be applied to 

only uniform structures [147]. To overcome this disadvantage, a new approach is 

proposed for breathing crack identification in stepped structures, which uses the 

deviations between empirical cumulative distributions.   
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5.3.2 Deviations between empirical cumulative distributions (DECD)  

In statistics, the empirical cumulative distribution function is an empirical measure of 

the vibration response dataset. For an intact beam, the measured responses at different 

locations will have identical probability distribution [190]. When a beam is damaged 

by breathing cracks, the nonlinearity of breathing cracks will result in the changes of 

empirical cumulative distribution and the changes mainly affect the nearby 

measurement points of breathing cracks. Hence, the damage can be localised by 

comparing the empirical cumulative distributions between vibration responses of 

different measurement points. 

In order to evaluate DECD, the Quantile-Quantile (Q-Q) plot is employed, which 

displays the quantiles of two datasets such as 𝑦𝑖(𝑡) and 𝑦𝑗(𝑡). First, they ordered 

ascendingly as {𝑦𝑖(1)  <  𝑦𝑖(2) < ⋯ < 𝑦𝑖(𝑁)} and {𝑦𝑗(1)  <  𝑦𝑗(2) < ⋯ < 𝑦𝑗(𝑁)}, 

respectively. Then, the data of the first and third quartiles are estimated from 𝑦𝑖(𝑡) as 

𝑦𝑖q1and 𝑦𝑖q3, and the same case for 𝑦𝑗(𝑡) to get 𝑦𝑗q1and 𝑦𝑗q3. Figure 5.6 shows an 

empirical Q-Q plot of  𝑦𝑖(𝑡) against 𝑦𝑗(𝑡). The equation of the red reference line in 

Figure 5.6 is expressed as 

 �̃�𝑗(𝑘) =
𝑦𝑗q3−𝑦𝑗q1

𝑦𝑖q3−𝑦𝑖q1
(𝑦𝑖(𝑘) − 𝑦𝑖q1) + 𝑦𝑗q1, 𝑘 = 1, 2,⋯ , 𝑁 (5.9) 

 

Figure 5.6  The Q-Q plot of y𝑖(𝑡) and y𝑗(𝑡) 

In Figure 5.6, if vibration responses 𝑦𝑖(𝑡) and 𝑦𝑗(𝑡)  possess the same probability 

distribution, the data points should fall approximately on the red straight line. If not, 

the departures from the red reference line can be used to represent the empirical 
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distribution deviations between 𝑦𝑖(𝑡) and 𝑦𝑗(𝑡), which are determined by the dashed 

area 

 𝐷𝐸𝐶𝐷 =

∑ [(|𝑦𝑗(𝑘) − �̃�𝑗(𝑘)| + |𝑦𝑗(𝑘 − 1) − �̃�𝑗(𝑘 − 1)|)|𝑦𝑖(𝑘) − 𝑦𝑖(𝑘 − 1)|] 2⁄
𝑁
𝑘=2  (5.10) 

where �̃�𝑗(𝑘) represents the corresponding value of 𝑦𝑗(𝑘) in the red reference line.  

5.3.3 Numerical studies 

There are three purposes of this section. First, stepped beams with one or two breathing 

crack are used to validate the feasibility and efficiency of the proposed DECD method. 

Secondly, a comparison with DND method is presented to demonstrate the advantage 

of DECD method in breathing crack identification of stepped beams. Finally, DECD 

method is shown to have the ability to indicate the relative damage severity.  

Three cases of a stepped beam with one or two breathing cracks at different locations 

are studied and the information of breathing cracks is given in Table 5.1. The total 

length of the stepped beam is 0.7 m and it is composed by two parts 0.35 × 0.30 ×

0.20m3 and 0.35 × 0.20 × 0.20m3 as shown in Figure 5.7. Moreover, the Young’s 

modulus is 210 GPa, mass density is 7861 kg/m3 and Poisson ratio is 0.33. 

Table 5.1  Cases of the stepped beam with cracks at different locations  

Case Crack 1 Crack 2 Position of the step 

1 
0.170 m 

(points 8 and 9) 
-- 

0.350 m 

(points 17 and 18) 

2 
0.350 m 

(points 17 and 18) 
-- 

0.350 m 

(points 17 and 18) 

3 
0.170 m 

(points 8 and 9) 

0.530 m 

(points 25 and 26) 

0.350 m 

(points 17 and 18) 

 

 

Figure 5.7  FE model of a stepped beam with a breathing crack (case 1). 

In order to validate the proposed method, the beam is excited by a sinusoidal force at 

50Hz. The depth of breathing crack is 10% of the local beam depth. The velocity 

responses of the prescribed 35 points are acquired. To simulate the experimental 
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condition, the measured velocity responses are contaminated by Gaussian white noise 

with signal to noise ratio (SNR) of 100dB. The damage identification results of DND 

and DECD methods are shown in Figure 5.8. The absolute magnitude of DND and 

DECD does not possess any physical meanings but the relative shape changes indicate 

the singularities of the structures. 

 
(a) (b) 

Figure 5.8  Damage identification results of case 1: (a) DND and (b) DECD.  

It can be concluded that both the DND and DECD methods are both efficient to localise 

the breathing crack. But the DND method is also sensitive to the steps of structures, 

which can provide false alarms of breathing cracks. The DECD presents a peak feature 

around the breathing crack position and does not have clear shape distortions around 

the steps.   

In order to validate the proposed DECD method in multiple breathing crack 

identification, a stepped beam with two breathing cracks of 10% of their local beam 

depths is simulated. The FE model and the damage identification results are shown in 

Figure 5.9 and Figure 5.10, respectively. 

 

 

Figure 5.9  FE model of a stepped beam with two breathing cracks (case 3). 
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(a) (b) 

Figure 5.10  Damage identification results of case 3: (a) DND and (b) DECD.  

It is clear that the proposed DECD approach can accurately identify the positions of 

two breathing cracks and is immune to the stepped geometry of structures, whilst the 

DND method cannot detect the second breathing crack and extremely sensitive to the 

stepped geometry. 

Another case is the breathing crack of 10% depth is located right at the stepped position, 

as shown in Figure 5.11. The presence of both stepped geometry and breathing crack 

makes the damage identification difficult. Figure 5.12 presents the damage 

identification results based on DND and DECD, respectively.  

 

Figure 5.11  FE model of a stepped beam with a breathing crack (case 2). 

 

(a) (b) 

Figure 5.12  Damage identification results of case 2: (a) DND and (b) DECD.  
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By comparing Figure 5.12 (a) with Figure 5.8 (a) or Figure 5.10 (a), the sudden 

increase feature of DND method is always present at the stepped position and it cannot 

be used to detect the breathing crack in this case. By comparing Figure 5.12 (b) with 

Figure 5.8 (b) or Figure 5.10 (b), the sudden increase feature of DECD method can be 

used to identify the breathing crack, as this damage feature is unique to this case. 

Through studying the three cases of breathing cracks, it is concluded that DECD 

method is much more effective than the DND method in breathing crack identification, 

especially for stepped beam-type structures. 

Now, in order to study the effects of breathing crack depth on the DECD method, the 

breathing crack depth in case 1 is increased to 20% of the beam depth and the damage 

identification result is presented in Figure 5.13. 

 In comparison with Figure 5.8 (b), it is clear from Figure 5.13 that the more severe 

the breathing cracks, the bigger the magnitude of DECD, which means the proposed 

DECD is sensitive to crack depth. Thus, the relative severity of a breathing crack can 

be assessed. In addition, the effects of measurement noise decreases while the crack 

depth increases. The reason behind this is that the degree of nonlinearity increases as 

the increase of the breathing crack depth. Therefore, the DECD is suitable for 

nonlinear damage identification in stepped structures, which can be easily extended to 

fatigue crack identification in stepped rotors [149].  

 

Figure 5.13  Damage identification results of case 1 of 20% depth. 
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5.4 The second breathing crack identification method  

In order to reduce the interference of stepped geometry, CDS’s associated with super-

harmonic frequencies are investigated for breathing crack identification. Characteristic 

deflection shapes containing spatial information of structures are efficient for multi-

damage localisation in beam or rotor type structures. However, the extracted spatial 

shape features from experimental data are prone to be compromised by measurement 

noise. To overcome this shortcoming, SVD, which is a statistical tool for spatial pattern 

extraction, is applied to PSD matrix for robust CDS extraction. Moreover, the PSD 

matrix contains the auto-and cross-spectral correlation of output vibration responses 

and provides average energy distribution in frequency domain, which is robust to the 

measurement noise.   

5.4.1 Super-harmonic characteristic deflection shapes  

Steps of beams will affect CDS’s and make the crack localisation ambiguous. 

Nevertheless, super-harmonic CDS’s are sensitive to fatigue cracks, as steps cannot 

cause super-harmonic components.  

The vibration response 𝐲(𝑡) ∈ ℝ𝑁m×1  is acquired at 𝑁m  locations. Thus, the PSD 

matrix is computed as  

 𝐒yy(𝜔) = ℱ (𝐑yy(𝜏)) (5.11) 

Here, ℱ(∙) indicates the Fourier operator and 𝐑yy(𝜏) ∈ ℝ
𝑁m×𝑁m  is the covariance 

matrix of vibration responses, which can be written as 

 𝐑yy(𝜏) = Exp((𝐲(𝑡) − �̅�)(𝐲(𝑡 + 𝜏) − �̅�)T) (5.12) 

where  Exp(∙) is the expected value operator and �̅� ∈ ℝ𝑁m×1 is the mean value vector.  

Then, the PSD matrix at excitation frequency 𝜔F is decomposed using SVD as 

 𝐒yy(𝜔F) = 𝐔(𝜔F)𝚺(𝜔F)𝐕
H(𝜔F) (5.13) 

Here, 𝐔(𝜔F) is a unitary matrix and 𝐔(𝜔F) = 𝐕(𝜔F), as the PSD matrix 𝐒yy(𝜔F) is 

square. According to SVD, the first singular vector 𝐮1(𝜔F) ∈ ℝ
𝑁m×1  of 𝐔(𝜔F) 

corresponding to the maximum singular value in 𝚺(𝜔F) makes the largest contribution 

to the vibration response at this frequency. Thus, 𝐮1(𝜔F)  is the dominant CDS 
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of 𝐒yy(𝜔F), which is robust to measurement noise. The extracted CDS at frequency 

𝜔F is termed as fundamental CDS.  Similarly, the super-harmonic CDS’s are estimated 

as 𝐮1(2𝜔F), 𝐮1(3𝜔F),⋯ , 𝐮1(𝑗𝜔F)  at corresponding super-harmonic frequencies, 

where 𝑗(= 2,3,4,⋯ ) indicates the integer times of excitation frequency 𝜔F. Moreover, 

𝐮1(𝜔F), 𝐮1(2𝜔F),⋯ , 𝐮1(𝑗𝜔F) are complex vectors and only the real part of them are 

discussed for damage identification, as the magnitude of imaginary part is much 

smaller and does not contain useful information for damage identification. 

In addition, Gram-Schmidt orthogonalisation approach can be applied to remove the 

effects of fundamental CDS on super-harmonic CDS. Firstly, the projection of 

𝐮1(𝑗𝜔F) on 𝐮1(𝜔F) 

 Proj𝐮1(𝜔F)(𝐮1(𝑗𝜔F)) =
𝐮1(𝜔F)

T𝐮1(𝑗𝜔F)

𝐮1(𝜔F)T𝐮1(𝜔F)
𝐮1(𝜔F) (5.14) 

Then, the normalised super-harmonic CDS is 

 �̃�1(𝑗𝜔F) =
𝐮1(𝑗𝜔F)−Proj𝐮1(𝜔F)

(𝐮1(𝑗𝜔F))

‖𝐮1(𝑗𝜔F)−Proj𝐮1(𝜔F)
(𝐮1(𝑗𝜔F))‖

 (5.15) 

 

5.4.2 Numerical studies 

The same three cases as tabulated in Table 5.1 are studied to demonstrate the efficiency 

and advantages of the proposed super-harmonic CDS’s for breathing crack 

identification in stepped structures. In order to simulate the experimental condition, all 

the simulated vibration velocity responses are contaminated by white noise with SNR 

being 80dB. Firstly, case 1 is studied to show the process of applying super-harmonic 

CDS’s for damage identification. Figure 5.14 shows the singular value spectrum plot, 

which indicates the excitation frequency 𝜔F and the super-harmonic components. The 

damage identification results using the fundamental CDS and the super-harmonic CDS 

of 2𝜔F are demonstrated in Figure 5.15.  
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Figure 5.14  Singular value spectrum plot of PSD matrices. 

 

(a) (b) 

Figure 5.15  Damage identification results of case 1: (a) Curvature of fundamental 

CDS and (b) Curvature of super-harmonic CDS at 2𝜔F. 

It is apparent in Figure 5.15 that the curvature of fundamental CDS is sensitive to the 

stepped geometry and is impossible to detect the breathing crack, whereas the 

curvature of super-harmonic CDS at 2𝜔F identifies this breathing crack robustly and 

presents no obvious distortion around the stepped position. The reason for this is that 

the super-harmonic CDS is caused by the presence of nonlinearity due to breathing 

cracks whilst the stepped geometry behaving like an open crack mainly affect the 

fundamental CDS. 

In order to test the efficiency in multiple breathing crack identification of super-

harmonic CDS’s, case 3 is studied and the damage identification results are given in 

Figure 5.16. 
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(a) (b) 

Figure 5.16  Damage identification results of case 3: (a) fundamental CDS and (b) 

super-harmonic CDS at 2𝜔F. 

Figure 5.16 shows that the curvature of super-harmonic CDS at 2𝜔F is capable of 

multiple breathing crack identification and is less sensitive to the stepped geometry of 

structures. In comparison, the curvature of fundamental CDS is much more sensitive 

to the stepped geometry than the breathing cracks. Moreover, the breathing crack 

caused shape distortions in Figure 5.16 (b) are peak features while the step induced 

shape distortion is a small sudden decrease, which makes the identification of 

breathing cracks unique.   

The next case study is that the breathing crack is coincidently located in the stepped 

position of the beam. Figure 5.17 presents the damage identification results based on 

fundamental CDS and super-harmonic CDS’s of case 2.  

In comparison with Figure 5.15 (a) or Figure 5.16 (a), it is impossible to detect the 

breathing crack in the stepped position from Figure 5.17 (a), as there are no special 

shape changes with or without the breathing crack. However, Figure 5.17 (b) and 

Figure 5.17 (c) show sharp peaks around the stepped position.  In comparison with 

shape distortion features of stepped position in Figure 5.15 (b) or Figure 5.16 (b), 

Figure 5.17 (b) and Figure 5.17 (c) are able to indicate that there is a breathing crack 

in the stepped position.  
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(a) (b) 

 
(c) 

Figure 5.17  Damage identification results of case 2: (a) fundamental CDS, (b) super-

harmonic CDS at 2𝜔F and (c) super-harmonic CDS at 4𝜔F. 

5.5 Conclusions 

This chapter aims to study the finite element modelling of breathing cracks and 

identify them through their nonlinear characteristics in vibration responses. The major 

contribution is to identify the breathing cracks in stepped beams.  

Two approaches are proposed to identify multiple breathing cracks in stepped beams. 

The first approach is a time domain method, which uses the deviation between 

empirical cumulative distributions of vibration responses at different locations. The 

other approach is a frequency domain method, which detects the breathing crack via 

the damage-induced shape distortions in super-harmonic characteristic deflection 

shapes. 

Finally, the performance of the two proposed methods are investigated numerically for 

different damage cases of a stepped beam. Results show that these methods are 

effective and efficient for single or multiple breathing crack localisation in stepped 

beam-type structures.   
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Chapter 6  

 

Robust mode shape curvature estimation of plate-

type structures 

 

 

Damage-induced local singularities in structural characteristic deflection shapes are 

widely used for non-model-based damage localisation of plate-type structures. Despite 

substantial advantages in this kind of methods, several issues must be addressed to 

boost their efficiency and practical applications. One of the crucial problems is that the 

curvature estimation of CDS’s is significantly affected by measurement noise. To 

address this problem, this chapter aims to investigate the noise robust curvature 

estimation techniques for plates. Firstly, apart from the traditional curvatures along the 

x and y coordinates, the principal curvature, mean principal curvature and Gaussian 

curvature will be introduced for damage identification. Secondly, for the curvature 

estimation along the x and y coordinates, a 2-D Laplacian of Gaussian (LoG) method 

is employed to reduce the noise effects. For the principal, mean principal and Gaussian 

curvatures, a local bivariate polynomial fitting (LPF) technique is utilised to enhance 

their noise robustness. 

Finally, effectiveness and robustness of LoG and LPF approaches in mode curvature 

estimation are demonstrated by numerical and experimental examples. Moreover, their 

performance on damage identification is discussed.  
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6.1 Introduction 

Vibration-based damage identification in plates has been studied over the past few 

decades. The identified modal parameters, such as natural frequencies, mode shapes, 

and damping ratios are processed by various signal processing approaches for damage 

detection, localisation or quantification. The model updating based damage 

identification methods depend on the accuracy of the established theoretical or 

numerical structural model, which in turn affects the accuracy of damage identification. 

A current trend is to identify damage in plates based on non-contact measurement 

techniques by using only vibration data of damaged structures [66, 132, 142].    

Different from natural frequency damage features, characteristic deflection shapes 

provide local information of structures, which makes them more sensitive to multiple 

damage detection and localisation. Moreover, in comparison with the natural 

frequencies, characteristic deflection shapes are more robust to the environmental 

variability like temperature or humidity. Nevertheless, one disadvantage is that the 

acquisition of CDS’s requires a relatively large number of measurements points. 

Traditionally, experiments based on accelerometers are time-consuming and hard to 

obtain sufficient spatial resolution for CDS’s. Nowadays, with the advanced 

measurement technique of Scanning Laser Vibrometer (SLV), the mode shapes or 

operational deflection shapes are readily acquired at a very high spatial resolution 

within a short time [194]. The laser heterodyne interferometry is used in SLV to 

measure the velocity (displacement/acceleration) at a surface point and a large number 

of measurement points can be measured sequentially [195]. When using SLV with one 

laser head, only the out-of-plane velocity signal of a plate can be acquired as long as 

the laser beam is not parallel with the plate surface. For the in-plane vibration, three 

laser heads should be employed.  The data acquisition of this Chapter and Chapter 7 is 

conducted under ‘FastScan’ mode and much more details will be given in Section 6.6. 

Since the quick acquisition of CDS’s of large structure based on SLV, applying CDS’s 

or their derivatives to damage identification in plates has been investigated by many 

authors [65, 128, 196, 197]. The fundamental idea is to detect the damage-induced 

local singularities in CDS’s or their curvatures. The advantage of this kind of methods 

is that the identification of singularity from spatial shape features does not require the 

baseline data of healthy structures. Some of the singularity detection techniques for 
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plates are naturally extended from those of beam-type structures. Yoon, et al. [141] 

generalised the 1-D gapped smoothing method to 2-D approach to extract the local 

singularity features for damage localisation in plates. Surace et al. [198] employed a 

2-D polynomial-annihilation edge technique to detect damage-caused discontinuities 

in  mode shapes and their derivatives, which was originally proposed for damage 

detection in beam-type structures. Another popular technique of detecting the shape 

singularity for both beam-type and plate-type structures is wavelet transforms [14, 131, 

139, 199].  For wavelet transforms, the continuous spatial wavelet is commonly 

utilised to represent the CDS’s or their derivatives at different scales to examine the 

local details and suppress the effects of measurement noise. Then, the wavelet 

coefficients at a certain scale can be used to detect the presence and locations of 

damage depending on the local peaks or sudden changes [118].   

Although there are various approaches to detecting damage in plates based on shape 

singularity, there are still two crucial problems that are not yet addressed. One is the 

robust curvature estimation of CDS’s, as the traditional second-order central difference 

approach is extremely sensitive to noise and corrupts the damage-induced features, 

especially for incipient damage. The other difficulty is that how to define a robust 

damage index for multi-damage localisation without the baseline data of healthy 

structures. It is well known that a single CDS is impossible to identify all the damage 

locations, as it is just sensitive to damage in some regions while insensitive to damage 

in other regions. Therefore, a robust damage index should properly combine the 

damage information of several CDS’s. In this chapter, the first problem of the robust 

curvature estimation of CDS’s will be studied in the form of mode shape curvature 

estimation. Certainly, the proposed methods are not constrained to mode shapes but 

also applicable to other CDS’s such as operational deflection shapes. Then, based on 

the estimated noise robust mode shape curvatures, a baseline-free robust multi-damage 

identification of plates will be presented in Chapter 7.  

6.2 Background of curvature based damage identification  

For damage identification of plates, the curvatures of plate deflections are commonly 

utilised due to their high sensitivity. For a homogeneous thin plate with a constant 

thickness, the relationship between bending moments and curvatures can be expressed 

as according to Kirchhoff theory [200]: 
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 [

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = −
𝐸ℎ3

12(1−𝜐2)
[
1 𝜐 0
𝜐 1 0
0 0 1 − 𝜐

] [

𝜅𝑥𝑥
𝜅𝑦𝑦
𝜅𝑥𝑦

] (6.1) 

where 𝑀𝑥  and 𝑀𝑦  are the bending moments of x and y coordinates and 𝑀𝑥𝑦  is the 

twisting moment. 𝐷 =
𝐸ℎ3

12(1−𝜐2)
 is the plate flexural rigidity (also known as plate 

stiffness) with Young’s modulus 𝐸 , the thickness of the plate ℎ and the Poisson’s 

ratio 𝜐. Moreover, 𝜅𝑥𝑥, 𝜅𝑦𝑦 and 𝜅𝑥𝑦 are the curvatures of plate transverse deflection, 

which can be approximated by the second-order partial derivatives due to the small 

slope assumption (𝜕𝑊p 𝜕𝑥⁄ , 𝜕𝑊p 𝜕𝑦⁄  ≪1).  

 𝜅𝑥𝑥 =
𝜕2𝑊p(𝑥,𝑦;𝑡)

𝜕𝑥2
, 𝜅𝑦𝑦 =

𝜕2𝑊p(𝑥,𝑦;𝑡)

𝜕𝑦2
, 𝜅𝑥𝑦 =

𝜕2𝑊p(𝑥,𝑦;𝑡)

𝜕𝑥𝜕𝑦
 (6.2) 

where 𝑊p(𝑥, 𝑦; 𝑡) represents the deflection of a plate and subscript p indicates plate.  

For a plate, the damage are normally simulated by a reduction of Young’s modulus 𝐸 

or the plate thickness ℎ. Here, the reduction of plate thickness in FE elements is used 

to simulate the damage. The plate flexural rigidity of damaged region is expressed as  

 𝐷d =
𝐸(ℎ−ℎd)

3

12(1−𝜐2)
= 𝐷 (1 −

ℎd

ℎ
)
3

 (6.3) 

where the subscript d indicates the damaged state.  

According to Eq. (6.1), the physical property changes of plate flexural rigidity 𝐷 due 

to damage can be reflected by the deflection curvature 𝜅𝑥𝑥, 𝜅𝑦𝑦 or 𝜅𝑥𝑦. According to 

the modal expansion theorem of structural response, the plate transverse displacement 

function 𝑊p(𝑥, 𝑦; 𝑡) can be represented by the product of mode shapes and modal 

coordinates, which indicates that the curvatures of mode shapes are also sensitive for 

damage identification. For simplicity, the curvatures of mode shapes are also denoted 

by 𝜅𝑥𝑥, 𝜅𝑦𝑦 or 𝜅𝑥𝑦 below. Thereby, a formulation of damage index can be written as  

 𝐷𝐼(𝑥, 𝑦) = 𝛼𝑥𝑥|𝜅𝑥𝑥
d − 𝜅𝑥𝑥| + 𝛼𝑦𝑦|𝜅𝑦𝑦

d − 𝜅𝑦𝑦| + 𝛼𝑥𝑦|𝜅𝑥𝑦
d − 𝜅𝑥𝑦| (6.4) 

where 𝛼𝑥𝑥, 𝛼𝑦𝑦, 𝛼𝑥𝑦 are the weighting coefficients indicating the contribution of the 

curvature in corresponding directions.  
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Without damage interference, the 𝐷𝐼(𝑥, 𝑦) plot of a plate will be slightly around zero 

but not exactly zero due to the effects of measurement noise. When damage occurs, 

peaks or sudden changes will be obviously present around the damage area in the DI 

plot. However, the multi-damage identification by using a single mode shape curvature 

is not reliable and robust. Therefore, a robust multi-damage index should incorporate 

the damage information of several mode shape curvatures, which can be expressed as 

 𝐷𝐼(𝑥, 𝑦) = ∑ 𝑤𝑖
𝑁r
𝑖=1  𝐷𝐼𝑖(𝑥, 𝑦) (6.5) 

where DI𝑖(𝑥, 𝑦)  indicates the individual damage index of the 𝑖 -th mode shape 

curvature calculated using Eq. (6.4), 𝑁r denotes the number of mode shapes concerned 

for damage identification and wi is the weighing coefficient of each 𝐷𝐼𝑖(𝑥, 𝑦). 

However, for the robust multi-damage index in Eq. (6.5), there are three crucial issues, 

which are not yet solved properly. Firstly, the curvature calculated by second-order 

differentiation in Eq. (6.2) is considerably sensitive to measurement noise, which 

degrades or even misleads the damage identification. Secondly, the required baseline 

mode shape curvatures of the intact state for distance measure in Eq. (6.4) are typically 

unavailable. Finally, the determination of proper weighting coefficients to effectively 

combine the damage information of each mode shape curvature is challenging. For the 

first problem, several new types of curvatures are introduced and two approaches are 

presented to reduce the noise effects, while the second and third issues will be 

investigated in Chapter 7. 

6.3 Robust curvature estimation via multi-scale approaches 

Typically, the mode shape curvature is directly estimated via second-order central 

difference as shown in Eq. (6.6). 

 

𝛷𝑥𝑥(𝑥𝑖, 𝑦𝑗) =
𝛷(𝑥𝑖+1,𝑦𝑗 )−2𝛷(𝑥𝑖,𝑦𝑗 )+𝛷(𝑥𝑖−1,𝑦𝑗 )

𝑑𝑥
2

𝛷𝑦𝑦(𝑥𝑖, 𝑦𝑗) =
𝛷(𝑥𝑖,𝑦𝑗+1)−2𝛷(𝑥𝑖,𝑦𝑗)+𝛷(𝑥𝑖,𝑦𝑗−1)

𝑑𝑦
2

 (6.6) 

Where 𝛷𝑥𝑥 and 𝛷𝑦𝑦 denote the partial mode shape curvature along x and y directions, 

respectively. Moreover, 𝑑𝑥 and 𝑑𝑦 represent the grid distances along x and y directions. 

It is worth noting that the second-order central difference method significantly 

amplifies the effects of measurement noise, which degrades the effectiveness of 
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damage identification [201]. Thus, the reduction of measurement noise in the acquired 

mode shape data should be addressed before damage identification. Three multi-scale 

approaches, LoG filter, Mexican hat wavelet transform and difference of Gaussian 

(DoG), are presented to carry out the robust mode shape curvature (𝛷𝑥𝑥  and𝛷𝑦𝑦 ) 

estimation. 

Inspired by the blob detection in computer vision, the LoG has been employed to 

enhance the mode shape curvature estimation and damage identification accuracy of 

plate-type structures [202, 203]. A blob represents a region of an image and inside the 

blob region some properties are constant or approximately constant, which is similar 

to the damage (reduction of local area stiffness) of plates. To smoothen the noisy mode 

shape  𝛷(𝑥, 𝑦) , Gaussian smoothing is applied, which convolves the mode shape 

𝛷(𝑥, 𝑦) with a Gaussian function at a certain scale 𝜎.  

 𝐿g(𝑥, 𝑦; 𝜎) = 𝛷(𝑥, 𝑦)⨂𝑔(𝑥, 𝑦; 𝜎) 

 = ∫ ∫ 𝛷(𝑥 − 𝑢, 𝑦 − 𝑣)𝑔(𝑢, 𝑣; 𝜎)
+∞

−∞
𝑑𝑢𝑑𝑣

+∞

−∞
 (6.7) 

where 𝜎  denotes the standard deviation, ⨂  represents convolution operator and 

𝑔(𝑥, 𝑦; 𝜎)  is a Gaussian function. For two-dimensional application, an isotropic 

Gaussian function is rotationally symmetric and has the form 

  𝑔(𝑥, 𝑦; 𝜎) =
1

2𝜋𝜎2
e
−(

𝑥2+𝑦2

2𝜎2
)
  (6.8) 

By adjusting the scale parameter 𝜎, the original mode shape can be handled at different 

scales. At a certain scale 𝜎, the measurement noise and local shape details of the 

original mode shape will be suppressed and the mode shape so processed becomes 

smooth. In practice, without prior knowledge of the mode shape, no particular scale 

level can be determined and it is necessary to deal with the mode shape at all scales 

[204].  Figure 6.1 illustrates the multi-scale representation. A coarse scale level is 

better to supress noise whilst it is possible to remove the damage-induced singularity 

information.  
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Figure 6.1  Multi-scale representation of the original mode shape. 

For damage detection of plates, which is similar to the edge detection in an image, the 

derivative of scale space representation is calculated. Here, the Laplacian operator of 

𝐿g(𝑥, 𝑦; 𝜎) is used to implement the curvature estimation of mode shapes. 

 ∇2𝐿g(𝑥, 𝑦; 𝜎) = ∇2(𝛷(𝑥, 𝑦)⨂𝑔(𝑥, 𝑦; 𝜎) ) (6.9) 

where ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 represents the Laplacian operator. Due to differentiation 

property of the convolution integral, the Laplacian of 𝐿g(𝑥, 𝑦; 𝜎)  is equivalent to 

convolving the original mode shape function 𝛷(𝑥, 𝑦) with a LoG filter ∇2𝑔(𝑥, 𝑦; 𝜎), 

which is expressed as  

 ∇2𝐿g(𝑥, 𝑦; 𝜎) = ∇2𝛷(𝑥, 𝑦)⨂𝑔(𝑥, 𝑦; 𝜎) = 𝛷(𝑥, 𝑦)⨂∇2𝑔(𝑥, 𝑦; 𝜎)  (6.10) 

in which, the LoG filter is  

  ∇2𝑔(𝑥, 𝑦; 𝜎) = −
1

𝜋𝜎4
(1 −

𝑥2+𝑦2

2𝜎2
) e

−(
𝑥2+𝑦2

2𝜎2
)
 (6.11) 

Equation (6.10) shows that the direct application of second-order central difference 

approach to 𝛷(𝑥, 𝑦)  can be avoided by using a LoG filter. Furthermore, the effects of 

measurement noise on mode shape curvature can be tuned by changing the scale 

parameter 𝜎 of LoG filter. In addition, it is worth noting that the integral of Gaussian 

filter 𝑔(𝑥, 𝑦; 𝜎) over all space is one as shown in Eq. (6.12), whilst the integral of LoG 

filter ∇2𝑔(𝑥, 𝑦; 𝜎) over all space is zero, which indicates that changing the constant 

coefficient of LoG filter will not affect the integral. In this case, estimated mode shape 

curvatures by using LoG filter with various value of the constant coefficient are 

proportional with each other without altering the shape patterns.  
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 {
∫ ∫ 𝑔(𝑥, 𝑦; 𝜎)

+∞

−∞
𝑑𝑥 𝑑𝑦

+∞

−∞
= 1

∫ ∫ ∇2𝑔(𝑥, 𝑦; 𝜎)
+∞

−∞
𝑑𝑥 𝑑𝑦

+∞

−∞
= 0

 (6.12) 

The LoG filter can be fulfilled by combining the ‘fspecial’ function with ‘imfilter’ 

function in MATLAB. Moreover, the 2-D LoG approach can be applied via the 

Mexican hat wavelet transform, since the Mexican hat wavelet function is proportional 

to the second derivative of a Gaussian function, which is written as  

 𝜓m(𝑥, 𝑦; 𝜎) = 𝑐w (1 −
𝑥2+𝑦2

2𝜎2
) e

−(
𝑥2+𝑦2

2𝜎2
)
 (6.13) 

where 𝜓m(∙) represents the Mexican hat wavelet (also known as Marr wavelet) and 

𝑐w indicates the proportional coefficient.  

The Mexican hat wavelet transform is implemented in MATLAB by using ‘cwtft2’ 

function with the ‘mexh’ wavelet, which is coded based on the 2-D Fourier transform. 

The coefficient 𝑐w does not affect the shape patterns of estimated curvatures but results 

in the magnitude changes of curvatures. Another approach to implement LoG approach 

is by the difference of two Gaussians (DoG) at different scales [205], which is 

expressed as 

 
𝜕𝐿g 𝜕⁄ 𝜎2 = ∇2𝐿g 2⁄ , 𝜕𝐿g 𝜕⁄ 𝜎 = 𝜎 × ∇2𝐿g

∇2𝐿g(𝑥, 𝑦; 𝜎) ≈
1

𝜎×∆𝜎
 (𝐿g(𝑥, 𝑦; 𝜎 + ∆𝜎) − 𝐿g(𝑥, 𝑦; 𝜎))

  (6.14) 

where 𝜕𝐿g 𝜕⁄ 𝜎2 = ∇2𝐿g 2⁄  is derived based on the Gaussian function in Eq. (6.8). 

And this algorithm is achieved by using ‘ispecial’ or ‘imgaussfilt’ function in 

MATLAB. 

For all the three LoG implementation approaches, by increasing the scale parameter 𝜎, 

more measurement grid points are used in the curvature estimation and the noise 

resistance will be better. However, if the scale parameter is too big, it will decrease the 

possibility of detecting the damage-induced local shape singularity. Thus, an 

appropriate scale parameter should be chosen to guarantee both the noise robustness 

and damage sensitivity. 
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6.4 Principal, mean and Gaussian curvatures  

Although the curvatures of mode shapes along the 𝑥 and 𝑦 coordinates are readily 

computed and commonly applied for damage identification in plates, they do not 

adequately describe the property of a mode shape. In this section, the characteristic 

curvatures such as Gaussian curvature, mean principal curvature and principal 

curvatures will be investigated for damage identification of plates. Moreover, a local 

polynomial fitting approach is applied to enhance their noise robustness.  

At a given point of a mode shape, the two principal curvatures 𝜅1and 𝜅2 denote the 

maximum and minimum curvatures, respectively. Their relationship with 𝜅𝑥𝑥, 𝜅𝑦𝑦 and 

𝜅𝑥𝑦 can be written as  

 {
𝜅1 =  𝜅𝑥𝑥cos

2(𝜃) + 𝜅𝑦𝑦sin
2(𝜃) + 𝜅𝑥𝑦sin(2𝜃)

𝜅2 =  𝜅𝑥𝑥sin
2(𝜃) + 𝜅𝑦𝑦cos

2(𝜃) − 𝜅𝑥𝑦sin(2𝜃)
 (6.15) 

where 𝜃 represents the angle between 𝜅1 and  𝜅𝑥𝑥. Moreover, Eq. (6.15) indicates that 

𝜅1+𝜅2= 𝜅𝑥𝑥+𝜅𝑦𝑦 , which implies that the sum of curvatures along two orthogonal 

directions is invariant [206]. For a plate mode shape, 𝜅𝑥𝑥 = 𝛷𝑥𝑥,𝜅𝑦𝑦 = 𝛷𝑦𝑦 and 𝜅𝑥𝑦 =

𝛷𝑥𝑦. In this chapter, although 𝜅1+𝜅2 and 𝛷𝑥𝑥+𝛷𝑦𝑦 are equal with each other in theory, 

they are estimated by using different de-noising approaches. To distinguish 

them, (𝛷𝑥𝑥 + 𝛷𝑦𝑦) 2⁄  and  (𝜅1 + 𝜅2) 2⁄  are termed as mean x-y curvature and mean 

principal curvature, respectively.  

It is clear from Eq. (6.15) that the damage-induced changes can be indicated by the 

principal curvatures as well. Moreover, if the two principal curvatures of a mode shape 

are obtained in advance, the product of them is the Gaussian curvature 𝐾p and the 

average of them is the mean curvature 𝐻p [207], which are computed as 

 {
𝐾p = 𝜅1 ∙ 𝜅2

𝐻p =
1

2
(𝜅1 + 𝜅2)

   (6.16) 

For the principal, mean principal and Gaussian curvature estimation, several different 

approaches have been proposed and are normally categorised into discrete and 

continuous methods [67, 208, 209]. The discrete methods apply the direct calculation 

formula to the discrete representation points of the underlying mode shape surface. For 
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the continuous approaches, they firstly employ a local bivariate polynomial fitting 

technique to fit the current point and its several neighbourhood points, and then 

evaluate the curvatures using the fitted mode shape surface [210]. Due to the 

measurement noise of mode shape data, it is better to evaluate principal, mean 

principal and Gaussian curvatures by continuous approach rather than the direct 

calculation.  

For the discrete curvature estimation method, the Gaussian curvature 𝐾p and mean 

curvature 𝐻p are determined from the formulas below 

 {
𝐾p =

𝐿p𝑁p−𝑀p
2

𝐸p𝐺p−𝐹p
2

𝐻p =
1

2

𝐿p𝐺p−2𝑀p𝐹p+𝑁p𝐸p

𝐸p𝐺p−𝐹p
2

  (6.17) 

where 𝐸p = ‖(1, 0, 𝛷𝑥)‖
2 , 𝐹p = (1, 0, 𝛷𝑥) ∙ (0, 1, 𝛷𝑦) ,  𝐺p = ‖(0, 1, 𝛷𝑦)‖

2
, 𝐿p =

(0, 0, 𝛷𝑥𝑥) ∙ 𝐧, 𝑀p = (0, 0, 𝛷𝑥𝑦) ∙ 𝐧 and 𝑁p = (0, 0, 𝛷𝑦𝑦) ∙ 𝐧 come from the first and 

second fundamental forms of a mode shape surface 𝛷(𝑥, 𝑦): 𝐸pd𝑥
2 + 2𝐹pd𝑥𝑑𝑦 +

𝐺pd𝑦
2 and 𝐿pd𝑥

2 + 2𝐹pd𝑥d𝑦 + 𝐺pd𝑦
2. Here, 𝐧 indicates the unit normal vector of 

the mode shape surface at a point, which is expressed as 

 𝐧 = (−𝛷𝑥, −𝛷𝑦, 1) √𝛷𝑥
2 + 𝛷𝑦

2 + 1⁄  (6.18) 

For the transverse vibration of a thin plate, the deflection is assumed to be small 

compared with the overall dimensions of the plate. In this case, the important 

assumption of small slope is valid, which means 𝛷𝑥  and 𝛷𝑦 ≪ 1. Thus, 𝐧 = (0,0,1) 

and Eq. (6.17) is simplified as  

 {
𝐾p = 𝛷𝑥𝑥𝛷𝑦𝑦 − 𝛷𝑥𝑦

2

𝐻p = (𝛷𝑥𝑥 + 𝛷𝑦𝑦) 2⁄
 (6.19) 

With the determined Gaussian curvature 𝐾p and mean curvature 𝐻p, the two principal 

curvatures of a mode shape are computed as  

 

{
 

 𝜅1 = 𝐻p +√𝐻p2 − 𝐾p

𝜅2 = 𝐻 −√𝐻p2 − 𝐾p

 (6.20) 
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Eq. (6.17) and Eq. (6.20) indicate that the Gaussian, mean principal and principal 

curvatures are the extracted geometric information from first and second fundamental 

forms of a mode shape surface, which are independent of measurement coordinates.  

For the continuous curvature estimation method, the measured mode shape surface 

data are primarily rotated to obtain the normal vector at current point as (0,0, −1). 

Thus, the mode shape data can be represented by (𝑥, 𝑦) instead of (𝑥, 𝑦, 𝑧) [211].  In 

the second stage, the current point and its local neighbourhood points are used to fit a 

quadratic polynomial as 

 𝑓p(𝑥, 𝑦) = 𝑐1𝑥
2 + 𝑐2𝑦

2 + 𝑐3𝑥𝑦 + 𝑐4𝑥 + 𝑐5𝑦 + 𝑐6 (6.21) 

The local neighbourhood points can be indicated by the rings around the current point 

such as the first-ring, second-ring and third-ring shown in Figure 6.2. Generally, the 

more rings are used, the more noise robust and smooth the curvature but less sensitive 

to local features. Another important parameter that controls the quality of estimated 

curvature is the average distance between the rings, which is determined by the mesh 

points used to represent the mode shape surface.  

 

(a) (b) (c) 

Figure 6.2  Neighbourhood points (a) 1 ring (b) 2 rings and (c) 3 rings  

Finally, the Weingarten matrix of the mode shape surface at point 𝑙 , which equals to 

the hessian matrix of 𝑓p(𝑥, 𝑦) that defined in Eq. (6.19), is applied to calculate the 

principal, mean and Gaussian curvatures. The Weingarten matrix is expressed as 

 𝓦𝑙 = [

𝜕2𝑓p

𝜕𝑥2

𝜕2𝑓p

𝜕𝑥𝜕𝑦

𝜕2𝑓p

𝜕𝑥𝜕𝑦

𝜕2𝑓p

𝜕𝑦2

] = [
2𝑐1 𝑐3
𝑐3 2𝑐2

] (6.22) 

The principal curvatures 𝜅1and 𝜅2 are the eigenvalues of Weingarten matrix. Then, the 

Gaussian and mean principal curvatures are calculated according to Eq. (6.16). And 
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Eq. (6.16) indicates that Gaussian and mean principal curvatures are the determinant 

and half of the trace of Weingarten matrix as shown in Eq. (6.22).  

 𝐾p = det(𝓦𝑙) , 𝐻p = trace(𝓦𝑙) 2⁄  (6.23) 

6.5 Numerical studies  

There are three purposes of the numerical studies. First, the multi-damage simulation 

in plates will be presented. The numerical model is simulated according to the 

experiments, which provides a related numerical study for experiments. Secondly, the 

robust estimation of mode shape curvatures will be investigated under the Gaussian 

white noise to verify its effectiveness. Finally, a comparison is presented to 

demonstrate which kind of curvature or curvature estimation approach is more reliable 

and sensitive to the given two damage positions.  

A cantilever aluminium plate of dimension 0.35 × 0.23 × 0.003m3  with Young’s 

modulus 𝐸=69 GPa, Poisson’s ratio 𝜈 = 0.35 and the mass density 𝜌=2700 kg/m3 is 

studied as shown in Figure 6.3. The plate is modelled using the four-node quadrilateral 

shell element in MATLAB according to Mindlin plate theory [212]. During the 

numerical integration, 2 × 2 Gauss points are used for the bending contribution and 1 

point is used for the shear contribution, which are proved to be one of the simplest 

approach to avoiding shear locking [213]. The cantilever plate is discretised into 70 ×

46 elements with each element of 0.005 × 0.005 × 0.003m3 and the clamped edge is 

located on the left, which is shown in Figure 6.3. Under damage cases, the damage-

induced local stiffness reduction is modelled according to Eq. (6.3) by decreasing the 

thickness of associated FE elements. In this example, the two damage positions are 

centred at (0.10 m, 0.115 m) and (0.21 m, 0.115 m) with an equal area of 0.02 ×

0.02 m2. 

Moreover, in order to assess the accuracy of the established FE model of plate in 

MATLAB, a comparative study of the first five natural frequencies under healthy state 

is carried out with the FE model built in ABAQUS. Table 6.1 displays the first five 

natural frequencies calculated from the ABAQUS software and the MATLAB code, 

respectively. 
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Figure 6.3  FE model of a plate with two damage positions. 

Table 6.1  The first five natural frequencies of intact plate. 

Natural frequencies 

(Hz) 

Modes 

1 2 3 4 5 

Results of MATLAB 20.80 69.21 128.92 234.27 327.14 

Results of ABAQUS 20.80 69.25 128.92 234.40 327.20 

Relative errors (%) 0.00 0.06 0.00 0.06 0.02 

It is clear from Table 6.1 that the differences of evaluated natural frequencies between 

the two approaches are very small, which indicates the high accuracy of the modelled 

cantilever plate using MATLAB. The reason for coding the plate model in MATLAB 

is that it is easy to adjust the parameters of damage such as thickness and positions 

when conducting simulations for many times. Furthermore, it is convenient to extract 

the mode shape data and apply signal processing approaches of MATLAB.   

6.5.1 Damage sensitivity of different mode shape curvatures 

Before applying the proposed approaches for robust mode shape curvature estimation, 

the damage sensitivity of different mode shape curvatures is studied based on noise-

free mode shapes. Two problems are discussed. First, the mode shape curvatures 

associated with different natural frequencies will be demonstrated to be sensitive to 

damage at different locations. Secondly, the damage sensitivity of different types of 

curvatures (two principal curvatures, mean x-y curvature, mean principal curvature and 

Gaussian curvature) is investigated.  
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The two small damage areas with 10% thickness reduction as shown in Figure 6.3 are 

simulated. Then, the normalised 9th mode shape and 10th mode shape with their values 

range of [-1, 1] are obtained and presented in Figure 6.4. Here, they are chosen as the 

10th mode shape is sensitive to both damage areas while the 9th mode shape is used to 

show that not any mode shape is sensitive to the two given damage areas.   

First, the mean x-y curvature  of the 9th and 10th mode shapes are obtained by second-

order central difference approach and displayed in Figure 6.5 to show which mode 

shape is more sensitive to the two given damage positions in Figure 6.3.  

     
(a) (b) 

Figure 6.4  (a) The 9th mode shape and (b) The 10th mode shape.  

Apparently, the mean x-y curvature  of 10th mode shape is much more sensitive to these 

two damage areas defined in Figure 6.3, as Figure 6.5 (b) presents much shaper peaks 

around damage areas than these of Figure 6.5 (a). Furthermore, it proves that damage 

identification based on a single mode shape is not reliable, especially for multi-damage 

localisation.  

   
(a) (b) 

Figure 6.5  Mean x-y curvature of (a) the 9th mode shape and (b) the 10th mode shape. 

0

100

200

300

400

0

50

100

150

200

250

-1

-0.5

0

0.5

1

x (mm)y (mm)

9
th

 m
o

d
e 

sh
ap

e

0

100

200

300

400

0

50

100

150

200

250

-1

-0.5

0

0.5

1

x (mm)y (mm)

1
0t

h
 m

o
de

 s
ha

p
e 

0

100

200

300

400

0

50

100

150

200

250

-6

-4

-2

0

2

4

x 10
-4

x (mm)y (mm)

9
th

 m
o

d
e 

sh
ap

e 
cu

rv
at

u
re

0 50 100 150 200 250 300 350

0

100

200

300

-4

-2

0

2

4

x 10
-4

x (mm)

y (mm)

1
0t

h
 m

o
de

 s
ha

p
e 

cu
rv

at
ur

e

Damage area 1

Damage area 2



107 

 

In addition, apart from the mean x-y curvature, the principal curvatures, mean principal 

curvature and Gaussian curvature of 10th mode shape are also computed according to 

Eq. (6.17) and Eq. (6.20) to show their sensitivities to damage, which are illustrated in 

Figure 6.6. In Figure 6.6, the absolute magnitudes of principal, mean and Gaussian 

curvature are not important but the shape patterns are useful for damage identification. 

   

(a) (b) 

   

(c) (d) 

Figure 6.6  Curvatures of the 10th mode shape (a) Maximum principal curvature (b) 

Minimum principal curvature (c) Mean principal curvature and (d) Gaussian curvature.  

It can be concluded from Figure 6.6 that principal, mean principal and Gaussian 

curvatures of the 10th mode shape are all sensitive to the two damage positions and can 

be used for damage identification. But the mean principal and Gaussian curvatures, 

which are the combinations of principal curvatures, perform better than the individual 

principal curvatures.  

6.5.2 Robust mode shape curvature estimation  

In section 6.5.1, the mode shape curvatures are shown to be sensitive for damage 

localisation. However, mode shape curvatures are susceptible to measurement noise, 
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which significantly decreases the accuracy of damage identification or even leads to 

wrong damage identification results. In this section, the improvements of estimated 

curvatures by using the LoG and LPF approaches will be demonstrated in terms of 

accuracy and noise robustness.  

To make the numerical study more like practical experiments, Gaussian white noise is 

generated to contaminate the mode shapes in the form of 

 �̃�𝑟(𝑥, 𝑦) = 𝛷𝑟(𝑥, 𝑦) + nn𝑛level𝜎(𝛷𝑟(𝑥, 𝑦)) (6.24) 

where 𝛷𝑟(𝑥, 𝑦) denotes the 𝑟-th mode shape with 𝑥  and 𝑦  indicating the locations 

along the 𝑥 and 𝑦 coordinates, �̃�𝑟(𝑥, 𝑦) represents the noisy mode shape value and nn 

is the normally distributed random white noise with a zero mean value and a variance 

being 1. In addition, 𝑛level  is the noise level ranging of [0, 1] and 𝜎(𝛷𝑟(𝑥, 𝑦)) 

represents the standard variance of  𝑟-th mode shape.  

6.5.2.1 Robust mean x-y curvature estimation 

Three LoG implementation approaches (LoG filter, Mexican hat wavelet transform 

and DoG) are investigated to enhance the mode shape curvature along x and y 

directions. First, the Gaussian white noise of 𝑛level = 0.1% (SNR=60.10 dB) is added 

to pollute the 10th mode shape. Then, mean x-y curvature of the 10th mode shape are 

estimated by second-order central difference approach without noise processing and 

LoG filter with 𝜎 = 1, which are displayed in Figure 6.7.  

  

(a) (b) 

Figure 6.7  Mean x-y curvature using: (a) second-order central difference (b) LoG filter 

with 𝜎 = 1. 
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In this Chapter, the damage locations as depicted in Figure 6.7 are known in advance 

and the purpose is to manifest the damage-caused changes around the damage 

locations and reduce the effects of measurement noise by investigating advanced 

signal processing approaches. In Chapter 7, a robust multi-damage localisation index 

based on normalisation and threshold techniques will be present. Figure 6.7 

demonstrates that the second order central difference approach is sensitive to the 

measurement noise whereas LoG filter is good at processing the noisy mode shape. 

Nevertheless, the disadvantage of LoG filter is that it does not deal well with the 

boundary points. In addition, this problem is also present in Mexican hat wavelet 

transform and DoG approaches. In order to improve the performance of LoG method, 

the estimated curvature values around the boundary measurement points are ignored 

and the processed Figure 6.7 (b) is presented in Figure 6.8 (a).  Figure 6.8 (b) shows 

the estimated mean x-y curvature using LoG filter with 𝜎 = 3. Figure 6.8 (c) and 

Figure 6.8 (d) illustrate the estimated mean x-y curvature based on Mexican hat 

wavelet transform and DoG with 𝜎 = 1, respectively. 

  
(a) (b) 

   
(c) (d) 

Figure 6.8  Mean x-y curvature using: (a) LoG filter with 𝜎 = 1 (b) LoG filter with 

𝜎 = 3 (c) Mexican hat wavelet with 𝜎 = 1 and (d) DoG with 𝜎 = 1. 
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Firstly, in comparison with Figure 6.7 (b), Figure 6.8 (a) clearly indicates the two 

damage areas. Therefore, when using LoG filter for noise processing, the boundary 

measurement points should be given additional consideration. Secondly, by comparing 

Figure 6.8 (a) with Figure 6.8 (b), it is apparent that the damage-induced shape 

singularities decrease when increasing the scale parameter 𝜎. Thus, the scale parameter 

should be selected appropriately to supress the measurement noise while keeping the 

damage-induced shape singularities. Finally, from Figure 6.8 (a), (c) and (d), it can be 

concluded that the curvature estimated by LoG filter, Mexican hat wavelet transform 

and DoG are all noise robust and accurate enough for damage identification.  

6.5.2.2 Principal, mean principal and Gaussian curvatures 

For the principal, mean principal and Gaussian curvatures, the LoG approach is not 

suitable as it works for the curvatures along x and y coordinates. Thus, in this section, 

local bivariate polynomial fitting methods will be used for robust principal, mean 

principal and Gaussian curvature estimation. Firstly, the discrete approach according 

to Eq. (6.17) and Eq. (6.20) is employed to obtain the principal, mean principal and 

Gaussian curvatures of the noisy 10th mode shape (Gaussian white noise of 𝑛level =

0.1% (SNR=60.10 dB)), which are shown in Figure 6.9. 

By comparing Figure 6.9 with Figure 6.7 (a), it can be seen that the principal, mean 

principal and Gaussian curvatures tend to be more noise robust than mean x-y 

curvature when de-noising approaches are not adopted.  
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(a) (b) 

 
(c) (d) 

Figure 6.9  Curvatures of the10th mode shape using Eq. (6.17) and Eq. (6.20): (a) 

Maximum principal curvature (b) Minimum principal curvature (c) Mean principal 

curvature and (d) Gaussian curvature. 

Then, the LPF is utilised to estimate the robust principal, mean principal and Gaussian 

curvature. Here, only the mean principal and Gaussian curvatures of the 10th mode 

shape are taken as examples to show the difference between the 2-ring LPF and 3-ring 

LPF, which are illustrated in Figure 6.10 and Figure 6.11.  

  
(a) (b) 

Figure 6.10  Curvatures of the 10th mode shape using 2-ring LPF (a) Mean principal 

curvature and (b) Gaussian curvature.  
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(a) (b) 

Figure 6.11    Curvatures of the 10th mode shape using 3-ring LPF (a) Mean principal 

curvature and (b) Gaussian curvature. 

A comparison between Figure 6.10 and Figure 6.11 suggests that the more rings for 

LPF, the more smooth the estimated mean and Gaussian curvatures, but the less 

sensitive to the damage singularities. Thus, like choosing the scale parameter 𝜎 of 

multi-scale approaches, the number of rings should be appropriately selected to filter 

the measurement noise whilst keeping the damage information.  

In conclusion, both LPF and LoG methods are effective to reduce the effects of 

measurement noise during mode shape curvature estimation. But the principal, mean 

principal and Gaussian curvature estimated by suing LPF deals well with the boundary 

areas when compared with mean x-y curvature based on LoG approach,  

6.5.3 Damage identification using robust mode shape curvatures 

In this section, the damage identification effectiveness of the robust estimated mode 

shape curvatures is demonstrated with the help of baseline data of healthy plates. 

Firstly, Gaussian white noise of 𝑛level = 0.5% (SNR=46.21 dB) is added to pollute 

the 10th mode shape before curvature estimation. Then, the damage identification 

results without and with de-noise processing are presented in Figure 6.12 and Figure 

6.13, in which the damage index values are evaluated by calculating the absolute 

curvature difference before and after damage. 
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(a) (b) 

 

(c) 

Figure 6.12 Damage identification results without de-noising: (a) Mean principal 

curvature and (b) Gaussian curvature and (c) Mean x-y curvature. 

 
(a) (b) 

 

(c) (d) 

Figure 6.13  Damage identification results: (a) Mean principal curvature of 2-ring LPF 

(b) Gaussian curvature of 2-ring LPF (c) Mean x-y curvature of LoG filter with 𝜎 = 1 

and (d) Mean x-y curvature of LoG filter with 𝜎 = 1.5.  
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Apparently, the estimated mean principal, Gaussian and mean x-y curvatures without 

de-noising are not able to identify the damage as shown in Figure 6.12, while Figure 

6.13 provides acceptable damage identification results when proper de-noising 

techniques are used. Therefore, the robust mode shape curvature estimation is 

prerequisite for accurate damage identification and LoG and LPF are effective 

approaches for robust mode shape curvature estimation. In addition, by increasing the 

scale parameter 𝜎 of LoG filter, the damage identification of mean x-y curvature is 

improved, but still a little sensitive to the measurement noise.   

6.6 Experimental study 

In order to test the two robust mode shape curvature estimation approaches in practical 

applications, a cantilever aluminium plate with the same physical and geometrical 

properties as the numerical study in section 6.3.1 is tested. The experimental set-up is 

illustrated in Figure 6.14.  

 

 

Figure 6.14  Experimental set-up of a cantilever plate 

Moreover, the two damage areas marked as two small squares in Figure 6.15 are cut 

off 10% of their thickness in the opposite side and their position coordinates are given 

in Figure 6.3. In addition, the plate is clamped on the left and excited by a shaker (LDS 

V406) as shown in Figure 6.15.  
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(a) Front surface view  (b) Front surface view 

Figure 6.15  A cantilever plate with two damage areas. 

The vibration responses are measured by a PSV-500 Scanning Laser Vibrometer and 

the measured zone is slightly smaller than the original plate dimensions to avoid the 

effects of boundaries, which is  0.326m × 0.219m  spanning from 0.0084m to 

0.3334m in the 𝑥 direction and 0.0028m to 0.2218m in the 𝑦 direction. Moreover, 

there are 141 × 95 measurement points with grid cell size of 0.00233m × 0.00233m. 

To determine the resonant frequencies of the plate, a pseudo random signal of 0-2000 

Hz is used to excite the plate, which is generated by the PSV-500 system. After the 

resonant frequencies are obtained from the frequency response function, the plate will 

be excited at a certain resonant frequency to acquire its associated mode shape data. 

Certainly, the operational deflection shapes at non-resonant frequencies can also be 

employed for damage identification.  

Here, the 10th resonant frequency at 798Hz is used to excite the plate and the velocities 

of measurement grid are acquired. Furthermore, since there is a single-sine excitation, 

the ‘FastScan’ mode of PSV-500 is selected to measure the mode shape due to its fast 

acquisition efficiency. In the ‘FastScan’ mode, the specific excitation frequency is 

798Hz and the bandwidth of acquisition signal is set as 300Hz. A wider bandwidth can 

speed-up the measurement, whereas a narrow bandwidth will provide a better signal 

to noise ratio. For this experiment, 30 averages were used for each measurement point 

and the total measurement time is around 30 minutes. In addition, 40 and 80 averages 

were investigated as well but they did not further enhance the measurement accuracy.  

Figure 6.16 presented the measured 10th mode shape, which is normalised with its 

values range of [-1, 1].   
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Figure 6.16  The normalised 10th mode shape of experimental plate. 

The mean x-y curvature, mean principal curvature and Gaussian curvature of the10th 

mode shape are presented in Figure 6.17.  

  

(a) (b) 

  

(c) (d) 

Figure 6.17  (a) Mean x-y curvature without de-noising (b) Mean x-y curvature of 

LoG filter with 𝜎 = 1.5 (c) Mean principal curvature of 2-ring LPF (d) Gaussian 

curvature of 2-ring LPF. 
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estimated curvatures are much smoother. Nevertheless, they are still vulnerably 

affected by the measurement noise. Fortunately, apart from the scale parameter of LoG 

and the number of rings of LPF, there is another important parameter that can be 

adjusted to filter the measurement noise, which is the average distance between 

successive measurement points. 

Thus, in order to further enhance the noise robustness of experimental data, a linear 

interpolation approach is adopted to increase the average distance of measurement 

points. Originally, there are 141 × 95  measurement points covering  326𝑚𝑚 ×

219𝑚𝑚. Now, based on these data, a 80 × 54 grid is assigned and the mode shape 

value of each point is evaluated by linear interpolation. For more information, please 

refer to the ‘griddata’ function in MATLAB. After linear interpolation of the original 

data, the three types of curvatures are recalculated and shown in Figure 6.18.  

 

(a) (b) 

 

(c) (d) 

Figure 6.18 (a) Mean x-y curvature without de-noising. (b) Mean x-y curvature using 

LoG filter with 𝜎 = 1.5. (c) Mean principal curvature of 2-ring LPF. (d) Gaussian 

curvature of 2-ring LPF. 
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It is apparent that by increasing the average distance, the estimated curvatures are more 

sensitive to damage and less susceptible to the measurement noise. Moreover, the 

estimated mean x-y curvature using LoG filter with 𝜎 = 1.5 is smoother than the mean 

principal curvature using 2-ring LPF. Thus, the 3-ring LPF is used to estimate the mean 

curvature and Gaussian curvature of experiment data, which are presented in Figure 

6.19.  

 

(a) (b) 

Figure 6.19  (a) Mean principal curvature using 3-ring LPF and (b) Gaussian curvature 

using 3-ring LPF. 

Now, the estimated mean principal curvature and Gaussian curvature are both more 

robust to measurement noise. It is obvious that the accuracy of estimated mean 

principal and Gaussian curvatures are affected by the distance between rings and the 

number of rings. With different values of these two parameters, the estimated mean 

principal and Gaussian curvatures have different sensitivities to damage and 

measurement noise. Moreover, the LoG method guarantees a robust and accurate mode 

shape curvature along the x and y directions. Thus, both the LoG and LPF can provide 

robust mode shape curvature for experiments, which will promise an accurate damage 

identification.  

With the estimated noise robust curvature, the damage localisation can be coarsely 

determined by the local peaks or sudden change of the curvatures. But for more 

accurate and efficient damage localisation, a comparison with the curvature of 

undamaged state is required. However, the mode shape curvature information of 

healthy structure is usually unavailable. Moreover, a single mode shape is only 

sensitive to damage at some locations. Therefore, it is necessary to develop a baseline-

free damage identification method for multi-damage localisation, which will be 

studied in the next chapter. 
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6.7 Conclusions 

In this section, the relationship between the mode shape curvature and damage in a 

plate structure is discussed firstly. Then, the Laplacian of Gaussian is employed to 

improve the noise robustness for curvatures estimation along x and y directions. The 

Laplacian of Gaussian can be implemented by three multi-scale approaches: LoG filter, 

Mexican hat wavelet transform and difference of Gaussian filter. Thirdly, the principal 

curvatures, mean principal curvature and Gaussian curvature are studied, which are 

the intrinsic measures of a surface. Moreover, a local polynomial fitting approach 

based on the neighbourhood ring points is used to boost the noise robustness and 

accuracy of principal, mean principal and Gaussian curvatures.  

A numerical cantilever aluminium plate with two damage areas is simulated, which 

also provides the theoretical background of the experimental study. Based on this 

numerical study, the Laplacian of Gaussian and local polynomial fitting approaches 

are validated to be effective in dealing with noisy measurement data for robust mode 

shape curvature estimation. Then, an experiment of a cantilever aluminium plate with 

two damage areas is tested to validate LoG and LPF in practical curvature estimation. 

It is concluded that the two methods both perform well in robust mode shape curvature 

estimation.  
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Chapter 7  

 

Robust multi-damage identification of plate-type 

structures  

 

The main purpose of this chapter is to develop a baseline-free multi-damage 

identification method for plates by examining the damage-induced singularities of 

mode shape curvatures. For robust multi-damage identification, the damage 

information of several modes should be combined, as a single mode is only sensitive 

to damage at some positions. To extract the damage-induced changes, baseline 

information is usually required.  

Without baseline data of the healthy state, two approaches are investigated to construct 

the mode shape curvatures of healthy structures based on vibration data of damaged 

structures. The basic idea is that the mode shape curvatures of a mode of a plate in the 

healthy state are smooth; or, when arranged into a matrix by following the 

measurement grid, possess a low-rank structure (which means that this is a low-rank 

matrix). Based on the smoothness principle, surrogate models such as polynomial 

fitting and Kriging regression are first studied to approximate the mode shape 

curvature of the healthy state. Then, the low-rank models formed by methods such as 

principal component analysis and robust principal component analysis (robust PCA) 

are applied to construct the 2-D mode shape curvature of the healthy state and extract 

the damage-induced changes.  

Moreover, a robust multi-damage index is developed to detect, localise, and quantify 

the relative severity of damage, which is based on the extracted damage information 

of several mode shape curvatures. Finally, effectiveness and robustness of the 

proposed baseline-free multi-damage identification method are validated by numerical 

and experimental studies.  
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7.1 Introduction 

For non-model-based multi-damage identification methods, damage localisation can 

be achieved by the examination of damage-induced local shape singularities of mode 

shape curvatures. If the mode shape curvatures of healthy structures are available, the 

differences between the mode shape curvatures before and after damage are naturally 

utilised for damage identification. In the absence of baseline data of healthy structures, 

the sudden changes of mode shape shapes or curvatures are generally adopted to 

localise the positions of damage. For this purpose, signal processing methods such as 

wavelet transform and fractal dimension methods are widely employed to manifest the 

damage-induced singularities whilst decreasing the misleading results due to 

measurement noise [128, 139]. But this kind of methods is only based on curvatures 

of a single mode shape, which is not robust for multi-damage localisation, as a single 

mode shape is normally sensitive to damage at some locations whereas less sensitive 

at other locations.  

In order to propose a robust multi-damage index without baseline data of healthy 

structures, the primary task is to extract the damage-induced changes of mode shape 

curvatures. However, extracting the damage-induced changes require the mode shape 

curvatures of healthy structures, which are usually not available. To address this, two 

properties of mode shape curvatures of healthy plate structures are used to construct 

the mode shape curvatures of the healthy state based on the mode shape curvatures of 

damaged structures, which are the smoothness and the low-rank of 2-D mode shape 

curvatures.  

Based on the smoothness property, the polynomial fitting or smoothing methods are 

traditionally applied. Yoon et al. [141]  generalised the 1-D gapped smoothing method 

to 2-D and localised the damage by using the damage-induced inhomogeneity of 

vibration curvature shapes. This method worked effectively under the condition that 

the damaged areas were much smaller than the surface area. Xu and Zhu [132] applied 

global polynomial fitting method to construct the mode shapes of the healthy state 

based on the mode shapes of the damaged state and then the square of the differences 

between them was used to indicate the position of damage.  

For the 2-D mode shape or mode shape curvature of plates at a certain natural 

frequency, they are arranged into a matrix by following the measurement grid. Hence, 
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some matrix processing methods can be extended to damage identification of plates. 

Without damage, the ranks of 2-D mode shapes or mode shape curvatures are normally 

low, which means that they can be accurately approximated by using the first several 

principal components of PCA. The occurrence of damage in the plates will introduce 

the local singularities, which are revealed by the increasing rank of 2-D mode shapes 

or mode shape curvatures.  Moreover, the damage-induced local singularities can be 

localised by robust PCA method, also known as principal component pursuit (PCP), 

which decomposes the 2-D mode shape or mode shape curvature into two components: 

a low-rank matrix and a sparse matrix. Yang et al. [214] investigated the low-rank 

modelling for damage identification in plates based on the simulated strain field 

measurements. The damage detection results showed that it was feasible to localise the 

damage by using low-resolution strain measurements. In this chapter, robust PCA is 

investigated for robust multi-damage localisation, especially for incipient damage. 

Moreover, the extracted sparse matrices form several mode shape curvatures are 

combined to form a robust multi-damage index.  

7.2 Baseline-free multi-damage identification of plates 

For plate-type structures, the mode shape and mode shape curvature values associated 

with a certain natural frequency are form a two dimensional grid and thus are 

represented as matrices 𝚽p and 𝚽p
′′, respectively. The mode shape curvature 𝚽p

′′d of 

damaged structures can be expressed as a superposition of mode shape curvature 𝚽p
′′ 

of the healthy state, damage-induced shape change matrix 𝚯 and noise matrix E. 

 𝚽p
′′d = 𝚽p

′′ +  𝚯 +E (7.1) 

where 𝚯 should be a sparse matrix with arbitrary magnitudes of entries, which is 

essential for damage identification. The 2-D mode shape curvature 𝚽p
′′ in Eq. (7.1) can 

be the mean x-y curvature, mean principal curvature or Gaussian curvature presented 

in Chapter 6.  

Moreover, in Eq. (7.1), 𝚽p
′′d is obtained directly from experimental data whilst 𝚽p

′′ is 

normally not available in practical applications. Two approaches are investigated to 

solve this problem. One is to reconstruct 𝚽p
′′ through 𝚽p

′′d based on the assumption 

that 𝚽p
′′ is as smooth as possible in the healthy state. The other approach is the low-
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rank models, which are based on low intrinsic dimensionality of mode shape curvature 

𝚽p
′′ of the healthy state. In fact, these two approaches are also suitable for plate damage 

identification based on other characteristic deflection shape curvatures.  

7.2.1 Construction of 𝚽𝐩
′′
 based on smoothness assumption 

In this section, the difference matrix ∆𝚽p
′′ between mode shape curvatures before and 

after damage is computed as  

 ∆𝚽p
′′ = 𝚽p

′′d − �̂�p
′′ (7.2) 

where �̂�p
′′ is the estimated mode shape curvatures of the healthy state based on 𝚽p

′′d 

by surrogate models under the smoothness assumption and ∆𝚽p
′′  being equal to 

 (𝚯 + 𝐄).  

The general form of approximating any smooth and continuous function can be 

expressed as a linear combination of basis functions 

  �̂�′′(𝑥, 𝑦) = ∑ 𝑐𝑖𝜓
(𝑖)𝑁𝑝

𝑖=1
 (7.3) 

where 𝑁𝑝 indicates the number of terms and 𝜓 denotes the basis function. For example, 

for polynomial models of order 3 with two variables (𝑥, 𝑦), the group of basis functions 

is 𝜓(𝑖) ∈ {1, 𝑥, 𝑦, 𝑥𝑦, 𝑥2, 𝑦2, 𝑥2𝑦, 𝑥𝑦2, 𝑥3, 𝑦3 }. In this case, not only the polynomial 

order but the coefficients 𝐜 have to be determined for an accurate approximation. 

Moreover, instead of the above example of multivariable polynomials, the more 

versatile basis functions such as radial basis functions are investigated based on the 

Kriging regression model, which usually possess well-known properties.  

7.2.1.1 Gapped smoothing method 

The 2-D GSM is a local polynomial fitting approach, which is an extension of 1-D 

GSM method [141]. It is assumed that the mode shape curvature of healthy structures 

can be approximated by a polynomial function as  

  �̂�′′(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖,𝑗−𝑖𝑥
𝑖𝑦𝑗−𝑖

𝑗
𝑖=0

𝑝
𝑗=0  (7.4) 

For a 2-D grid, three types of measurement points (inner, boundary and corner points) 

are illustrated in Figure 7.1. 
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  (a)  (b)       (c)  

Figure 7.1  2-D GSM (points in red circles): (a) inner point (b) boundary point (c) 

corner point. 

Due to different locations of the predicted point, there are three cases: (a) for the inner 

points, there are eight neighbouring points and Eq. (7.4) is written as �̂�′′(𝑥, 𝑦) = 𝑐0 +

𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑥𝑦 + 𝑐4𝑥
2 + 𝑐5𝑦

2 + 𝑐6𝑥𝑦
2 + 𝑐7𝑥

2𝑦; (b) for the boundary points in 

Figure 7.1(b), five adjacent points are available and Eq. (7.4) is expressed 

as �̂�′′(𝑥, 𝑦) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑥
2 + 𝑐3𝑦

2; (c) for the corner points, there are only 

three neighbouring points and Eq. (7.4) is expressed as �̂�′′(𝑥, 𝑦) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑦. 

Then, the difference between the fitted value and the original value is calculated 

according to Eq. (7.2). 

The outlier entries of ∆𝚽p
′′ indicates the damage locations. It is obvious that the GSM 

is implemented at each measurement point using neighbouring points in surface fitting 

and could be inefficient when the measured points are many and dense. Furthermore, 

2-D gapped smoothing method is suitable for point-wise damage types but inefficient 

for small area damage.  

7.2.1.2 Global polynomial fitting method 

In this section, the global polynomial fitting technique will be investigated to evaluate 

the mode shape curvature �̂�p
′′of the healthy state based on the mode shape 𝚽p

′′d of the 

damaged state. A general form of the polynomial fitting is  

 �̂�′′(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖,𝑗−𝑖𝑥
𝑖𝑦𝑗−𝑖

𝑗
𝑖=0

𝑝
𝑗=0  (7.5) 

Here, 𝑝  indicates the polynomial order. The problem is to estimate 𝐜 =

[𝑐0,0, 𝑐1,0,⋯ 𝑐𝑖,𝑗−𝑖, ⋯ , 𝑐𝑝,0]
T
 through the least-squares solution of  �̅�𝐜 = 𝚽p

′′d, where 

�̅� is the bivariate Vandermonde matrix: 
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 �̅� =

[
 
 
 
 1 𝑦1 𝑥1
1 𝑦2 𝑥2

⋯
…

𝑥1
𝑖𝑦1

𝑗−𝑖 ⋯ 𝑥1
𝑝

𝑥2
𝑖𝑦2

𝑗−𝑖 ⋯ 𝑥2
𝑝

… … … ⋱       ⋯       ⋯ ⋯
1 𝑦𝑁m 𝑥𝑁m ⋯ 𝑥𝑁m

𝑖𝑦𝑁m
𝑗−𝑖 … 𝑥𝑁m

𝑝
]
 
 
 
 

 (7.6) 

The maximum likelihood estimate of 𝐜 is  

 �̂� = �̅�+𝚽p
′′d (7.7) 

where  �̅�+ = (�̅�T�̅�)−𝟏�̅�T is the Moore-Penrose pseudo-inverse of �̅�. Equation (7.7) 

presents a possible approach to estimate 𝐜 but the crucial problem here is to determine 

the polynomial order 𝑝 in order to provide a good estimation of mode shape curvature 

�̂�p
′′ of the undamaged state. A possible rule is to determine the minimum polynomial 

order 𝑝 satisfying 

 
std(𝚽p

′′d−�̂�p
′′)

std(𝚽p
′′d)

≤ 0.05 (7.8) 

When the polynomial order 𝑝 is large, the bivariate Vandermonde matrix �̅� can be ill-

conditioned, which can lead to an inaccurate polynomial fit. To alleviate the ill-

condition of  �̅�, it is proposed to normalise  �̅� = [�̅�1, �̅�2⋯ , �̅�𝑁𝑝] by Gram-Schmidt 

orthogonalisation approach, where𝑁𝑝 = (𝑝 + 2)(𝑝 + 1) 2⁄  is the total number of 

polynomial terms. First, the projection of 𝐯𝑖 on 𝐯𝑗 is defined as 

 Proj�̅�𝑗(�̅�𝑖) =
�̅�𝑗
T�̅�𝑖

�̅�𝑗
T�̅�𝑗
�̅�𝑗 (7.9) 

Then, the formula of Gram-Schmidt orthogonalisation is 

 �̃�𝑖 =
𝐯𝑖−∑ Proj�̅�𝑗

(�̅�𝑖)
𝑖−1
𝑗=1

‖𝐯𝑖−∑ Proj�̅�𝑗
(�̅�𝑖)

𝑖−1
𝑗=1 ‖

 (7.10) 

The normalised bivariate Vandermonde matrix is �̃� = [�̃�1, �̃�2⋯ , �̃�𝑁𝑝] . Then, �̃�  is 

substituted into Eq. (7.7) to calculate the accurate polynomial coefficients �̂� and the 

smoothed mode shape curvature is determined as �̂�p
′′ = �̃��̂�. After this, Eq. (7.8) is 

used to check if the approximation of mode shape curvature �̂�p
′′  reaches the defined 

threshold of 𝚽p
′′d.  If not, the polynomial order 𝑝 is increased by 1 to recalculate �̂�p

′′ 

until Eq. (7.8) is satisfied.  
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7.2.1.3 Kriging regression method 

Kriging model plays a significant role in surrogate model and surrogate based 

optimisation, which evaluates the values of un-sampled points based on a stochastic 

model. The mathematical derivation of Kriging prediction was presented in [215]. 

Here, the main purpose is to illustrate the application of Kriging regression to 

estimate �̂�p
′′.  

Given a set of sampled surface locations  𝐗 = {𝐱(1), 𝐱(2), ⋯ , 𝐱(𝑁m)}
T

(where 𝐱(𝑖) =

(𝑖 , 𝑦𝑖) indicates the position of i-th sample) and their associated mode shape curvature 

values 𝛗′′ = {𝜑′′
(1)
, 𝜑′′

(2)
, ⋯ , 𝜑′′

(𝑁m)}
T

at a certain natural frequency, the purpose is 

to obtain the expression for a predicted modal curvature value at a new point. The 

observed mode shape curvature values are considered from a stochastic process in the 

theoretical model but this is not necessary in practical applications [216]. The 

likelihood of acquiring these mode shape curvature values is 

 𝐿(𝛗′′|𝜇, 𝜎) =
1

(2π𝜎2)𝑁m 2⁄ |𝚿|1 2⁄ exp (−
(𝛗′′−𝟏𝜇)

T
𝚿−1(𝛗′′−𝟏𝜇)

2𝜎2
) (7.11) 

where 𝜇  and 𝜎  denote the mean value and the standard deviation of the Gaussian 

process and 𝟏 is an 𝑁m × 1 column vector of ones. |𝚿| denotes the determinant of 𝚿 

and 𝚿 indicates the correlation matrix of the sampling points, which is written as  

 𝚿 = [

cor[𝜑′′(𝐱(1)), 𝜑′′(𝐱(1))] ⋯ cor[𝜑′′(𝐱(1)), 𝜑′′(𝐱(𝑁m))]

⋮ ⋱ ⋮
cor[𝜑′′(𝐱(𝑁m)), 𝜑′′(𝐱(1))] ⋯ cor[𝜑′′(𝐱(𝑁m)), 𝜑′′(𝐱(𝑁m))]

] (7.12) 

where cor[𝜑′′(𝐱(𝑖)), 𝜑′′(𝐱(𝑗))] =  exp (−∑ 𝜃𝑘 |𝑥𝑘
(𝑖) − 𝑥𝑘

(𝑗)
|
𝑝𝑘𝑑

𝑘=1 )  is the basis 

function 𝜓(𝐱(𝑖), 𝐱(𝑗)) correlating the random variables with each other. In the basis 

functions, 𝑑  indicates the number of dimensions such as 𝑑 = 2 for 𝐱(𝑖) = (𝑥𝑖 , 𝑦𝑖).  

Here, the relation between correlation matrix and covariance matrix is cov(𝛗′′, 𝛗′′) =

σ2𝚿. Furthermore, it is clear that the basis function is determined by the absolute 

distance between sample points |𝑥𝑘
(𝑖) − 𝑥𝑘

(𝑗)
|, parameter 𝜃𝑘 and parameter 𝑝𝑘.  

However, the measured mode shape curvature data 𝛗′′ = {𝜑′′
(1)
, 𝜑′′

(2)
, ⋯ , 𝜑′′

(𝑁m)}
T

, 

are always corrupted by measurement noise, which may yield an overfitting model 
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with poor predictions. To resolve this problem, a common approach of modelling the 

noise is via adding a regularisation parameter 𝜂 to the diagonal entries of correlation 

matrix as  𝚿 + 𝜂𝐈  (𝐈  is an 𝑁m × 𝑁m  identity matrix). Moreover, the regularisation 

parameter 𝜂 is possible to take into account the damage-induced changes in mode 

shape data. Therefore, it enhances the recovery of the mode shapes of undamaged 

structures based on the mode shapes of the damaged structures.  

By adding the regularisation parameter 𝜂, the likelihood of acquiring these mode shape 

curvature values is rewritten as 

 𝐿(𝛗′′|𝜇, 𝜎) =
1

(2π𝜎2)𝑁m 2⁄ |𝚿+𝜂𝚰|1 2⁄ exp (−
(𝛗′′−𝟏𝜇)

T
(𝚿+𝜂𝚰)−1(𝛗′′−𝟏𝜇)

2𝜎2
) (7.13) 

By taking the derivatives of 𝜇  and 𝜎   in Eq. (7.14) and setting them to zero, the 

maximum likelihood of 𝜇 and 𝜎  are estimated as 

 

�̂� =
𝟏T(𝚿+𝜂𝚰)−1𝛗′′

𝟏T(𝚿+𝜂𝚰)−1𝟏

�̂�2 =
(𝛗′′−𝟏𝜇)

T
(𝚿+𝜂𝚰)−1(𝛗′′−𝟏𝜇)

𝑁m

 (7.14)

Substituting Eq. (7.14) into Eq. (7.13) and removing the constant terms, the ln-

likelihood function is simplified as  

 ln(𝐿) ≈ −
𝑁m

2
ln(�̂�2) −

1

2
ln|(𝚿 + 𝜂𝚰)| (7.15) 

The value of Eq. (7.15) depends on the unknown parameters 𝛉, 𝐩 and 𝜂. A global 

optimisation method termed as Genetic Algorithm is used to evaluate their optimum 

values [216]. Then, the identified values of �̂�, �̂�2,𝛉, 𝐩 and 𝜂 are used to determine 

�̂�p
′′ of the undamaged structures.  

The prediction of regressing Kriging prediction is   

 �̂�′′(𝐱∗) = �̂� + 𝛙T(𝚿 + 𝜂𝚰)−1(𝛗′′ − 𝟏𝜇) (7.16) 

where  𝛙 is the correlation between the untried point 𝐱∗ and the sample points 𝐱(𝑖): 

 𝛙 = [𝜓(𝐱∗, 𝐱(1)), 𝜓(𝐱∗, 𝐱(2)),⋯ ,𝜓(𝐱∗, 𝐱(𝑁m))]  (7.17) 
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7.2.2 Low-rank models for damage identification 

Low-rank modelling refers to a group of methods that solve problems by using low-

rank properties of the original data. For instance, principal component analysis is a 

well-known low-rank approach, which approximates the original dataset by a low-rank 

matrix. Moreover, matrix completion and robust PCA are powerful approaches for 

low-rank matrix recovery. Matrix completion is normally used to recover a matrix 

based on a small number of observed entries, which could be applied to recover the 

missing data in experiments. Robust PCA can recover a low-dimensional subspace 

from grossly corrupted data whilst the traditional PCA is vulnerably affected by the 

gross errors in the original dataset.  

7.2.2.1 Principal component analysis 

Principal component analysis is a multivariate statistical approach and widely used for 

subspace analysis and low-rank approximation. The problem of decomposing 𝚽p
′′d 

into a low-rank matrix 𝐋 and a small perturbation matrix 𝓢 is expressed as   

 
𝚽p
′′d = 𝐋 + 𝓢

 

minimise ‖𝚽p
′′d − 𝐋‖   subject to rank(𝐋) ≤ 𝑘

 (7.18) 

where 𝐋 can be an estimation of mode shape curvature 𝚽p
′′ of the heathy state and 𝓢 

consists of damage information 𝚯 and measurement noise E. Equation (7.18) can be 

efficiently solved via singular value decomposition. The singular value decomposition 

of 𝚽p
′′d ∈ ℝ𝑛1×𝑛2(𝑛1 ≥ 𝑛2) is written as  

 𝚽p
′′d = 𝐔𝚺𝐕T (7.19) 

In which, 𝐔 = [𝐮1, 𝐮2, ⋯ , 𝐮𝑛1] ∈ ℝ
𝑛1×𝑛1  and 𝐕 = [𝐯1, 𝐯2, ⋯ , 𝐯𝑛2] ∈ ℝ

𝑛2×𝑛2  are 

orthogonal matrices, respectively and 𝚺 ∈ ℝ𝑛1×𝑛2  is a non-negative rectangular 

diagonal matrix with top 𝑛2 rows containing singular values in a descending order: 

λ1 ≥ λ2 ≥ ⋯ ≥ λ𝑛2 ≥ 0 and all zero for the other (𝑛1 − 𝑛2) rows. 

Firstly, the singular values of 𝚽p
′′d can be used to indicate the existence of damage. 

The basic idea of applying PCA for damage identification is that the mode shape 

curvature of healthy structures could be approximated by the first several principal 

components while the damage increases the active principal components or rank of 
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mode shape curvature matrix. Figure 7.2 shows the singular value plot of a plate in the 

cases of no damage and two damage areas of different damage severities. It indicates 

that there will be more large singular values by increasing the damage severity. 

 

(a) (b) 

Figure 7.2  Singular values of the 10th mode shape of a plate without damage and with 

two damage areas of different depths. 

Secondly, it is possible to localise damage using matrix 𝓢. The approximation of 𝚽p
′′ 

can be obtained by using the first several singular values 𝑘(𝑘 <  𝑛2) and singular 

vectors.  

 �̂�p
′′ = 𝐋 =  𝐔�̃�𝐕T;  �̃� = diag[λ1, λ2, ⋯ , λ𝑘, 0,0,⋯ ,0] (7.20) 

where the diagonal entries of �̃� are comprised of the first 𝑘 singular values and zeros 

for the others. Thus, matrix 𝓢 is determined as  

 𝓢 = 𝚽p
′′ d − �̂�p

′′ (7.21) 

In the process of calculating �̂�′′, any grossly corrupted (outlier) entries in 𝚽p
′′ d could 

cause the estimation of �̂�p
′′  arbitrarily far from the true 𝚽p

′′  [217]. However, it is 

common to have grossly corrupted entries in 𝚽p
′′d, which are caused by damage or 

measurement noise. In order to improve the damage localisation accuracy, robust 

principal component analysis is studied for damage localisation.  

7.2.2.2 Robust principal component analysis  

Robust principal component analysis aims to estimate the low-rank 𝐋 based on the 

grossly corrupted𝚽p
′′d . The decomposition of  𝚽p

′′d  into a low-rank matrix plus a 

sparse component 𝓢  can be achieved by several approaches such as principal 
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component pursuit (PCP), outlier pursuit and iteratively reweighted least-squares [16]. 

According to PCP, the problem is expressed as  

 
𝚽p
′′d = 𝐋 + 𝓢

 

minimise ‖𝐋‖∗ + 𝜉‖𝓢‖1   subject to 𝐋 + 𝓢 = 𝚽p
′′d

 (7.22) 

where 𝜉 > 0  is an arbitrary balance parameter, ‖𝐋‖∗ = ∑ 𝜆𝑖𝑖 (𝐋)  represents the 

nuclear norm of matrix 𝐋  (which is the ℓ1  norm of singular values) and ‖𝓢‖1 =

∑ |𝒮𝑖𝑗|𝑖𝑗  denotes the ℓ1 norm of matrix 𝓢. For damage identification, it is clear that 𝐋 

corresponds to the mode shape 𝚽p
′′  of the healthy state whereas 𝓢 corresponds to 

damage-induced component 𝚯 as illustrated in Eq. (7.1). Moreover, the plot of ‖𝓢‖1 

under various damage scenarios is possible to indicate the relative damage severities. 

In Eq. (7.22), the minimisation of ‖𝐋‖∗ and ‖𝓢‖1 implies that 𝐋 is approximated by a 

low-rank subspace whilst the damage-caused mode shape curvature changes constitute 

the correlated sparse outliers which are contained in 𝓢. If rank(𝐋) is too high, 𝐋 will 

incorporate the damage features in its representation. If rank(𝐋) is too low, some mode 

shape curvature features will appear in 𝓢, which corrupts or misleads the damage 

identification results. In this case, the balance parameter 𝜉  should be chosen 

appropriately to well separate the low-rank and sparse matrices. 

For practical applications, 𝚽p
′′d is often contaminated by measurement noise, which 

can be stochastic or deterministic. Therefore, the entry-wise noise of 𝚽p
′′d must be 

taken into account to guarantee a robust and accurate solution of 𝓢. The new PCP 

considering the noise effects is modelled as 

 
𝚽p
′′d = 𝐋 + 𝓢 + 𝐄

minimise ‖𝐋‖∗ + 𝜉‖𝓢‖1   subject to ‖𝚽p
′′d − 𝐋 − 𝓢‖ ≤ 𝜖

 (7.23) 

where the constraint in Eq. (7.22) is relaxed as ‖𝚽p
′′d − 𝐋 − 𝓢‖ ≤ 𝜖 (𝜖 > 0) and  𝜉 is 

chosen as 1 √max( 𝑛1,  𝑛2)⁄  [218]. This PCP problem can be addressed efficiently by 

convex optimisation algorithms and encouraging performance has been demonstrated 

on face images and background modelling [219].  

The challenging problem of applying robust PCA for damage identification is that 

robust PCA is normally used in the pixel domain based on images or videos. But the 
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mode shape curvature 𝚽p
′′d  of plates in this study is acquired from discrete 

measurement points by Scanning Laser Vibrometer. Moreover, the spatial resolution 

of measurements points is much lower than an image, which increases the difficulties 

of applying robust PCA. Thus, the effectiveness and feasibility of applying robust PCA 

for damage identification based on discrete mode shapes are unknown. According to 

the published papers, this problem has not been studied before.  

7.3 Robust multi-damage index 

With the estimated mode shape curvature �̂�p
′′ of the healthy state, the difference with 

the original value 𝚽p
′′d is 

 ∆𝚽p
′′ = 𝚽p

′′𝐝 − �̂�p
′′ or  ∆𝚽p

′′ = 𝚽p
′′d − �̂�p

′′ − 𝐄  (7.24) 

Here, ∆𝚽p
′′ contains the information of damage locations. But ∆𝚽p

′′ can present values 

where there is no damage. Thus, a robust multi-damage index is proposed based on a 

statistical criteria. First, the value ∆𝛷p
′′(𝑥𝑙 , 𝑦𝑙) (𝑙  indicates the measurement point) 

associated with each measurement point is regarded as a random value realisation. 

Then, the normalised mode shape curvature difference is defined as  

 𝛧(𝑥𝑙 , 𝑦𝑙) = (∆𝛷p
′′(𝑥𝑙, 𝑦𝑙) − 𝑢∆𝚽p′′ ) 𝜎∆𝚽p′′ ⁄  (7.25) 

where 𝑢∆𝚽p′′  and 𝜎∆𝚽p′′  denote the mean and standard deviation of the mode shape 

curvature differences of ∆𝚽p
′′. Here, the outlier values of 𝚭 (large positive or negative 

values) indicate the damage locations, which are located in the two tail areas of normal 

distribution as shown in Figure 7.3.  

 

Figure 7.3  Tail probability of normal distribution. 
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From Figure 7.3, the damage localisation can be expressed as a decision regarding the 

likelihood. The null hypothesis (𝐻0) is that the damage does not occur at the 𝑙-th 

measurement point and its alternative hypothesis 𝐻1 states that the damage occurs at 

the 𝑙 -th measurement point. Thus, the damage localisation is to determine the 

confidence probability to accept 𝐻1 or reject 𝐻0 [220]. 

Simply, a threshold value 𝛧𝛼 2⁄  (𝛼 represents the percentile) can be selected and the 

damage locations are determined as 

 |𝛧(𝑥𝑙 , 𝑦𝑙)| ≥ 𝛧𝛼 2⁄  (7.26) 

In which, 𝛼 = 0.05  is used in this thesis and then the threshold  𝛧𝛼 2⁄ = 2.8070 . 

For |𝛧(𝑥𝑙 , 𝑦𝑙)| < 𝛧𝛼 2⁄ , there is no damage and the associated 𝛧𝑙 is set as zero. Thus, 

for a certain mode shape, the updated mode shape curvature difference is 

 �̃�(𝑥𝑙, 𝑦𝑙) = {
|𝛧(𝑥𝑙 , 𝑦𝑙)|, |𝛧(𝑥𝑙, 𝑦𝑙)| ≥ 𝛧𝛼 2⁄  

0, |𝛧(𝑥𝑙, 𝑦𝑙)| < 𝛧𝛼 2⁄
 (7.27) 

For the curvatures of 𝑁r modes, the multi-damage index is defined as  

 𝐷𝐼𝑙 =
1

𝑁r
∑ �̃�𝑟(𝑥𝑙, 𝑦𝑙)
𝑁r
𝑟=1  (7.28) 

7.4 Numerical studies 

The purposes of this section are trifold. First, the performance of the presented damage 

information extraction methods are illustrated based on a single mode shape. Then, a 

combination of several mode shapes for robust multi-damage identification is 

demonstrated. Finally, the damage identification abilities of different mode shape 

curvatures such as mean x-y curvature and mean principal curvature are tested base on 

the robust multi-damage index. 

A cantilever aluminium plate of dimension 0.35 × 0.23 × 0.003m3  with Young’s 

modulus 𝐸=69 GPa, Poisson’s ratio 𝜈 = 0.35 and the mass density 𝜌=2700 kg/m3 is 

analysed. The details of the numerical study have been presented in Section 6.5. Here, 

two damage cases of a plate with two damage areas are studied, which are shown in 

Figure 7.4. For numerical case 1, the two damage positions are centred at (0.10 m, 

0.115 m) and (0.21 m, 0.115 m) with an equal area of 0.02 × 0.02 m2. For numerical 
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case 2, the two damage positions are centred at (0.155 m, 0.075 m) and (0.155 m, 0.155 

m) with an equal area of 0.02 × 0.02 m2.   

  

(a) (b) 

Figure 7.4  FE model of a plate with two damaged areas (a) Case 1 (b) Case 2. 

7.4.1 Baseline-free multi-damage identification using a single mode shape 

First, with Gaussian white noise 𝑛level = 0.1% (60.10 dB), the Gaussian curvature of 

10th mode shape of numerical case 1 is taken as an example to show damage 

identification performance of different methods. Figure 7.5 presents the 10th mode 

shape of numerical case 1 and its Gaussian curvature.  

   

(a) (b) 

Figure 7.5  (a) The 10th mode shape of numerical case 1 and (b) Gaussian curvature of 

the 10th mode shape using 2-ring LPF.  

7.4.1.1 Multi-damage identification using polynomial fitting approaches 

In this section, the polynomial fitting approaches are applied to demonstrate their 

damage identification performance. Figure 7.6 presents the damage localisation results 

of numerical case 1 (both damage areas of 10% thickness reduction) by using 2-D 
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gapped smoothing method. The damage identification results in Figure 7.6 (b) indicate 

that the 2-D GSM is not effective in extracting the damage-induced changes and 

provides poor damage identification results.  

 

(a) (b) 

Figure 7.6  (a) Constructed Gaussian curvature of numerical case 1 (both damage of 

10% thickness reduction) and (b) Damage identification results based on 2-D GSM.  

Furthermore, its ability for severe damage localisation is tested as well. Figure 7.7 

illustrates the damage identification results of numerical case 1 with both damage of 

30% and 60% thickness reduction. The damage localisation results from Figure 7.7 

indicate that 2-D GSM works for very severe damage cases such as those presented in 

Figure 7.7. However, the identified damage positions of 2-D GSM are not accurate, 

which provides bigger alarming areas than the true damage areas as shown in Figure 

7.7 (b) (the red rectangles indicate the actual damage areas). 

 

(a)          (b) 

Figure 7.7  Damage localisation results of numerical case 1 with both damage areas of 

(a) 30% thickness reduction and (b) 60% thickness reduction. 

Next, global polynomial fitting method is adopted and the damage detection results of 

numerical case 1 (both damage of 10% thickness reduction) are given in Figure 7.8. 
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Form Figure 7.8, it is clear that GPF method is capable of identifying the two damage 

areas accurately, but the drawback of this method is overfitting. In this case, the 

polynomial order need to be chosen properly. Here, Eq. (7.9) is used to determine the 

best polynomial order.  

 

(a) (b) 

Figure 7.8  (a) Constructed Gaussian curvature of numerical case 1 (both damage of 

10% thickness reduction) and (b) Damage identification results of GPF method.  

Finally, Kriging regression approach is used to approximate the mode shape curvature 

of the healthy state. The constructed mode shape curvature and the damage 

identification results are presented in Figure 7.9.  

 

(a) (b) 

Figure 7.9  (a) Constructed Gaussian curvature of numerical case 1 (both damage of 

10% thickness reduction) and (b) Damage identification results of Kriging regression. 

In this study, a sample of 400 measurement points are used to establish the Kriging 

regression model and it takes 427.51s. Normally, the large amount of sample points 

will increase the prediction accuracy but the computational complexity of establishing 

the Kriging regression model is high. Therefore, Kriging regression model is suitable 

for problems of limited sample points, which aims to obtain the optimal regression 
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model. Although the damage localisation results of Kriging regression model are 

accurate for this numerical study, it is not recommend for applying it to a large number 

of sample points due to its computational complexity.  

7.4.1.2 Multi-damage identification using low-rank approaches 

Traditional principal component analysis is first investigated for damage localisation. 

In which, the low-rank matrix 𝐋 is determined by the singular values accounting 80% 

of all the singular values. The estimated Gaussian curvature using 𝐋  and the 

normalised multi-damage index are presented in Figure 7.10. 

   

(a) (b) 

Figure 7.10  (a) Constructed Gaussian curvature of numerical case 1 (both damage of 

10% thickness reduction) and (b) Damage localisation results of PCA. 

From Figure 7.10 (b), it is obvious that the traditional PCA is impossible to localise 

the two damage areas of numerical case 1. In order to test its feasibility for severe 

damage cases, Figure 7.11 shows the damage identification results of numerical case 

1 with two damage areas of 30% and 60% thickness reduction, respectively.  

   

(a) (b) 

Figure 7.11  Damage localisation results of numerical case 1 with two damage areas 

of: (a) 30% thickness reduction and (b) 60% thickness reduction. 
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The damage localisation results of traditional PCA are of poor quality as shown in 

Figure 7.11, which indicates that it is not effective for damage identification, even for 

severe damage cases. Then, the robust PCA is applied for damage identification. The 

estimated mode shape curvature of the undamaged state and the damage localisation 

results of numerical case 1 are given in Figure 7.12.  

  

(a) (b) 

Figure 7.12  (a) Constructed Gaussian curvature of numerical case 1 (both damage of 

10% thickness reduction) and (b) Damage identification results of robust PCA.  

From Figure 7.12, it is apparent that the damage index of robust PCA is accurate for 

multi-damage localisation. Furthermore, it is validated that the robust PCA originally 

proposed in pixel-domain is possible to be extended to damage identification based on 

mode shape of low-density discrete measurement points.  

Above all, both robust PCA and GPF approach are effective in constructing the mode 

shape curvatures of the healthy state and providing robust and accurate damage 

identification results. But the computation efficiency of robust PCA is higher than GPF 

approach, as robust PCA takes about 0.5250s for each run while GPF consumes 

1.6223s.  

7.4.2 Baseline-free robust multi-damage index  

The above study is based on the 10th mode shape. However, it is unknown which mode 

shape is more sensitive for damage identification, as the information of damage is not 

available in practice. In order to demonstrate that a certain mode shape is inefficient 

in localising damage at some positions, numerical case 2 with two damage areas of 10% 

thickness reduction is studied.  
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First, the Gaussian curvature of 10th mode shape is used to identify the two damage 

areas of numerical case 2 via robust PCA approach. The damage localisation results 

are presented in Figure 7.13.  

 

Figure 7.13  Damage localisation results of numerical case 2 (both damage areas of 

10% thickness reduction) based on robust PCA.  

It is clear that the two damage areas cannot be localised by using the 10th mode shape 

mode. Thus, a robust multi-damage localisation method should incorporate damage 

information of several mode shapes. The robust multi-damage index has been defined 

in Eq. (7.29). Here, Gaussian curvatures of 10th to 15th mode shapes are used to 

evaluate the proposed robust damage index for the two numerical cases and the 

damage localisation results are presented in Figure 7.14. In addition, the mode shapes 

from 10th to 15th are contaminated by 0.1% Gaussian noise.  

  

(a) (b) 

Figure 7.14  Robust multi-damage index using robust PCA (both damage areas of 10% 

thickness reduction): (a) Numerical case 1 and (b) Numerical case 2. 

The two damage areas of two numerical cases can be both localised correctly in Figure 

7.14 but the damage indexes are corrupted by some boundary points. Therefore, by 

0 100 200 300 400
0

50

100

150

200

250  

x (mm)

 

y
 (

m
m

)

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350
0

50

100

150

200

250  

x (mm)

 

y
 (

m
m

)

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350
0

50

100

150

200

250  

x (mm)

 

y
 (

m
m

)

0

2

4

6

8

10

12



140 

 

removing some boundary measurement points, Figure 7.15 presents the clear damage 

localisation results. 

 

(a) (b) 

Figure 7.15 Robust multi-damage index of robust PCA without boundary points (both 

damage of 10% thickness reduction): (a) Numerical case 1 and (b) Numerical case 2. 

The above damage identification results are sensitive to the boundary measurement 

points, as only the information of one side of boundary measurement points is available, 

which degrades the efficiency of robust PCA. This problem mainly affects the damage 

localisation results of smaller damage. By increasing the damage depth to 30% 

reduction, the effects of boundary points will decrease, which are demonstrated in 

Figure 7.16. 

 

(a) (b) 

Figure 7.16  Robust multi-damage index using robust PCA (both damage areas of 30% 

thickness reduction): (a) Numerical case 1 and (b) Numerical case 2. 

Another conclusion by comparing Figure 7.16 with Figure 7.15 is that the amplitude 

of damage index is able to indicate the relative damage severity, as the damage index 

amplitude will increase with the damage depth. In conclusion, the proposed baseline-

free robust multi-damage index is validated to be effective and accurate for multi-

damage detection, localisation and relative severity quantification.  
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7.4.3 Robust multi-damage index of different curvature types  

In this section, based on the robust multi-damage index, the damage localisation 

performance of two other types of curvatures are investigated, which are mean x-y 

curvature and mean principal curvature. First, Gaussian white noise of 𝑛level = 0.3% 

is added to pollute the 10th to 15th mode shapes. Then, the damage identification results 

of numerical case 1 with two damage areas of 10% thickness reduction are presented 

in Figure 7.17, which is based on the mean x-y curvature and mean principal curvature, 

respectively. 

  
(a) (b) 

Figure 7.17 Damage localisation results of numerical case 1 (both damage of 10% 

thickness reduction): (a) Mean principal curvature using 3-ring LPF (b) Mean x-y 

curvature using LoG filter with 𝜎 = 1.  

From Figure 7.17, it indicates that both the mean principal and the mean x-y curvatures 

provide very accurate damage localisation results. But both curvatures are easily 

corrupted by boundary points. Hence, the boundary points are not presented in Figure 

7.17.  

In order to test their damage identification ability for fairly noisy data, Gaussian white 

noise of 𝑛level = 0.6% is added and the damage identification results of numerical 

case 1 and case 2 are presented in Figure 7.18 and Figure 7.19, respectively.    
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(a) (b) 

 
(c) (d) 

Figure 7.18 Damage localisation results of numerical case 1 (both damage of 10% 

thickness reduction): (a) Mean principal curvature using 3-ring LPF (b) Gaussian 

curvature using 3-ring LPF (c) Mean x-y curvature using LoG filter with 𝜎 = 1 and (d) 

Mean x-y curvature using LoG filter with 𝜎 = 1.5. 

 
(a) (b) 

 
(c) (d) 

Figure 7.19 Damage localisation results of numerical case 2 (both damage of 10% 

thickness reduction): (a) Mean principal curvature using 3-ring LPF (b) Gaussian 

curvature using 3-ring LPF (c) Mean x-y curvature using LoG filter with 𝜎 = 1 and (d) 

Mean x-y curvature using LoG filter with 𝜎 = 1. 
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By comparing Figure 7.18 with Figure 7.19, it can be found that damage at different 

locations has different noise robustness. Then, it is hard to discern which kind of 

curvature provides the best damage identification results, as they are all sensitive to 

damage and robust to noise. For very noisy data, the larger scale parameter for LoG 

and more rings for LPF should be used.  

7.5 Experimental studies 

In this section, cantilever aluminium plates with one or two damage areas are tested to 

validate the feasibility and effectiveness of the proposed damage identification method 

based on robust PCA and GFT approaches. Firstly, the damage identification using 

robust PCA and GPF is validated based on the curvature of a single mode shape. Then, 

the damage index is computed by using curvatures of several mode shapes to show its 

robustness to measurement noise and damage localisation. Finally, different mode 

shape curvatures are investigated to evaluate their damage sensitivities.  

Figure 20 presents the experimental set-up and the details of the experimental set-up 

have been given in Section 6.6 of Chapter 6.  

 

Figure 7.20 Experimental set-up of a plate. 

7.5.1 Baseline-free multi-damage identification using a single mode shape 

First, a plate with a single damage area is studied. The damage is centred at (10cm, 

11.5cm) with an area of  0.02 × 0.02 m2 , which is displayed in Figure 7.21. The 

damage is introduced by reducing the plate thickness on the non-measuring surface. 

The 10th mode shape is acquired by PSV-500 and its Gaussian curvature is estimated 
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using 3-ring LPF method. Finally, the damage identification results of different 

damage severity cases are presented in Figure 7.22 and Figure 7.23, respectively. 

  

(a) Front surface view (b) Back surface view 

Figure 7.21  A plate with a single damage area (experimental case 1). 

  

(a) (b) 

Figure 7.22  Damage localisation results of experimental case 1 (10% thickness 

reduction) based on Gaussian curvature of the 10th mode shape: (a) Robust PCA and 

(b) GPF technique. 

Figure 7.22 demonstrates that both methods are effective to extract the damage-

induced local shape changes. But the robust PCA and GPF also provide some 

misleading damage identification results around the boundary points. Fortunately, the 

combination of robust PCA and GPF can present accurate damage identification 

results, as they are sensitive to different boundary points. In order to get some further 

conclusions, the depth of the damage is increased to 0.0005m (16.67% of the plate 

thickness) and the damage identification results using robust PCA and GPF are 

presented in Figure 7.23.  
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(a) (b) 

Figure 7.23  Damage localisation results of experimental case 1 (16.67% thickness 

reduction) based on Gaussian curvature of the 10th mode shape: (a) Robust PCA and 

(b) GPF method. 

In comparison with Figure 7.22, it can be seen that with the larger depth of damage, 

the damage identification results are more robust to measurement noise. Moreover, the 

magnitude of the proposed damage index is able to indicate the relative damage 

severity, as the magnitudes of damage index in Figure 7.23  are larger than those in 

Figure 7.22. However, in Figure 7.23, the robust PCA is able to pinpoint the damage 

position, whereas the GPF approach presents some misleading features around the 

damage area, which implies that GPF does not fare well around the damage area 

sometimes.  

Next, experimental case 2 of a cantilever plate with two damage areas is tested. The 

experimental set-up and the experimental plate are shown in Figure 7.24. The central 

points of the two damage area are (10cm, 11.5cm) and (21cm, 11.5cm) with an equal 

area of 0.02 × 0.02 m2. As discussed in Chapter 6, the robust mode shape curvature 

estimation approach has been proposed and validated. The purpose here is to localise 

the damage by using the proposed pseudo-mode shape construction methods: robust 

PCA and GPF. Figure 7.25 illustrates the damage localisation results of experimental 

case 2.  
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(a) Front surface view (b) Back surface view 

Figure 7.24 A cantilever plate with two damage areas (experimental case 2). 

  

(a) (b) 

Figure 7.25  Damage localisation results of experimental case 2 (both damage of 10% 

thickness reduction) using Gaussian curvature of the 10th mode shape: (a) Robust PCA 

and (b) GPF method. 

Figure 7.25 (a) indicates that robust PCA is able to localise the two damage areas but 

provides false damage alarms around the boundary areas. In Figure 7.25 (b), the GPF 

method presents accurate damage identification results but also shows some false 

alarms around the boundary areas. However, the robust PCA and GPF are sensitive to 

different boundary areas, which promises an accurate damage identification by 

combining the damage identification results of these two methods.   

7.5.2 Baseline-free robust multi-damage index 

In section 7.5.1, the proposed robust PCA and GPF are validated for single or multiple 

damage identification based on a single mode shape. In practice, the damage 

information is not known in advance and it is impossible to choose the right mode 

shape that is capable of damage identification. Here, experimental case 3, a plate with 

two damage areas that are different from experimental case 2, is studied, which is 

shown in Figure 7.26. 
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(a) Front surface view (b) Back surface view 

Figure 7.26 A cantilever plate with two damage areas (experimental case 3). 

First, the 10th mode shape is applied to identify the two damage areas of experimental 

case 3 and the identification results are displayed in Figure 7.27 (a). It indicates that 

the 10th mode shape is impossible to identify the two damage positions of experimental 

case 3. Then, the 13th mode shape is utilised to identify the two damage positions of 

experimental case 3, which is shown in Figure 7.27 (b). The two damage positions are 

correctly localised by using the 13th mode shape. Thus, for different mode shapes, they 

are sensitive to damage at different positions.  

  

(a) (b) 

Figure 7.27 Damage identification results of experimental case 3 (both damage of 10% 

thickness reduction) using robust PCA based on Gaussian curvature of (a) 10th mode 

shape (b) 13th mode shape.   

A robust multi-damage index must contain the damage information of several modes 

to cover the damage of various possible positions. In this section, the damage 

information of the 10th and 13th mode shapes are combined to form a robust multi-

damage index and the damage identiciation results for exerpimental case 3 based on 

robust PCA and GPF approach are presented in  Figure 7.28. Moreover, the damage 

identificationr results of experimental case 2 based on the robust multi-damage index 

is presented in Figure 7.29.  

0 50 100 150 200 250 300 350
0

50

100

150

200

250  

x (mm)

 

y
 (

m
m

)

0

5

10

15

0 50 100 150 200 250 300 350
0

50

100

150

200

250  

x (mm)

 

y
 (

m
m

)

0

2

4

6

8

10

12



148 

 

  

(a) (b) 

Figure 7.28 Damage identification results of experimental case 3 (both damage of 10% 

thickness reduction) by combining the Gaussian curvature of 10th and 13th mode shapes 

(a) Robust PCA (b) GPF method. 

 

(a)  (b)  

Figure 7.29 Damage identification results of experimental case 2 (both damage of 10% 

thickness reduction) by combining the Gaussian curvature of 10th and 13th mode shapes 

(a) Robust PCA (b) GPF technique.   

From the damage identification results of Figure 7.28 and Figure 7.29, it is shown that 

the multi-damage index based on the 10th and 13th mode shapes is robust and has the 

ability to localise damage of both experimental cases. Thus, robust multi-damage 

identification should be achieved by combing the damage information of more than 

one mode shape. Moreover, the combination of the damage identification results of 

robust PCA and GPF provides very accurate damage identification, as they 

individually present false damage alarms at different positions.  In addition, the 

damage identification results in Figure 7.28 (b) also indicates that GPF does not fare 

well around the damage areas. Overall, the robust PCA is robust and accurate for 

damage identification.  

7.5.3 Robust multi-damage index of different curvature types 

In this section, based on the 10th and 13th mode shapes, the damage identification 

ability of the mean x-y curvature and the mean principal curvature is investigated based 
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on robust PCA. The damage identification results of experimental cases 2 and 3 are 

presented in Figure 7.30 and Figure 7.31, respectively.  

  

(a) (b) 

Figure 7.30 Damage identification results of experimental case 2 (both damage of 10% 

thickness reduction) by combining the 10th and 13th mode shapes (a) mean x-y 

curvature using LoG filter with 𝜎 = 1 (b) Mean principal curvature using 3-ring LPF.   

 

(a) (b) 

Figure 7.31 Damage identification results of experimental case 3 (bothe damage of 10% 

thickness reduction) by combining the 10th and 13th mode shapes (a) Mean x-y 

curvature using LoG filter with 𝜎 = 1 (b) Mean principal curvature using 3-ring LPF.  

From Figure 7.30 and Figure 7.31, it is indicated that both the mean x-y curvature and 

mean principal curvature are capable of identifying the two experimental cases. 

Moreover, by comparing with the damage identification results using Gaussian 

curvature in Figure 7.28 (a) and Figure 7.29 (b), it is found that the damage 

identification results using Gaussian curvature are slightly more robust to 

measurement noise but sensitive to the boundary areas. Overall, all the three curvatures 

— mean x-y curvature, mean principal curvature and Gaussian curvature, are effective 

for multi-damage localisation.  
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7.6 Conclusions 

The main contribution in this chapter is to extract the damage-induced local shape 

changes without the baseline-line data of the healthy state. Surrogate models and low-

rank models are investigated to determine the best approaches for damage information 

extraction. With the extracted damage information of several mode shapes, a robust 

multi-damage index is proposed for multi-damage localisation.    

Two numerical cases of a plate with two damage areas are studied first. In these, 

Gaussian white noise is added to contaminate the mode shape data. Moreover, three 

experimental cases of plate with one or two damage areas are tested. The mode shape 

data is acquired by PSV-500 laser Vibrometer.  

Based on these studies, the global polynomial fitting and robust principal component 

analysis are demonstrated to be much more effective and noise robust than the other 

methods. Then, the proposed multi-damage index is proved to be sensitive to damage 

at various possible locations. Moreover, the damage identification performances of 

mean x-y curvature, mean principal curvature and Gaussian curvature are compared to 

show that they are all effective in robust multi-damage identification.  
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Chapter 8  

 

Conclusions and future work 

 

 

8.1 Conclusions 

In this thesis, robust multi-damage identification using only vibration data of damaged 

structures is studied for beam-type and plate-type structures. The proposed methods 

are data-driven by harnessing the properties of vibration data without requiring the 

theoretical model and baseline information of the structures, which facilitates the 

practical applications. To reduce the effects of measurement noise on damage 

identification, common principal component analysis is applied to obtain noise robust 

mode shapes for beam-type structures, and multi-scale approaches and polynomial 

fitting techniques are investigated to enhance the estimation of mode shape curvatures 

for plate-type structures. To extract the damage-induced singularities in mode shapes 

or mode shape curvatures without baseline data of healthy structures, polynomial 

fitting technique and low-rank modelling are explored.  

1. New output-only non-parametric mode shape estimation. A unique 

contribution of this dissertation is the application of common principal 

component analysis to diagonalise a set of covariance or power spectral density 

matrices for robust mode shape estimation. The common principal component 

analysis is conducted via joint approximation diagonalisation according to the 

least-squares criterion, which provides a kind of ‘average Eigen-structure’ 

shared by a matrix set. Therefore, the estimated mode shapes will be 

statistically more noise robust, which has been validated in the numerical 

studies involving simulated Gaussian white noise.  
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2. Noise reduction using polynomial fitting and multi-scale approaches. For 

beam-type structures, an adaptive gapped smoothing method is proposed based 

on cross-validation approach to determine the optimal polynomial order. By 

doing this, the extracted damage-induced mode shape changes will be robust 

to measurement noise. For plate-type structures, both polynomial fitting and 

multi-scale approaches are applied to estimate the robust mode shape 

curvatures based on the acquired noisy mode shapes. Multi-scale approaches 

such as wavelet transform and Gaussian smoothing are adopted to estimate the 

robust mode shape curvatures along x and y directions instead of the traditional 

second-order central difference approach. A local bivariate polynomial fitting 

is integrated into the process of evaluating the principal curvatures, Gaussian 

curvature and mean principal curvature in order to improve their noise 

robustness. By reducing the effects of measurement noise on the damage 

sensitive features, both the type I and type II errors are reduced. Here, type I 

error refers to false detection of the existence of damage when in fact there is 

not damage and type II error denotes the failure to detect the damage when in 

fact there is damage.  

 

3. Baseline-free robust multi-damage identification methods. In this research, 

robust multi-damage identification indexes are proposed for beam- and plate- 

type structures by using only the vibration data of damaged structures. The 

basic idea of using a single mode shape in damage identification is not reliable 

and robust, as the mode shape associated with a certain natural frequency is 

normally sensitive to damage at some locations whilst less sensitive to damage 

at other locations. Thus, a robust damage localisation index should incorporate 

the damage-induced shape changes of several modes. Moreover, the damage-

induced shape changes of several modes should be normalised before 

summation to avoid the changes of a certain mode shape dominating the 

damage localisation index.   

 

Another contribution is the investigation of baseline-free damage index. It is 

simple to calculate the mode shape or mode shape curvature differences before 

and after damage. However, this is hard to be implemented for practical 

applications, as baseline data of healthy structures is rarely available. Even 
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when baseline data of the healthy state is available, it may not be efficient for 

practical applications, as it was historical data of structures, which was 

normally acquired under different operational and environmental conditions 

with measurement noise. In this thesis, the smoothness of mode shapes, the 

low-rank structure of mode shape or curvature surface of plates, the sparsity of 

damage locations are investigated to extract the damage-induced information. 

Numerical and experimental studies have been performed to verify their 

feasibility and effectiveness.  

 

4. Localisation of fatigue cracks in stepped beams or rotors. A fatigue crack 

(theoretically modelled as a breathing crack) opens and closes during vibration 

process, which introduces nonlinearities to structures. Unlike the traditional 

linear damage, damage-caused nonlinearities of vibration responses can be 

taken advantage of in fatigue crack detection. Therefore, the localisation of 

fatigue cracks is normally equivalent to the localisation of nonlinearity in the 

structures. It is known that geometrical steps of structures do not generate 

nonlinearity. Hence, the identification of nonlinearity is effective to localise 

fatigue cracks in stepped structures, especially for stepped beams or rotors.  

Two nonlinear damage identification approaches are proposed to localise 

single or multiple breathing cracks in stepped beams. The first method is a time 

domain method, which uses the deviation between empirical cumulative 

distributions of vibration responses at different locations for damage 

identification. The second method is a frequency domain method, which 

detects the breathing crack via the damage-induced shape distortions in super-

harmonic characteristic deflection shapes. They all validated to be effective by 

three numerical examples of a stepped beam with breathing cracks. 
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8.2 Future work 

Although this research concerns baseline-free robust multi-damage identification in 

beam- and plate-type structures, there are still many research problems in structural 

damage identification.  Inspired by the research of this thesis, possible future work is 

summarised as follows: 

1. The extension of the proposed damage identification methods to composite 

structures. Composite structures are widely used in various industrial fields, 

especially in aircraft and aerospace industries due to their excellent mechanical 

properties and low density over traditional materials. Delamination is a typical 

mode of failure in composite structures, which compromises the mechanical 

performance and even cause the failure of structures. Appling the proposed 

damage identification methods to delamination identification in composite 

beams and plates is useful and significant.  However, the challenging problem 

is the anisotropic property of composite structures, which may degrade the 

effectiveness of damage information extraction when baseline data of the 

healthy state is not available.  

2. Uncertainty quantification of damage features or damage identification index. 

One of the main tasks of this thesis is to reduce the effects of measurement 

noise on damage features and damage identification index via statistical 

approaches or filtering techniques. The uncertainty quantification of damage 

features and damage identification index due to measurement noise will be 

helpful in order to understand and quantify the effects of measurement noise.     

3. Physics-based structural model for damage quantification. This research is 

mainly about data-driven damage localisation by using the properties of 

acquired spatial vibration data. Although the traditional non-destructive testing 

can be carried out when the location information of damage is available, it is 

useful to establish an accurate analytical or FE model of structures to quantify 

the damage or predict the remaining service life. This physics-based structural 

model is also useful to understand the mechanical properties of structures. 

Moreover, the modelling of damage is helpful to interpret the damage 

mechanics and predict the damage propagation.  
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Appendix A  

Joint approximate diagonalisation  

The following procedure is inspired by the work published in [63]. Joint approximate 

diagonalisation can be applied to simultaneously diagonalise a set of real or complex 

matrices. 

Consider a set of power spectral density (PSD) matrices  𝐒𝑟 = {𝐒(ω𝑟+𝑘)|𝑘 =

−𝐾,−𝐾 + 1,⋯ ,𝐾} (𝐒𝑟 ∈ ℝ
𝑁m×(2𝐾+1)𝑁m , 𝐒(ω𝑟+𝑘) ∈ ℝ

𝑁m×𝑁m)  corresponding to 

frequencies around a resonant frequency 𝜔𝑟 . Since the PSD matrices 𝐒(ω𝑟+𝑘) are 

Hermitian and positive definite, their off-diagonal terms can be transformed to zero by 

complex Givens rotation. In numerical analysis, the ‘off’ of 𝐒(ω𝑟+𝑘)  with entry 

𝑆𝑖𝑗(ω𝑟+𝑘) is expressed as  

 off(𝐒(ω𝑟+𝑘)) = ∑ ∑ | 𝑆𝑖𝑗(ω𝑟+𝑘)|
2𝑁m

𝑗=1,𝑗≠𝑖
𝑁m
𝑖=1  (A1) 

where ‘off’ denotes the sum of squares of all off-diagonal entries. Joint approximate 

diagonalisation is implemented by complex Givens rotation to estimate the joint 

unitary diagonaliser 𝐔𝑟 ∈ ℝ
𝑁m×𝑁m , which simultaneously diagonalises all the PSD 

matrices in 𝐒𝑟 . Estimating joint diagonaliser 𝐔𝑟  can be formulated to minimise the 

following cost function: 

 𝐽1 (𝐒𝑟 , 𝐔𝑟) = ∑ off(𝐔𝑟
H𝐒(ω𝑟+𝑘)𝐔𝑟)

𝐾
𝑘=−𝐾  (A2) 

If each PSD matrix in 𝐒𝑟 can be decomposed as 𝐒(ω𝑟+𝑘) = 𝐔𝑟𝚺(ω𝑟+𝑘)𝐔𝑟
H, where 𝚺 

is a diagonal matrix, then, the global minimum of 𝐽1 (𝐒𝑟 , 𝐔𝑟) is zero. In fact, the value 

of 𝐽1 (𝐒𝑟 , 𝐔𝑟) will be greater than zero due to slight correlation of modal coordinates 

(caused by damping or noise, for example).  

The unitary rotation matrix 𝐕g(𝑖, 𝑗, 𝑎, 𝑏) ∈ ℝ
𝑁m×𝑁m is set as an identity matrix except 

the following four entries 
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 [
𝑣g𝑖𝑖

𝑣g𝑖𝑗
𝑣g𝑗𝑖

𝑣g𝑗𝑗
] = [ 𝑎 𝑏H

−𝑏 𝑎H
] (A3) 

Sweep 𝑖 = 1,2,3,⋯ , 𝑁m − 1  and 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝑁m  to iteratively calculate 𝑎 

and 𝑏 for each pair of (𝑖, 𝑗), which minimises the following cost function. 

 𝐽2(𝑎, 𝑏) = ∑ off (𝐕g(𝑖, 𝑗, 𝑎, 𝑏)𝐒(ω𝑟+𝑘)𝐕g
H(𝑖, 𝑗, 𝑎, 𝑏))𝐾

𝑘=−𝐾  (A4) 

For a given pair of (𝑖, 𝑗), the PSD matrix after unitary rotation becomes 

 𝐒∗(ω𝑟+𝑘) = 𝐕g(𝑖, 𝑗, 𝑎, 𝑏)𝐒(ω𝑟+𝑘)𝐕g
H(𝑖, 𝑗, 𝑎, 𝑏) (A5) 

Since the norm of unitary transforms remains the same, the following equation holds. 

 off(𝐒∗(ω𝑟+𝑘)) + |𝑆𝑖𝑖
∗ (ω𝑟+𝑘)|

2 + |𝑆𝑗𝑗
∗ (ω𝑟+𝑘)|

2
 

 = off(𝐒(ω𝑟+𝑘)) + |𝑆𝑖𝑖(ω𝑟+𝑘)|
2 + |𝑆𝑗𝑗(ω𝑟+𝑘)|

2
 (A6) 

Now, the minimisation of off(𝐒∗(ω𝑟+𝑘))  is equivalent to maximisation 

of  |𝑆𝑖𝑖
∗ (ω𝑟+𝑘)|

2 + |𝑆𝑗𝑗
∗ (ω𝑟+𝑘)|

2
. And the maximisation of |𝑆𝑖𝑖

∗ (ω𝑟+𝑘)|
2 +

|𝑆𝑗𝑗
∗ (ω𝑟+𝑘)|

2
can be converted to the maximisation of |𝑆𝑖𝑖

∗ (ω𝑟+𝑘) − 𝑆𝑗𝑗
∗ (ω𝑟+𝑘)|

2
 due 

to the invariance of the trace as shown in Eq. (A7) and Eq. (A8). 

2 (|𝑆𝑖𝑖
∗ (ω𝑟+𝑘)|

2 + |𝑆𝑗𝑗
∗ (ω𝑟+𝑘)|

2
) 

 = |𝑆𝑖𝑖
∗ (ω𝑟+𝑘) + 𝑆𝑗𝑗

∗ (ω𝑟+𝑘)|
2
+ |𝑆𝑖𝑖

∗ (ω𝑟+𝑘) − 𝑆𝑗𝑗
∗ (ω𝑟+𝑘)|

2
 (A7) 

 𝑆𝑖𝑖
∗ (ω𝑟+𝑘) + 𝑆𝑗𝑗

∗ (ω𝑟+𝑘) = 𝑆𝑖𝑖(ω𝑟+𝑘) + 𝑆𝑗𝑗(ω𝑟+𝑘) (A8) 

Then, in each unitary rotation step, the joint approximate diagonalisation is formulated 

to maximise  

 𝐽2(𝑎, 𝑏) = ∑ |𝑆𝑖𝑖
∗ (ω𝑟+𝑘) − 𝑆𝑗𝑗

∗ (ω𝑟+𝑘)|
2𝐾

𝑘=−𝐾  (A9) 

It is easy to find that 

𝑆𝑖𝑖
∗ (ω𝑟+𝑘) − 𝑆𝑗𝑗

∗ (ω𝑟+𝑘) = (|𝑎|2 − |𝑏|2) (𝑆𝑖𝑖(ω𝑟+𝑘) − 𝑆𝑗𝑗(ω𝑟+𝑘)) 

 +2𝑎𝑏𝑆𝑖𝑗(ω𝑟+𝑘) + 2𝑎
H𝑏H𝑆𝑗𝑖(ω𝑟+𝑘) (A10) 

In order to denote as the inner product  𝑆𝑖𝑖
∗ (ω𝑟+𝑘) − 𝑆𝑗𝑗

∗ (ω𝑟+𝑘) =

𝐠H(𝐒(ω𝑟+𝑘))𝐮(𝑎, 𝑏), a 3 × 1 complex vector 𝐠(𝐒(ω𝑟+𝑘)) is defined as   

 𝐠(𝐒(ω𝑟+𝑘)) = [𝑠𝑖𝑖(ω𝑟+𝑘) − 𝑠𝑗𝑗(ω𝑟+𝑘),  
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 𝑆𝑖𝑗(ω𝑟+𝑘) + 𝑆𝑗𝑖(ω𝑟+𝑘), j (𝑠𝑖𝑗(ω𝑟+𝑘) − 𝑠𝑗𝑖(ω𝑟+𝑘))]
H

 (A11) 

Then, 𝐮(𝑎, 𝑏) can be expressed as a 3 × 1 vector 

 𝐮(𝑎, 𝑏) = [|𝑎|2 − |𝑏|2, 𝑎𝑏 + 𝑎H𝑏H, j(𝑎𝑏 − 𝑎H𝑏H)]T (A12) 

Under the condition that 𝐮(𝑎, 𝑏) is a real vector,  𝑎 is required to be real according to 

Eq. (A12). Now, the maximisation of Eq. (A9) can be rewritten as 

 ∑ |𝑆𝑖𝑖
∗ (ω𝑟+𝑘) − 𝑆𝑗𝑗

∗ (ω𝑟+𝑘)|
2𝐾

𝑘=−𝐾 = ∑ |𝐠(𝐒(ω𝑟+𝑘))𝐮(𝑎, 𝑏)|
2𝐾

𝑘=−𝐾 = 

  𝐮T(𝑎, 𝑏)(∑ 𝐠(𝐒(ω𝑟+𝑘))𝐠
H(𝐒(ω𝑟+𝑘))

𝐾
𝑘=−𝐾 )𝐮(𝑎, 𝑏) (A13) 

Since 𝐆 = ∑ 𝐠(𝐒(ω𝑟+𝑘))𝐠
H(𝐒(ω𝑟+𝑘))

𝐾
𝑘=−𝐾  is Hermitian and its imaginary part is 

antisymmetric, the imaginary part of 𝐆 does not contribute to the summation in Eq. 

(A13) when 𝐮(𝑎, 𝑏) is a real vector. Therefore, the right side of Eq. (A13) is equivalent 

to 𝐮T(𝑎, 𝑏)real(𝐆) 𝐮(𝑎, 𝑏). Under the constraint of unit norm (|𝑎|2 + |𝑏|2 = 1), the 

solution is the eigenvector [𝑧1, 𝑧2, 𝑧3]
T  of real(𝐆)  corresponding to the largest 

eigenvalue.   

If [𝑧1, 𝑧2, 𝑧3]
T is not a zero eigenvector, the maximization of Eq. (A13) is obtained at  

 𝑎 = √(1 + 𝑧1) 2⁄ , 𝑏 = (𝑧2 − 𝑧3j) (2𝑎)⁄   (A14) 

Here, during the solution for Eq. (A12), 𝑎 is always chosen as the real positive. This 

choice is always possible, since an elementary complex rotation can be parameterized 

in terms of real angles  𝜃 and 𝜑 

 [ 𝑎 𝑏H

−𝑏 𝑎H
] = [ cos𝜃 ej𝜑sin𝜃

−e−j𝜑sin𝜃 cos𝜃
] (A15) 

With the estimated  𝐕g(𝑖, 𝑗, 𝑎, 𝑏)  for each pair (𝑖, 𝑗) , matrices 𝐒𝑟 = {𝐒(ω𝑟+𝑘)|𝑘 =

−𝐾,−𝐾 + 1,⋯ ,𝐾} and joint diagonaliser 𝐔𝑟 are updated iteratively as follows 

 𝐒∗(ω𝑟+𝑘) = 𝐕g(𝑖, 𝑗, 𝑎, 𝑏)𝐒(ω𝑟+𝑘)𝐕g
H(𝑖, 𝑗, 𝑎, 𝑏) (A16) 

 𝐔𝑟 = 𝐔𝑟𝐕g
H(𝑖, 𝑗, 𝑎, 𝑏) (A17) 

where 𝐔𝑟 is set as an identity matrix initially. The updating procedure ends when all 

the |𝑏| in a sweep is smaller than the pre-set threshold 𝜖. 
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