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Abstract Each solar maximum interval has a different duration and peak activity level, which is reflected
in the behavior of key physical variables that characterize solar and solar wind driving and magnetospheric
response. The variation in the statistical distributions of the F10.7 index of solar coronal radio emissions, the
dynamic pressure PDyn and effective convection electric field Ey in the solar wind observed in situ upstream
of Earth, the ring current index DST , and the high-latitude auroral activity index AE are tracked across the
last five solar maxima. For each physical variable we find that the distribution tail (the exceedences above
a threshold) can be rescaled onto a single master distribution using the mean and variance specific to each
solar maximum interval. We provide generalized Pareto distribution fits to the different master distributions
for each of the variables. If the mean and variance of the large-to-extreme observations can be predicted for
a given solar maximum, then their full distribution is known.

Plain Language Summary Earth’s near-space plasma environment is highly dynamic, with its
own space weather. Space weather impacts include electrical power loss, aviation disruption, interrupted
communications, and disturbance to satellite systems. The drivers of space weather, the sun and solar wind,
and the response seen at Earth have now been almost continually monitored by ground- and space-based
observations over the last five solar cycles (more than 50 years). Each of the last five solar maxima has a
different duration and peak activity level and as a consequence the climate of Earth’s space weather is
also different at each solar maximum. We find that some aspects of the space weather climate are in fact
reproducible; they can be inferred from that of previous solar maxima. This may help understand the
behavior of future solar maxima.

1. Introduction

The space plasma environment near the Earth is highly dynamic, with its own space weather. Space weather
impacts include electrical power loss, aviation disruption, interrupted communications, and disturbance to
satellite systems (Baker & Lanzerotti, 2016; Hathaway, 2015). The state of the solar wind and the Earth’s geo-
magnetic response have now been almost continually monitored by ground- and space-based observations
at reasonably high resolution at over the last five solar cycles. Each of the last five solar cycles has a differ-
ent duration and peak activity level for the interval around the maximum (hereafter solar maximum interval),
which will be reflected in the intensity of space weather activity at Earth. This paper seeks to quantify how
these different activity levels during each solar maximum interval are manifested in key space weather rel-
evant physical parameters. It is not a study of solar wind-magnetosphere coupling per se (see Newell et al.,
2007, for an example of such a study); however, statistical studies of this kind (Tindale & Chapman, 2016) can
shed light on how these coupling parameters vary with solar cycle variation in the overall level of activity.

The solar corona and solar wind drivers, and Earth’s geomagnetic response, are routinely characterized by
space weather variables that are both multicomponent in their physical origin and can exhibit long-tailed
statistics such that the largest events are significantly more likely than would be expected from a Gaussian
distribution. Space weather events correspond to the tails of these distributions (Baker & Lanzerotti,
2016; Hathaway, 2015), and there is a considerable interest in both reconstructing past space climatology
(Lockwood et al., 2017, 2018) and the possibility of quantitative prediction of the probability distribution of
these more extreme values for the next solar maximum interval.
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The solar corona shows solar cycle variation (Luhmann et al., 2002; Schwenn, 2006) leading in turn to variation
in the rate of flares and coronal mass ejections (Cremades & St. Cyr, 2006; Wheatland, 2000) and their geoef-
fectiveness (Shen et al., 2014; Thomson et al., 2010). While it is well known that overall geomagnetic activity
tracks that of the solar cycle (e.g., Baker & Lanzerotti, 2016; Hathaway, 2015; Richardson & Cane, 2012, and ref-
erences therein), the behavior of the extremes do not necessarily track the time average, so that knowledge of
the full distribution is needed. For example, the time average of the aa index always exceeds a baseline value,
and this baseline increases linearly with averaged sunspot number; however, the average aa values above
this baseline show significant scatter and can take relatively large values even when sunspot numbers are low
(Feynman, 1982).

The detailed quantification of the time variation of the statistical distribution of key space weather relevant
variables is thus a topical question. The distributions of geomagnetic activity (Tanskanen et al., 2017) and geo-
magnetic indices (Campbell, 1979; Lockwood et al., 2017, 2018) vary both within and between solar cycles
(Tindale & Chapman, 2016, 2017). The distributions of solar wind variables can be non-Gaussian (Veselovsky
et al., 2010, and references therein). The distributions of fluctuations in solar wind magnetic energy density
(Hnat et al., 2007, 2011; Kiyani et al., 2007) are non-Gaussian and show solar cycle dependence. Fluctua-
tions in geomagnetic indices (Hnat et al., 2002, 2003, 2005) track this behavior across the distribution. Solar
wind-magnetosphere coupling parameters (Tindale & Chapman, 2016) also track the variation between and
across solar cycles seen in distributions of solar wind magnetic field. There have been recent attempts to sur-
vey the statistics of extreme events from sun to solar wind to Earth assuming power law statistics and time
stationarity (Riley, 2012). Recently, Hush et al. (2015) found that the underlying distribution functional form
of extreme bursts in the AE index does not vary significantly with the solar cycle, with their relative intensity
tracking the solar cycle, suggesting robust underlying processes that can be modeled on a physical basis. By
assuming and fitting a lognormal form for the distribution, Lockwood et al. (2017, 2018) found evidence that
the underlying distribution of geomagnetic indices and power input into the magnetosphere are approx-
imately invariant in their underlying distribution functional form, which provided a powerful tool for past
space climate reconstruction. However, as Lockwood et al. (2018) note, the lognormal does not necessarily
provide the best fit across the full distribution for all variables of interest. Indeed, Tindale and Chapman (2017)
found that the distribution of solar wind magnetic field can be far from lognormal. Here we will show how to
test whether the functional form of the distribution of a given variable is invariant against solar cycle depen-
dent changes, without assuming any specific functional form, lognormal or otherwise, for the underlying
distribution. Only when this invariance is established do we then perform a fitting to specific distributions.

In this paper we focus on key physical variables that are used in the modeling and characterization of space
weather impacts at Earth. The F10.7 index (Tapping, 2013) of solar coronal radio emissions is used by many
operational space weather models as their prime solar input. It is correlated with the density of the upper
atmosphere, which in turn has consequences for the design and operation of satellites in low Earth orbit (e.g.,
Vedder & Tabor, 1992). Solar wind drivers of geomagnetic space weather disturbances include solar wind
dynamic pressure PDyn and effective convection electric field Ey ∼ vBz observed in situ upstream of Earth.
Two key indices that characterize magnetospheric response at relatively high time resolution as observed
at the Earth’s surface and are widely used to parameterize the intensity of space weather events are the
enhancement of the ring current DST , and auroral activity at high latitudes, the AE index (Mayaud, 1980).

Quantile-quantile (QQ) plots (Gilchrist, 2000) compare the statistical distribution of one data sample against
that of another. Using a QQ plot analysis over intervals of the maxima and preceding minima of solar cycles
23 and 24, we recently found (Tindale & Chapman, 2016, 2017) that samples of the largest events change in
a different manner to the bulk of the distribution as we compared one solar maximum interval to the other.
The distribution is multicomponent: It has (at least) two components—a core or bulk of smaller amplitude,
more frequently occurring values, and a long tail of larger, less frequently occurring values. The QQ plot can
be used to identify the threshold, that is, the value or quantile that is at the crossover between the core of
the distribution and the long tail of extreme values. Importantly, the QQ plot can be used to identify this
threshold without requiring any fitting of the functional form of the distribution. Looking across the past five
solar cycles, we will use this method to identify the threshold at which there is a transition in the data, from
the bulk of the distribution to the long tail, for each of the key physical variables F10.7, PDyn, Ey , AE, and DST .
We then find that the observations in excess of this threshold, the distribution long tail, follow a distribution
that only differs in its mean and variance from one solar cycle maximum to the next. The long tail (threshold
exceedences) of distributions from a given solar maximum interval then rescale to any other when normalized
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to the exceedence mean and standard deviation of that solar maximum interval. Each of the variables F10.7,
PDyn, Ey , AE, and DST has a distinct distribution long tail, and each of these for each solar cycle maximum can
be described by its own single master distribution for that variable along with the exceedence mean and
variance for that unique solar maximum interval.

Extreme value theory (EVT) is a well-developed approach to characterizing the statistics of large observations,
which has found application in space weather (Thomson et al., 2011). It provides a statistical characterization
in terms of generalized extreme value and generalized Pareto distributions (GPDs). Pioneering application
to space weather includes the F10.7 index (Vedder & Tabor, 1992), the half-daily aa index (Silbergleit, 1999;
Siscoe, 1976), and the DST index (Silbergleit, 1996; Tsubouchi & Omura, 2007). Another application of EVT in
the context of space weather has been to energetic electron fluxes (Koons, 2001; Meredith et al., 2015), which
also established an unexpected upper bound to the flux of relativistic killer electrons (O’Brien et al., 2007).
Important fine-scale details of geomagnetic ground effects have recently been studied using this framework
(Beggan et al., 2013; Thomson et al., 2011). EVT studies have recently been performed on extreme solar flares
(Elvidge & Angling, 2018) and in the solar wind (Moloney and Davidsen, 2010, 2011), but this work did not
differentiate solar cycle dependence as we do here; we will obtain GPD fits for solar maximum intervals of
solar cycles 20–24.

However, as well as the important problem of the most extreme events, the natural hazard communities in
space weather (Boteler, 1991) and elsewhere, notably hydrology (Rodríguez-Iturbe et al., 1972), have always
needed to consider the chance of exceeding more typical, and thus more frequently exceeded, thresholds
(Vanmarcke, 2010). But it is still not widely realized that the GPD itself can be applied at thresholds other
than just very high ones. Indeed, Hosking and Wallis (1987) noted that the GPD’s “applications include use
in the analysis of extreme events, in the modeling of large insurance claims, as a failure-time distribution
in reliability studies, and in any situation in which the exponential distribution might be used but in which
some robustness is required against heavier tailed or lighter tailed alternatives.” Here we employ the GPD
simply as a flexible fitting distribution. We find that the transition quantile identified by QQ plots identifies
an appropriate threshold. Above that threshold we find a distinct GPD master distribution for observations of
each of the F10.7 index, the solar wind dynamical pressure, and effective electric field Ey and the DST and AE
indices. These distributions can be long tailed but are not in the heavy-tailed class (Embrechts et al., 1997), so
that a relatively small data sample is required to quantify the mean and variance compared to that needed
to resolve the distribution long tail. An estimate of the mean and variance could then be obtained over a
relatively short time interval at the beginning of an interval of solar maximum activity, and this would then
provide a prediction of the likelihood of occurrence, and hence the return times, that could be expected for
the more extreme values that may occur during that solar maximum interval.

2. Rescaling and Curve Collapse of Distribution Long Tails
2.1. Data Sets and Sampling of the Solar Maximum Intervals
We analyze time intervals (defined below) spanning each of the last five solar maxima using observations
on an hourly time base; all of the data analyzed here is from the extended OMNI2 data set extracted from
NASA/GSFC’s OMNI data set (King & Papitashvili, 2005) through OMNIWeb (the OMNI data were obtained from
the GSFC/SPDF OMNIWeb interface at https://omniweb.gsfc.nasa.gov). Solar wind variables are observed
upstream of Earth’s magnetosphere in situ by satellites that at different times are at different locations and so
has been time shifted to a common location in the OMNI2 data set.

We present studies of the F10.7 index, the solar wind dynamic pressure PDyn, an estimate of the solar wind
convection electric field Ey , and geomagnetic indices AE and DST . The F10.7 radio emissions originate high
in the chromosphere and low in the corona of the solar atmosphere. The F10.7 index (Tapping, 2013) tracks
solar ultraviolet forcing of the upper atmosphere. Many operational space weather models use the F10.7
index as their prime solar input (Codrescu et al., 2012; Dudok de Wit & Bruinsma, 2011). The dynamic pressure
(the solar wind momentum flux density [Lopez et al., 1986; Schwenn, 2006]) PDyn = (1 + 4n𝛼∕np)npv2

sw of the
solar wind compresses the dayside magnetosphere (Wing & Sibeck, 1997), enhancing the ring current (where
np and n𝛼 are the proton and alpha particle densities and vsw is the solar wind speed). We also consider the
OMNI2 estimate of the solar wind convection electric field Ey = −vswBz (magnetic field Bz in GSM), which
is a key driver of geomagetic activity. Geomagnetic indices are derived from ground-based magnetome-
ter observations (Mayaud, 1980) and are widely used to indicate the intensity of space weather events.
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Table 1
Number of OMNI2 Hourly Records in Each Solar Maximum Interval Sample Selected by
Criterion (i)

Cycle F10.7 PDyn Ey AE −DST

20 30,637 16,893 17,608 30,661 30,661

21 30,661 28,101 27,982 30,661 30,661

22 30,661 12,904 12,630 24,061 30,661

23 30,661 30,203 30,569 30,661 30,661

24 30,637 30,222 30,655 30,661 30,661

qE 0.75 0.97 0.9 0.75 0.95

Note. The bottom line gives the threshold quantile qE used to distinguish the long tail of
the distribution so that, for example, for the AE index qE = 0.75, and 25% of these records
are used in the statistical analysis of the long tail of the AE index.

The DST index measures low-latitude global variations in the horizontal component of the geomagnetic field,
thus representing the strength of the equatorial ring current. The AE index is comprised of the difference
between the most positive and most negative deviations seen at high latitudes.

We will quantify how the statistical distribution of each of these quantities changes from one solar maximum
interval to another. In order to form a distribution we need to select time intervals that correspond to each
solar maximum interval that are both long enough to capture the more extreme events with statistical sig-
nificance and short enough that within the sample, the time series can be treated as quasi time stationary.
Both the duration and the time between one solar maximum interval and the next are variable. In order to
test the robustness of our results we have selected samples of the solar maxima using two different criteria:
(i) 3.5-year intervals starting 2.5 years following the previous minimum and (ii) 2-year intervals centered on
the monthly sunspot number maximum. We use the following dates (first of each month) for the minima:
August 1964, March 1976, September 1986, May 1996, and December 2008; and the maxima: November 1968,
December 1979, July 1989, March 2000, and April 2014. We obtained similar results using these two different
criteria and we present in detail the results using samples selected with criterion (i). Table 1 gives the number
of OMNI2 records in each of these samples. Looking across the past five solar cycles, we will use QQ plots to
identify the threshold at which there is a transition in the data, from the bulk of the distribution to the long
tail, for each of the key physical variables. These threshold quantiles qE are also given in Table 1; the fraction
1 − qE of these OMNI2 records exceed the threshold and form the distribution long tail.

2.2. Curve Collapse of the Distribution Tails
We use the samples of the last five solar maxima to form distributions, which we can plot as the probability
density P(x), or in terms of the cumulative density function C(x), where x is the F10.7 index (Figure 1), the
solar wind dynamic pressure PDyn (Figure 2), the estimated solar wind convection electric field Ey (Figure 3)
or geomagnetic indices AE (Figure 4) and DST (Figure 5). It is convenient to plot the survival distribution
S(x) = 1−C(x) as this emphasizes the distribution tail of large-to-extreme values, and it gives the return time,
R(x) = Δt∕S(x), where Δt is the OMNI2 record cadence of 1 hr as we discuss in more detail in Section 4. The
figures plot both the survival functions and the probability densities for comparison. We plot the empirical
survival function where for observations xk , k = 1…N, the x axis plots the observations in ascending rank
order, such that k = N is the largest value, and the y axis plots 1 − k∕N. Each filled marker on such a plot is
a single hourly observation. Uncertainties in the survival functions are indicated by the shaded regions and
are estimated using Greenwood’s formula (Greenwood, 1926; Kalbfleisch & Prentice, 1980). On the probability
density plots the bin-by-bin scatter provides an estimate of the sampling uncertainties; samples are shown
down to the one count per bin level.

We focus on the long tails of these distributions, that is, observations that exceed a threshold. The threshold
is chosen at a fixed qE quantile for each physical variable, using QQ plots as described in detail in the next
section. The qE quantile identifies the threshold x = u(qE) below which the fraction qE of observations are
found, so that for qE = 0.9, 90% of observations take values x < u(qE). The threshold u(qE) for fixed qE thus
varies between one solar maximum interval sample and the next; it is indicated for the maximum of solar
cycle 23 on the figures. Other quantiles may be directly read off the survival distribution plots as 1 − C(x) is
the fraction of the observations that are found at values greater than x.
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Figure 1. Single functional form for the distribution long tail of the F10.7 index. The top panel plots the sunspot
number over the last five solar cycles and colored regions indicate the intervals over which data are used to form the
plotted distributions for solar cycles 20 (blue), 21 (red), 22 (green), 23 (orange), and 24 (purple). Main panels: Survival
distributions (upper panels) and probability densities (lower panels) for the F10.7 index at these maximum intervals of
the last five solar cycles. The survival distributions are estimated from the empirical cumulative density function with
uncertainties indicated by the shaded regions estimated using Greenwood’s formula. The bin-by-bin scatter is indicative
of the sampling uncertainty of the probability densities. The left-hand panels plot the distributions of the observed
index. Return times R(x) = (1hr)∕(1 − C(x)) may be directly read from the survival function plots. The right hand panels
plot the distributions of the index rescaled to the mean and standard deviation of the exceedences, that is, observations
that exceed the threshold quantile u(qE) (indicated for the maximum of solar cycle 23 by the orange line). Overplotted is
the generalized Pareto distribution fit for the observations of exceedences aggregated over all five solar maxima. The
inset located top-right overplots the 95% confidence bounds of the generalized Pareto distribution fit on the empirical
survival distribution.
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Figure 2. Single functional form for the distribution long tail of solar wind dynamic pressure PDyn over the last five solar
cycles. The format is as in Figure 1.

For each of the samples of the last five solar maxima, the mean 𝜇E and standard deviation 𝜎E of observations
that exceed u(qE) are used to rescale the data to (xk − 𝜇E)∕𝜎E . The right-hand panels of Figures 1–5 then plot
the survival functions and the probability densities of the rescaled data. Rescaling the data in this manner
collapses the empirical distributions found at different solar maxima onto each other (within uncertainties)
for values that exceed u(qE). The possible exception to this is the ∼10 highest hourly OMNI2 records seen in
each 3.5-year-long solar maximum sample of −DST . Even though the distributions for the rescaled observa-
tions overlap within uncertainties, inspection of the survival distribution suggests a systematic deviation or
distribution roll-off , which for −DST is most pronounced for the most recent, unusually quiet, solar cycle 24.

This then is our essential result: That for each of the F10.7 index, solar wind PDyn, estimated convection Ey , and
the geomagnetic indices AE and (−)DST , the long tail of the distribution at any of the last five solar maxima
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Figure 3. Single functional form for the distribution long tail of estimated solar wind convection electric field Ey over
the last five solar cycles. The format is as in Figure 1. Curve collapse is tested on the positive tail, which corresponds to
−Bz IMF.

can be approximately described by a single functional form specific to that physical variable (each has a single
master distribution) along with the mean𝜇E and standard deviation 𝜎E of that variable’s exceedences, specific
to each unique solar maximum interval.

2.3. QQ Plot Determination of the Thresholds u(qE)
We have taken each of the variables under consideration to be distributed with two components: a core of
smaller amplitude, more frequently occurring values, and a long tail of larger, less frequently occurring values
that are in excess of a threshold qE . We have found that normalizing to the mean and variance of the long tail
does not, in general, give a curve collapse for the entire distribution, but it does for the long tail. Therefore,
each variable has, for physical reasons, a distinct response in its core and in its long tail to different levels of
activity around solar maximum. The value for the threshold qE can be determined from the data by using QQ
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Figure 4. Single functional form for the distribution long tail of the AE index over the last five solar cycles. The format is
as in Figure 1.

plots. Importantly, the QQ plot can be used to identify this threshold directly from the data without the need
to fit specific functions to the observed distribution (Gilchrist, 2000; Tindale & Chapman, 2016, 2017).

QQ plots of one data sample against another can be used to test whether the samples originate from the same
underlying distribution functional form. To compare a sample of observations xq with a reference sample xR

the QQ plot has as its coordinates the quantiles (xR(q), xq(q)) where the likelihood q (value of the cumulative
density function) acts as a parametric coordinate. Since the two sets of observations are unlikely to coincide
on precisely the same quantiles, it is necessary to resample the data, here using kernel density estimation
(using a constant width Gaussian kernel; Coles, 1991; Gilchrist, 2000).

We show an example of one of these plots, for the AE index, in Figure 6. The maximum of solar cycle 23 is
used as the reference distribution xR as it is recent, and thus less subject to data gaps, but explores a wider
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Figure 5. Single functional form for the distribution long tail of the (−) DST index over the last five solar cycles.
The format is as in Figure 1.

range of values than the unusually quiet solar cycle 24 maximum. In order to emphasize changes in the dis-
tribution, this plot is compensated, that is, we plot xq − xR versus xR. If the xq and xR are drawn from the same
distribution, that is, if the distribution for a given solar maximum interval is the same as that for the solar cycle
23 maximum interval, then they have the same quantiles and such a plot gives a straight line xq − xR = 0. If a
solar maximum interval has the same underlying distribution functional form f as that for solar cycle 23 maxi-
mum, but has different mean and standard deviation so that f (xq) ∼ f (𝜎xR+𝜇), then on the compensated plot
xq − xR = (𝜎 − 1)xR + 𝜇, which will be a single straight line offset from, and at an angle to, the line xq − xR = 0.
Straight line fits are overplotted on the xq < u(qE)data. If an entire sample is changing in distribution in the
same manner from one solar cycle to another then these straight lines should fit the entire data set. Instead, we
can see clear breaks in behavior at u(qE). From the perspective of how the sampled distribution of the physical
variable changes from one solar maximum interval to another, this method identifies two components
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Space Weather 10.1029/2018SW001884

Figure 6. Compensated quantile-quantile (QQ) plots for the solar maximum
intervals shown in Figure 4 plotted for the AE index. Quantiles xq of samples
at the maxima of solar cycles 20 (blue circles), 21 (red squares), 22 (green
diamonds), and 24 (purple triangles) are compared to quantiles xR of a
reference sample, at the maximum of solar cycle 23. To emphasize changes
in the distributions w.r.t. the reference we plot compensated quantiles
xq − xR versus xR. Dash-dot lines are fitted to all data below the quantile
corresponding to qE . This quantile (shown for the cycle 23 maximum
interval, orange line) is approximately at the transition between two regimes
in how the distribution changes from one maximum to another.

in the distribution. We then use these plots to approximately identify the
quantiles u(qE) used as the thresholds for the distribution long tails in
Figures 1–5. For simplicity we use a single value of qE for each physical
variable, identified from QQ plots.

Our finding, that there is more than one physical component to the
observed data, which can be identified from their different response to
solar cycle changes, is not unexpected; the time series are comprised of
relatively quiet intervals punctuated by large bursts, that is, coherent struc-
tures in the solar wind seen in PDyn and substorms and storms seen in AE
and DST . The QQ plots provide a model-independent method to approxi-
mately identify the threshold between these two components; the former
form the bulk of the distribution, and the latter, the long tail.

3. GPD Fits to the Distribution Tails

Within the EVT approach, the GPD can be motivated by the
Pickands-Balkema-de Haan theorem (Coles, 1991; Embrechts et al., 1997)
and fitted to the observed distribution tail that is then defined as the set
of exceedences of observations above a high threshold. This however
relies on finding the value of the threshold for which the GPD will hold.
In the absence of other information about the system from which the
observations derive, this is usually done by finding the range of threshold
values for which the mean excess, or the scale and shape parameters of
the GPD, do not change (Embrechts et al., 1997; Ghosh & Resnick, 2010).
That the GPD should provide a good description does not automatically
follow because solar wind variables are not strictly independent, some, for
example, have autocorrelation timescales of several tens of hours (Elliott
et al., 2013).

The GPD can also be used as a convenient fitting function (Hosking & Wallis, 1987) to characterize the solar
cycle independent master distribution for each physical variable. Results of this procedure should then be
understood as a model for the observed values rather than a prediction for more extreme events that go
beyond the observed range. This is the approach taken here. The Pickands-Balkema-de Haan theorem states
that a sample of independent, identically distributed variables X that exceed a sufficiently high threshold 𝜃

will have exceedences z = (X − 𝜃) that follow the GPD. The GPD’s survival distribution is

S(z) = 1 − C(z) =
(

1 + k
( z
𝜎

))− 1
k
. (1)

We perform a GPD fit to the scaled exceedences of the distribution long tails for each physical variable. For
each variable, the samples for the five solar maxima are first independently rescaled to (xk −𝜇E)∕𝜎E using each
mean 𝜇E and standard deviation 𝜎E of observations that exceed the threshold u(qE) for that solar maximum
interval. These five rescaled samples are then aggregated to form a single sample, from which we obtain the
exceedences z = (x −u(qE)) using the quantile u(qE) of the aggregated sample. We then perform a maximum
likelihood GPD fit to the exceedences of this aggregate over the five solar maxima. An input to the fitting pro-
cedure is the threshold 𝜃 for which we again use the quantile u(qE) for qE identified from the QQ plots above
and for which the distributions collapse onto a single functional form. This is a novel method as it uses two
physical insights about the physical variables to determine 𝜃 (i) that they are expected to be multicompo-
nent and ii) that their multicomponent nature is revealed by how they change in distribution from one solar
maximum interval to another. Without this additional physical input, the choice of threshold would rely solely
upon standard tests for the GPD, such as a linear dependence of the mean excess on the threshold, or fitted
GPD parameters if these can be seen not to vary as the threshold varies.

The GPD fits are overplotted on the right hand panels of Figures 1–5 and can be seen to lie within the data
uncertainties. For the survival distributions we also overplot (inset, top right) the 95% confidence intervals
of the GPD fit on the data. For DST the single GPD fit does not capture the roll-off seen in the largest few
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Table 2
Generalized Pareto Distribution Parameters for Fits to Exceedences for the Aggregated Samples of All Five
Solar Maxima; the Maxima Are Specified by Two Different Sampling Criteria (i) and (ii)

qE k(i) k(ii) 𝜎(i) 𝜎(ii)

F10.7 0.75 −0.157 ± 0.007 −0.088 ± 0.011 1.359 ± 0.015 1.180 ± 0.019

PDyn 0.97 0.243 ± 0.041 0.275 ± 0.055 0.600 ± 0.030 0.562 ± 0.038

Ey 0.9 0.262 ± 0.021 0.234 ± 0.027 0.521 ± 0.014 0.563 ± 0.020

AE 0.75 −0.071 ± 0.006 −0.076 ± 0.009 1.169 ± 0.013 1.179 ± 0.018

−DST 0.95 0.198 ± 0.026 0.226 ± 0.035 0.664 ± 0.022 0.625 ± 0.027

Note. The exceedence thresholds are at the qE quantiles.

∼10 observations in the interval of solar maximum of cycle 24 and to a lesser extent, that of solar cycle 23.
There is also a systematic deviation in PDyn from the GPD although they do coincide within observational
statistical uncertainties. These deviations from the GPD fit are for the largest 0.1% of the observations, that
is, the largest few tens of hourly OMNI2 records in a 3.5-year-long sample where the uncertainties become
large. This suggests a large uncertainty on any extrapolation of the GPD fits to estimate the probability of
occurrence of larger, as yet unobserved events. However, we note that other estimates based on fitting specific
distributions, and on EVT, also carry large uncertainties (Riley & Love, 2017).

A check on sensitivity to the selected time intervals used to sample each solar maximum is provided by Table 2,
which gives the GPD parameters for the two different sampling criteria. These are in agreement within the 95%
confidence levels, the exception being the F10.7 index. This can be seen from Figure 1 to have discretization
(Tapping, 2013) that is significant in the extreme values, which will in turn affect GPD fitting. An appropriate
resampling of the underlying F10.7 data may address this.

The GPD encompasses the three Fisher-Tippett subclasses of EVT (Embrechts et al., 1997). We find that F10.7
is in the Weibull class (k < 0), consistent with Vedder and Tabor (1992). AE (k = −0.071, 𝜎 = 1.169) is close
to the Gumbel (k = 0) case and is almost exponential (k = 0, 𝜎 = 1). By contrast PDyn, Ey , and DST are in
the Fréchet class (k > 0). The F10.7 index distribution’s tail falls off faster than an exponential, while the AE
index decays only just faster than exponentially. This can also be seen in the concave shape of the survival
functions when plotted on semilog axes as here. On the other hand the solar wind dynamic pressure and the
DST index have long tails that decay more slowly than exponential (subexponential [Embrechts et al., 1997]),
with a correspondingly increased likelihood of extreme events. Importantly for all the exceedence distribution
long tails, k < 1∕2 so that both the mean and variance are finite (Coles, 1991; Embrechts et al., 1997).

Since DST is the ground magnetic field’s response to all current systems it may, in addition to capturing changes
in the ring current, also be directly influenced by magnetopause currents, which in turn are directly driven
by solar wind dynamic pressure (e.g., Zhang et al., 2004, and references therein). Following Gonzalez et al.
(1994), we corrected for this and obtained a GPD with fit parameters k = 0.199 and 𝜎 = 0.675 so that
the corrected DST long tail has essentially the same distribution as that before correction , consistent with
(O’Brien & McPherron, 2000).

The mean excess dependence on threshold for DST was previously used by Tsubouchi and Omura (2007) to
identify the threshold to obtain a GPD fit for a preselected subset of the observations that identified the most
intense events. These most intense events fall into the region of the distribution (see Figure 5 for −DST ) where
there is a solar cycle dependent roll-off at the largest values.

4. Survival Functions and Return Times

The survival function is directly related to the return time. Consider a return level xm that is exceeded once
every m observations. Then the value of the survival function for xm is

S(xm) = (1 − C(xm)) =
1
m
. (2)
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If in time interval 𝜏 we have N observations, then the average time we will wait to see one observation x > xm

is the return time R(xm) = m𝜏∕N, which is

R(xm) =
𝜏

N(1 − C(xm))
= Δt

(1 − C(xm))
= Δt

S(xm)
, (3)

where we make observations every Δt = 1 hr here. The return time is an averaged quantity; it indicates the
average of the waiting times between the occurrence of events x > xm. Importantly, it does not imply that a
single observation of x > xm will occur once every R(xm). For each solar cycle maximum the return times can
thus also be described by their own single master distribution for each variable along with that variable’s
exceedence mean and variance for that unique solar maximum interval; the master distribution is just that
determined for the survival function here.

The GPD is fitted to the distribution exceedences and can be related to the probability of the full set of
observations as follows (see Coles, 1991). The GPD is

S(X) = Pr {X > x ∣ X > u} =
(

1 + k
(x − u

𝜎

))− 1
k
. (4)

The probability that an observation exceeds the threshold u to become part of the population of excee-
dences, that is, X > u, is S(u) = Pr {X > u} so that the probability of exceeding a return level xm in the full set
of observations is

Pr
{

X > xm

}
= S(xm) = S(u)

(
1 + k

(xm − u

𝜎

))− 1
k
, (5)

which gives the GPD return time from (3). Using (2), the return level estimated from the GPD is

xm = u + 𝜎

k

(
(mS(u))k − 1

)
. (6)

5. Discussion and Conclusions

We have quantified the variation between the last five solar maxima of the statistical distributions, that is,
survival or return time distributions, of large-to-extreme observations of key physical variables that char-
acterize solar and solar wind driving of space weather and the magnetospheric response: the F10.7 index
(Tapping, 2013) of solar coronal radio emissions, the dynamic pressure PDyn, and estimated convection electric
field Ey in the solar wind observed in situ upstream of Earth, the enhancement of the ring current DST , and
auroral activity at high latitudes, the AE index.

These statistical distributions can be long tailed, and the tail of the distribution that corresponds to the most
space weather-effective events changes in a different manner to the bulk of the distribution as we compare
one solar maximum interval to another. These components of the distribution may in turn map onto distinct
physical processes. QQ plots can be used (Tindale & Chapman, 2016, 2017) to track how an observed distribu-
tion has changed from one interval of time to another. Looking across the last five solar maxima, we used QQ
plots to identify the threshold between the bulk of the distribution and the tail, which change in a different
manner from one solar maximum interval to the next.

Each of the physical variables F10.7, Ey , PDyn, AE, and DST has a distinct distribution long tail that is comprised
of observations above a threshold specific to that variable. We then find that for a given physical variable,
the only change in the distribution tail of return times between one solar cycle maximum to the next is in its
mean and variance. For each physical variable, the threshold exceedences, that is, the distribution long tail,
from a given solar maximum interval rescales to any other when normalized to the exceedence mean and
standard deviation of that solar maximum interval. The distinct distribution long tail for each physical variable
(F10.7, PDyn, Ey , AE, and DST ) at each solar cycle maximum interval can be approximately described by a single
master distribution for each variable along with the variable’s exceedence mean and variance for that unique
solar maximum.

If this behavior holds for future solar maxima, then it offers a predictable aspect of space weather climatol-
ogy. For the class of distributions (GPD with k < 1∕2) found here, a relatively small data sample is required
to quantify the exceedence mean and variance compared to that needed to resolve the distribution long tail.
An estimate of the exceedence mean and variance could then be obtained over a relatively short time interval
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at the beginning of an interval of solar maximum activity. A prediction for the (large-to-extreme observations)
mean and standard deviation could, using the results from our study, be translated into a prediction for
the full return time distribution of the large-to-extreme observations. In the case where a variable’s distri-
bution of large-to-extreme observations is close to exponential, as found here for AE, then to a reasonable
approximation only a prediction of the mean is required as the variance is then simply related to the mean.

Space weather events seen in these variables are events or bursts, that is, intervals in the time series where a
given physical variable’s value is continually above a crossing threshold. Our results pertain to the occurrence
probability of observed values; however, for a stationary time series this will also constrain burst properties
from level crossing theory (Boteler, 1991; Cramér & Leadbetter, 2004; Vanmarcke, 2010). If we consider some
value for the crossing threshold u, then the survival function 1−C(u) at that value of u constrains the averages
< …> of the duration of the burst (the time between the upcrossing and the downcrossing) 𝜏d(u) and the
time from the start of one burst to the start of the next (the upcrossing time interval) 𝜏c(u) (or alternatively,
the burst occurrence frequency fc(u)) through

< 𝜏d(u)>
< 𝜏c(u)>

=< 𝜏d(u)> < fc(u)> = 1 − C(u). (7)

Therefore, our plots of survival functions can be read across directly as plots of < 𝜏d(u)> < fc(u)> provided
that u is in the distribution tail. This could in turn be used to quantify the occurrence frequency of different
classes of events (corotating interaction regions and coronal mass ejections) provided that another quantity
could be used to distinguish the class to which a given burst corresponds.

For each solar cycle maximum interval the the product of average burst duration and average burst frequency
can thus also be described by its own single master distribution for each variable along with that variable’s
exceedence mean and variance for that unique solar maximum; the master distribution is just that determined
for the survival function here.

For each physical variable we obtained the corresponding single GPD that characterizes the functional form of
the distribution long tail for all of the past five solar cycles. The observations, and their uncertainties, establish
the goodness of the GPD fit over the range of values explored by the data. For the F10.7 and AE indices and
Ey our GPD fit is acceptable from a quite moderate threshold quantile up to the most extreme values that
are observed. For DST and PDyn our GPD fit may not hold for the most extreme (largest 0.1% or few tens of
hourly records in a 3.5-year sample) observations; DST has an additional solar cycle dependent roll-off in the
distribution at very high values for the most recent solar maxima, and PDyn has a systematic departure from
the GPD.

There is a rich phenomenology in how structures in the solar wind interact with the near-Earth field and
plasma environment. The likelihood of a space weather event can in fact depend on a combination of different
physical variables; the geoeffectiveness of a large-scale solar wind structure at Earth can be conditioned by
the direction of the interplanetary magnetic field (Gonzalez et al., 2008), solar wind Mach number (Borovsky
& Denton, 2006; Lavraud & Borovsky, 2008), or by topological details (Lugaz et al., 2016). A natural extension
of this work would be to construct joint distribution functions of more than one variable, provided that there
is sufficient data to establish statistical significance.
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