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Abstract 

This thesis explores the gait rehabilitation of hemiparetic stroke and brain injury survivors 

by a process of haptic entrainment to rhythmic cues. 

Entrainment to auditory metronomes is known to improve gait; this thesis presents the first 

systematic study of entrainment for gait rehabilitation via the haptic modality. 

To investigate this approach, a multi-limb metronome capable of delivering a steady, 

isochronous haptic rhythm to alternating legs was developed, purpose-built for gait 

rehabilitation, together with appropriate software for monitoring and assessing gait. 

A formative observational study, carried out at a specialised neurological centre, 

supplemented by discussions with physiotherapists and neuropsychologists, was used to 

focus the scope on hemiparetic stroke and brain injury. A second formative study used a 

technology probe approach to explore the behaviour of hemiparetic participants under 

haptic cueing using a pre-existing prototype. Qualitative data was collected by observation 

of, and discussion with, participants and health professionals. 

In preparation for a quantitative gait study, a formal experiment was carried out to identify 

a workable range for haptic entrainment. This led to the creation of a procedure to screen 

out those with cognitive difficulties entraining to a rhythm, regardless of their walking 

ability. 

The final study was a quantitative gait study combining temporal and spatial data on 

haptically cued participants with hemiparetic stroke and brain injury.  Gait characteristics 

were measured before, during and after cueing. All successfully screened participants were 

able to synchronise their steps to a haptically presented rhythm. For a substantial 

proportion of participants, an immediate (though not necessarily lasting) improvement of 

temporal gait characteristics was found during cueing. Some improvements over baseline 

occurred immediately afterwards, rather than during, haptic cueing. 

Design issues and trade-offs are identified, and interactions between perception, sensory 

deficit, attention, memory, cognitive load and haptic entrainment are noted.
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Chapter 1 
Introduction 

Rhythm, brain and the body are closely linked. Humans can synchronise their 

movement to auditory rhythms with little apparent effort (Zatorre, Chen and 

Penhune, 2007). This is demonstrated through the widespread inclination to 

spontaneously move to music, either by tapping, nodding, or in more 

committed cases, dancing. The ability to extract meaningful temporal structure 

from incoming sensory stimuli forms the basis of many human activities, from 

holding a conversation to playing music. 

However, the ability to perform rhythmic movement can be severely disrupted 

due to neurological conditions. Even in cases where the ability to perceive 

rhythms remain, a neurological condition may affect the mechanisms 

controlling the muscles during movement. Arguably, the most important 

voluntarily controlled rhythmic movement in the human body is walking, as it 

is linked to independence and higher quality of life. Having the gait rhythm 

disrupted brings severe asymmetries between steps, which lead to numerous 

physical problems – ranging from muscle degeneration to bone fractures – 

accentuating the patient’s condition.  

This thesis focuses on patients suffering from hemiparesis – a neurological 

conditions affecting one side of the body unilaterally. Hemiparesis is the most 

common source of adult disability and is usually caused by brain trauma or 

injury to the brain such as stroke (Roger et al., 2011; Wasay, Khatri and Kaul, 

2014; Stroke Association, 2017). 
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Utilising the ability to perceive rhythm and trying to synchronise steps to the 

beats of an audio rhythm has shown significant benefits to the way a person 

suffering from a neurological condition walks, stabilising their disrupted gait 

pattern and improving any asymmetries (discussed in Chapter 2, page 27).  

Interestingly, the phenomenon where rhythmic processes synchronise to each 

other was first defined in the field of physics and mathematics after 

observations made in the 17th century on mechanical oscillations (Strogatz and 

Stewart, 1993). Independent mechanical oscillators – under certain conditions 

– would synchronise to each other in a process known as entrainment. It was 

not until a quarter of a millennium later the potential of this observation was 

realised in the area of physiotherapy and rehabilitation, and used for stabilising 

and improving gait asymmetries of neurological conditions such as hemiparesis 

(Thaut et al., 1993). Use of a constant rhythm provided by a metronome has 

been investigated and successfully demonstrated as a means of improving 

hemiparetic gait with immediate effects (Thaut et al., 2007). The neurological 

enhancement of gait is mediated by a rhythmic entrainment effect in which the 

external rhythm acts as a timekeeper, entraining desired movement frequencies 

and retraining motor programs by precisely choreographing muscle activation 

patterns (Thaut, 2007). Walking to an audio rhythm was found to offer greater 

benefits in a much shorter time period than more traditional gait rehabilitation 

methods (Thaut et al., 2007).  

However, there are circumstances where audio cues may be undesirable or 

unsuitable, as discussed on section 2.7.2 (page 36), for example when wishing 

to maintain full environmental awareness or social engagement. In addition, 

with audio cues alone, it is difficult to differentiate which cue is for which leg 

(Wright et al., 2013), thus missing out on some potentially beneficial aspects of 

focusing attention and proprioception in gait rehabilitation. In contrast, the 

sense of touch, through haptic cues, is a promising potential alternative.  
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This thesis explores the role of rhythmic cues delivered via the haptic modality 

in what is the first systematic exploration of the haptic sense as a sole source of 

rhythm aiming at motor synchronisation via entrainment in the context of gait 

rehabilitation.  

1.1 Aim of this thesis 

This thesis addresses the following research question. 

How can entrainment through rhythmic haptic cueing 

assist with gait rehabilitation of neurological 

conditions? 

The question is motivated by empirical and theoretical evidence, rooted in the 

literature, indicating that walking to an audio rhythm is a promising approach 

of assisting gait rehabilitation, with significant benefits to neurological 

conditions. The approach adopted in this thesis is fourfold: 

• to investigate the needs of patients and health practitioners in 

connection with the technology; 

• to iteratively design and develop the technologies necessary to mediate 

the desired haptic rhythm; 

• to design and develop the gait monitoring and analysis tools necessary 

for assessing patients’ gait, quantifying the effects and benefits, leading 

to an evaluation and efficacy of rhythmic haptic cueing in assisting gait 

rehabilitation; 

• to investigate the effects of entrainment between rhythmic haptic 

cueing and people’s gait within the context of gait rehabilitation, 

looking for both immediate and lasting effects and benefits. 

1.1.1 Research question in more detail 
For maximum generality, the research question, as initially phrased, makes no 

mention of specific neurological conditions. However, in some later parts of 
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the thesis there is a focus on specific conditions such as hemiparesis following 

stroke and brain trauma. 

Section 1.2 on the next page presents a roadmap of this research and section 

1.3 provides an overview of this thesis, but in summary, the thesis’ aim was to 

explore the role of rhythmic haptic cueing in the context of gait rehabilitation, 

focusing on patients suffering from chronic hemiparesis caused by brain injury 

or stroke. 

1.2 Research roadmap 

 

Figure 1 Research roadmap showing the four studies conducted in this thesis and how their findings 

motivate each other, and the design of the prototype technologies developed. During the iterative design 

process, electronic components developed were tested before evaluating the prototype for its intended 

use. 
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The roadmap of this research is summarised in Figure 1 above. The first 

formative study applied user-centred design methods, including a form of 

contextual inquiry, to gain insights into current rehabilitation techniques for 

neurological conditions. Findings from this exploratory study influenced 

directly the design of the second formative study, which used a technology 

probe to investigate what both patients and physiotherapists needed from the 

technology, and to gain a first understanding of the efficacy of rhythmic haptic 

cueing as an aid for gait rehabilitation. For this study, a pre-existing prototype 

was used (see Chapter 5). The findings from both formative studies, the pre-

existing prototype design, and knowledge from the relevant literature, all 

influenced the beginning of an iterative prototype design process that would 

continue throughout this research, producing two prototype devices – one 

wired and one wireless– used in the two subsequent studies. Each prototype 

device addressed different aspects explored in the user studies discussed in 

Chapters 6 and 7. 

1.3 Chapter overview 

The subsequent chapters of this thesis are structured as follows. 

• Chapter 2 provides a critical survey of the literature focusing on 

rhythm, rhythm perception, and its application to gait rehabilitation.  

• Chapter 3 presents the methodology used for collecting and analysing 

data in the studies presented in this thesis.  

• Chapter 4 presents two formative studies. The first study critically 

reviewed a series of observations made at a specialised residential 

neurological centre. Observations were made of: the views of 

physiotherapists and a consultant neuropsychologist; the gait patterns of 

various residents; and current gait rehabilitation techniques employed at 

the centre. These observations helped to narrow down subsequent parts 
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of the research to a specific neurological condition, namely hemiparesis 

following stroke and brain trauma.  

The second formative study in this chapter involved sessions in which 

hemiparetic participants were provided with rhythmic haptic cues using 

a pre-existing prototype. Data was collected during these sessions from 

three sources: observations, open-ended discussions with participants, 

and consultation with physiotherapists. The work in this chapter fed 

into the design of a new prototype wearable wireless haptic device, 

described in the next chapter. 

• Chapter 5 describes the hardware and software designed and developed 

for use in the study described in Chapter 7. The design of this system 

was based on observations and insights gathered from the formative 

studies discussed in Chapter 4 and findings from the literature 

discussed in Chapter 2. 

• Chapter 6 contains a study aiming to address a gap identified in the 

literature which concerns the ability of humans to synchronise their 

movement (or entrain) to haptic rhythms.  

• Chapter 7 discusses a study aiming to investigate and quantify the 

effects of rhythmic haptic cueing to the gait patterns of hemiparetic 

stroke and brain injury survivors.  

• Chapter 8 summarises the findings and suggests future research in 

rhythmic haptic cueing as an aid to support gait rehabilitation of 

neurological conditions. 
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Chapter 2 
Literature review 

Rhythm plays an important role throughout this thesis. This is an aspect of the 

research that involves somewhat different theoretical perspectives from most 

research in haptics and haptic perception. Therefore, this chapter starts by 

considering rhythm and how it is perceived in the brain, before moving on to 

consider how rhythm can affect movement, in the context of gait rehabilitation. 

The chapter concludes with findings from the literature on gait rehabilitation 

using auditory rhythms, before introducing the novel approach this thesis 

proposes of gait rehabilitation using rhythmic haptic cues. 

2.1 Music and rhythm 

Music can be found throughout human history and in all cultures and societies 

(Wallin, Brown and Merker, 2000). Music is used as a medium to express 

ideas, emotions and feelings and as a means of bringing people together and 

structuring their interactions. These interactions can vary from just listening to 

music performances, to singing or producing music together, moving or 

dancing to music, and sharing rituals and experiences accompanied and 

enhanced by music (Thaut, 2007).  

Music is a complex phenomenon with rhythm being one of the core elements 

(White, 1984). In a musical context, the term ‘rhythm’ refers to a potentially 

complex and multi-dimensional phenomenon, the systematic patterning of 

sound in terms of timing, accent, and grouping (Patel, 2008). However, in this 

thesis, the term ‘rhythm’ will be used exclusively to refer to something 
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simpler, namely what is known technically as an ‘isochronous rhythm’.  An 

isochronous rhythm is series of regular, completely evenly spaced beats.  

Furthermore, it will be assumed in this thesis that each beat is of the same 

intensity. The time between each beat is called the ‘period’. When considering 

a sequence of beats, it is often convenient to talk about the tempo. Tempo 

refers to the number of beats per minute and is often described as the speed of 

the rhythm (i.e. more beats per minute means a higher tempo, hence a faster 

rhythm).  

The section below describes how rhythm is perceived, and the underlying 

neurological mechanisms that allow synchronisation between rhythm 

perception and motor control mechanisms; something that is crucial for gait 

rehabilitation of people with neurological conditions and gait deficiencies. 

2.2 Moving to the rhythm – entrainment 

Rhythm can be used to synchronise motor movement of the lower limbs into 

stable relationships contributing to more healthy walking patterns (discussed in 

detail in section 2.2.3). The next section offers a brief account of the history of 

entrainment, a natural phenomenon where two (or more) rhythmic processes 

interact with each other until they adjust to a common rhythm, before 

proceeding on how it can be employed to assist patients during movement 

rehabilitation. 

2.2.1 History of entrainment 
Entrainment was formally described in the 17th century, after a Dutch 

mathematician and scientist, Christiaan Huygens, invented the pendulum clock. 

Huygens noticed that when two pendulum clocks were placed on a common 

flexible support (in Huygens case a wooden mantelpiece), the motion of the 

pendulums would synchronise with each other. Even when he nudged the 

pendulum of one clock out of synchronisation, they would regain perfect 

synchrony within half an hour (Ancona and Chong, 1999). He suspected that 
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the two clocks were influencing each other through tiny vibrations in their 

common support, the wooden beam. In order to test this, he moved them to 

opposite sides of the room, and sure enough, the clocks fell out of step. 

Therefore, a link was needed between the two clocks and the common support 

beam was that link. What Huygens observed was what we now call ‘coupled 

oscillations’, or entrainment. 

 

Figure 2 Christiaan Huygens (1629-1695). He was the first to describe the natural phenomenon of 

entrainment, after inventing the pendulum clock. 

The section below considers how entrainment is defined in physics, and the 

conditions that makes entrainment possible, before moving on to how this 

relates to biological entrainment, and how external rhythmic stimuli can be 

used to stabilise gait patterns for rehabilitation. 

2.2.2 Entrainment in physics 
Entrainment is defined as “a process whereby two rhythmic processes interact 

with each other in such a way that they adjust towards, and eventually ‘lock 

in’, to a common phase and/or periodicity” (Clayton, Sager and Will, 2005).  

In physics, entrainment is defined as the effects one harmonic oscillator has on 

the motion of a second nearby (or coupled) oscillator operated at a similar 

frequency (the meaning of ‘similar’ in this context is explored later). More 

specifically, entrainment is the process where two oscillating bodies, which 
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have different periods when they function independently, assume a common or 

related period (Clayton, Sager and Will, 2005). 

In order for entrainment to take place, the following two conditions must be 

satisfied (Clayton, Sager and Will, 2005): 

a) Two or more autonomous rhythmic processes or oscillators must 

exist. All oscillators in the system must be able to oscillate on their 

own, even if they do not interact with each other. Therefore, all 

oscillators must have an internal source of energy and not depend on 

the interaction for producing the oscillations. This rule distinguishes 

entrainment from other phenomena, such as resonance for example, 

where the oscillations stop as soon as one oscillating body (e.g. tuning 

fork) detaches from the other (e.g. resonance box). This in essence 

means that, an observation of synchronised behaviour or even a 

synchronous variation between two variables does not necessarily 

indicate entrainment.  

b) There must be a link to allow the oscillations to interact. A link or 

coupling must exist between the oscillators, which is weak enough so 

as not to cause the oscillators to lose their ability to oscillate 

autonomously (see point (a) above), but it should be strong enough to 

link the interaction between the oscillators. 

Synchronisation between two oscillating bodies or rhythmic processes does not 

happen instantaneously or automatically. There are also cases where oscillators 

may never synchronise at all. Different factors may dictate if oscillating bodies 

will entrain and their entrainment possibilities (Clayton, Sager and Will, 2005). 

These factors are listed below: 
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1. Periodicities1 of autonomous oscillators need to be relatively close to 

each other, or to be related by whole number ratios2. 

2. Entrainment does not occur instantly. Sufficient time, depending on the 

different oscillators and their coupling, needs to be allowed for 

entrainment to occur. When, for example, Huygens first defined 

entrainment, he noted that pendulums would start moving in synchrony 

after thirty minutes (Ancona and Chong, 1999). However, biological 

entrainment is said to occur in much shorter periods of time, with 

studies using finger tapping methodologies observing participants 

tapping in synchrony to an external rhythm after three taps (Repp, 

2005). 

3. Two distinct aspects of entrainment can be distinguished but they don’t 

necessarily need to co-occur. These are: 

a. Frequency or tempo entrainment where frequencies or tempi 

adjust in a similar relationship. 

b. Phase entrainment where two processes are phase-locked, with 

focal points happening at the same moment (e.g. such as a foot 

striking the floor when dancing). 

                                                

 

1 The frequency accent phases are occurring in a period of time. 

2 For example, typically oscillators with periodicities in ratios such as 2:1, 3:1, or 3:2 can readily 

entrain, as generally can oscillators with periodicities in ratios such as 2:2.01. However, ratios 

such as e:π, would generally not lead to entrainment. The exact numerical extent, in particular 

cases, to which periodicity ratios need to be close to each other depends on factors such coupling 

strength. 
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4. Entrainment may be weak between oscillators. In some cases, a 

rhythmic process may adjust towards the frequency or period of another 

rhythmic process without ever reaching absolute entrainment.  

5. Exact phase is not the only instance where entrainment can occur; it can 

also occur in anti-phase. Human gait is an example of anti-phase since 

one foot goes up as the other comes down (Clayton, Sager and Will, 

2005). The number of possible phase related states increase with the 

number of oscillators. 

An important point that comes out of the concept of entrainment is that it must 

not be assumed that entrainment necessarily involves synchronisation of phase. 

In real life systems, this is not always the case since two periodic processes 

may lock frequency, but remain out of phase.  

Bluedorn in (Bluedorn, 2002) (p148) summarises entrainment as: “[a] process 

in which the rhythms displayed by two or more phenomena become 

synchronised, with one of the rhythms often being more powerful or dominant 

and capturing the rhythm of the other. This does not mean, however, that the 

rhythmic patterns will coincide or overlap exactly; instead, it means the 

patterns will maintain a consistent relationship with each other”. 

2.2.3 Rhythm and time perception - Neural entrainment 
Although Christiaan Huygens (see above) defined entrainment in mechanical 

rather than biological systems, and much of the succeeding work on 

entrainment (both theoretical and applied) has been carried out within the fields 

of mathematics and physics, the main emphasis in this thesis is on the 

entrainment of physiological rhythms in humans. More specifically, the focus 

of the present thesis is rhythmic cueing using the sense of touch. However, 

most research on rhythmic cueing has been carried out using not touch, but the 

sense of hearing.  Consequently, in the sections below, this thesis will use the 

literature of the more established rhythmic auditory entrainment.   
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The human auditory system has the ability to rapidly and accurately detect 

temporal patterns in audio signals and construct stable temporal templates 

(Thaut and Kenyon, 2003). This allows humans to synchronise movements 

with external rhythms without apparent effort (Repp, 2005). 

Michael H. Thaut, a well-known music therapy researcher, and Professor of 

Music and Neuroscience, first identified the effect of rhythm and auditory 

entrainment on healthy participants (i.e. those not suffering from any 

neurological conditions causing gait related deficits). Participants in these early 

studies were found to synchronise their steps to the music, entraining their 

movement to the beats of the rhythm, helping them walk better to music than 

they did without  in terms of stride rhythmicity and muscle activity by 

producing more focused motor unit recruitment patterns (Thaut et al., 1992). 

The results from that study led to the realisation of the potential music, and 

more specifically rhythm, has on assisting with gait rehabilitation of people 

suffering from gait deficiencies as a result of a neurological condition or brain 

trauma. Follow-up studies (Thaut et al., 1993; Thaut, McIntosh and Rice, 

1997) with hemiparetic patients (hemiparesis is discussed further as a 

neurological condition in section 2.5.1) confirmed rhythmic entrainment 

processes in clinical populations. Studies also extended entrainment to 

hemiparetic arm rehabilitation (Whitall et al., 2000; Thaut et al., 2002), 

however arm rehabilitation falls outside the scope of this thesis. 

As discussed in section 2.2.2 above, two conditions must be satisfied for 

entrainment to take place; the two rhythmic processes or oscillators must be 

autonomous, being able to oscillate on their own, and a link must exist to allow 

the two oscillators interact. In the case of neural entrainment, the rhythmic 

processes are the external rhythm and the walking movement (how the walking 

movement can be described as an oscillator is further explained in section 

2.3.1). In such cases, the link between the processes is the brain and the central 

nervous system including the sensory channel through which the rhythm is 
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perceived and the motor areas and neurons activating and coordinating muscle 

movement.  

Neurological entrainment is fundamentally related to the temporal pattern of 

the stimulus (in relation to its tempo).  After listening to just two or three beats 

of a steady, isochronous rhythm, most humans can tap to the same rhythm in 

almost perfect synchrony. Studies like (Thaut, Miller and Schauer, 1998) and 

(Large, Fink and Kelso, 2002) indicate that motor movement during index 

finger tapping can entrain to the period of a metronome beat, and stay locked 

even when subtle tempo changes are brought into the metronome (Thaut et al., 

1999). 

This ability to detect temporal patterns and synchronise motor movements to 

their rhythmicity provides a fundamental contrast with models of interaction 

such as simple stimulus response or pattern recognition: see Figure 3 for 

examples. 

Stimulus response and pattern recognition are often used for purposes of 

attracting attention and have no direct relationship to the entrainment process 

discussed in this thesis.  As shown in Figure 3,  stimuli can be simple cues, or 

simple patterns conveying a message - e.g. (Shakeri, Ng and Brewster, 2016) 

where different tactile cue patterns convey different messages to the user. 

 

Figure 3 Example of a stimulus-response interaction involving pattern recognition. Left: mobile beeps 

once, notifying the user of an event. Right: mobile phone beeps in a pattern once. The user understands 

this stimulus pattern means there is a new text message on their phone. 

In the case of neural entrainment, exact synchronisation, or entrainment of 

movement, to external rhythm is both due to local spinal circuits, called central 

Beep! I should 
look at my 

phone! 

Oh, a text 
message! 

Beep beeep beep; 
beeeeep beeeep; 
beep beep beep!! 



Chapter 2. Literature review 

2.2 Moving to the rhythm – entrainment 

 

pg. 15 

pattern generators (CPGs) and a rich connection between the auditory and 

motor mechanisms in the brain. Firstly, CPGs help to enable movement by 

connecting directly incoming sensory information to the appropriate motor 

neurons. This makes CPGs capable of initiating and coordinating movement 

with no input from the brain. This is particularly interesting when considering 

rhythm-based rehabilitation for patients suffering from brain damage; such as 

after a stroke. 

The direct connection between sensory and motor mechanisms allows for a 

much faster and sometimes subconscious motor response to rhythm, entraining 

to an exact temporal pattern. Studies investigating people tapping their finger 

to an auditory rhythm found that participants could very easily unconsciously 

adjust their tempo to match perturbations in the target auditory tempo (Thaut, 

Miller and Schauer, 1998; Repp, 2000). Rhythm entrainment working below 

consciousness has important implications for people with disrupted mental 

ability during movement coordination. These implications are further discussed 

in the findings section of the technology probe formative study presented in 

Chapter 4 (page 60). 

The ability to entrain with little or no conscious effort may be connected with 

the way that the sensory system is organised, as follows. 

The auditory system has richly distributed fibre connections to motor centres 

from the spinal cord upward on brain stem, subcortical, and cortical levels 

(Thaut, McIntosh and Hoemberg, 2015). Therefore, the mechanism of 

rhythmic entrainment may be strongly based on direct, dynamic, sensorimotor 

coupling, helping to explain why it can happen without any major cognitive 

learning effort (Thaut, 2007). Interestingly, this leaves open related questions 

concerning entrainment to haptic cues, a topic that will be returned to in 

Chapter 5. 
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2.2.4 Identifying entrainment in gait 
As discussed in section 2.2.3 above, given the right conditions, rhythmic bodily 

movements can readily be entrained to external rhythms. Sources of evidence 

at the neural level for this kind of entrainment can be found in studies from 

Electroencephalogram (EEG) and electromyography (EMG). For example, 

EEG can be used to capture electrochemical pulses in the neural networks 

between the sensory and motor areas of the brain showing rhythmic synchrony 

of such pulses with the external rhythm (Gerloff et al., 1998). Similarly, EMG 

can be used to detect the electrochemical signals reaching certain muscles 

involved in the rhythmic movement (Thaut et al., 1993). These are all 

candidate techniques for identifying entrainment, albeit using complex 

instrumentation, however, simpler forms of evidence exist, more practical and 

applicable for most gait studies. 

Researchers in various disciplines routinely use relatively simple methods for 

identifying the effects of entrainment on motor movement. By identifying the 

effects of rhythm on a person’s movement, researchers can infer the presence 

of entrainment between the movement and the external rhythm. For example, 

in the case of finger tapping experiments, these effects include:  

• reductions in variability (Repp, 2006a), 

• synchronisation of movements to the beat of an external rhythm (Repp, 

2005). 

In gait experiments, using video captures (Prassas et al., 1997) and pressure 

sensors (Roerdink et al., 2011; Wright et al., 2013) entrainment effects include: 

• visual observation of synchronisation of footfalls to an external beat  



Chapter 2. Literature review 

2.3 Human gait 

 

pg. 17 

• improved symmetry3 in spatiotemporal data (Wright et al., 2013).  

In accordance with these approaches to identifying entrainment, and in 

accordance with the principles laid out by Clayton (section 2.2.2), in this 

thesis, evidence such as visual observation of synchronisation of footfalls to an 

external beat, and improvements in gait symmetry (in particular temporal 

symmetry) will be used as evidence of entrainment. 

2.3 Human gait 

As Thaut and Rice state (Thaut and Rice, 2016)4: “Gait is beautifully simple 

and complex at the same time”. Gait, and the process of walking, is a motor 

skill humans learn to develop from a young age. Most babies take their first 

steps sometime between 9 and 12 months and are walking by the time they are 

14 or 15 months old5. Learning to walk confidently and efficiently usually 

takes months of practising and the achievement of numerous subtasks, such as 

balancing on two feet while maintaining upright posture. The practice and 

repetition of these skills helps to eventually refine them, making them more or 

less automatic. Walking is so much involved in everyday life, that not much 

thought is given to it until it goes wrong. 

                                                

 

3 The implications of symmetric gait to a person’s overall health are discussed in section 2.5 on 

page 28. 

4 (Thaut and Rice, 2016) publication refers to the work by Corene H. Thaut and is not to be 

confused with Michael H. Thaut whose work is reference throughout this thesis. 

5 Source: www.babycenter.com/0_baby-milestone-walking_6507.bc [Accessed: 31/07/2018] 
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2.3.1 Gait as an oscillator  
For reasons of clarity when assessing gait, it is useful to break walking down to 

various constituent elements, and introduce some terminology. In essence, for 

each step, the foot lifts off the ground, swings forward, hits the ground and 

stands until ready to lift off again, forming one step cycle (see Figure 4). 

Multiple step cycles happen for each alternating leg. Therefore, each leg acts as 

an oscillator performing a fundamentally cyclic process on every step. 

 

Figure 4 Phases in human gait. The swing phase, as the name suggests, is defined from the moment the 

toes of the foot initiating the step lift off the ground and the leg begins to swing forward. This phase 

completes when the heel of that foot strikes the ground, starting the stance phase. Between each two 

successive step cycles of alternating legs, there is also what is known as the “double support” phase, 

where both legs touch the ground (time between heel strike and toes off of the next leg). This is an 

integral part of walking, but double stance time does not affect how gait symmetries are calculated in this 

thesis (see section 2.3.2, page 24). 

Consequently, since gait patterns are intrinsically cyclical, they can be 

entrained to external rhythms just like any other oscillator described in the field 

of physics and mathematics. Given that rhythm and gait rehabilitation are focal 

points of this thesis, the capacity of gait to entrain with external rhythms is of 

vital importance. 
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Considering gait kinematics, each step cycle, consists primarily of two phases; 

the swing phase, where the leg swings forward, and the stance phase, where the 

foot is standing on the ground, supporting the body’s weight. These phases are 

two of the most important gait characteristics used for assessing gait (more to 

follow in section 2.3.2 below). Figure 4 provides an illustration containing the 

phases of human gait. 

2.3.2 Assessing gait 
Assessing gait and classifying stroke survivors based on ‘ambulation 

capability’ is an important aspect of rehabilitation treatment. Historically, walk 

velocity is used to assess patient’s gait due to the ease by which it can be 

recorded and applied in the clinical setting. For this metric, all a 

physiotherapist needs to do is time a patient while walking a known distance. 

This method of assessing gait only requires a stopwatch and no specialised or 

extensive laboratory setup. 

While walk velocity can be reflective of gait performance, it does not have 

sufficient “explicative capacity” needed in discriminating among post-stroke 

ambulators (Perry et al., 1995). Therefore, as neuro-physiotherapists and 

rehabilitation experts argue (Olney, Griffin and McBride, 1994; Lord, Halligan 

and Wade, 1998), using walk velocity alone neither assists in understanding the 

nature of gait deficits, nor supports direct treatment for stroke survivors. This 

makes walk velocity alone limited in value in documenting and assessing 

recovery from stroke. 

Walk velocity as measured in the clinic, is also commonly used to predict the 

walking ability of a person in the community. Walk velocity makes up an 

important assessment tool physiotherapists use, not only for assessing patients 

and their progress, but for communicating with other health professionals their 

patients’ walking abilities. Dr Jacquelin Perry, an American physician, defined 

a widely accepted velocity classification scale for stroke survivors (Perry et al., 

1995): 
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• up to 0.4 m/s for “household capability”; 

• 0.4 to 0.8 m/s for “limited community capability”; 

• more than 0.8 m/s for “full community capability”. 

However, in a study comparing clinic and community based walk velocity 

measurements, Denise Taylor, a physiotherapy lecturer, and her colleagues, 

(Taylor et al., 2006) found that classification from measurements taken in the 

clinic alone does not translate to a community setting unless the walk velocity 

is greater than 0.8m/s. This was an interesting finding, suggesting that walk 

velocity based classification systems are of limited scope and do not translate 

accurately from the clinic to the community environment. 

Spatial and temporal symmetry, on the other hand, may be an additional and 

valuable measure  (Patterson et al., 2008) that can be used when trying to 

characterise ambulation capabilities.  This may be of particular relevance in 

further discrimination of post-stroke ambulators; more specifically those with 

gait speeds less than 0.6m/s.  In particular, gait symmetry has the potential to 

provide rich insights linking observations to gait deficiencies, balance control, 

risk of musculoskeletal injury to the non-paretic lower limb and loss of bone 

mass density in the paretic lower limb (Patterson et al., 2008). Symmetry 

information, combined with walk velocity information, can be used to paint a 

more complete picture of an individual’s gait capabilities, helping the 

physiotherapist assess patients better and decide on the best rehabilitation 

action. 

However, unlike walk velocity, measuring and analysing spatial and temporal 

symmetry typically requires expensive laboratory setups. 

2.3.3 Current gait assessment techniques 
Acquiring accurate and reliable knowledge of gait characteristics can enable 

quantification of progress during rehabilitation and simplifies communication 

of the patient’s status between health professionals, thus helping to find the 
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best treatment. Traditionally, the tests and measurements used for analysing 

gait parameters in clinical conditions are semi-subjective, carried out by 

specialists who observe the quality of a patient’s gait while walking or while 

performing certain walk related actions. One example of such a test is the 

‘timed up and go’ (TUG) test. During the TUG test, the health professional 

times the time it takes for the patient to rise from a chair, walk three meters, 

turn around, walk back to the chair, and sit down. Tests such as TUG are then 

usually followed by a survey in which the patient is asked to give a subjective 

evaluation of the quality of their gait. The answers can then be scored giving a 

descriptive figure for the health professional to use for their assessment. One 

example of such a survey is the Rivermead mobility index (see Appendix 2, 

page 187). The disadvantage of these methods is that they rely on subjective 

measurements and may lack accuracy and precision. As discussed in section 

2.3.2 above, physiotherapists may also time patients, and calculate their walk 

velocity as a measure for gait capabilities assessment. Even though there are 

arguments against its accuracy and how well it translates to gait capabilities 

outside the lab environment, physiotherapists still use this method of walk 

velocity measurement because of its ease of application.  

Advances in technology allow more objective evaluation of different gait 

parameters. More objective evaluations have the potential to provide specialists 

with more reliable information on patients’ gait characteristics and reduce the 

ambiguity caused by subjective techniques. An exhaustive review on gait 

monitoring technologies would be outside the scope of this thesis. However, it 

is useful to briefly consider some representative approaches. 

Gait monitoring technologies can be divided into two main categories: 

wearable, and non-wearable. Non-wearable technologies typically require the 

use of controlled research facilities. The relevant sensors are generally either 

optical, where image processing is used to track motion (an example can be 
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seen on Figure 5); or based on floor sensors where motion is captured by 

monitoring pressure changes on the floor (as seen on Figure 6). 

  

Figure 5 Example of an optical motion tracking technology. Left: default setup of a Qualisys motion 

capture system. Right: an example of data recorded by the system. 

   

Figure 6 An example of a non-wearable technology for gait monitoring using floor sensors. The floor 

sensors of this particular “zebris FDM Stance and Gait Analysis System” are within a mat capturing 

changes in pressure force while a person walks over it. Images taken from manufacturer’s official 

website. 

Although non-wearable systems can provide highly accurate results and a 

detailed and objective evaluation of different gait parameters, there are 

disadvantages to their use. Systems that use optical motion tracking or floor 

sensors are typically expensive and require their own dedicated lab space. The 

“capture volume” of such technologies is restricted to the size of the room, or 

by size restrictions of the installation (e.g. the length of the floor sensor array, 

or camera viewing angles). 

In contrast, wearable technologies, where sensors are placed directly on the 

patient’s body, allow for data to be captured and analysed outside the 

laboratory. This allows for greater flexibility on their use and gives the 
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additional advantage of collecting information about gait during the person’s 

everyday activities. Detailed information can then be collected on a person’s 

gait during normal community-based activities, using data from much longer 

sessions. Wearable technologies do however have their own distinctive 

limitations; ranging from restrictive battery life to inaccuracies occurred by 

hardware limitations and improper operation during self-managed use.  

Wearable sensor placement is also often restricted to the wrist: for example, by 

watches and bracelets (e.g. fitbit and Apple Watch – see Figure 7). There is 

some notable exception among specialised systems such as ‘GaitSmart’ – see 

Figure 8. Wrist placement can complicate gait monitoring, since often patients 

suffering from hemiparesis (as this is the main focus of this research) have 

disrupted upper limb movement which may introduce further inaccuracies and 

limitations.   

   

Figure 7 Commercially available activity trackers with gait monitor capabilities. Left: fitbit Surge. Right: 

Apple Watch. Images taken from manufacturer’s official website. 

 

  

Figure 8 GaitSmart gait tracking and analysis system. Images taken from manufacturer’s official website. 
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2.4 Calculating gait symmetries 

As discussed in the section above, there are diverse technologies for the 

collection of gait characteristics. This section considers the analysis of the 

relevant data and how it can be used to characterise a person’s gait, particularly 

their spatiotemporal (i.e. both spatial and temporal) symmetry. In order to 

understand how to use spatiotemporal gait parameters to calculate gait 

symmetry, a good starting point is to consider the various equations for gait 

symmetry. 

Symmetry equations 

Broadly two types of equation are generally used for assessing gait symmetry: 

the first considers ratios, and the second uses indices or difference calculations.  

The symmetry equations dealing with ratio can be further divided in two 

variations: one considering log transformation of the ratio of right and left 

swing times (Plotnik, Giladi and Hausdorff, 2007), and one where the 

symmetry angle (formed by the x-axis and the vector created by plotting the 

right and left values of a discrete gait parameter) is used (Zifchock et al., 

2008). The resulting equations are stated below. Opposite limbs in these 

equations are described as “paretic” and “non-paretic” where paretic is the term 

used for describing the leg affected by the gait related neurological condition 

(further information on section 2.5.1, page 27). 

Note that all of the following equations are presented in an abstract form, 

where a single equation, for example 

𝑆𝑅 = 	𝑉&'()*+, 𝑉-.-/&'()*+,⁄  

summarises a family of equations. For example, the role of V in the above 

equation can variously be taken by a variety of spatial or temporal parameters, 

including: swing time, stance time, step time or stride length. The key 

requirement is that generally, swing time must be compared with swing time, 
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stance time with stance time, and so on – parameters must not be mixed 

(though one exception to this rule is discussed below). 

Symmetry ratio (SR):  

 𝑆𝑅 = 	𝑉&'()*+, 𝑉-.-/&'()*+,⁄  (1) 

Symmetry index (SI):  

𝑆𝐼 = 	 23𝑉&'()*+, − 𝑉-.-/&'()*+,5 (0.5	 × 3𝑉&'()*+, + 𝑉-.-/&'()*+,5< = × 100% (2) 

Gait asymmetry (GA):  

 𝐺𝐴 = B100	 × 2ln3𝑉&'()*+, 𝑉-.-/&'()*+,⁄ 5=B (3) 

Symmetry angle (SA): 

 𝑆𝐴 = 2345	° − 𝑎𝑟𝑐𝑡𝑎𝑛3𝑉&'()*+, 𝑉-.-/&'()*+,⁄ 5 × 100%5= ∕ 90 (4) 

(Patterson et al., 2010) compared these four equations for discriminative ability 

using gait related data from 161 stroke survivors and eighty-one healthy 

participants. The conclusion from this comparison was that none of these 

equations demonstrated a clear advantage in this respect. Yet, as also noted by 

Patterson et al., the symmetry ratio equation (1) affords the advantage of ease 

of interpretation, as it boils down to a simple ratio combining values from the 

paretic and non-paretic limb to give a numerical measure of gait; where a value 

of ‘one’ indicates perfect symmetry. 

For this reason, the ratio equation (1) will be used when describing the results 

of the studies presented in Chapter 7 (page 121). 
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Symmetry calculation parameters 

Other important metrics for characterising a person’s gait can be calculated by 

combining spatial and temporal parameters. Combining step length and step 

time, for example, gives walk velocity. 

Symmetry calculations based on different spatial and temporal gait parameters 

can give distinctive information about an individual’s control of walking. For 

example, asymmetry in stance versus swing time may provide insight into 

different challenges in the control of each gait phase. Symmetry calculations 

between paretic and non-paretic limb values can also form a single figure 

characterising a person’s gait. One such calculation is the overall temporal 

asymmetry ratio, discussed below. 

2.4.1 Overall Temporal Asymmetry (OTA) ratio 
Firstly, the swing-stance ratio is calculated for each leg (5). This is a ratio 

(simple division) between the swing (SW) and stance (ST) time for each leg in 

turn. 

 𝑆𝑤𝑖𝑛𝑔/𝑠𝑡𝑎𝑛𝑐𝑒	𝑟𝑎𝑡𝑖𝑜 = 	
𝑆𝑊	
𝑆𝑇

 (5) 

The OTA ratio is then simply the ratio of the swing-stance ratio of the paretic 

compared with the non-paretic leg – (6).  

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =
𝑆𝑊&	
𝑆𝑇&

/
𝑆𝑊-&
𝑆𝑇-&

	 (6) 

For a healthy individual, the value for OTA should be between 0.9 and 1.1 – a 

range described as healthy or normative (Patterson et al., 2008). In the case of 

neurological conditions, higher swing-stance ratios are commonly seen. For 

example, in the case of hemiparesis (further described in the next section), one 

side of the body is affected unilaterally, typically causing the affected leg to 

swing more slowly. Due to weakness and sensitivity loss, a stroke survivor 
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often loses trust in the affected leg, doubting it can support them. This further 

causes them to swing the non-affected (non-paretic) leg faster in order to 

minimise the time spend standing on the affected leg. Consequently, the swing 

time of the good (non-paretic) leg decreases (i.e. swings faster), causing the 

stance time of the paretic leg’s also to decrease. 

These combined changes in stance and swing times of both legs raise the OTA 

value. Hence, while 0.9 to 1.1 describes normal asymmetry, values between 

1.1 to 1.5 describe mild and over 1.5 severe asymmetry (Patterson et al., 2008). 

Entraining to an external rhythm has been shown to reduce gait asymmetry and 

result in a more symmetric and less variable gait pattern (Thaut, 2007) (this 

point will be revisited in section 2.6, page 29). 

2.4.2 Gait variability assessment 
In addition to changes in symmetry, neurological conditions often make spatial 

and temporal gait characteristics more variable.  

The Coefficient of Variation (CV) is used in this thesis to calculate gait 

variability (see equation (7)). This measure is the ratio of standard deviation (σ) 

and mean (𝑥̅) - intuitively, smaller values mean reduced variability. 

 𝐶𝑉 = (𝜎/𝑥̅) 	× 100 (7) 

The CV is chosen for this research, instead of the standard deviation alone, 

because it is a more useful way of characterising variability in the presence of 

widely varying means. Thus, direct comparison of values can be made without 

worrying about the magnitude of the mean. 

2.5 Stroke and gait asymmetries 

Stroke has existed as a medical term since at least the late 19th century, with 

one of the earliest documented entries being in an 1803 book (Foxe, 1803) 

(p.195), where the author describes how a person was “stricken on the right 
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side with such a palsy or stroke of God’s hand […]” before proceeding to 

describe the condition we now know as stroke.  

In medical terms, stroke refers to a cerebrovascular accident, caused by either 

an obstruction or a hemorrhage (Cohen, 1999). Both conditions result in parts 

of the brain dying with subsequent motor control loss that may affect gait. 

Even though the detailed medical background is strictly speaking outside the 

scope of this thesis, it may be useful to explain what is meant by “obstruction” 

and “hemorrhage”. 

An obstruction is caused when a blood vessel carrying blood to the brain is 

blocked, either by build-up of plaque or by the formation of a clot that arrived 

through the circulation from another part of the body. This is often referred to 

as ischemic stroke (Cohen, 1999).  

Hemorrhage (or hemorrhagic stroke) (Cohen, 1999) occurs when a blood 

vessel near the brain bursts. Loss of blood supply causes an infarction in the 

area fed by the vessel and the surrounding cells begin to die. Causes of an 

ischemic or a hemorrhagic stroke include: stress, a blood clot from another part 

of the brain reaching the brain through the blood circulation system or a head 

trauma as a result of an injury. 

2.5.1 Hemiparesis 
In most cases of stroke and brain injury, the blood supply to specific areas of 

the brain responsible for motor coordination and control is compromised. This 

may lead to weakness of the contralateral limbs, in a condition known as 

hemiparesis (Cohen, 1999). With hemiparesis, stroke survivors can still move 

the affected side of their body, but with reduced motor control and muscular 

strength. 

Motor control deficiencies leads to spatial and temporal asymmetries between 

steps in a condition known as “hemiparetic gait”. The asymmetries can cause 

sufferers of hemiparetic gait to overuse their non-affected (non-paretic) leg, 
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exposing it to higher vertical forces (Kim and Eng, 2003), while underusing the 

paretic (affected) leg. This underuse can subsequently lead to loss of muscle 

tone and reduction of bone mineral density (Min et al., 2016). These effects in 

turn increase the risk of knee and joint problems, leading to an increased risk of 

hip and bone fractures, and raise the risk of falls (Wen et al., 2010). Regular 

rehabilitation exercises can significantly improve a person’s recovery both in 

the early days after a stroke and long after they return home (Galvin, Cusack 

and Stokes, 2009). 

This recovery is facilitated by the brain’s ability to form new connections, 

bridging damaged parts and restoring lost functionality in a process known as 

brain plasticity. 

2.5.2 Brain plasticity 
Brain neuroplasticity (or just plasticity) is the term used to describe the brain’s 

capability to reorganise the motor map in the brain to bypass damaged areas 

and form new connections, assisting the recovery of lost function (Cohen, 

1999). Rehabilitation after brain trauma (injury or stroke) focuses on relearning 

an essential ability that has been lost as a result of the trauma. Through 

appropriate training – the driving force of brain plasticity  in the chronic 

condition (Rossini et al., 1998) – restoration of function is possible, mediated 

by actual changes in neural networks of the brain “circuitry”. Specifically, the 

motor cortex, the region responsible for the planning, control, and execution of 

voluntary movements, can rapidly reorganise the brain’s cortical map in 

response to retraining of skilled motor tasks (Belda-Lois et al., 2011). 

2.6 Entrainment and gait rehabilitation 

Before exploring rehabilitation and its effects in conjunction with brain 

plasticity, a brief remark on the use of the term “rehabilitation” and its meaning 

in the context of this thesis is needed. 
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Considering the strictest semantic sense, the use of the word “rehabilitation” 

only applies to illnesses and disorders that allow for actual and full restoration 

of function (Cohen, 1999). However, when applied to neurological conditions 

and diseases that may cause neuron degeneration and neuron death such as 

Parkinson’s, Ataxia, Huntington’s disease, or even to hemiparetic stroke, the 

strict definition of rehabilitation no longer applies because it is not expected 

that the patient will ever fully recover. “Habilitation” or “adaptation” may be 

considered more suitable. However, in common use, the term rehabilitation is 

used more flexibly than what the technically correct semantic meaning implies. 

Therefore, in this thesis, the term “rehabilitation” is used in such a broader 

sense. 

As explained in section 2.2 of this chapter (page 8), external rhythms can 

entrain with motor movements to facilitate training (i.e. rehabilitation) of 

movement that is intrinsically and biologically rhythmical; and gait is arguably 

the most important of this type of movement in humans (Thaut, 2007) (p.138). 

As already discussed in the sections above (section 2.5.2, page 29), the brain 

has considerable plasticity that can be shaped and controlled by experience, 

learning and performing repetitive activities. Repetitions also help to promote 

brain plasticity and restitution of motor function through actual changes in 

neural connections in the brain (Thaut, 2007). 

As one special case of this, external rhythms can be used for gait rehabilitation 

for people suffering from conditions causing gait deficiencies (such as 

hemiparesis – section 2.5.1, page 27). Studies have shown that walking to an 

auditory rhythm can help to regulate gait and reduce gait asymmetries (e.g. 

(Roerdink et al., 2007; Wright et al., 2013)). In section 2.6.3 the relationship 

between neuroplasticity and entrainment-based rehabilitation will be explored 

in more depth. 
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2.6.1 Rhythmic auditory stimulation (RAS) 
Rhythmic auditory stimulation (RAS) is a neurological technique used for 

facilitating rehabilitation, development and maintenance of movements that are 

fundamentally biologically rhythmical. As discussed above and in section 2.3.1 

(page 18), gait is intrinsically rhythmical, in that during the action of walk 

there is a set of phases that occur sequentially and repeat for every step. RAS 

applies the physiological effects of entrainment between the auditory rhythm 

and the motor system (section 2.2.3) to improve the control of movement in 

rehabilitation of functional stable and adaptive gait patterns of people with gait 

deficits (Thaut, 2007). Today, RAS is an established rehabilitation technique 

for improving limb coordination (both upper and lower) and helping to 

decrease gait asymmetry and variability during walk (Thaut and Rice, 2016).  

2.6.2 Neurological principles of RAS 
In total, four neurological principles help to define RAS as a neurological 

technique for facilitating gait rehabilitation. These four principles are:  

• rhythmic entrainment, 

• priming movement,  

• movement period cueing, and  

• stepwise limit cycle entrainment (Thaut and Rice, 2016). 

Rhythmic entrainment 

Rhythmic entrainment has been explored in detail in section 2.2, page 8.  

Priming movement 

Priming of movement effectively means making the muscles ready to move. 

With the neurological principle of priming, external cues stimulate recruitment 

of motor neurons in the nervous system. Studies using brain imaging 

techniques during rhythmic motor synchronisation identified limited activation 
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of the prefrontal cortex of the brain – area associated with the planning of 

complex cognitive behaviour (Stephan et al., 2002). This limited activation of 

the prefrontal cortex supports the concepts of a direct sensorimotor coupling 

during entrainment of movement to a rhythm without direct input from the 

brain (Thaut, 2007) (p. 142).  

The priming of muscles following an external rhythmic stimulus has shown 

decreased variability in muscle activity as measured by electromyography 

(EMG), indicating more efficient recruitment of the motor units necessary in 

repetitive skilled movement (such as walking) (Thaut, Schleiffers and Davis, 

1991). Temporal parameters of the step cycle (see section 2.3.1, page 18) and 

electromyography measures (EMG) – measurements of the electrical activity 

produced by skeletal muscles – both indicated improvements during normal 

gait with cueing (Thaut et al., 1992). These results indicate more focused and 

consisted motor activity due to priming effects, with similar results extending 

to hemiparetic gait and stroke patients (Thaut et al., 1993). 

Movement period cueing 

Rhythmic synchronisation of the motor system to an external stimulus is driven 

primarily by frequency entrainment rather than strict event synchronisation 

between the rhythmic events (e.g. auditory beats) and the motor response 

(Thaut, McIntosh and Rice, 1997). Therefore, entrainment is relying on an 

anticipation model, where the next rhythmic event is anticipated instead of 

responding to it retrospectively. This anticipation instead of an ad hoc response 

is a major difference between entrainment and stimulus-response interaction 

discussed in section 2.2.3 above. Hence, the time stability of the motor 

movement is enhanced throughout its duration and trajectory, and not just at 

the endpoint of the movement that coincide with the period of the external 

stimulus’s rhythm (Thaut et al., 2002).  
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Stepwise limit cycle entrainment 

The limit cycle is defined as the step cadence (i.e. number of steps per minute) 

at which a person’s gait optimally functions (Thaut and Rice, 2016). The limit 

cycle can be changed due to a neurological disease, brain injury or trauma 

causing deficient gait patterns. With the RAS technique, neurological disease 

patients or stroke survivors start by entraining their steps to an external rhythm 

matching their affected limit cycle, before gradually progressing in a stepwise 

fashion, modulating the rhythm and their cadence to approximate premorbid 

movement frequencies (Thaut and Rice, 2016). 

In summary, the four principles described above help to make rhythm a 

beneficial tool for gait rehabilitation of people suffering from gait deficits as a 

result of a neurological condition. The entrainment principle allows the close 

synchronisation of movement to the rhythm a stimulus is delivered at; the 

priming of the motor system and the anticipation model mean all relevant 

muscles are ready to act in a precisely planned and choreographed manner, 

while the stepwise limit cycle defines the rhythm’s tempo for optimum 

entrainment. 

2.6.3 Other gait rehabilitation techniques 
Other rehabilitation techniques exist for treating people with neurological 

conditions. Bobath therapy (Bobath, 1990), or ‘neuro-developmental treatment 

(NDT)’, as it is known in the US, is one of the most commonly practiced gait 

rehabilitation techniques worldwide (Patterson, 2010). This technique usually 

involves a multidisciplinary team of specialists including physiotherapists, 

occupational therapists and speech and language therapists. During Bobath 

therapy sessions, patients learn how to perform and control simple postures and 

movements, before gradually progressing to more difficult exercises (Cohen, 

1999).  
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Comparing RAS to the gait rehabilitation aspects of this more traditional 

rehabilitation technique, walking following a steady auditory rhythm showed 

significant gains in stride length (distance between subsequent heel strikes) and 

cadence (steps per minute) after a shorter period of therapy (Thaut et al., 

2007). However, (Thaut et al., 2007) reported no clear research evidence for 

the effectiveness of one approach over another. 

2.6.4 RAS assisted rehabilitation 
Early studies by (Prassas et al., 1997) using RAS have shown immediate 

spatial benefits, with stride lengths becoming more symmetrical. In addition, 

(Prassas et al., 1997) found the hip joint range of motion to increase and the 

centre of mass displacement decrease during walk with RAS, making the 

overall forward movement smoother. 

More recent studies involving participants walking on a treadmill, found that 

stroke survivors could easily synchronise their steps to a rhythmic audio 

metronome, showing improvements in temporal symmetries, such as: step time 

asymmetry between the paretic and the non-paretic leg (Roerdink et al., 2007), 

and the reduction of variability in the paretic step times (Wright et al., 2013).  

These results indicate that RAS, and by extension, walking to a rhythm, has a 

strong clinical significance since step asymmetry is the leading cause of most 

of the problems associated with neurological conditions such as hemiparetic 

gait (Thaut et al., 2007). Specifically, improvements in symmetry and 

variability may suggest a more functional recovery of gait mechanics as they 

are kinematically linked with healthy gait (Thaut et al., 2007). 

2.7 Rhythmic haptic cueing (RHC) 

Existing discussions of RAS in the literature are conducted exclusively in the 

context of audio entrainment (as suggested by the name - Rhythmic Audio 
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Stimulation). However, given the focus of this thesis on haptic entrainment, the 

next section considers the literature relevant to rhythmic haptic cueing. 

2.7.1 Definition of haptics 
Haptics refers to the sense and manipulation through touch, and can refer to 

any form of non-verbal communication involving touch (Srinivasan, 1995). 

The word haptics derives from the ancient Greek word “απτικό” (háptikō) and 

translates directly to “by touch”. This term, in its original form, entered English 

in the late 19th century as a medical synonym for “tactile” and has been used 

widely since the early part of the twentieth century by psychologists for studies 

on the active and passive touch of real objects by humans (e.g. (Lederman S. J., 

2009)).  

Advances in technology during the later parts of the twentieth century 

encouraged researchers from other disciplines to consider novel touch-based 

ways of interacting with machines. However, instead of creating a new name, 

researchers at the time decided to redefine the pre-existing term for ‘haptics’ 

by broadening its scope to also include machine touch and human machine 

touch interactions (Srinivasan, 1995). This broadening of the definitional 

scope, meant an increase in ambiguity, with many different definitions being 

used throughout the literature to describe haptic interaction. 

The need for a universally accepted definition was apparent, with several 

researchers attempting to define terminologies for haptics (e.g. (Srinivasan and 

Basdogan, 1997; Oakley et al., 2000)). To rectify this emerging problem, Erp 

et al. (Van Erp et al., 2010) published their own definition which soon became 

the widely accepted ISO definition for haptics (International Organization for 

Standardization, 2011). 

This new definition of haptics made a clear distinction between touch (tactile) 

sensation and kinesthesia (relating to movement and position sensation of 

muscles, tendons and bones) as a mode of interaction with the immediate 
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environment. In other words, touch and kinesthesia can be defined as 

subgroups of the broader term referred as haptics.  

These two subgroups are then further divided into more subcategories, each 

with their own definitions. Figure 9 below summarises the term haptics and 

shows the relationship between the components that make up the field of 

haptics. The focus of this thesis is primarily the tactile branch of haptics, with 

the rhythmic haptic cue (see section below) being delivered through small 

vibrators, creating mechanical stimulation on the skin.  

 

Figure 9 The components of haptics. "Touch" includes such diverse stimuli as mechanical, thermal, 

chemical and electrical stimulation to the skin. The "kinaesthetic" sense can be matched by kinaesthetic 

activity by which a user exerts force or torque on an object external to the active body part (Van Erp et 

al., 2010). 

2.7.2 Motivation for RHC 
As mentioned above, existing discussions of RAS in the literature are 

conducted exclusively in the context of audio entrainment (as suggested by the 

name - Rhythmic Audio Stimulation). However, there are circumstances where 

audio cues may be undesirable or unsuitable, for example in cases where there 

is some hearing loss, or when wishing to maintain full environmental 

awareness of traffic and other people, or when preferring to maintain full social 

engagement. In addition, the way audio cues are presented to patients during 

rehabilitation in the clinic has its own set of limitations. In order to maintain 

communication between patients and physiotherapists, audio cues are usually 
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played out through speakers. As discussed in section 2.6.2 above, for optimum 

entrainment results, the tempo must match the patients walking pace. 

Therefore, only one patient can receive the audio cues at the time, confining 

the number of sessions that can run simultaneously in the same space to one. 

This could be problematic in situations where the same space (i.e. a gym inside 

a rehabilitation clinic) is shared by more than one physiotherapist.  

Haptic rhythms, on the other hand, can be directed to more than one patient 

simultaneously, each with their own tempo to match their cadence, without 

interfering with each other. This enables more efficient sharing of resources 

between health professionals and physiotherapists. 

Cueing of each step has demonstrated stronger auditory-motor synchronisation 

as opposed to cueing only the paretic or non-paretic step (Roerdink et al., 

2011). However, designing an audio rhythm that can allow differentiating 

which cue is for which leg may be difficult, thus missing out on some 

potentially beneficial aspects of focusing attention and proprioception in gait 

rehabilitation. A pilot study attempting to assign cues of different pitch to each 

leg (Wright et al., 2013), identified a number of limitations for this approach; 

mainly an illusion created by the pitch difference between successive cues 

causing an isochronous rhythm to be perceived as irregular. In addition to this 

acoustic illusion, participants in the same pilot study reported that having a 

rhythm of two tones is difficult to understand, with one participant 

withdrawing from the study because they “did not like the dual-tone”.  

The haptic sense, on the other hand, has the potential to provide a more 

discrete solution of delivering the necessary rhythm for entrainment, while 

maintaining the audio channel clear, while cues can be easily assigned for each 

leg by changing the spatial placement of the device delivering the tactile cues.  



Chapter 2. Literature review 

2.7 Rhythmic haptic cueing (RHC) 

pg. 38 

2.7.3 Rhythmic haptic cueing for entrainment and gait rehabilitation 
There is a wide literature concerning entrainment through audio rhythms, in 

areas such as finger tapping experiments (Repp, 2005); step in place paradigms 

(Wright and Elliott, 2014); and gait rehabilitation (Thaut and Rice, 2016). By 

contrast,  discussions of haptic rhythms are mostly limited to considering their 

role in enhancing experiences, and interactions in conjunction with audio 

and/or visual cues (Elliott, Wing and Welchman, 2010).  

Advances in technology mean haptic enabled devices are now widely 

available, with almost all wearable and holdable devices and gadgets having at 

least some haptic capabilities. The haptic sense has great potential for solutions 

to a variety of interaction design challenges. When haptics and haptic 

interactions are a primary means of interaction, however, the interaction is 

usually framed using stimulus response-models (see Figure 3 on page 14 for an 

illustrated example of stimulus response).  In such cases, a haptic message is 

conveyed through a single impulse or a pattern of consecutive vibrations. The 

user is then expected to produce an appropriate response to the haptic message, 

completing the interaction. This can be a useful pattern of use of the haptic 

sense, with implementations including: use as a prompting device for therapy 

(Luster et al., 2017);  reduction of sensory overload in multimodal interfaces 

(Oakley et al., 2000); or provision of an additional dimension to convey 

messages in safety critical systems (Politis, Brewster and Pollick, 2014). 

Haptic feedback has also been used for correction of posture and technique in 

recreational activities such as snowboarding training (Spelmezan, 2012) or 

playing the violin (Van Der Linden et al., 2011). By using sensors on the user’s 

body or garments, users can have their posture monitored during the activity 

and vibrotactile actuators placed on appropriate locations on the body can 

instruct them to make appropriate corrections. 

For example, in the case of violin training, the system has the ability to track a 

musician’s violin position and bowing action in real time using motion sensors 
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and provides vibrotactile feedback to guide the player’s movements and 

maintenance of the correct posture. However, interactions framed in terms of 

entrainment are fundamentally different: the user’s response has a temporal 

relationship to the rhythm of the cue; allowing predictive, synchronised 

movement.  

An example of such interaction in the music teaching domain is the work done 

with the ‘Haptic Drum Kit’ (Holland et al., 2010). The ‘Haptic Drum Kit’ uses 

haptic cues on particular limbs to indicate the exact moments at which notes 

should be played with that limb, on a specified part of a conventional drum 

kit. Results from the study reported in (Holland et al., 2010) indicate that 

novice drummers are able to learn complex drum patterns from the haptic 

feedback alone, although participants in the study expressed an explicit 

preference for haptic feedback with audio to be played. Continuing with the 

theme of haptic feedback for musical training, (Huang et al., 2010) designed 

and developed a wearable device, capable of delivering vibrations on the user’s 

fingers aiming at enhancing their piano learning experience. During this study, 

users who listened and felt the notes of a simple music piece were found to be 

able to replicate it with greater accuracy than people who just received the 

notes auditorily.  

Studies such as the ones described in this section, reflect on the possibilities of 

using haptic feedback for: body posture correcting, learning simple rhythms, 

and controlling the movement of individual limbs in a controlled rhythmical 

fashion. These possibilities have also been explored for gait rehabilitation, 

where rhythm can have therapeutic benefits (see section 2.6). 

In an early exploratory study, rhythmic haptic cueing has shown promising 

results and great potential, offering similar and immediate benefits to auditory 

cues (Holland et al., 2014). This was a study involving a single stroke survivor, 

and in addition to gait related kinematic benefits and improvements, the 

participant commented on how this approach helped her posture and gait. 
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This early exploratory study formed the inspiration to this thesis by 

demonstrating how a wearable prototype, originally designed for teaching 

music concepts (Bouwer, Holland and Dalgleish, 2013) could be used to assist 

people with gait related neurological conditions improve their gait, regain their 

mobility and independence, leading to better quality of life. 

2.8 Chapter summary 

Various neurological conditions, such as hemiparetic stroke, may leave patients 

with several gait deficiency problems. Gait deficiencies may introduce spatial 

and temporal asymmetries between steps leading to health problems and are 

associated with morbidity from various causes. Entraining to an external 

rhythm has shown to help patients improve their gait symmetry and assume a 

healthier gait pattern with immediate effect, and with evidence of longer term 

effects given longer term exposure. 

The repetitive action of an entrained movement has also shown therapeutic 

permanent changes in the brain through the process known as brain plasticity 

(section 2.5.2). Crucially, entrainment is a different mechanism from stimulus 

response, with different brain mechanisms and behaviours involved, as 

discussed in section 2.2.3. 

However, existing discussions of rhythm-based rehabilitation of neurological 

conditions in the literature are conducted exclusively in the context of audio 

entrainment. Audio, on the other hand, may have practical limitations, 

restricting its application scope within the common rehabilitation scenarios. 

Haptic cueing appears to have considerable potential for cueing gait via 

entrainment, with several potential advantages (discussed in section 2.7.2) but 

has been very little studied. 

The next chapter will consider in detail the research methods and approaches 

followed in this thesis.
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Chapter 3 
Research method and approach 

This chapter offers an overview of the methods and research approaches used 

in this thesis. Very little work, beyond a single exploratory study (as discussed 

in chapter 2), has previously been carried out on the use of haptic cues to 

promote entrainment for assisting gait rehabilitation. For this reason, the 

research involved a variety of research approaches. There were four principal 

phases to the research: 

• two initial formative studies to gather insights from patients and health 

professionals (and also to inform prototype design), 

• an iterative prototype design stage, through which the necessary 

technology was developed to produce the haptic cues and monitor gait, 

• a feasibility study to investigate human entrainment capabilities with 

haptic cues (using the finger tapping paradigm with able-bodied 

participants), 

• a quantitative study to investigate the effect of rhythmic haptic cueing 

on gait symmetry of hemiparetic participants. 

Consequently, a mixed methods approach was required, as detailed below.  

3.1 Qualitative methods 

In the first initial formative study, qualitative data in the form of in-situ 

observations was collected using a contextual inquiry based method. 

Contextual inquiry was preferred over more structured methods, such as formal 

interviews with physiotherapists and health professionals, due to unique 



Chapter 3. Research method and approach 

3.1 Qualitative methods 

pg. 42 

circumstances surrounding physiotherapy sessions within a residential 

neurological care centre, where the first initial formative study took place. This 

context is described in more detail in in section 4.1, page 49. Physiotherapists’ 

schedules are busy, with a combination of physiotherapy sessions, paperwork 

and progress reports. This made formal interview sessions with teams or 

individual physiotherapists impractical. On the other hand, it became clear that 

the physical and highly varied nature of the work meant that observing sessions 

in person was particularly valuable. For these reasons, observation guided by 

contextual inquiry principles (see section 3.1.1 below) was used. Discussions 

reflecting on observations were often carried out while en route between 

physiotherapy sessions.  

The second formative study involved a technology probe approach. As with the 

first initial formative study, a number of alternative methodology options, such 

as participatory design workshops and structured interviews, were available. 

However, as this research focuses on people suffering from neurological 

conditions, approaches that required manual dexterity by the participant (e.g. 

low fidelity prototyping or even producing paper-based drawings of 

prototypes) were impractical. Also, many participants in this research suffered 

from Aphasia, a condition making written and verbal communication difficult 

(see section Hemiparetic stroke, page 51). This meant that interviews and 

questionnaires were similarly impractical.  

The technology probe approach was chosen in recognition of the importance of 

allowing participants (both health professionals and people suffering from 

neurological conditions) to experience the technology as early as possible. 

Having the opportunity of this experience in using the technology helped to 

initiate discussions on its use, but also helped to convey the concept of 

haptically mediated rhythms. Discussions were typically short due to 

participants’ aphasia related communication difficulties.  
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These two approaches helped to inform and frame all of the later studies. The 

technology probe also prompted the beginning of an iterative prototype design 

process for the wearable device system that would continue iterating and 

evolving throughout this research. 

3.1.1 Contextual inquiry 

Contextual inquiry is an HCI technique for collecting and interpreting data 

from fieldwork, with a particular emphasis on uncovering requirements for the 

context of use. This approach has its roots in ethnographic approaches to data 

gathering, and rests on four key principles: context, partnership, interpretation 

and focus. The paragraphs below draw on (Preece, Sharp and Rogers, 2011) 

(p.368): 

The context principle highlights the importance of observations in situ, going 

to the place where the new technology is to be used and seeing how current 

practices take place. The first of the two formative studies used this principle 

when visiting a neurological centre to observe current gait rehabilitation 

techniques used by physiotherapists, as discussed in detail in Chapter 4. 

The partnership principle proposes that designers and potential users 

collaborate in an equal partnership, working towards the understanding of the 

task through cooperation. This contrasts with conventional user observation 

studies, where either the designer or user typically leads the task. In both 

formative studies, the partnership principle was closely followed during all 

collaborations with stroke survivors and health professionals. 

The interpretation principle refers to the practice of interpreting observations 

within the context the observation was made, rather than retrospectively 

forming conclusions. A straightforward way to satisfy this principle is to ask 

the users. In the case of the formative studies, these were survivors of 

neurological conditions (predominately hemiparesis) and health practitioners. 
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Lastly, the focus principle advocates keeping the focus of data gathering 

focused on the goals the inquiry seeks to achieve: given that contextual inquiry 

aims to observe users in situ, it can be easy for discussions to veer off track. 

Thus, in the formative studies, the overall focus was kept on activities and 

observations likely to help to inform techniques of gait rehabilitation via 

entrainment using rhythmic haptic cueing. 

3.1.2 Technology probe 
Technology probe is an approach broadly related to participatory design 

(Hutchinson et al., 2003), but one where designers “seed” design discussions 

with a probe, usually in the form of a prototype. As noted by (Hutchinson et 

al., 2003), technology probes: 

“combine a social science goal of collecting information 

about the use and the users of the technology in a real-

world setting, the engineering goal of field-testing the 

technology, and the design goal of inspiring users and 

designers to think of new kinds of technology to support 

their needs”. 

During the early stages of research, it is often the case that no robust 

technology exists yet to present to the users.  

To get around this problem, in the second formative study, as discussed in 

Chapter 4 (page 60), a prototype initially designed for music education 

purposes was used (Bouwer, Holland and Dalgleish, 2013; Holland et al., 

2014). This prototype was capable of producing the basic functionality of the 

envisioned technology, facilitating discussions in context between the 

participating patients (stroke survivors), the health professionals and the 

technology designers.  
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Having a functioning prototype as the centrepiece of these discussions 

facilitated the social science goal of collecting information in a real-world 

setting about users and potential usage of the proposed technology. The 

prototype also helped the users and designers in refining design ideas. The 

second formative study also acted as an early field test of relevant 

technologies. 

3.2 Iterative design process 

Findings and insights gathered during the formative studies served as a starting 

point for an iterative prototype design process in which the necessary 

technology was refined to produce the haptic cues and monitor gait. Chapter 5 

presents the iterative design process, highlighting the most important 

landmarks of the design process. 

3.3 Quantitative methods 

In the tapping paradigm study (Chapter 6) quantitative time series data was 

collected using a piezo-electric sensor combined with a commercial data 

logger, and analysed using both established (Elliott, Welchman and Wing, 

2009) as well as bespoke algorithms. Full details are given in Chapter 6. 

In the gait symmetry study, quantitative data was collected from two sources. 

The primary source was on-board motion sensors from the wearable prototype 

developed by the iterative design process. A supplementary source was a state 

of the art motion capture system in a kinematics lab in Manchester – 

maintained by the Manchester Metropolitan University. The gait symmetry 

data was analysed offline (i.e. not in real time), again, using established, as 

well as bespoke algorithms developed as part of this research. More on the 

algorithm design and data analysis techniques can be found in Chapter 5. 

Details on how these techniques were applied are discussed in Chapter 7. 



Chapter 3. Research method and approach 

3.4 Validity in mixed methods 

pg. 46 

3.4 Validity in mixed methods 

Where appropriate, triangulation was used to give a more balanced and 

detailed picture. Triangulation is the term used for the investigation of an 

observed phenomenon or data outcome from a minimum of two different 

perspectives (Jupp, 2006). If two perspectives suggest the same result, 

confidence in the conclusion is increased. Four different versions of 

triangulation can be characterised: 

• Triangulation of data: Data obtained from two different sources at 

different times, in different places from different people using (if 

possible) different sampling technique.  

• Investigator triangulation: different investigators used to interpret the 

same set of data.  

• Triangulation of theories: different theoretical frameworks are used to 

view the data or findings. 

• Methodological triangulation: where different data gathering 

techniques are used. 

In the gait asymmetry study, the views and opinions of health professionals 

were recorded and analysed whenever possible and compared against 

conclusions drawn from empirical analysis of the quantitative results. This 

facilitated investigator triangulation.  

Also, in the gait asymmetry study, quantitative data from six participants in the 

study, as discussed in Chapter 7, page 121, were captured using two 

independent systems and analysed by different bespoke algorithms, thus 

facilitating methodological triangulation. 

In both of the formative studies, exchanging detailed views in context with 

health professionals contributed to a milder form of triangulation less focused 

on final conclusions and more focused on ensuring well informed 

interpretation of priorities, practices and phenomena in the real-world setting. 



Chapter 3. Research method and approach 

3.4 Validity in mixed methods 

 

pg. 47 

Due to the great variability of hemiparetic participants, where appropriate, 

findings from quantitative data are presented for each participant individually 

(Chapter 7). Presenting data for individual participants along with group 

averages can play an important role, given the exploratory nature of this 

research. By grouping participant results together, it is possible to obscure 

significant parts of the story that may lead to valuable insights and conclusions.  

The next chapter will consider the two formative studies in detail. 
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Chapter 4 
Formative studies 

As described in the research approach chapter above (Chapter 3), this research 

began with an early exploration of the field in the form of two formative 

studies: an observation study and a technology probe study. Insights gathered 

from these initial formative studies helped with the better understanding of the 

gait rehabilitation field, and the familiarisation of current gait rehabilitation 

techniques, as well as exploring the wider physical, sensory, and cognitive 

issues needed to develop the system for delivering a rhythmic haptic cue for 

gait rehabilitation. During the course of these formative studies, a collaboration 

was formed between interaction designers, physiotherapists, rehabilitation 

experts, and stroke and brain injury survivors. 

In line with contextual inquiry principles, and more specifically the context 

principle, highlighting the importance of observations in situ (discussed in 

Chapter 3), this early exploration of the field started with a series of 

observation visits at a specialised neurological rehabilitation centre. this early 

exploration of the field started with a series of observation visits at a 

specialised neurological rehabilitation centre. No specific questions or agenda 

was drafted prior to these visits, but insights from attending physiotherapy 

sessions and discussions with groups of highly trained and experienced 

physiotherapists led to the formulation of various questions that helped to focus 

the aims and outcomes from these observations (focus principle). In particular, 

after initial demonstrations, several therapists expressed the view that this 

approach might be suitable for a range of neurological conditions. However, 
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due to resource limitations and for reasons of simplicity, it was decided to 

focus on just one or two conditions. In making such a choice, the question 

naturally arose of how progress might be quantified for different conditions. 

This led to the formulation of two specific questions:   

Qn.1. What neurologic condition is the most suitable (or appropriate) for 

further investigation? 

Qn.2. How do physiotherapists quantify progress?  

A close collaboration was also formed with the physiotherapists working at the 

centre’s specialised units. This collaboration relationship started and carried 

forward as an equal partnership, with information and insights from current 

rehabilitation techniques, conditions affecting people’s gait and ways 

technologies and technology interventions can be used to assist current 

practices being discussed between all members of the team. This collaborative 

attitude was motivated and supported by two of the contextual inquiry’s 

principles: the relationship and interpretation principle. 

The section below details how the observation sessions took place and their 

outcomes in terms of answering the questions stated above and the overall 

progress of this research. 

4.1 Observations - Visiting a neurological care centre 

Arrangements were made to visit P J Care’s Eagle Wood Neurological Care 

Centre in Peterborough, UK. Eagle Wood contains five neurological care units, 

with each unit specialising in different aspects of neurological nursing needs. 

These include: long term neurological conditions, neuro-rehabilitation, frontal 

temporal dementias, learning disabilities and complex care. The centre’s 

management and staff are keen to make research part of their practice and they 

are very eager to learn how they can further improve their practice and the 

lives of the people staying there. In consultation with the manager and the lead 
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physiotherapists of the centre it was decided that time could be spent visiting 

two of the units, as patients there were most likely to be able to benefit from 

the research: the neuro-rehabilitation unit and the long term neurological 

conditions unit. 

The neuro-rehabilitation unit, as the name suggests, specialises in neuro-

rehabilitation aiming to maximise independence of people with a variety of 

conditions including high spinal injury, acquired brain injury, stroke, and 

myasthenia gravis. Neuro-rehabilitation includes regular physiotherapy and 

hydrotherapy sessions, as well as occupation therapy and exercises to promote 

independence and overall better quality of life. 

The long term neurological conditions unit, on the other hand, focuses on long 

term neurological conditions which require specialist nursing and therapy to 

ensure quality of life through the different stages of their condition, often 

leading to palliative end of life care.  

These two units offered the opportunity to observe (at least) two different 

approaches on how health professionals approach neurological conditions; one 

where rehabilitation is performed to promote independence and restore patients 

to a certain level of mobility, and the other approach where rehabilitation 

cannot permanently restore mobility but aims in improving the patient’s quality 

of life. Being a care centre, P J Care has the added advantage of most patients 

also being residents. This allowed for the unique opportunity to observe 

patients in a more day-to-day ‘home’ environment, and their interactions with 

other residents and nursing staff. 

The next sections, contain experiences with patients and staff of both units, the 

observations made, and point out the most important conclusions allowing for 

informed decisions guiding the future directions of this research. 
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4.1.1 Neuro-rehabilitation and physiotherapy 
These visits were largely exploratory, done in an informal way, with no main 

questions to answer, but rather aiming for the better familiarisation of the gait 

rehabilitation field. However, contextual inquiry principles were used to keep 

the observation procedures and data gathered sensible and efficient.  

During the first visit, a meeting was organised with the centre’s lead 

physiotherapists and their team to discuss the aims of this research.  

The aims of this meeting were to gain a mutual understanding of what this 

research tries to achieve, what is required for the rehabilitation to be considered 

successful, and how technology can be used to enhance or assist rehabilitation 

methods. Physiotherapists and neuroscientists present in the meeting suggested 

to start by observing rehabilitation of hemiparetic stroke survivors. 

Hemiparesis after stroke is common and the centre had numerous residents 

willing to participate in this research.  

Hemiparetic stroke 

Hemiparesis is characterised by weakness of one side of the body as a result of 

brain trauma or injury (discussed in more detail in section 2.5.1, page 27). The 

hemiparetic residents encountered during the visits at P J Care’s Eagle Wood 

Neurological Care Centre were in the acute stages of their condition (stroke in 

this case), with minimal independent ambulatory capabilities. Physiotherapy 

sessions with three hemiparetic stroke survivors were observed by shadowing 

two of the senior physiotherapists and their teams. Physiotherapy included 

sessions both in the gym, and in the stroke survivor’s room, with exercises 

promoting independence (such as laying down and getting up from bed). The 

gym sessions were oriented more on helping them to regain motor control and 

re-build lost muscle tone on their affected limbs (both legs and arms). 

Mobility was a big issue for all stroke survivors with two out of the three 

observed not being able to make more than two steps before needing to rest. 
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Even then, steps were slow and difficult. Physiotherapists and their team had to 

physically hold the person’s legs and facilitate their movement, literally putting 

one leg in front of the other. Interestingly, while doing that, they would also 

massage or tap the paretic (affected) leg during movement on the muscles and 

tendons, just behind the knee. According to the physiotherapists, this 

massaging and tapping is facilitating the muscle to initialise the movement; 

waking up memories in the brain of how it feels like to move. Tapping also 

brings attention on that leg, helping the patient to concentrate on moving it. 

Figure 10 shows a physiotherapist performing this action. 

 

Figure 10 Acute stroke physiotherapy session. Physiotherapist facilitates movement by massaging the 

appropriate muscle and tendons, while assisting the patient to move their legs forwards by pulling their 

foot by the shoe laces. 

In this figure, the physiotherapist holds with her right hand the stroke 

survivor’s right (paretic) leg by the shoe laces, helping her to move forwards, 

while at the same time massaging her behind the knee with her left arm. A 

second physiotherapist is present (standing just in front of the stroke survivor 

to catch her in case of a fall (falls are a common occurrence amongst people 

suffering from gait related deficiencies).  

Rehabilitation in the gym also included stroke survivors walking while 

supporting themselves between parallel bars and using a stationary pedal 

machine (see Figure 11) to increase leg muscle tone – a common concern in 

stroke survivors.  
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With deficiencies in motor control and general loss of sensitivity on one leg, 

stroke survivors often do not trust their affected leg. This loss of trust makes 

them try and spend as little time on it as possible. Underusing the affected leg 

causes it to weaken, losing muscle tone and bone mineral density (an issue 

discussed in section 2.5.1). One analogy a physiotherapist used to explain the 

situation is: “[…] imagine standing on leg. Then try to take a step forward. 

This is how most stroke survivors feel”.  

Using a pedal machine (Figure 11), the stroke survivors could get a good 

exercise through the rehabilitation and physiotherapy session, but the 

physiotherapist could also assess their strength and strength asymmetry. The 

machine is capable of monitoring how hard each pedal is pushed, and can 

monitor and quantify progress in terms of strength symmetry between the legs.  

After the pedal machine sessions ended, the physiotherapists emphasised how 

important it is to restore symmetry between the two legs. These observations 

agree with the literature on symmetry and the importance of gaining and 

maintaining a healthy gait pattern. 

 

Figure 11 (Left) The gym space with the parallel bars where most physiotherapy sessions take place. 

(Right) Pedal machine designed to be wheelchair accessible. 

Another interesting observation came from an interaction between the 

physiotherapists and one of the stroke survivors. Just before a physiotherapy 

session, the stroke survivor kept asking for her glasses. The physiotherapist 
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then went away and returned with her walking shoes and told her that these are 

shoes and not glasses. After the event, the physiotherapist explained that this is 

one way that a stroke may “short circuit” parts of the brain, causing stray 

connections to form in a condition known as Aphasia (Cohen, 1999). This is a 

relatively common issue stroke survivors face, especially during the acute 

stages, where descriptions and descriptive language gets mixed up in their 

brain, and objects are associated with the wrong words. The patient never wore 

glasses. 

4.1.2 Long term neurological conditions 

Huntington’s disease 

Eagle Wood neurological centre also deals with residents with long term 

neurological conditions, such as Huntington’s disease (HD). HD is an inherited 

genetic disorder of the central nervous system. More specifically, HD damages 

specific nerve cells in the central nervous system and affects movement, 

cognition (perception, awareness, thinking, judgement) and behaviour. The 

damage gets progressively worse over time until HD sufferers are left totally 

dependent and require full nursing care. Death is usually from a secondary 

cause, such as heart failure, pneumonia or another infection. Sadly, there is no 

known cure and HD’s progress cannot be reversed or slowed down. The only 

form of physiotherapy residents with Huntington’s receive is for improving 

their quality of life by managing the symptoms of their condition.  

While visiting Eagle Wood, there was a chance to meet three residents with 

HD. As most people with HD, they suffer from erratic muscle movements, 

causing them to frequently lose their balance and fall. The two older residents 

adopted a strategy of walking in which they keep their legs slightly spread 

apart, giving them a larger base. However, the youngest of the three has a very 

atypical way of walk where she is constantly walking on the tips of her toes, 
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being, as one of the physiotherapists described, in a “constant free fall; shifting 

her weight forward and then catching herself before she’d fall”.  

Unsurprisingly, this makes her extremely prone to falls, regularly injuring 

herself. After conversations with on-site physiotherapists and carers, it was 

concluded that having something that would bring the attention to her legs, and 

maybe slow her down, has the potential to make her think about the next step, 

and be beneficial. Even though HD was eventually excluded from the scope of 

this thesis, the implications of rhythmic haptic cueing to HD patients’ quality 

of life will be considered in the future (see Future works on page 163).  

Parkinson’s disease 

P J Care’s Eagle Wood neurological centre did not have any residents with 

Parkinson’s disease (PD) at the time of these visits. However, discussions with 

physiotherapists and health professionals at the centre included the treatment 

PD patients receive.  

PD has complex implications to the way someone walks, with one of the most 

common described as “freeze of gait” (FoG). During a FoG incident, the 

patient’s muscles tense and the individual is suddenly immobilised (freeze). If 

that happens during walk, it could lead to a fall, causing serious injuries. It is 

not clear exactly when or what triggers a FoG, making it extremely difficult to 

predict and even more difficult to prevent. Interestingly, by bringing the 

attention on the frozen limb (by tapping on it for example) it may cause it to 

unfreeze. On the other hand, tapping on a leg that is behaving normally may 

cause it to freeze, triggering a fall. This raised concerns, as the prototype 

system for this research is using haptic vibrations that could potentially trigger 

a FoG instead of preventing it.  

Discussions with health practitioners also suggested that the medication PD 

patients are prescribed with to manage tremor has a half-life (time before the 

medication’s effectiveness is halved) of a few hours, which, could also depend 
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on the person’s mood and meals before and after taking it. This would, in long 

term, make it difficult to assess if any changes observed on the way a PD 

patient walks was a result of walking in the rhythm, or if it was because their 

medication effectiveness was running out.   

4.1.3 Hydrotherapy sessions 

The walking ability of people affected from neurological conditions is often 

significantly improved when walking in the water. The buoyancy of the human 

body makes it easier for people lacking the physical strength to support their 

body weight due to a neurological condition, to stand up and receive 

rehabilitation for their condition. This is an interesting observation and has the 

potential of expanding the range of patients and conditions where this research 

can be applied to.  

Eagle Wood neurological centre runs hydrotherapy sessions in a shallow 

heated pool (see Figure 12). Resident patients go in the pool with one or two 

physiotherapists (at least three in the room at any time for safety) and perform 

a series of exercises depending on their condition. Exercises include walking 

the length or diagonal length of the pool, walking holding floating devices, and 

squatting while holding the pools edge. These exercises are designed to 

facilitate lower limb motion.  

Three hydrotherapy sessions were observed: one with an acute stroke survivor 

(also observed during gym rehabilitation – discussed in section above), one 

with a cancer survivor that left her with gait deficiencies, and one with a 

resident with Guillain-Barré syndrome; a disorder where the body's immune 

system attacks part of the peripheral nervous system affecting motor control of 

both upper and lower limbs (Cohen, 1999). 

All residents in the hydrotherapy sessions observed found it extremely difficult 

to walk outside the water; especially the Guillain-Barré syndrome patient, who 

was completely dependent on an electric wheelchair.  However, once in the 
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water, they could all walk without needing their physiotherapists physically 

supporting them. This is an important observation as these patients had the 

motor control to take steps forwards and walk inside the pool. However, they 

lacked the physical strength, fine-tuned balance and sometimes, according to 

their physiotherapists, confidence to even attempt to walk outside the pool, 

highlighting the importance of confidence and physical strength during gait 

rehabilitation. 

 

Figure 12 Hydrotherapy session Guillain-Barré syndrome patient. Patient is wheelchair bound, however 

in the water, due to buoyancy effects, he can walk unsupported. 

4.1.4 Conclusions from observations 
Observation sessions provided evidence to answer the questions stated at the 

beginning of this chapter. The first question asked: 

Qn.1. What neurologic condition is the most suitable (or appropriate) for 

further investigation? 

The therapists pointed out that of the neurological conditions affecting gait, 

hemiparetic stroke was the most frequently occurring. Furthermore, given that 

hemiparesis affects symmetry, their opinion was that this seemed the most 

suitable focus for further investigation. 

Consequently, a decision was made to focus on hemiparesis; with the most 

suitable candidates being stroke and brain injury survivors with chronic 
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hemiparesis and enough mobility to be considered independent community 

ambulators (i.e. be able to walk independently and without physical support 

from another person). 

In dialog with the therapists, it was further noted that stroke survivors, unlike 

Parkinson’s patients, for example, are not dependent on medication to manage 

their symptoms and motor control issues. Therefore, findings could be reported 

with more confidence as being caused by the proposed technology intervention 

instead of an external factor, such as a medication’s half-life. 

Another factor emerging from the discussions was that hemiparesis after stroke 

tends to be stable, with survivors not showing any neurological degeneration 

over time, unlike in the case of Huntington’s disease and Parkinson’s patients. 

So again, findings could be clearer to attribute to the intervention rather than an 

external factor. 

From observations during the physiotherapy, it became apparent that the 

physiotherapy intervention proposed is unsuitable for stroke survivors who are 

still in their acute stages of recovery. It became clear that following a rhythm 

and trying to time their steps is typically not possible in the early stages 

following a stroke. Walking to a rhythm, on the other hand, is more suitable for 

people who have recovered some mobility following these acute stages. 

The observations and subsequent discussions with physiotherapists also helped 

to answer the second question: 

Qn.2. How do physiotherapists quantify progress? 

The answers to this question varied depending on the specific needs of each 

patient, and the condition in question. As PJ Care is a neuro-rehabilitation 

clinic, most resident patients are in the acute stages of their conditions. In the 

case of stroke survivors, for example, therapists noted that progress might be 

quantified in terms such as two more consecutive steps than the previous 

therapy session. As noted in the sections above, therapists often direct the use 
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of equipment such as pedal machines for exercise. This machine has the 

capability of displaying the force a patient is pushing each pedal with and the 

symmetry between the two legs. Therapists often record such measures as an 

indication of progress between sessions.  

Useful observations were also made during hydrotherapy sessions aiming for 

gait and movement rehabilitation. Therapists pointed out that hydrotherapy 

rehabilitation sessions involving walking in water can alleviate some physical 

deficits while at the same time being safer as there is no serious risk of injury 

from falls, increasing the patient’s confidence to walk unsupported. This 

suggested possible directions for technologically assisted interventions, 

however, designing a technology to work inside or under water would be 

challenging as there are numerous safety considerations wherever electronics 

and water mix, and walking in a pool would add to the complexity of gait 

monitoring.  

Lastly, discussions with therapists focused on speech and language deficiencies 

observed when talking with stroke survivors in the centre’s residential common 

area. These deficiencies are a result of a condition known as Aphasia, common 

in stroke survivors. Aphasia is a speech and language impairment where words 

and their semantic meaning are mixed in the brain. Most of the time, aphasia 

has no cognitive implications, however it may prevent patients from expressing 

or structuring their thoughts in a coherent manner. Therapists also noted that 

aphasia can also affect the way patients comprehend instruction. Therefore, 

this is something that needs consideration when designing studies concerning 

stroke survivors (such as the studies discussed in section 4.2 below and in 

Chapter 7). 

The section below describes a technology probe study conducted shortly after 

the observations at the neurological rehabilitation centre, involving a group of 

stroke survivors with independent ambulatory capabilities and a group of 
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physiotherapy experts from the Manchester Metropolitan University. This 

study builds on the conclusions and insights of the observation sessions. 

4.2  Technology probe study 

In the light of the findings from the previous exploratory study presented in 

section 4.1, this study is aimed at exploring the wider physical, sensory, and 

cognitive issues needed to develop the system for delivering a rhythmic haptic 

cue for gait rehabilitation, through collaboration between interaction designers, 

physiotherapists, rehabilitation experts, and stroke survivors. 

4.2.1 Methodology 
This study applied a technology probe methodology (discussed in section 3.1.2, 

page 44) to gain insights into design issues, through collaboration between 

interaction designers, physiotherapists, rehabilitation experts, and stroke 

survivors. The study itself had a user centred approach, having the real users 

and their goals as the driving force; not just the technology. Contextual inquiry 

principles (page 43) were also used to frame the data gathered, facilitate 

discussions and maintain focus.  

Stroke survivors participating in this study were asked to use a wearable 

prototype, capable of producing rhythmic vibrations on alternating legs (more 

in section 4.2.4 below) and walk synchronising their steps to the beats of the 

rhythm. While using the technology, discussions between everybody involved 

in this study were encouraged. The stroke survivors, health professionals, and 

the technology designers, all had the chance to exchange ideas and experiences 

from the new technology.  

The aim of these discussions was primarily to investigate issues relevant to the 

conception and implementation of a technology aiming to assist gait 

rehabilitation. Ultimately, findings from this study helped in initialising the 
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first iteration of a wearable system, capable of producing a steady rhythm of 

haptic cues for gait rehabilitation. 

Specifically, this study aimed to gain insights from stroke survivors and health 

professionals on: 

• the location, strength, and rhythmic timing of the haptic cues; 

• the participants’ initial reaction to the cues; 

• design suggestions. 

The study also aimed to obtain a first understanding on difficulties hemiparetic 

stroke survivors may face in their day-to-day routine. These findings along 

with some unexpected discoveries, such as the language used to describe the 

haptic cues, are itemised and discussed in section 4.2.5. 

4.2.2 Participants 
Through observations, discussed in section 4.1 above, hemiparetic stroke 

survivors in the chronic stages of their condition, were identified as a suitable 

target group for further investigation in this thesis. 

Four community-dwelling adults (one female) with chronic hemiparesis 

(chronic defined as more than 6 months since stroke onset), gave written 

informed consent to participate. The time since each individual’s stroke 

incident varied from 5 to 42 years (see Table 1).  

Participant 
code 

Age / Sex Stroke onset 
(years) 

Paretic side 

P1 57 (Male) 10 Right 

P2 46 (Female) 13 Right 

P3 68 (Male) 42 Right 

P4 63 (Male) 5 Right 

Table 1 Participant demographic information 

All participants recovered the ability to speak, although still with some 

difficulty. All could walk unaided, but not for very long, and similarly with 
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some difficulty. They were highly motivated participants who regularly 

participate in research projects and are much at ease with the physiotherapists, 

other staff, and lab setting. All participants were ready to give honest critical 

opinions and some participants had become good friends over the years 

because of their stroke and their participation in various initiatives to support 

stroke survivors.  

In addition to stroke survivors, a team of health practitioners and researchers 

from the Manchester Metropolitan University was also invited to take part by 

participating in discussions and giving their expert opinions on observations 

and findings made during this study. This team included a professor of nursing 

and two experienced physiotherapists.  

4.2.3 Apparatus 
As described at the beginning of this section, and in detail in section 4.2.1, the 

methodology for this study is a technology probe using the wearable devices 

noted in section 4.2.3 and described in detail in section 5.1, page 75. These 

wearable devices were an early prototype, initially designed for music 

education purposes (Bouwer, Holland and Dalgleish, 2013; Holland et al., 

2014); however they were more than capable of producing the basic 

functionality of the envisioned technology, facilitating discussions in context 

between the participating patients (stroke survivors), the health professionals 

and the technology designers. 

4.2.4 Procedure 
The sessions were spread out over three days and were arranged in such a way 

that participants were not expected to do too much walking in one day. As part 

of this study, kinematic data was also recorded for each participant, not with a 

specific aim in mind but rather as a test to the capabilities of the lab’s newly 

installed Qualisys optical motion capture system. This kinematics data 
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collection did not interfere with the findings and conclusions of the present 

study.  

Participants were asked to walk the length of the room four to six times 

(depending on each individual’s walk ability and stamina) in three conditions: 

baseline (without cue), with cue, and without cue again. This procedure also 

served as an early pilot to the study discussed in Chapter 7.  

During the first day, an early version of the wearable technology – called the 

Haptic Bracelets, initially designed for an unrelated to gait rehabilitation music 

purposes, but with the ability to produce precise haptic rhythms, was presented 

to participants (see section 5.1, page 75 for more details on the technology). 

This meeting in the first day allowed participants to get an early feel of the 

technology and for researchers to get initial feedback on its design. In addition, 

it was a chance to discuss the aims of this research with the physiotherapists 

taking part in this research and share ideas and concerns, collaborating towards 

a common goal; using technology to assist and enhance current gait 

rehabilitation, and setting the scene of an equal partnership, a key principle of 

contextual inquiry methodology. 

On the second day, the first two of the participants, and on the third day the 

second two participants took part in structured hands-on sessions with the 

technology.  

At the start of each session, equipment was setup and participants changed 

from their normal clothes into shorts to allow reflective markers used by the 

external motion capture system to be clearly placed. The wearable devices 

were then strapped on to both legs of each participant using Velcro straps. 

During the setting up period there were informal conversations with 

participants, checking that they were comfortable with the set-up. Issues 

emerging from the exact placement of the vibrotactiles are considered in 

section 4.2.5 below. 
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Baseline and rhythm familiarisation 

Participants were asked to walk, as they would normally do from a ‘start’ 

marker on the floor to a ‘finish’ marker at the other side of the room. Walking 

from start to finish and then from finish to start counted as two trials. A chair 

was provided at either end for participants to rest whenever they needed. 

After completing the first set of trials without haptic cueing (baseline), the 

tactile metronome of the Haptic Bracelets was switched on. Initially, 

participants were asked simply to sit on a chair and feel the buzzes. The tactile 

buzz intensity was adjusted so that pulses could be felt clearly but without 

causing any discomfort. This intensity adjustment was important as some 

stroke survivors also suffer from sensory deficiencies on the skin. 

Once the intensity was set to a comfortable level, the period of the metronome 

buzz was adjusted for every participant to match his or her natural walking 

speed, as calculated from the baseline condition. Setting the metronome’s 

period to match the individual’s natural walking rhythm is important for 

rhythm based gait rehabilitation as it was found to help participants feel more 

comfortable in timing their steps to the beats of the rhythm (Thaut and Rice, 

2016). 

Once the tactile intensity and the metronome period was adjusted, the 

participants were asked to stand up and try to step in place following the 

metronome’s rhythm. At this stage participants were asked again if they felt 

like they needed any further adjustments to be made on the metronome period 

or the vibrotactile intensity. Throughout this familiarisation stage, participants 

were asked about their initial thoughts, starting conversations around the 

technology, the rhythm, and the haptic cues (see Figure 13).  
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Figure 13 Images from discussion sessions with stroke survivors and physiotherapy practitioners during 

and after interacting with the technology. 

Walking with cue 

When the participants confirmed they were ready to proceed, they were asked 

to walk following the haptic rhythm. The instructions on how to follow the 

haptic rhythm were intentionally vague in order to allow a range of behaviours. 

However, this instruction was later found to have several limitations, not 

allowing the participants to fully understand the task, and was subsequently 

refined for the final study discussed in Chapter 7, page 121.  

After completing six trials with the cue, participants were given a short break 

before being asked to walk through the length of the space for a further six 

trials without the cue, as they did in the baseline session; but this time while 

trying to walk to the rhythm from memory. This allowed for the investigation 

if participants could still remember the rhythm shortly after being exposed to it 

and therefore indicate lasting entrainment effects. Implications of the rhythm’s 

lasting effects are discussed in the Discussion section in page 71 of this 

chapter. 
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4.2.5 Findings 

Location, strength and timing of cues 

Although, initially all participants were asked to wear two Haptic Bracelets 

(one on each leg), there was some variation in how participants responded to 

the suggestion. In the event, all participants accepted the initial suggestion, 

except a single participant (P1), who chose to wear a single bracelet on a single 

leg. He explained that he found it difficult to switch attention between legs fast 

enough. Interestingly, he chose to place the vibrotactile on his affected leg, 

even though this had much less sensitivity (more on this below). He felt that by 

focusing on that weaker leg it helped him to pay attention to it. 

All survivors had a greater or lesser degree of spatial (i.e. step lengths) and 

temporal (i.e. time between steps) asymmetry between the affected and non-

affected leg. Generally, as one of the physiotherapists present later explained, 

survivors try to spend as little time as possible on their affected side, simply 

because they “don’t trust it enough”. Having lost sensitivity on the affected 

limb, and considering the consequent motor deficiencies stroke survivors 

experience, they often lack the confidence to rely on it for supporting their 

weight and try to get off it and step on the non-affected limb, they now trust 

more, as soon as possible. This is causing a distinct hemiparetic gait pattern 

and gait asymmetries (hemiparetic gait discussed on section 2.5.1 page 27). 

Reduction in asymmetries, approaching what is defined as the normative level 

(Patterson et al., 2008) is often the required outcome and one of the main aims 

of gait rehabilitation. 
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During this study, the exact placement of the 

vibrotactiles was decided by the physiotherapists. 

Specifically, on site physiotherapists suggested to 

tape the vibrotactiles on the tibialis anterior muscle 

(see Figure 14) near the knee using surgical tape. 

They felt that this placement was most likely to 

stimulate appropriate movement autonomously.  

This choice raised questions of balancing the notion 

of entrainment with elements of stimulus response. 

As discussed on section 2.6.1, page 30, rhythmic 

audio stimulation is known to yield immediate 

improvements to gait through entrainment.  

The choice by the physiotherapists of placing the vibrotactiles on the tibialis 

anterior muscle represents a line of thought that contrasts with straightforward 

entrainment, and may be a choice influenced by current gait rehabilitation 

techniques that involve stimulating the muscles by gently massaging them; a 

technique observed earlier and is described in section 4.1.1 page 51. The 

apparent conflation of notions of stimulus-response by massaging muscles to 

directly facilitate movement, and entrainment for regulating movement patterns 

is further explored in the discussion section below. 

Issues concerning sensitivity and intensity also raised questions.  Rhythms 

need to be provided with sufficient intensity to allow participants to sense and 

entrain to them. The vibrotactile intensity therefore had to be strong enough to 

be readily felt, but gentle enough to be comfortable and pleasant for extended 

periods of time.  Unsurprisingly, the levels required to achieve this balance 

varied considerably between some of the participants.  Three out of the four 

participants preferred the intensity levels at about 40% intensity. However, one 

participant (P1) had lost 75% sensitivity from his affected leg (sensitivity 

measured by an on-site clinician using standardised tests), and so requested 

Figure 14 Tibialis anterior 

muscle. Physiotherapy 

experts suggested delivery 

of haptic cues on this 

muscle, near the knee. 
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maximum intensity of the tactile cue to allow him to be able to feel the tactile 

signal on that leg.  Aside from P1, who eventually opted to use a single 

bracelet, all participants reported finding a suitable balance in intensity after 

appropriate adjustment. 

Reactions to the haptic cues 

After trying out the haptic metronome all participants agreed that it gave them 

a rhythm to walk to. As P4 said, “The beat (rhythm) is, it’s something to listen 

to. […] the rhythm is good for me.” 

An interesting observation came from the comments of one participant, P1. 

Before sustaining his stroke, he was in the army. During discussion, he talked 

in detail how the rhythmic haptic cue he felt on his leg reminded him of 

marching in the army. “I remember being in the Army. […] even in your sleep 

could do it (marching). But now it’s been a long time. It comes back to me. […] 

I thought, hang on, me in the Army, doing it, and then it shut up (mentally 

blocked out) everyone there, that one comes up. 1, 2, 3 and that thing goes 1, 

2, 3…” (P1). The rhythmic cueing seemed to wake up a long-lost memory and 

helped him “march” in rhythm; “my mind’s coming back from the Army” (P1). 

Another effect that was observed was the rhythm staying in the participants’ 

head for at least fifteen minutes after the haptic metronome was switched off 

(time from switching off the haptic metronome to time of discussion session). 

All four participants mentioned this phenomenon. “If it is switched off […], it’s 

still there. […] in my head” (P4). These observations suggest that participants 

were readily able to entrain mentally, and it provides evidence of rhythm 

persistence when entrained to a haptic rhythm.  

Language used 

Participants in this study frequently used “hear”, “listen” and other audio 

related descriptors to describe feeling the cues delivered by the tactile 
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metronome. For example, P4, stated: “The beat is, it’s something to listen to”. 

These terminological habits have been noted elsewhere in speech about heard, 

rather than felt haptic cues (Bouwer, Holland and Dalgleish, 2013). 

Design suggestions from participants 

The discussions during and at the end of this study, facilitated in the better 

understanding of what stroke survivors need, what features the wearable 

devices should have and how they should look.  

One point arising from all discussions was the participants’ scepticism of using 

an unaltered beat, or indeed any regular beat outside the lab or rehabilitation 

clinic and on uneven surfaces and badly maintained pavements; “[…] where I 

live there’s nothing flat.” (P1) “[…] the pavements, I have to think about the 

pavements” (P2). All participants agreed that it would be very difficult to 

maintain a rhythm while negotiating a “difficult” walking surface. The option 

of having a way to manually adjust cadence settings in such situations was 

quickly dismissed as being too difficult. Participants commented that the 

mental burden is already too high while walking without trying to maintain a 

rhythm. Having to calculate adjustments would only add to that burden. One 

participant (P2) commented that she had only recently trained herself in 

walking and talking at the same time showing the difficulties and mental 

burden, some stroke survivors endure during walk. “I used to not be talking 

while I was walking because I may fall over […] [now] I [walk and] talk a lot” 

(P2). 

The only universally accepted option was to be able to switch the metronome 

off whenever they felt like it was unsuitable or too difficult to follow safely. 

Other design issues considered included the device’s size and conspicuousness. 

A small, light size was felt extremely important, as users would be wearing 

them for extended periods of time. Also, three out of the four participants 

agreed that they wanted the devices to be as inconspicuous as possible. P3 
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notes: “You don’t want to feel that it’s something that people will stare at you 

because you’ve got these things on”. 

Finally, a stroke often causes survivors to lose control of the arm on their 

paretic side. That means they may experience difficulties in strapping the 

devices on their legs, therefore special considerations need to be taken when 

designing the straps. 

 Attitudes of participants  

All four participants indicated that their motivation for participation was to 

help recent or future stroke survivors: as stroke survivors with chronic 

hemiparesis, they appeared dubious about the likelihood of any intervention 

improving their own condition. For example, P2 noted: “Maybe earlier, maybe, 

I don’t know, because I’ve had my stroke for such a long time (13 years), I 

don’t know.” Interestingly, the same participant later described how she had 

recently re-learned how to walk on sand. “[…] I’ve just learnt how to walk on 

sand. You know, that’s, I’ve learnt and adapted myself to walking on sand. [… 

I learned] new strategies […] a few years ago I couldn’t walk on grass and 

now I can slowly.” Thus, despite expressing pessimistic views, there was 

evidence of learning to adapt to new situations and developing improved 

strategies for walking. 

Observations by participants on everyday difficulties 

The interview session at the end of the walking trials provided rich information 

regarding difficulties faced in everyday life in walking after a stroke.  

As already noted, the unevenness of the pavements was a common practical 

problem mentioned by all four participants. “Where I live there’s nothing flat” 

(P1). Having to walk on uneven surfaces is very important for people who 

already have to put a great amount of effort to coordinate their legs and walk.  

“I have to think about the pavements” (P2). “[…] instead of looking ahead to 
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the distance you are constantly watching where you are putting your feet you 

know, more conscious of that factor.” (P3) 

Participants noted that the situation is made worse when they have to cross the 

road or when they carry things (e.g. groceries), having to actively shift their 

balance on one side to compensate. The above points have design implications, 

as considered in the discussion section below. 

4.2.6 Discussion    
Unsurprisingly, different participants preferred different absolute vibrotactile 

intensities, ranging from around 40% intensity to 100% intensity. However, 

more interesting issues emerged concerning the balance of intensities between 

the paretic and non-paretic legs. For example, in his initial attempts, participant 

P1 preferred very disparate vibrotactile intensities for his two legs, due to a 

75% loss of sensitivity in the affected leg. One might expect that such a 

disparity could be addressed simply by turning up the vibrotactile intensity on 

the affected leg. However, after P1’s initial attempt to walk with a vibrotactile 

device on each leg, he found it difficult to switch attention between legs fast 

enough and chose to switch to a single vibrotactile on the paretic leg.  

This raises several interesting issues. Where entrainment has been established, 

conscious attention is not generally required to be aware of the timing of the 

next beat. The situation is different when entrainment is in the process of being 

established, and of course in the case of stimulus response. However, the use of 

haptic cues to direct attention, or to focus proprioception as possible avenues 

for influencing gait merits investigation. 

Due to P1’s condition, it was not possible to clarify his observation fully. For 

example, it would be useful to distinguish between issues of attention 

switching versus possible sensory issues. Certainly, especially for any situation 

in which a limb has lost much of its sensitivity, this issue deserves closer study. 



Chapter 4. Formative Studies 

4.2 Technology probe study 

pg. 72 

One interesting design issue is an apparent tension between the notion of 

entrainment, and the notion of stimulus response, as noted earlier. Some 

ramifications of this tension did not become apparent until reflecting on the 

findings of the study. Previous studies in the audio cueing of gait such as the 

ones summarised in (Thaut and Abiru, 2010), and discussed in Chapter 2, 

strongly suggest that entrainment is central to metronomic gait rehabilitation.  

By contrast, in the more exploratory present study, with the explicit aim of 

eliciting views from end users and professionals from several disciplines, the 

deliberate openness of the instructions seems to have been interpreted by 

participants in ways different from the stricter procedures used in the previous 

studies mentioned above. Entrainment to the haptic rhythm and investigating 

the effects of entrainment to hemiparetic gait was not investigated in this study. 

As previously noted, the physiotherapists in the present study chose 

specifically to locate the vibrotactiles on the tibialis anterior muscle near the 

knee, spurred by the idea that timely action might be stimulated, which seems 

to suggest the idea of stimulus response. This seems to have been motivated in 

part by physiotherapists’ use of the touch of their hands to assist with gait 

rehabilitation and facilitate muscle movement (see section 4.1 Observations - 

Visiting a neurological care centre – page 49). The choice of placement may 

also have been motivated in part by analogy with FES (Functional Electrical 

Stimulation) devices, which are used by some hemiparetic patients (though 

none in the present study).  These devices typically employ a sensor worn on 

the base of the foot to instruct the FES to directly stimulate the relevant muscle 

by passing a small current through it causing it to contract and avoid “foot 

drop” (a condition where the toes do not lift sufficiently high off the ground 

during each step), which can otherwise cause stumbling.  However, the FES 

does not give a metronomic cue, rather it is tied directly to the wearer’s steps, 

whenever they may occur. 
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Despite all the above considerations, at least three participants explicitly noted 

that the rhythm would remain in their heads for some time after the haptic 

metronome was switched off. Participants said they could still “hear it” in their 

head and that it gave them “something to listen to” while walking. Perhaps 

most interestingly, P1, said that the haptic metronome woke forgotten 

memories of marching in the army, and that this helped him maintain a rhythm 

while walking. 

It may well be that for different aspects of rehabilitation, both entrainment and 

stimulus-response are valuable. Physiotherapists and interaction designers, 

together with stroke survivors are likely to benefit from working together to 

understand how these approaches relate, and which are most relevant in what 

circumstances. 

4.2.7 Study limitations  

At the time of the study, a force plate (for measuring the impact of steps) was 

in the process of being installed in the lab, but its cover was not yet fitted, 

exposing the plate surface, which lay at a lower level than the rest of the floor. 

This exposed plate surface can be seen in Figure 15 below (blue tiles).  

 

Figure 15 Participant using the technology during the technology probe study. Exposed force plate can 

be seen in the lower left corner of the image. 

Due to the shape of the lab, participants could not easily avoid stepping on the 

plate and were forced to adjust their gait to step on the plate squarely. This 
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tended to disrupt their gait but did not interfere with the aims of this formative 

technology probe study. The exposed plate was covered for the subsequent 

study discussed in Chapter 7, page 121. The right part of Figure 46 on page 

132 shows the new lab configuration with the force plate now hidden under 

normal floor tiles. 

4.2.8 Conclusions from technology probe 
In this study, the main aim was to identify issues with implications for design 

at disparate levels of specificity and abstraction. Several promising directions 

were identified. For example, the design tensions between vibrotactile 

placement and entrainment versus stimulus response, and the related rhythm 

persistence. These all deserve careful further investigation and are explored in 

the subsequent study in Chapter 7.  

Findings on what is required also included cosmetic aspects such as a small, 

inconspicuous device that can easily be hidden under normal clothes, and 

practical considerations such as the way the devices are strapped on the 

patient’s body. Design issues considered in the “Findings” section (page 66) 

and discussed in the “Discussion” section (page 71) helped to start the iterative 

prototype design and development process (considered in Chapter 5). These 

findings were also considered when designing the study discussed in Chapter 

7, page 121. 
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Chapter 5  
System design:  

The Haptic Bracelets 

The previous chapters motivated and contextualised the approach of rhythmic 

haptic cueing for gait rehabilitation. Walking following an external 

metronomic rhythm has been shown to improve gait (section 2.6), leading 

people with neurological gait deficits to walk more symmetrically and to 

neglect their affected leg less.  

This chapter focuses on the development and implementation of a wearable 

prototype system, capable of delivering a steady haptic rhythm and monitoring 

gait by recording movement. The development was an iterative process, driven 

by observations and insights gained during the formative stages of this research 

as discussed in Chapter 4, continual lab testing, and pilot evaluation sessions. 

The chapter starts with a quick overview of a pre-existing system. This pre-

existing system was used as a technology probe in section 4.2, page 60 and 

played a crucial role in motivating this research. Section 5.2 proceeds to 

describe the operation concept behind the prototype system before explaining 

the system’s implementation in section 5.3.  

5.1 Historic reference: naming the Haptic Bracelets 

To some readers, the name “Haptic Bracelet” may be strange. Even though a 

bracelet can technically, and by definition, be worn on the ankle, it is usually 

associated more with the wrist or the arm. The name “Haptic Bracelet” 
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however comes from an earlier version of the system, primarily designed and 

developed for teaching multi-limb rhythms - such as encountered when playing 

the drums – for musicians and music learners. Initially, a wired version called 

“the Haptic Drum Kit” (seen in Figure 16) employed four computer-controlled 

vibrotactile devices, one attached to each wrist and ankle (Holland et al., 

2010). Precisely planned haptic cues were used to guide the playing of 

rhythmic patterns on a drum kit that required multi-limb co-ordination. 

 

Figure 16 The Haptic Drum Kit. 

The main aim of the Haptic Drum Kit was to promote rhythm skills and multi-

limb coordination. After some initial studies (Holland et al., 2010), the kit 

evolved to a more wearable version (Figure 17) with extended functionality 

such as teacher-student pairing (Bouwer, Holland and Dalgleish, 2013) and 

real-time analysis of MIDI music files for haptic play-back (Bouwer, Holland 

and Dalgleish, 2013). This new wearable iteration, including a wireless version 

(Holland et al., 2014), was re-named as the “Haptic Bracelets”.  

 

Figure 17 Earlier version of the Haptic Bracelets designed and implemented for music applications. 
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This name was kept for the new prototype system as an homage to the early 

work using the devices. Although this “older” version of the device is able to 

produce and maintain a steady tactile rhythm, it was past its prototype stage: 

the hardware component of the device was finalised and a custom printed 

circuit board was manufactured for it. This meant the devices contained 

electronic components that were either not needed or did not allow for efficient 

gait monitoring, as required by the current study on gait rehabilitation, adding 

unnecessary weight, bulk, and complexity to the system. 

Therefore, instead of attempting to adapt the older version to fit the new 

purpose of gait rehabilitation, a decision was made for a complete hardware 

and software redesign of the system. From this point onwards, the name 

“Haptic Bracelets” will be used to refer to this new, redesigned wearable 

system. 

5.2 The Haptic Bracelet system for gait rehabilitation 

5.2.1 Prototype system concept  

The concept of the Haptic Bracelet system is based on the natural phenomenon 

of entrainment (discussed in detail in Chapter 2), and a need identified during 

the literature review and formative studies (Chapter 4) of characterising gait 

and gait related progress for assessment and communication purposes.  

Therefore, the prototype system concept can be summarised as having two 

main aims, to:  

• produce a steady haptic rhythm, helping entrainment between the 

rhythm and the wearer’s gait cycle; 

• monitor and analyse gait characteristics, allowing for a meaningful 

gait assessment. 

The first aim is based on findings from the literature showing that entrainment 

of movement to steady rhythms of isochronous beats is possible, with 
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significant therapeutic benefits to gait rehabilitation progress of hemiparetic 

patients – the target user group in this thesis.  

As discussed in Chapter 2, entrainment can readily occur between independent 

rhythmic processes provided a weak link exists between them. In the case of 

neural entrainment, as used in movement rehabilitation, the two independent 

rhythmic processes are: the external rhythm and the rhythmic action (i.e. gait in 

this case). The weak link between the two processes is provided by the brain 

and neural network used for sensing the rhythm and initiating the action. (As 

the term entrainment is generally used in physics, one would expect the link to 

be two-way; however, as used in rehabilitation contexts, the term is 

conventionally used with one-way links). Entraining movement with an 

external rhythm showed significant immediate and long-term benefits in 

patient’s walking patterns. Specifically, the use of audio rhythms for gait 

rehabilitation of neurological conditions has been widely explored showing 

significant benefits to spatial and temporal gait characteristics as well as gait 

related symmetries. 

Entrainment of gait occurs easily to steady rhythms of isochronous beats when 

the rhythm’s tempo is similar to the person’s preferred cadence (Roerdink et 

al., 2011), with higher therapy benefits observed if both legs are cued 

(Roerdink et al., 2009). However, attempts to assign rhythmic audio cues to 

each leg independently (separated by pitch) were not very successful due to 

limitations in the way audio is perceived (Wright et al., 2013).  

The approach used in this thesis uses isochronous sequences of haptic cues as 

the external rhythm instead of audio, as haptic rhythms may have certain 

practical advantages over audio rhythms, when considered within the context 

of gait rehabilitation - an argument discussed in section 2.7.2. 

One such advantage lies in the nature of the haptic sense. People are readily 

able to sense to which limb a haptic cue is being applied. However, off-the-
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shelf haptic devices, capable of producing a haptic rhythm through tactile cues, 

are not usually capable of providing cues in different locations at different, but 

carefully synchronised, times. Therefore, the Haptic Bracelet prototype system 

has to be capable of producing a multilimb tactile metronome; producing 

tactile cues on alternating legs. This will allow for cueing each limb 

independently, overcoming the limitations identified in the previously 

mentioned audio based study (Wright et al., 2013) while also facilitating the 

investigation of attention and proprioception in the context of gait 

rehabilitation. 

A second design aim for the prototype is based variously on: insights from the 

literature (Chapter 2); discussions with health professionals; and observations 

of gait rehabilitation techniques made during the formative studies (Chapter 4). 

Health professionals often need to quantify a patient’s gait for reasons of 

assessment and better communication with other health professionals. 

However, they often rely on semi-subjective tests and technologies that are 

either limited in their descriptive capacity or overly expensive, involving 

specialised installations and high running costs. Therefore, the new prototype 

system aims to monitor gait and extract meaningful temporal and symmetry 

related gait characteristics in categories suitable for health professionals.  

As discussed earlier in this section, the system uses a multilimb approach, 

where one device is placed on each leg to promote entrainment via rhythmic 

haptic cueing. This has the extra advantage of motion data being gathered from 

each leg independently. Having data from each leg makes it possible to easily 

identify data from the paretic leg (affected by the neurological condition) and 

non-paretic leg, increasing the efficiency of the analysis of temporal 

characteristics and asymmetry values.  
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In summary, to address these aims, the system consists of: 

• a set of wearable devices (one for each leg), capable of producing 

haptic cues in the form of short vibrations, and monitoring gait; 

• a central control unit (CCU), capable of controlling the wearable 

devices, arranging their vibration patterns to form a steady isochronous 

rhythm (i.e. equal time between each successive cue) creating a precise 

multilimb tactile metronome; 

• bespoke gait analysis software, capable of analysing gait data to 

extract important characteristics and produce reports assessing a 

person’s gait. 

The block diagram of the full system’s concept is shown in Figure 18. 

 
Figure 18 Haptic Bracelet concept. Arrows indicate data flow. 

5.2.2 Operation concept 
The Central Control Unit (CCU) controls the tactile metronome by sending a 

“vibrate once now” instruction to the wearable units on alternate legs. Recall 

that a multilimb approach is used, where each successive tactile cue in the 

rhythm is delivered to alternating legs.  

Each device sends a constant stream of data back from the devices’ on-board 

motion sensors. This data is analysed subsequently to extract gait 

characteristics, in particular temporal and symmetry values. Having one motion 
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sensor on each leg allows for ready identification between legs, and a finer 

grain of data contrasting the details of paretic versus non-paretic steps. 

The Haptic Bracelet system conceptual operation is summarised on Figure 19.  

 
Figure 19 The Haptic Bracelet concept operation. In its default configuration, two wearable units are 

used – one on each leg. The CCU sends a “vibrate now” instruction message to alternate devices at a 

predefined rate (period). Both wearable devices send back a constant stream of motion sensor data. 

Arrows indicate data flow.  

5.3 The Haptic Bracelet system implementation 

Using an iterative prototype design approach, a number of prototype versions 

were produced, tested and evaluated, before getting redesigned for the next 

iteration. Testing was performed in two ways: firstly, gathering empirical data 

in the lab on the device performance and reliability (with both stroke survivors 

and able-bodied participants); and secondly, gathering qualitative data from 

healthcare professionals and stroke survivors on system design. However, 

instead of describing each system iteration, this chapter focuses on the 

individual components that make up the Haptic Bracelet system. The iterations 

of these components are described in the sections below, presenting various 

technical and design considerations that influenced the development of the 

system.  
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The current iteration of the Haptic Bracelets, as illustrated in Figure 20, 

consists of: two wearable devices; a central control unit; custom built software 

and firmware for the wearable devices; and analytical software designed and 

implemented to analyse gait data.  

 

Figure 20 The Haptic Bracelet system consists of two wearable devices, each consisting of a monitoring 

and a metronome unit, and a central control unit (CCU). A router is used for creating a local network 

and hosting all communications between the CCU and the wearable devices. 

5.3.1 Wearable unit 

The wearable units work in pairs (one for each leg). Each unit contains a 

vibrotactile actuator capable of producing a tactile cue of sufficient, but 

comfortable intensity to be felt by the user. Each unit also has sensors for 

recording appropriate motion data (integrated in an inertia monitoring unit 

(IMU) – discussed in detail in the next section on page 83) that can be used for 

calculating gait characteristics including gait asymmetries and step variability. 

Initially both the metronome and monitoring units were designed to exist as 

one device. However, extensive lab testing exposed one major limitation of this 

approach. If both the IMU and vibrotactile were connected via a single unit, 

vibrations from the vibrotactile actuator (see Figure 26, page 91) could travel 

up the cables and muddy the data.  
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Therefore, a decision was made to physically separate the tactile metronome 

and the IMU. Despite this physical separation, both units are controlled via Wi-

Fi from a single central control unit, allowing precise synchronisation. 

Separating the monitor and metronome units also meant that the physical 

placement of the tactile metronome (optimised for clear perception of the 

tactile cue) was no longer restricted by the placement of the IMU (potentially 

optimised for accurate gait data collection). Placement considerations for both 

the monitoring and tactile metronome unit are described on pages 86 and 96. 

Gait monitoring unit 

In order to facilitate precise monitoring of motion for gait analysis, an “off-the-

shelf” wireless I/O board was used for the gait monitoring unit of the Haptic 

Bracelet system (see Figure 21). This board, called the x-OSC6, was chosen 

because of its small size, flexibility and nominal high bandwidth.  

 

Figure 21 The x-OSC wireless I/O board as used for the gait monitoring unit of the Haptic Bracelet 

system. A bespoke case was designed and 3D printed for the x-OSC. Dense foam was used to minimise 

noise in motion data from rattling movement of the x-OSC inside the case. 

                                                

 

6 x-OSC made by x-io Technologies http://x-io.co.uk/x-osc [Accessed: 31/07/2018] 
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Primarily designed for artists and performance work (e.g. the mi.mu glove7) 

the x-OSC measures at 45 × 32 × 10 mm and is powered by a lightweight 

Lithium Polymer (LiPo) battery. Monitoring and reacting to motion during 

artistic performances was one of the primary motivations of the x-OSC 

production (Madgewick and Mitchell, 2013). It contains a full inertia 

measurement system (IMU), equipped with an accelerometer, a gyroscope and 

a magnetometer, each capable of sensing motion in 6 degrees of freedom (x, y 

and z-axes). 

The x-OSC takes readings from these sensors once every 2.5 milliseconds – 

yielding a sampling rate of 400Hz. This data is sent via Wi-Fi to the central 

control unit (see Figure 18 for the system’s concept design). However, after lab 

testing it was concluded that operating at the maximum 400Hz sampling rate 

produced too much data, introducing communication bottlenecks in the system. 

This caused a high number of packets to be dropped, losing data. The situation 

was exacerbated when more than one x-OSC was used (as per normal pairwise 

operation of the Haptic Bracelets).  

In order to resolve the problem with lost packets, it proved necessary to 

establish a reliable sampling rate. (No performance data existed for the version 

of x-OSC used in this thesis. The sole evaluation in the literature (Madgwick, 

Harrison and Vaidyanathan, 2011) referred to an early prototype of the x-OSC 

using Bluetooth rather that Wi-Fi). 

Investigation in the lab revealed that a sampling rate of 256Hz (one sample 

every 3.9 milliseconds) was the highest reliable sampling rate in the context of 

gait monitoring.  

                                                

 

7 http://mimugloves.com/ [Accessed: 31/07/2018] 
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Consequently, for the gait studies, a 256Hz sampling rate was chosen. This is 

ample to pick up important gait events with the required accuracy. Results 

from the sampling rate reliability test are shown below in Table 2. Note that it 

is difficult to count lost packets reliably; consequently, reliability was assessed 

in terms of the variability of the mean number of packets received for given 

nominal sampling rates (Table 2). 

 

Set sampling rate 

(Hz) 

Measured sampling rate (Hz) 

n=10 measurements 

200 Hz 201.31 ± 0.28 

256 Hz 256.96 ± 0.22 

300 Hz 297.64 ± 4.93 

400 Hz 389.34 ± 7.02 

Table 2 The table above shows the sampling rate set on the device versus the actual number of samples 

received per second. Set at 256Hz produced the closed measured sampling rate with the smallest 

standard deviation. Higher standard deviation also indicates higher unpredictability on packets lost, 

hence higher inaccuracies in data. 

The accuracy and validation of measurements taken by the Haptic Bracelet’s 

motion capture units in the context of temporal gait characteristics are 

discussed in section 7.4.3, page 137. 

A case was designed and 3D-printed to house and protect the board. The case 

was designed using SketchUp specifically to be worn around a limb (preferably 

on the leg near the ankle). A slight curve was implemented to fit the limb for 

comfort, and slits provided to allow easy securing of the unit with a Velcro 

strap on the leg. A 3D rendering of the design and photos of the actual 3D 

printed case are presented in Figure 22 below. 
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Figure 22 Case used for housing the monitoring unit of the Haptic Bracelet wearable device. The top row 

presents the 3D rendering of the case used before 3D printing with the finished case in the bottom row.  

Placement of the gait monitoring unit 

One issue to address as part of the design is where on the legs to place the 

monitoring units. Further investigation of the literature found claims (Evans 

and Arvind, 2014) that the precise area on the lower limbs where sensors are 

placed does not appear to have significant performance advantages for 

measuring gait characteristics. It may be unwise to take this claim as definitive, 

since Evans and Arvind do not explicitly compare different footwear and 

different walking surfaces, and it is possible that different footwear/surface 

combinations might favour different measurement locations. Furthermore, 

discussions by (Madgwick, 2013), outlined below, suggest that not all 

measurement locations may facilitate equal accuracy. However, in any case, 

when designing wearables, measurement accuracy is not the only issue 

governing placement. The device also has to be: comfortable, safe, unobtrusive 

when walking and inconspicuous in social settings (Mazilu et al., 2013). 

During lab testing, five areas of the lower limbs were considered: the waist, the 

thigh, near the knee, the ankle, and the top of the foot. The knee area was 
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excluded from further investigation as this area was reserved for the 

vibrotactile actuator (placement of the actuator is discussed on page 96 below). 

Tactile cues from the actuators have the potential of interfering with the motion 

data, introducing noise that could lower the quality of the captured data. The 

thigh was also excluded on the grounds of being intrusive for the participant, 

inconvenient during walk, and too close to the groin area.  

The areas considered taken forward to lab testing are shown in Figure 23.  

 

Figure 23 Pictures showing the investigation of possible placements of the Haptic Bracelet’s monitoring 

unit. From left to right:  top of the foot, shank of the foot near the ankle, and on the waist. After 

considering these possibilities, the shank of the foot near the ankle (middle image) was preferred as it 

appeared to better accuracy and wearability on the walking surfaces used. 

Even though placing the devices on the waist could help solve numerous 

practical problems such as wearability and comfort – people often wear belts – 

data produced during this setup lacked the granularity needed for this 

application. When on the waist, gait phases are not as pronounced, making 

them difficult to analyse. Also, motion data captured from the waist can make 

it difficult to differentiate between the legs and extract clear temporal 

information for symmetry analysis. 

Evidence from lab testing and documentation from prototype testing of the 

early x-OSC versions by (Madgwick, 2013), promote the top of the foot as an 

accurate site for measuring gait events. However, the experiments discussed in 

(Madgwick, 2013) were designed for testing that author’s motion detection 
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algorithms (Madgwick, Harrison and Vaidyanathan, 2011) and did not consider 

the wearability and practicalities of wearing such devices. For most people and 

applications, with current technology, the top of the foot is not practical outside 

the lab. This location is socially obtrusive and prone to damage. Moreover, 

adding weight at the top of the foot may introduce safety concerns to 

hemiparetic users suffering from foot-drop; a condition where, due to physical 

weakness to the paretic leg, the toes do not lift off the ground high enough 

during the swing phase. Adding extra weight could worsen this problem, 

leading to an increase risk of fall and the probability of injury. 

After lab testing on placement (see Figure 23) and discussions with 

hemiparetic patients, stroke survivors, carers and physiotherapists (Chapter 4, 

page 60), the monitoring units were placed on the shank of the leg (one on each 

leg) near the ankle. This was considered a comfortable placement that had 

minimum impact on the way people walk. 

One of the advantages of placing the monitoring unit on the ankle is that it is 

near the location where the heel meets the ground and thus enables the forces 

that are applied to be measured directly. Furthermore, the ankle is a relatively 

bony structure (as compared to for example the thigh which has more muscle 

and fat tissue) and so the impact force is less likely to be absorbed. In addition, 

the ankle area is at a point of maximum swing when the foot moves forward, 

therefore, gyroscope data also appear magnified, making detection of stance 

and swing phases more pronounced. 

Tactile metronome unit 

The other wearable part of the Haptic Bracelet system is the tactile metronome 

unit. Unlike the monitoring unit, where an off-the-shelf board was used, the 

metronome unit was designed and implemented for the purpose of this 

research. The tactile metronome unit can communicate with the CCU via Wi-

Fi, receiving instructions on when to produce a vibration, how strong the 
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vibration should be and how long the vibration should last (summarised in 

Figure 33, page 98). Each metronome unit is assigned a unique static IP 

address during production, and then this address is used by the system and the 

CCU to identify each device in the network and send all relevant messages. 

Messages are received by a Wi-Fi board integrated in the printed circuit board 

(PCB) design. The Wi-Fi board used is an “RN-XV WiFly Module”, 

programmed to automatically connect to the “Haptic Bracelet network” and be 

ready to accept messages from the CCU.  

   

Figure 24 (Left) schematic diagram of Haptic Bracelet metronome unit. (Right) Picture of the 

implemented device showing the Wi-Fi board; the Arduino controlling the metronome unit; the 

connectors used for attaching the vibrotactile actuators and an overdrive switch for increasing the 

vibration intensity - the overdrive function is discussed in page 95. 

Messages coming from the CCU are then passed on to an Arduino board. The 

Arduino board (an Arduino mini – see Figure 24) runs the firmware necessary 

to interpret the messages from the CCU and sends a signal to the vibrotactile 

actuators, instructing them to vibrate for a set duration at a set intensity. The 

decision to have a separate and independent Wi-Fi connection between the 

CCU and the tactile metronome was made to ensure the network did not 

bottleneck with information. Earlier iterations where both the monitoring unit 

and the tactile metronome unit used the same Wi-Fi connection experienced 

high packet drop rates, making both the sensor readings and haptic metronome 

appear jittery and unstable. Separating the two streams of data solved this 

problem. 



Chapter 5. System design: The Haptic Bracelets 

5.3 The Haptic Bracelet system implementation 

pg. 90 

Between the Arduino and the vibrotactile controller, another piece of electronic 

circuit is designed and implemented allowing the use of a technique known as 

“active braking”. With active braking the motor inside the vibrotactile 

responsible for generating the buzzing sensation of the tactile cue is abruptly 

stopped, generating a “sharper” cue sensation. The process of active braking 

and the way vibrotactiles operate will be described in more detail in the next 

section below. 

The PCB and all electronics are housed in a 3D printed case, designed to fit 

everything for protection and wearability (see Figure 25 below). As with the 

monitoring unit, the case of the metronome unit is also designed with a curve 

to fit comfortably on the wearer’s leg and a slit for the Velcro straps to pass 

through for securing the device. 

  

  
Figure 25 Case used for housing the metronome unit of the Haptic Bracelet wearable device. Top row 

presents the 3D rendering of the case used before 3D printing with the finished case in the bottom row.  

Vibrotactile actuator 

The tactile cues making up the haptic metronome are produced via a pair of 

vibrotactile actuators. These actuators are a pair of strong vibration motors, 
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made by Precision Microdrives Limited8 capable of delivering “sharp” tactile 

cues with relatively low latency (see Figure 26). As this is a prototype system, 

two actuators are used per device mainly for maximum placement flexibility. 

Each actuator was attached to a 30 cm cable and attached to the device via a 

JST connector. Braided cable sleeves were used for allowing the cables to be 

flexible and soft when worn on the leg but strong enough to withstand testing 

(see Figure 26). 

 

  

Figure 26 The Vibrotactile actuator used for producing the tactile cues. Braided cable housing was used 

for keeping the wires flexible and soft when worn on the leg but strong enough to withstand testing. A 

standard JST connection was used for attaching the actuator assembly on the metronome unit.  

The manufacturer’s specification sheet states that it takes 36 milliseconds for 

the motor to reach its maximum operation (see Appendix 4 on page 192 for the 

actuator's data sheet). However, the time it needs to be felt by a given person 

may vary depending on characteristics such as the sensitivity of the person. 

Still, crucially, any latencies in given circumstances should be constant and 

                                                

 

8  Precision Microdrives Limited website: https://www.precisionmicrodrives.com  
[Accessed 31/07/2018] 
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consequently should not affect the perception of a steady haptic metronome 

(see Figure 27 for an example).  

 

Figure 27 If there is a constant latency of 36 milliseconds, for example, each cue in a metronome with a 

period of 500 ms, will still arrive on time - once every 500ms). 

Controlling the vibration intensity 

The intensity of the vibrotactile actuator was regulated using a technique 

known as Pulse Width Modulation (PWM). This is a standard and widely used 

technique of obtaining an analogue signal from a digital one. Effectively, this 

technique allows precise digital control of a voltage from zero up to the 

maximum to be delivered to the vibrotactiles. The frequency of the vibration 

(i.e. how fast the motor inside the vibrotactile actuator spins) increases with the 

voltage supplied to it in a logarithmic relationship. However, the frequency 

value is unlikely to play a dominant role in the perception of the cues for the 

following reasons, which relate to haptic perception and skin physiology.  

The default placement of the haptic bracelet metronome unit, as discussed in 

page 96 below, is on the leg near the knee. This area is covered in what is 

termed “hairy skin”, which is low in concentration of the particular 

mechanoreceptors (sensory neurons) responsible for perceiving vibrational 

stimuli – namely Pacinian and Meissner's corpuscles. Hairy skin does, 

however, contain Merkel's disk and Ruffini endings which can detect pressure 

and skin stretch (Kandel, Schwartz and Jessell, 2012). Generally, tactile cues 
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coming from the vibrotactile actuators are perceived more as a “tap” sensation 

than as a vibration, as reported by several participants in pilot testing (Chapter 

4). This suggests that the dominant mode of perception will not be vibrational.  

During the studies in this research, when choosing the intensity of cues, an 

informal qualitative approach was preferred, ensuring firstly that the 

participants could feel the cues, and then adjusting the intensity to personal 

preference.  

Although, for reasons outlined above, frequency issues are unlikely to play a 

dominant role in perception of the cues, nevertheless they may play some role 

in the perception of perceived intensity. Consequently, the relation of applied 

voltage to resulting frequency was briefly investigated. The manufacturers of 

the vibrotactile actuator provide a datasheet showing the relationship between 

voltage and frequency; however, to be on the safe side, as the Haptic Bracelets 

use a different circuit design than the one measured by the manufacturers, the 

intensity of the vibration output was measured empirically in the lab. 

To measure intensity, the vibration actuator was first clamped on a rigid 

structure and the vibration produced was recorded at different vibration 

intensity levels (i.e. different voltage levels) using a Zoom H1 digital voice 

recorder. The recorder was secured on an isolated microphone boom arm to 

avoid any mechanical vibrations interfering with the audio recording (see 

Figure 28).  

 

Figure 28 Setup used for measuring the vibration intensity of the Haptic Bracelet’s metronome unit. 
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In this test, the vibrotactile actuator was set to produce ten consecutive tactile 

cues (vibrations) 1000 ms apart, with each lasting for 200ms. This test was 

repeated for a range of voltage values. Figure 29 illustrates two haptic cues at 

maximum voltage during frequency analysis in Adobe Audition CS6. 

 

Figure 29 Vibration frequency analysis performed in Adobe Audition CS6. In this figure one tactile cue is 

shown at maximum intensity (maximum voltage) with and without overdrive (left and right respectively). 

The audio signal is analysed, producing the frequency of vibration. The overdrive function is discussed in 

page 95. 

From the empirical measurements, the findings indicate that as the voltage 

value increases, the vibration frequency also increases (motor spins faster) in 

what appears to be a logarithmic relationship (see Figure 30). These results 

agree with the manufacturer’s results9. 

                                                

 

9 Data sheet available from: https://goo.gl/HtVFQR [Accessed: 31/07/2018] 
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Figure 30 Results from empirical testing investigating the relationship between PWM values (effectively 

voltage) and changes in vibration frequency of the vibrotactiles used in the Haptic Bracelet system. The 

yellow line indicates results of overdrive mode operation. 

Qualitative information from lab tests and pilot runs suggest that, as might be 

expected, the perceived intensity increases as voltage increases. Ideally, a 

psychophysics experiment should be carried out to further understand how the 

perceived intensity of the vibration changes in relation to the actual intensity 

(characterised by the frequency and voltage).  

To further enhance the way haptic cues are felt, a mechanical brake was 

implemented. The brake works by mechanically stopping the motor rotating 

instead of waiting for it to decelerate to a natural stop, thus giving a sharper 

pulse. This brake action was implemented in the firmware at the end of each 

tactile cue. During lab testing it was found to make the cue feel, as one pilot 

participant described “snappier”, or “sharper”. 

In addition, a mechanical “overdrive switch” was implemented on the PCB of 

the tactile metronome unit, allowing for an increased intensity of the tactile 

cue. The motivation of implementing the brake and overdrive functionality was 

comments from one participant in the observation study (section 4.2, page 60). 
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That participant was suffering from extreme sensory deficits (75% loss of 

tactile sense on lower limbs), a common condition with stroke survivors and 

hemiparetic patients. Providing a tactile cue of boosted intensity allowed 

participants suffering from sensory deficits to be accommodated who would 

otherwise not be able to feel the rhythmic haptic cue. This switch can be seen 

on Figure 24, page 89.  

Since the voltage supplied by this overdrive switch was over the 

manufacturer’s recommended levels, it was only sparsely used on certain cases 

of participants suffering from extreme sensory deficits. No safety issue was 

raised since the voltage was still small (5V) and the motor is enclosed within a 

thick waterproof and shatterproof layer of plastic. The way the overdrive 

switch affects the vibration frequency is shown on Figure 30 (yellow line). 

Placement of tactile metronome unit 

Considering the basis of entrainment as discussed on page 12, in principle any 

location of the haptic rhythm source could be used to establish entrained motor 

movement. However, having the haptic rhythm originating on the legs may 

have other potential benefits: for example, helping hemiparetic users to direct 

their attention, producing a clear spatial mapping, linking the rhythm’s buzzes 

to actions and differentiating which buzz corresponds to which leg. 

Discussions with physiotherapists suggested a second potential benefit: cueing 

individual limbs can help focus kinesthesthetic and proprioceptive capabilities, 

helping to identify where each limb is in space in relation to the rest of the 

body; an ability often lost from hemiparetic patients. 

For these reasons, it was preferred to place the haptic metronome unit on the 

shank of the leg (one on each leg) just below the knee. The vibrotactiles (parts 

of the device that vibrate, see Figure 26 above) could then be strapped with 

another Velcro strap near the skin, as shown on Figure 31. Physiotherapists 

advised placing the vibrotactile on the outside of the knee, on the upper part of 
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the tibialis anterior muscle, as it is a relatively bony structure which helps to 

amplify tactile cues (not much fat or muscle tissue to absorb the cue). 

Additionally, major nerves pass through that area, increasing the chance of the 

tactile cues being felt even by patients with sensory deficits. 

 

Figure 31 Placement of the vibrotactile actuator on the patient’s body. The actuator is secured using 

Velcro straps on the upper part of the leg’s shank near the knee on the top of the “tibialis anterior” 

muscle. 

However, this placement advice may have been influenced by the muscle 

facilitation technique physiotherapists use during the acute stages of gait 

rehabilitation after stroke. As described on page 51, physiotherapists often 

massage that muscle during physiotherapy sessions to help promote (facilitate) 

movement. 

Special considerations for placement 

Some people affected by hemiparesis wear splints and other orthotic devices to 

help maintain the correct position of their lower foot while walking. In addition 

to orthotics, patients may suffer from other conditions linked to stroke and the 

medication they receive, causing their legs to swell (see Figure 32 below for an 

example). Attaching the devices on flexible Velcro straps made it possible to 

secure the devices on the patient’s legs in a safe and comfortable manner 

regardless of their leg’s circumference. 
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Figure 32 Left: Participant wearing an orthotic splint on his paretic (right) foot. Right: Participant with 

swollen feet; a common side effect linked to stroke medication. 

5.3.2 Central control unit 
The central control unit (CCU) is responsible for synchronising the two 

wearable units and controlling the haptic metronome’s periodicity by sending a 

“vibrate now” instruction to the wearable units on alternate legs. The CCU also 

controls the vibration intensity and the vibration duration (summarised in 

Figure 33 below).   

 

Figure 33 Graphic representation of the aspects of the vibration the CCU controls. These include the 

metronome period, the vibration intensity and the vibration duration. 

Data arriving from the wearable units is timestamped by the CCU to ensure 

consistent timing (timestamps based on the same clock) before storing for later 

analysis by the data analysis software. 

The Central Control Unit (CCU) had two primary aims: 
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• handle data coming in from the on-board sensors of both monitoring 

devices; 

• handle messages going out to both tactile metronome units. 

The user interface of the CCU (implemented in Max 610) is presented in Figure 

34. 

 

Figure 34 The Central Control Unit’s (CCU) user interface (UI). The left side contains the controls for 

the metronome unit. These controls include the intensity of tactile cues, the duration, and the period 

between successive cues. The right side contains the controls to start and stop recording motion data. The 

CCU was implemented in Max 610. 

As seen in Figure 34 above, the Max patch controlling the CCU is split into 

two components; the Metronome and the Monitor unit. The Metronome unit 

(left in figure above) functionalities are straight forward. There is a button to 

start and stop the metronome, a number field to set the period of the haptic 

metronome in milliseconds, a drop-down field to select the two devices 

(identified using their IP addresses), a circular slider to adjust the vibration 

                                                

 

10 Max website: https://cycling74.com/products/max [Accessed 31/07/2018] 
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intensity and lastly a field to define the vibration duration in milliseconds. For 

each cue, a message is sent containing the value for the vibration intensity and 

duration at the predefined period, alternating between the two IPs. The Haptic 

Bracelet wearable unit reads and interprets the message, producing the 

necessary vibration and hence the tactile cue.  

The “Monitor unit” of the CCU patch (right in figure above) listens to two 

ports in the network; one for each of the two wearable units. As explained in 

section 5.3.1 (page 82), the monitor unit is made of a x-OSC, an “off-the-shelf” 

board run on pre-compiled firmware. This meant any limitations introduced by 

the restrictions of the pre-compiled (hence un-customisable) firmware of the x-

OSC had to be dealt within the CCU software. 

The x-OSC is designed to send a constant stream of OSC messages containing 

IMU data from all of its on-board sensors (including voltage level and 

temperature sensors) while it is powered on. Logging everything would create 

unnecessarily big and “noisy” files making them difficult to process and extract 

any meaningful information efficiently. Therefore, the “Monitor” section of the 

user interface (UI) contains a start/stop control allowing for the recording of 

data during a period of relevance where the most meaningful gait related 

information can be extracted (e.g. during the 10 meter walks in the study 

described in Chapter 7, page 121).  

Recording data from all three axes (x, y and z) of the IMU’s accelerometer and 

gyroscope are collected, structured (i.e. placed in a predefined order), 

timestamped by the CCU and stored for later analysis. The time in milliseconds 

since the start of the recording session is used for the timestamp.  

Data files are finalised and saved (one for each monitor device/leg) when 

recording stops. These files can then be passed on to the data analysis software 

for extracting gait related characteristics and information. 
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5.3.3 Data analysis software 
Software was designed and implemented for analysing the data coming in from 

the wearable units. Various kinds of temporal information are analysed 

including step times and duration of the gait cycle phases (i.e. stance and 

swing). Values used for characterising gait – such as the overall gait 

asymmetry ratio (see page 24) can then be calculated, producing reports 

summarising the results. 

As discussed in Chapter 2, temporal information is vital for characterising gait. 

Important temporal gait characteristics include: step time, swing time and 

stance time. From these characteristics, the overall gait asymmetry (a 

standardised value for characterising gait) can be calculated. A bespoke script 

was developed in Matlab that takes as input the two log files (one from each 

leg) and outputs a report containing the most common gait related values used 

to characterise gait.  

Step times are calculated based on the 

accelerometer data. During walk, the leg moves in 

all directions; up and down along the Y-axis, 

forwards along the X-axis and even side to side 

along the Z-axis (Figure 35). Therefore, the 

magnitude of the resulting force vector (RFV) can 

be calculated using equation (8) below: 

 𝑅𝐹𝑉 =	c𝑥+d + 𝑦+d + 𝑧+d 
(8) 

This equation gives the resulting vector force, considering all three axes of 

motion; the direction of motion is the direction the foot moves in space. The 

Figure 35 Directions where 

legs move during walk. 
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exact direction is not important in this case, as the only important value is 

when the leg strikes the ground. 

When the foot strikes the ground, a peak is expected, caused by the 

acceleration of the foot towards the ground followed by a sudden deceleration 

on impact. The script developed for analysing these data contains an algorithm 

based around Matlab’s FindPeaks() function where peaks in the data are 

identified (see Figure 36).  

 

Figure 36 Output of the bespoke gait analysis Matlab script. The blue graph represents data from the 

right foot and the red graph from the left. Triangles on top of peaks indicates the moment each foot hits 

the ground. This data is used for calculating several pieces of temporal information such as step and 

stride times. Vertical solid lines indicate the analysis window. Anything outside this window is not 

included in the analysis. This window was implemented to avoid noise from movement before and after 

the walk causing spurious readings and was manually adjusted for every trial. 

In the next stage, the precise time in milliseconds between each peak of the 

same leg (cycle time) and alternating legs (step times) is calculated. Gyroscope 

readings are also used to determine whether the foot is stationary or if it is 

swinging forward, making it possible to determine stance and swing phases 

(see Figure 4 – page 18 for information on gait phases). 
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Figure 37 This graph shows part of the report produced by the gait analysis script. It is using the same 

colour scheme and analysis window as the graph in Figure 36 above. Data from this graph is used for 

detecting and calculating stance and swing phases. Solid lines indicate the start of a stance phase and 

dotted lines the start of a swing phase. 

A report is then produced containing all this information in a way that can be 

explained to a non-technical physiotherapist or the patient. A sample of this 

report can be seen in Appendix 3, page 189.  

The overall temporal asymmetry (OTA) value can then be calculated using 

Equation (6) as described in page 26 after data from a series of walks are 

gathered. 

5.4 Chapter summary 

Given that the aim of this thesis is to explore a novel approach to gait 

rehabilitation, a prototype haptic cueing and monitoring system was iteratively 

designed, implemented and tested, informed by formative feedback and on-

going in-lab tests. This system informed the design of a special purpose 

prototype used for the study in Chapter 6 and was the vehicle for the studies 

reported in Chapter 7. 

The prototype system, called the Haptic Bracelets, took inspiration from a pre-

existing wearable system designed primarily for musical purposes. The new 

Haptic Bracelet system, like its predecessor, consists of a set of wearable 
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devices designed to function as a multi-limb haptic metronome, delivering 

successive tactile cues to different limbs.  

One early design decision for the new prototype was to physically separate the 

haptic cueing and motion sensor functions for each limb into two separate 

physical units. There were three reasons for this separation. Firstly, on-going 

testing in the lab revealed that having these functions in the same unit could 

muddy the sensor data, due to the sensors picking up the vibrotactiles. 

Secondly, having both functions controlled by a single processor restricted the 

bandwidth of the sensor data, also causing occasional metronome jitter. 

Finally, splitting the device into two units enabled their respective placements 

on the leg to be optimised for function and comfort, as further discussed below.  

To implement the monitoring unit, an off-the-shelf sensor was housed in a 

custom-designed casing. Bespoke software was written to record and analyse 

various temporal characteristic including step time, stance time, swing time, 

and derivative values such as overall temporal asymmetry. 

Formative studies demonstrated that some hemiparetic users had relatively 

severe sensory deficits that made it hard for them to feel the vibrotactiles - 

even at their maximum intensity. Consequently, an overdrive mechanism for 

the cueing unit was designed and implemented to resolve this problem. 

Decisions about where, on participants’ legs, to locate the metronome versus 

the monitoring units were influenced by the formative studies and in-lab testing 

respectively - as now detailed. 

Formative studies with health professionals influenced decisions about the 

positioning of the cueing units: these were placed near the tibialis anterior 

muscles near the knee (see Figure 31, page 97).  This allowed for optimal 

sensing of the cues, particularly for users with high sensory loss, while 

minimising interference with limb movement. 
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By contrast, based on feedback from on-going lab testing, the monitoring units 

were located at the lower shank of the leg, near the ankle, where clarity of 

impact and swing force data was optimised.  
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Chapter 6 
Study 1: Haptic rhythm perception - 

The haptic tap test 

The study presented in this chapter was aimed primarily at investigating 

whether sensorimotor response, in the form of finger tapping, is feasible for 

haptic rhythms in a similar way as it is for audio and visual rhythms. 

People can generally synchronise their actions to the sound of a regular beat, 

provided it is not too fast or too slow, as evidenced by diverse tapping 

experiments (Repp, 2005). These experiments have empirically established 

fairly consistent upper and lower bounds on humanly possible synchronisation 

tempi. For reasons outlined below, these limits generally do not seem to reflect 

limitations on motor ability, but rather perceptual or cognitive limits. However, 

the existing empirical evidence relates almost exclusively to synchronisation to 

auditory and visual stimuli. Corresponding upper and lower limits for haptic 

stimuli do not appear to have been established. Since the present work is 

predicated on human abilities to synchronise to regular haptic beats, it was 

decided to investigate the workable range empirically. Although the present 

research is intended specifically to help those with physical cognitive and 

perceptual limitations, these conditions tend to vary idiosyncratically. 

Consequently, to investigate human haptic synchronisation ability and the 

entailed limitations generally, it was decided to work with healthy, able bodied 

participants. 
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The results of this investigation along with insights gained on sensorimotor 

synchronisation via entrainment to haptic rhythms was then carried forward in 

the next study – described in Chapter 7 –, where brain injury survivors were 

asked to walk following a haptic rhythm, with the rhythm’s period set to match 

their own natural walking pace.  

A shorter version of the procedure described in this chapter was subsequently 

used in the study discussed in Chapter 7 as a screening test for hemiparetic 

participants. The haptic tap test, as it was later called, gave an empirical 

indication of the participants’ cognitive and perceptual ability to entrain to a 

rhythm for walking. 

6.1 Background 

Previous research (Repp, 2006b) has identified upper and lower bounds on the 

tempi within which sensorimotor synchronisation to audio and visual rhythms 

is possible.  

Two different, but equally valid ways of quantifying these limits are in terms 

of tempi and inter-onset-intervals respectively. The inter-onset interval (IOI) of 

an isochronous (regular) rhythm is the period between successive beats. Note 

that when a tempo is fast, the IOI is low, and vice versa. 

The lower IOI limit (fastest tempo) for reliable tapping to audio and visual 

rhythms occurs where rapid regular beats are too fast for reliable 

synchronisation 50% of the time, and the tapping phase and tempo starts to 

drift (Repp, 2003).  The upper IOI limit (slowest tempo) occurs where 

successive cues are perceived as individual, unrelated events.  

Interestingly, the lower limits (but effectively not the upper limits) are different 

for auditory and visual stimuli. In tapping experiments with isochronous 

rhythms, the lower IOI for audio was found to be 123 ms, whereas for visual 
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rhythms it is 459 ms (Repp, 2006b). The upper IOI limit, on the other hand, is 

similar for auditory and visual sequences at around 1300 ms.  

By contrast, no clearly defined sensorimotor limits have been established for 

the haptic sense. 

6.2 Haptic rhythm perception 

The purpose of this study was to identify a usable tempo range at which 

healthy, able bodied participants can tap along to regular rhythm cued 

haptically by vibrotactiles. Measures were taken to avoid participants hearing 

the sound of the vibrotactiles, as detailed below. Healthy participants were 

instructed to tap the index finger of their dominant hand in synchrony with a 

vibrotactile rhythmic cue delivered to the other hand. A range of tempi were 

used. 

6.2.1 Participants 
Twenty participants (fourteen males, two left handed, mean age 32.55 ± 6.77) 

gave written informed consent to take part in the study. All participants 

reported themselves free of any neurological disease, head trauma, or 

musculoskeletal impairment that would influence their haptic sense or tapping 

ability. 

6.2.2 Materials and data collection 
Before testing started, participants were asked to sit in front of a table and 

make themselves comfortable. At this point the procedure was explained in 

detail and participants were asked if they had any questions. They were then 

helped to strap a vibrotactile device (see Figure 39) on the wrist of their non-

dominant hand, near where the radius and the carpal bones join. The 

vibrotactile device was strapped on the wrist using two Velcro straps and 

remained there for the duration of the study. The vibrotactile device was a 

specially adapted, wired version of the Haptic Bracelet’s metronome unit 



Chapter 6. Study 1: Haptic rhythm perception - The haptic tap test 

6.2 Haptic rhythm perception 

pg. 109 

(discussed in Chapter 5). Figure 38 shows the wired Haptic Bracelet prototype 

used in this study.   

 

Figure 38 Wired Haptic Bracelet prototype used for the rhythm haptic perception study. A laptop acts as 

the central control, regulating the period of the haptic rhythm. The wired version of the haptic bracelet is 

controlling the haptic cue delivered through a vibrotactile actuator. Each cue is also logged via a 

connected data logger. The signal regulator shown in this figure is used for stepping down the voltage of 

the cue and protecting the logger’s sensitive electronics.   

The wired version of the metronome unit minimises communication delays 

thus enabling millisecond accuracy in recording the precise time of each tactile 

cue via a directly connected data logger. 

 

Figure 39 Participant tapping the button with his right index finger. The vibrotactile of the Haptic 

Bracelet device is secured on his left wrist using a pair of Velcro straps. 
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The precise timings of the taps were registered when participants tapped onto a 

piezoelectric sensor mounted in a custom designed, 3D printed enclosure (see 

Figure 40). The signals from the piezoelectric sensor and the Haptic Bracelet 

were recorded as time stamped analogue voltage readings via a PicoLog1012 

data logger, operating at a sampling rate of 1kHz (one sample every 

millisecond). 

 

Figure 40 Piezoelectric sensor acting as a button fixed in 3D printed case. Participants were asked to tap 

on the button while keeping their eyes closed, so tactile strips were used help to guide the participant’s 

finger to the button by sense of touch. 

Given that no synchronisation limits for synchronisation by sense of touch had 

previously been established, the periods for this study were chosen from within 

the audio and visual limits mentioned above. Consequently, periods chosen for 

the study were 300, 500, 600, 700, 900 and 1100 ms. The reason for choosing 

300 ms as the lowest IOI is that it is halfway between the lower IOI limits for 

auditory and visual of 123ms and 459ms respectively. The intermediate IOI 

period of 600 ms was included as it is widely considered to be the preferred 

natural human tempo for finger-tapping (Delevoye-Turrell, Dione and 

Agneray, 2014).  

6.2.3 Procedure 
Each participant completed three sets of six trials. The six trials corresponded 

to stimuli at the six different tempi. In any given set of trials, the six tempi 

were presented in a different random order for each participant. Each trial 

lasted for 30 seconds, and individual vibrotactile cues had a duration of 100ms. 
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Pink noise was played through a pair of external loudspeakers during the entire 

testing period, to mask any external background noise and the slight audible 

“buzz” from the Haptic Bracelet. Pink noise11 was used on the grounds that it 

has equal energy per octave, and, since human perception is generally 

logarithmic, this appears to match better than white noise to the following two 

goals, taking into account the way in which human perception is organised 

(Gescheider, 1997): 

• masking noise uniformly (from a perceptual point of view) across the 

human frequency range; 

• maximising comfort. 

Indeed, participants during the pilot study reported pink noise to be more 

comfortable to hear over long periods of time than white noise. 

Participants were asked to keep their eyes closed during trials to minimise 

visual interference. The choice of having the eyes closed rather than the use of 

a blindfold was motivated by participant reports of discomfort and 

claustrophobia with a blindfold during the pilot study. 

Participants were also asked to minimise any movement other than tapping (i.e. 

not to tap their feet or nod their head to the rhythm) during the trials so as not 

to complicate their focus on the external stimuli. 

6.3 Results 

The sampled data from the data logger were processed to extract the time of 

each finger tap and haptic cue onset. Event onsets (haptic cues and taps) were 

identified as local peaks in the data, which were extracted using a Matlab 

                                                

 

11 Pink noise used: https://www.youtube.com/watch?v=ZXtimhT-ff4 [Accessed 31/07/2018] 
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script. An adapted version of MatTAP (Elliott, Welchman and Wing, 2009) – a 

free suite of tools designed and developed for analysing responses in finger 

tapping experiments - was then used for aligning target and tap events, 

detecting any taps omitted by the participant. 

6.3.1 Outlier exclusion criteria 

All data were examined for outliers. Outlier values were identified using the 

Tukey’s fences method (Sullivan and LaMorte, 2016). Using this method, the 

interquartile range of the data had to be calculated. This involves dividing the 

data recursively into four parts as follows. Firstly, the data is split into two 

parts by taking the median of the data as a whole. Then the median of each of 

the two parts is taken, yielding four parts. The three median points are referred 

to as “quartiles”. Perhaps confusingly, there are four parts to the data, but only 

three quartiles needed to separate them. 

The lowest value median is referred to as the first quartile (Q1), the next 

highest value median is the second quartile (Q2) and the highest is Q3. The 

distance spanned by the middle two of the four sections, obtained by 

subtracting Q1 from Q3 (Q3-Q1), is known as the “interquartile range”. 

Tukey’s fence method defines outliers as any values lying at a distance greater 

than 1.5 times the interquartile range beyond Q3 and Q1 respectively. The 

equations used are: 

 Lower outlier limit = Q1 - (1.5*(Q3 – Q1)) (9) 

 Upper outlier limit = Q3 + (1.5*(Q3 – Q1)) (10) 

Two of the twenty participants had two or more outlier values in the 600 ms 

metronome condition (which, as previously noted is considered the default 

human unforced tempo in finger-tapping paradigms) and were excluded from 

the study. Outlier values for the remaining participants are reported in each part 

of the analysis. 
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6.3.2 Data analysis 
Using exclusion criteria mentioned above, 34 of the 324 IOI values (18 

participants x 6 conditions x 3 trials) were removed from the data as outliers. 

The remaining data are shown in Figure 41.  

 

Figure 41 Shows the mean tap intervals produced for the different target periods for all 

participants. Note that the y-axes for the different metronomes start at different values but are 

set to the same scale. The error bars show one standard error of the mean. 

Data were analysed within-subjects, investigating the ability of participants to 

tap in synchrony to haptic rhythms of different tempi. Specifically, the data 

were analysed using a repeated measures ANOVA with the following two 

within-subjects’ factors: 

• metronome interval (300, 500, 600, 700, 900, 1100 ms); and  

• trials (1,2,3). 

Unsurprisingly, the mean time intervals between taps were significantly 

different from across the mean interval conditions (F(5, 25)= 24191.857, 

p<0.001) indicating the target metronome was indeed influencing the tapping 

tempi. The trial order did not significantly influence the participants’ tapping 

ability (F(2,10)= 0.153, p= 0.860), indicating that the trial sequence had no 

effect on the tapping ability, and therefore, no learning effects were observed. 
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There was no significant interaction between trial order and the mean interval 

conditions (F(10, 50) = 1.574, p = 0.142). 

Paired-samples t-tests were also conducted to compare the mean tap intervals 

in different trials of the same metronome interval. i.e. – For every target 

metronome interval (300, 500, 600, 700, 900, 1100 ms) the following 

comparisons were made: Trial1 vs Trial2, Trial1 vs Trial3, and Trial2 vs Trial3. 

With 18 comparisons, the Bonferroni corrected alpha for the t-tests was 0.003 

(α = 0.05/18).  For most trials (16/18) there was no significant difference 

between the intervals produced by the participants in different trials. However, 

for the 1100 ms metronome interval, the participants tapped significantly faster 

on their second (t(14)=2.496, p=0.026) and third (t(14)=2.998, p=0.010) trials 

than on the first trial.  Participants also tapped faster on the first trial of the 900 

ms metronome interval than they did on their second and third trials, without 

reaching statistical significance (t(14)=-2.027, p=0.062).  

Coefficient of variation of tap intervals 

While the participants could, on average, synchronise with the haptic cues 

across every target tempo, there were some differences across conditions in the 

variability of the mean tapping tempi. To test for this variability, the coefficient 

of variation (CV) was calculated for every trial mean. The CV was calculated 

by dividing the standard deviation of the intervals by the mean tapped interval 

(CV = σ/µ), giving a normalised characterisation of this variability. Low 

variance, and thus low CV, would be expected when participants demonstrate a 

high level of consistency in the timing of their taps. As with the mean tap 

intervals, outliers were removed from the CV data. The trimmed data are 

shown in Figure 42. 
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Figure 42 The coefficient of variation of the intervals between taps for the different target IOI 

period values. One standard error of the mean is shown. 

As before, the data were analysed using a repeated measures ANOVA with the 

within-subjects’ factors of target IOI period (300, 500, 600, 700, 900, 1100 ms) 

and trials (1, 2, 3). The CV of the tap intervals did not vary significantly 

between trials (F(2,10)=0.78, p=0.926) or with the intervals of the target IOI 

(F(5,25)= 13.373, p=0.229). There was no interaction between the two factors 

(F(10,50)=8.770, p=0.449), indicating that the trial order did not influence the 

change in CV, and therefore there was no learning effect. The CV data, 

averaged over trials, are shown in Figure 43. 
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Figure 43 The mean coefficient of variation of the tap intervals as a function of the vibrotactile 

metronome interval. A quadratic fit is added, reflecting an increase of CV at either end of the 

target periods tested. Error bars show one standard error of mean.  

A one-way ANOVA was performed on the coefficient of variation (CV) versus 

the target metronome period values. This analysis gave a non-significant p-

value of 0.068 (F(5,100)=2.13, p=0.068), however, it suggested some treatment 

effect as the proximity of this p-value was close to the significant level of 

p<0.05. 

In seeking possible explanations for this, when tapping to a regular beat at 

different tempi, more variation would be expected at the fastest and slowest 

tempos (Repp, 2005), thus an increase in CV levels can be expected on either 

ends of the chosen target metronome periods.  This suggested considering a 

quadratic model. 

As ANOVA is agnostic to order, an ordinary least squares (OLS) regression of 

CV versus the quadratic values of the target metronome periods was 

performed. This gave significantly stronger evidence (Adjusted R2=0.067, 

p=0.01) implying that a quadratic fit (u-shape) is a better explanation of the 

data than a horizontal line (where a horizontal line would indicate no treatment 

effect).   
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6.4 Discussion 
The primary aim of this study was to investigate the ability of healthy 

participants to tap in synchrony to a haptic rhythm. As mentioned at the 

beginning of this chapter, there is a lack of information in the literature 

investigating rhythm perception and production via the haptic modality. 

Exploring the precise sensorimotor synchronisation limits of haptic rhythm 

perception is beyond the scope of this research. However, this study provides 

evidence that participants behave similarly (in the ways explained below) when 

synchronising their tapping movement to a haptic rhythm compared with 

previous empirical studies investigating auditory and visual rhythms.  

Participants in this study performed best at the 500 and 600 ms period, 

providing the least variable results, as indicated by the low coefficient of 

variation value (Figure 43). This result is not surprising as the 500 to 600 ms 

period is considered to be the preferred and natural pace in synchronisation 

finger-tapping paradigms (Delevoye-Turrell, Dione and Agneray, 2014). 

Periods closest to 600 ms (500 and 700 ms) also performed well, with 

participants on average tapping to a period close to the target period (Figure 

41) with significantly lower variability than both the faster and slower tempi 

tested (Figure 42).  

Tapping at slower tempi (i.e. 900 and 1100 ms) is not as accurate, as seen in 

Figure 41, with participants tapping faster than the target rate. This may 

indicate approaching an upper IOI limit, where subsequent target events appear 

disjoint from each other and not as a part of an isochronous rhythm. The 

behaviour at these IOI is similar to that seen with both auditory and visual 

rhythms (Repp, 2006b), when approaching the upper (slowest) IOI limit of 

1300 ms.  

In the auditory and visual cases, subjectively, at these slow tempi, the task of 

tapping to the rhythm begins to feel difficult, becoming essentially a task of 

interval estimation (Repp, 2006b). Each tap is performed consciously at the 
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remembered duration of the previous target event, while any error must be 

compensated for deliberately. This creates bigger cumulative errors that 

increase the CV values.  

By contrast, when tapping at IOI periods between the upper and lower limit, 

error correction occurs automatically (Repp, 2005), through a process of 

entrainment to the external rhythm, keeping the CV value to a lower level.  

On average, participants in this study could tap to the fastest (300 ms) target 

period with high accuracy (as seen on Figure 41). However, at this tempo, high 

variability was observed (see Figure 42 and Figure 43). This high variability 

may be attributable less to problems with entraining, and more to problems 

with physically tapping and fatigue, as participants often remarked they found 

it difficult to keep tapping at such a fast pace for 30 seconds. This limitation 

was subsequently rectified for the study discussed in Chapter 7. 

Primarily, these results demonstrated that able-bodied people can entrain to a 

rhythm presented haptically. Less expectedly, but usefully, a simplified version 

of the protocol was put to new use in the study described in the next chapter for 

the purpose of screening participants. 

In particular, it was used to distinguish between stroke and brain injury 

survivors who simply may have physical difficulty walking to a rhythm, versus 

participants who are unable to entrain to a rhythm. This is important because 

the ability to perceive a rhythm can be affected by injury on certain parts of the 

brain (Kobinata et al., 2016). In some cases, a brain injury may affect the 

ability to entrain (Kobinata et al., 2016); and brain injuries can affect 

perception in particular modalities. 

Consequently, a benefit of the simplified protocol adapted from this chapter 

used for screening is that it allows participants to be identified who are  

a) able to entrain to rhythms; 

b) not impaired in the ability to entrain to rhythm presented haptically. 
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This is particularly useful as neither of these conditions can be detected via 

standardised gait assessment tests such as the Rivermead mobility index test, 

applied in the study discussed in the next chapter. For the above reasons, the 

procedure of the study presented in this chapter was adapted into a finger 

tapping test, called the haptic tap test, and used as a screening test for 

hemiparetic participants. The haptic tap test allowed for an empirical indication 

of the participants’ cognitive and perceptual ability to entrain to a rhythm for 

walking. 

6.5 Conclusions 

Widespread experiments have established that most people can synchronise 

their actions to a regular beat at a range of tempi (Repp, 2005). However, the 

existing empirical evidence relates almost exclusively to synchronisation to 

auditory and visual stimuli. 

This chapter has confirmed recent evidence (Holland, Bouwer and Hödl, 2018) 

that people can entrain to a haptic rhythm. In the experiment reported in this 

chapter, a sample of eighteen able-bodied people were shown to be able to 

precisely lock the frequency and phase of their tapping over an extended period 

to a haptic rhythm. Following (Repp, 2005), this is clear evidence of 

entrainment to the stimulus. This chapter has also empirically identified a 

workable range for able bodied participants for such entrainment. Participants 

demonstrated noteworthy reduction of their coefficient of variation (CV) when 

tapping to the middle haptic target tempi of the range tested in this study. This 

is interesting in at least two ways. Firstly, this identifies a range of tempi at 

which the participants were able to tap most accurately. Secondly, this offers 

particularly clear evidence at these tempi using Repp’s (Repp, 2006a) criteria    

as discussed in 2.2.4, page 16.  

Clearly the rhythm perception of stroke survivors may differ from that of able-

bodied users - indeed, (Patterson et al., 2018) have explored such differences in 
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some detail. However, as discussed at the beginning of this chapter, given the 

wide variability of stroke survivors generally, it was decided to use able-bodied 

people as an informative baseline. 

Turning this argument around, we have proposed a simplified version of this 

protocol as a screening instrument for stroke survivors to measure their ability 

to perceive and replicate rhythms presented in the haptic modality. As 

discussed earlier, this provides a useful way to distinguish between stroke 

survivors with physical difficulties in walking to a rhythm as compared with 

those whose abilities to perceive or produce rhythms have been neurologically 

impaired. 

Indeed, this instrument developed in this chapter was put to new use in the 

study described in the next chapter for the purpose of screening participants. 

This enabled relevant screening not possible with standardised gait assessment 

tests such as the Rivermead mobility index test (see Appendix 2, page 187), as 

discussed in the next chapter. 
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Chapter 7 
Study 2: Rhythmic haptic cueing  

for gait rehabilitation 

As discussed in Chapter 2 (page 27), following a stroke or brain injury, many 

people are left with an asymmetric gait. This can have many adverse health 

consequences. Rhythmic auditory stimulation (Chapter 2, page 33), based on 

the principle of entrainment (Chapter 2, page 12), is an established gait 

rehabilitation technique with proven benefits on gait asymmetry.  

This chapter reports on a study aimed to investigate the extent to which similar 

benefits can be obtained for hemiparetic stroke and brain injury survivors by 

using haptic, rather than audio, cueing. The study in Chapter 6 established that 

entrainment through haptic rhythms is possible. A key aim of the present study 

is to investigate the effectiveness of the haptic modality to promote and use 

entrainment for gait rehabilitation. However, because of the very different 

affordances of hearing and touch, there is also a wider purpose: to explore any 

new effects that may emerge due to considerations such as proprioception, 

attention and memory. 

7.1 Background  
As outlined in Chapter 2, brain injury following an accident or stroke can leave 

people with life changing neurological conditions and a general weakness on 

one side of the body (discussed earlier in section 2.5.1, page 27). Motor control 

of one side of the body can then be severely affected with unilateral loss in 

sensation and muscle coordination of both upper and lower limb. 
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Motor control deficiencies can lead to spatial and temporal asymmetries 

between steps in a condition known as “hemiparetic gait”. The asymmetries 

can cause sufferers of hemiparetic gait to overuse their non-affected (non-

paretic) leg, exposing it to higher vertical forces (Bohannon and Larkin, 1985; 

Mercer et al., 2009), while underuse of the paretic (affected) leg can lead to 

loss of muscle tone and reduction of bone mineral density (Min et al., 2016). 

These effects in turn increase the risk of knee and joint problems, hip and bone 

fractures, and raise the risk of falls (Wen et al., 2010). 

As also noted in Chapter 2, walking following an external metronomic rhythm 

has been shown to improve gait, leading stroke survivors to walk more 

symmetrically (Thaut, McIntosh and Rice, 1997) and to neglect their affected 

leg less.  

Following the tap test study presented in Chapter 6, there is clear evidence that 

people generally can perceive and produce accurate motor responses to 

isochronous tactile rhythms. The study in this chapter is designed to investigate 

the effects of rhythmic haptic cueing on diverse gait characteristics associated 

with healthy kinematics and gait patterns. These include spatial characteristics 

(e.g. stride lengths), temporal characteristics (e.g. step, stand, and swing times) 

and derivative asymmetries, calculated from the spatiotemporal characteristics 

using methods discussed in section 2.4, page 24.  

7.2 The study 

Hemiparetic brain injury survivors involved in the present study were asked to 

walk a short distance: firstly, without intervention, in order to establish a 

baseline; then, following an isochronous (regular) haptic rhythm - whose 

period matched a symmetric version of their natural cadence. Subsequently, 

any residual effects of walking to the rhythm (i.e. rhythm persistence and the 

ability to walk to the rhythm from memory) were tested by asking the 

participants to walk to the rhythm from memory shortly afterwards. 
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In order to identify quantitative changes in gait, two kinds of data were 

collected, involving temporal and spatial asymmetry respectively. Temporal 

asymmetry focuses on measures such as paretic and non-paretic step timings, 

whereas spatial symmetry focuses on measures such as paretic and non-paretic 

step length. 

Due to limitations on the availability of participants in the context of this 

research, while temporal data was collected for all twelve participants, spatial 

data was collected only for six.  

As explained in detail below, all spatial data was collected in an optical motion 

capture facility in Manchester, close to where half of the participants lived. All 

temporal data was collected by the Haptic Bracelets themselves, which were 

also used to cue all participants. Those participants not tested in Manchester 

were tested in Milton Keynes using the Haptic Bracelets alone. However, as 

discussed below, care was taken to ensure that the experimental context, 

procedures and data in both locations were commensurable. 

7.2.1 Participants  
Twelve community-dwelling, community ambulant adults (four female) with 

chronic hemiparesis (chronic defined as > 6 months since stroke onset) gave 

written informed consent to participate. Eleven had chronic hemiparesis after 

stroke, and one after suffering brain trauma following an accident. The age 

range of this group of participants is shown in Table 3 and Table 4. The time 

since occurrence of stroke varied from 8 months to 12 years. 

Demographic Information 
Age 61.75 ± 7.85 years 

Gender 8 males, 4 females 

Paretic side 9 right, 3 left 

Table 3 Participant demographic information 
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Participants were recruited through local support groups and by 

recommendation of private physiotherapists. Inclusion criteria were:  

• walking disability, but with retained or subsequently recovered ability 

to stand and ambulate;  

• ability to walk unsupported (but with a walking aid if needed) for a 

minimum distance of 10 meters; and  

• a Rivermead Motor Assessment (RMA) scale score of more than 8.  

The Rivermead Motor Assessment (RMA) is a standard and widely used test 

for assessing functional mobility in gait, balance and transfers after stroke 

(Williams, 2011). The score of 8 and higher was decided as the inclusion 

criterion following discussions with physiotherapists. An example RMA score 

sheet can be found in Appendix 2. Participants were excluded if they had 

cognitive impairments preventing understanding of the task. Participants could 

use their assistive devices (ankle-foot orthosis splint and/or cane) in the trials. 

Participant 
Code 

Age and 
Sex 

Years since 
brain trauma Paretic side Condition 

MMUP01 53 (F) 12 Right Unknown 

MMUP02 57 (F) 0 (8 months) Right Hemorrhagic stroke 
MMUP03 73 (M) 2 Left Ischemic stroke 

MMUP04 68 (M) 7 Right Unknown 

MMUP05 61 (M) 5 Right Unknown 

MMUP06 55 (F) 4 Right Ischemic stroke 
OUP01 50 (M) 21 Right Hemiplegic trauma * 

OUP02 67 (M) 9 Right Ischemic stroke 

OUP03 60 (M) 2 Right Hemorrhagic 
and ischemic stroke 

OUP04 73 (F) 1 Right Ischemic stroke 

OUP05 56 (M) 1 Left Hemorrhagic stroke 

OUP06 68 (M) 4 Left Ischemic stroke and 
diagnosed with Parkinson’s 

Table 4 Further demographic information. Participants with "MMU" code took the study at the 

Manchester location, and "OU" at Milton Keynes. Participants with an “*” in the condition column did 

not have a stroke but sustained brain injury causing hemiparesis from a different cause. Participants who 

were not sure or chose not to disclose this information were marked with “Unknown”. Ischemic and 

hemorrhagic strokes are briefly described in section 2.5, page 27. 
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7.2.2 Study location 
The study was carried out in two locations: a fully equipped kinematics lab in 

Manchester, and a lab specially adapted for this gait study at the Open 

University campus in Milton Keynes. Both labs were essentially identical in 

their set up, with a ten meters long straight and unobstructed area where 

participants could walk in a safe and comfortable manner (both labs are shown 

on Figure 46, page 132). Six participants (three female) attended the study in 

Manchester, and six (one female) the study in Milton Keynes. 

As already noted, all spatial data was collected in the optical motion capture 

facility at the Manchester Metropolitan University, where half of the 

participants were located. The lab is equipped with a state of the art kinematics 

monitoring system (discussed in section 7.2.4 below), allowing the recording 

of spatial data in high resolution. The part of the study in Manchester was 

carried out in collaboration with professionals in physiotherapy nursing and 

practice, and a technician with experience in gait analysis from kinematics 

data. Their expertise provided valuable insights during the study. All temporal 

data was collected by the Haptic Bracelets themselves, which were also used to 

cue all participants. Those participants not tested in Manchester were tested in 

Milton Keynes using the Haptic Bracelets alone. Carrying out the study in 

parallel in two locations allowed for the maximisation of participant 

recruitment. The lead researcher was present in both locations, during all 

sessions, to ensure an identical protocol was carried out. 

7.2.3 Equipment used 
The purpose of the equipment used in this study falls primarily in three 

categories: firstly, delivery of a series of haptic cues on alternating legs in a 

stable and appropriate (for each participant) tempo; secondly, recording 

temporal gait data characteristics from each participant for each leg while they 

walk; and thirdly (where available) recording spatial gait data.  
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As described in Chapter 5, the Haptic Bracelets were used for the first two of 

these purposes; delivering the haptic cues in a stable and carefully controlled 

tempo while recording in detail temporal characteristics of the person wearing 

them. The Haptic Bracelets are designed to be worn in pairs with one device 

near the ankles on the shank on each leg. The same pair of wearable devices 

was used in both locations to avoid any data discrepancies caused by hardware 

and sensor calibration. See Chapter 5 for details of design and implementation.  

7.2.4 Optical motion capture system 
Spatial data were recorded using a Qualisys optical motion capturing system. 

The system consists of eight optoelectronic cameras, with a sampling 

frequency of 100Hz. The trajectories of 20 markers placed on anatomical lower 

limb landmarks, and 4 additional tracking clusters placed on the right and left 

shank and thigh (see Figure 44), were collected and filtered using a fourth–

order zero lag Butterworth low-pass filters, with a 6Hz cut off frequency. 

Each marker is tracked by the cameras, triangulating its position in space. This 

allows tracking of motion in three degrees of freedom in millimetre accuracy.  

  

Figure 44 The Qualisys marker setup used for this study is a modified version of a widely-used model for 

anatomical body tracking called “CAST” (Cappozzo et al., 1995). 
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7.3 Procedure 

7.3.1 Preparation 
Participants were asked to come to the lab wearing their normal everyday 

clothes and comfortable shoes. For reasons explained above (see section 7.2.2) 

the study took place in two locations. An identical procedure was followed in 

both locations, but because of the way kinematics data are collected from the 

motion capture system (i.e. placing markers on the body), three additional 

preparatory steps were required for participants in Manchester to meet the 

needs of the optical motion capture system. Namely, they were asked to change 

into shorts; 30 to 45 minutes were required for a trained technician to place all 

the markers on their body (with position of markers as seen in Figure 44); and 

biometric measurements were taken (i.e. height and weight).  

In both locations, the Haptic Bracelets were attached, via Velcro straps, onto 

the shank of each leg near the ankle. The vibrotactile - the part of the device 

that gives the haptic cue - was attached using another Velcro strap near the 

knee (as discussed in chapter 5: see Figure 45  below for exact placement).  

The placement of the vibrotactile was initially based on the suggestion of 

physiotherapists participating in the technology probe study discussed in 

Chapter 4 (page 60). However, this decision was later revealed to be based on a 

conflation by the physiotherapists of entrainment with stimulus response. 

Nonetheless, it was subsequently decided to keep this placement for this study 

for two main reasons: 

• proximity to major nerves, giving the tactile cue a good chance to be 

felt;  

• having the vibrotactile unit away from the IMU of the Haptic Bracelet 

helps to minimise unwanted noise in the gait data.  
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Participants in Milton Keynes had simpler preparation than those in 

Manchester: they did not have to wear any kinematics markers, and could 

simply wear a pair of Haptic Bracelets over their everyday clothes12. 

 

Figure 45 Vibrotactiles strapped on participant’s leg using Velcro straps. 

7.3.2 The haptic tap test 
As proposed in Chapter 6, before the first trial, all participants were asked to 

take a haptic rhythm perception test; the haptic tap test. The haptic tap test is 

an adapted version of the procedure used in the haptic rhythm perception study 

discussed in Chapter 6.  

This test aims to assess people’s ability to perceive and replicate a rhythm 

(albeit by tapping) perceived via the haptic modality. This ability can be 

affected by injury to certain parts of the brain (Kobinata et al., 2016). Such a 

deficit may go undetected by medical professionals and is not identified by 

standardised gait assessment tests such as the Rivermead mobility index test. 

                                                

 

12 An exception was made if a participant arrived at the study location already wearing shorts or 

a skirt. 
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The haptic tap test follows identical setup and a shortened procedure to the 

study described in Chapter 6. For the present test, participants were asked to 

tap with their index finger in time to a range of rhythms. The rhythm was 

delivered haptically on the paretic wrist, using a wired version of the Haptic 

Bracelet (see Figure 38, page 109). Tapping was performed by the non-paretic 

hand in order to avoid any physical constraints due to hemiparesis, or the 

effects of haptic masking (Bouwer, Holland and Dalgleish, 2013).  Haptic 

masking describes situations where haptic sensation is temporarily muted by 

adjoining muscle movement. Participants were all tested with rhythmic periods 

of 500, 600 and 700 ms. These periods showed the lowest variability of 

response in the haptic rhythm perception study (Chapter 6). Based on 

experience in Chapter 6, to minimise participants’ fatigue, each trial lasted just 

20 seconds. The ability to tap was observed visually during the task and was 

also analysed using the data analysis scripts discussed in Chapter 6. Flawless 

performance was not required: a general ability to keep in time with the beat 

was sufficient to pass the test. 

A single candidate participant in Milton Keynes (OUP06) failed the haptic tap 

test. All of the other participants automatically continued onto the gait trial. 

OUP06 presented an exceptional case: this participant had Parkinson’s in 

addition to hemiparesis. The haptic tap test was designed for those with 

hemiparesis alone. Unlike those in this target group, Parkinson’s patients are 

liable to have tremors in both hands. Thus, for such exceptional patients, the 

haptic tap test cannot reliably distinguish between the lack of ability to entrain 

mentally and the lack of reliable tapping ability. Although this candidate 

participant failed the test, the possibility remained that he could mentally 

entrain, and that he might benefit from the trial. Consequently, for this 

exceptional reason, OUP06 also continued onto the gait trial on a provisional 

basis. 
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7.3.3 Walking to the rhythm trials 
This study followed a repeated measures design with three conditions: 

“baseline”, “cued” and “post”, as described in section 7.2. The participants 

were asked to walk the length of a 10m runway six times for each condition. 

Baseline condition 

The initial condition allowed each participant’s baseline gait to be measured, 

including mean step time. The mean step time was used to set the period of the 

haptic metronome for the subsequent “cued” condition – subject to any final 

adjustments, as discussed below.  

Choosing the period for the cued condition 

This approach to choosing the cueing period was motivated by the literature, as 

now discussed, but with scope for practical adjustments to cope with the focus 

on hemiparetic participants. One of the underlying neurological principles 

defined in the RAS rehabilitation technique (discussed in 2.6.2, page 31) is to 

entrain steps to an external rhythm that exactly matches the preferred (uncued) 

cadence of the patient.  Independently, Roerdink (Roerdink et al., 2011), 

working with elderly able-bodied participants, found optimal performance 

when cueing with a regular period close to each individual’s naturally preferred 

cadence. As discussed in Chapter 5, cues in the present study were delivered to 

alternate legs - evidence from auditory cueing emphasises the benefits of this 

approach (Roerdink et al., 2009). 

Bearing this alternation in mind, in the case of hemiparesis, the average period, 

calculated from a hemiparetic individual’s preferred pace can be too fast for 

the slower paretic leg to follow, suggesting that some fine adjustment of the 

period may be desirable. Also, some participants needed to apply conscious 

effort to walk naturally, and thus some might feel less confident when asked to 



Chapter 7. Study 2: Rhythmic haptic cueing for gait rehabilitation 

7.3 Procedure 

pg. 131 

undertake an additional task while walking. For these two reasons, possible 

fine adjustments to the period were allowed. 

For these reasons, before walking to the external rhythm, in order to find a 

comfortable period close to the preferred period, participants were variously 

asked to tap their foot while sitting down, or to step in place while standing up, 

or just walk around following the rhythm, as was most convenient for them. 

This familiarisation period allowed final adjustments to the period and to the 

intensity of the haptic cue.  

Findings from the technology probe study (section 4.2, page 60) highlighted 

the importance of clear instructions on entraining steps to a rhythm. 

Participants were instructed to time the steps of their non-paretic (i.e. “good”) 

legs to the beat, but not to worry about their paretic leg. They were encouraged 

to feel the rhythm in a similar way to feeling the rhythm of a song. After 

testing various instructions through trial and error, this instruction was found to 

generally lead to a more balanced gait than asking participants explicitly to 

time the steps of both legs to their respective beats.  

Here an interesting issue arises. One might be tempted to engineer a cue where 

the ratio of step periods between legs lay at some intermediate point between 

the baseline asymmetry and a perfectly balanced symmetry. However, 

considering the theory of entrainment, and from observations during in-lab 

pilot testing, participants generally find it much easier to entrain to a regular 

beat than an irregular or “swung” beat (in musical terminology). It is also 

generally far easier to remember a regular beat. 

Cued condition 

Once participants confirmed they understood the instructions they were asked 

to walk six 10m lengths following the haptic rhythm. Temporal data and, in the 

case of participants in Manchester, spatial data were recorded for each walk.  
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Post condition 

Immediately following the ‘cued’ condition, and after a short five-minute 

break, each participant was asked to repeat a further six 10m walks without 

haptic cueing. The purpose of this ‘post’ condition was to investigate any 

residual effects of walking to the rhythm. This was inspired by literature on 

Parkinson’s disease reporting rhythm persistence (Thaut et al., 2001; 

Nieuwboer et al., 2007) and also comments from the participants during the 

technology probe study described in Chapter 4, page 60. In the technology 

probe, a participant noted how the rhythm stayed in their memory; “If it is 

switched off […], it’s still there. […] in my head” (comment from P4 – page 

68). 

Even though a short five-minute break was scheduled between conditions, 

participants were told they could take a break at any point during the study. 

Chairs were placed on either end of the 10m runway for comfort and safety. 

Figure 46 below shows the lab setup in both locations. 

  

Figure 46 Participants during a 10m walk trial. Left shows the OU and right the MMU location. 

The study concluded with a short discussion based on the participant’s 

experience about walking with the haptic rhythm. All trials were video 

recorded for later review by expert physiotherapists, since, even if they were in 

the room at the time, they often concentrated on participant’s safety instead on 

subtle changes in their gait pattern and body movement. 
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7.4 Data analysis and results 
In this study, temporal and spatial data were recorded and analysed. Temporal 

data refers to times between events (e.g. time between subsequent heel strikes) 

and gait characteristics that can be calculated from these timings (e.g. the 

overall temporal asymmetry (OTA) values as seen in Chapter 2, page 24). 

Spatial data, on the other hand, indicate characteristics relevant to space, such 

as stride lengths, and combinations of space and time (i.e. velocity).  

Spatial and temporal data collected during the ‘cued’ and ‘post’ conditions 

were compared against the baseline, looking for any effects that entrainment to 

haptic rhythmic cueing had on the participant’s gait. Comparing the data 

against the baseline allowed each participant to act as their own control, 

making clear any walking effects that were caused by the cue. 

As previously discussed, the present study took place in two locations. 

Temporal data were recorded and analysed from participants of both locations 

using the Haptic Bracelet’s on-board sensors. However, spatial analysis was 

performed only on data captured in Manchester by the optical motion capture 

system. Finally, qualitative data from both locations were documented from 

observations during the study and comments from participants and 

physiotherapists. 

7.4.1 Outlier exclusion 
As in the haptic tapping study (Chapter 6), data from individual steps (temporal 

and spatial) were examined for outliers.  

Note that some participants would occasionally break their step mid-trial and 

take a small number of short shuffling steps. These steps were associated with 

much shorter step times, shorter step, lengths and lower velocity than the rest 

of the trial. Such episodes could be clearly differentiated in the data due to the 

exceptional interruption of an otherwise more or less regular pattern. Note that, 

because steps are measured from heel-strike to heel-strike, one subsequent step 
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of each leg after each such episode would also be discarded to allow a reliable 

starting point for subsequent measurement to be registered. Consequently, in 

the data analysis, these events would be treated as outliers and discarded. The 

effect of this was to give clean data excluding interruptions.  

Outlier values were defined as any values lying 1.5 times the interquartile 

range beyond the first and third quartile (see section 6.3.1 (page 112) for the 

outlier calculation equations and a full explanation). For characteristics that 

jointly contribute to the step time (i.e. swing and stance times), if either value 

was considered to be an outlier, both values were removed from the analysis. 

One participant (OUP06) withdrew from the study as it was unclear that he 

could complete the trials in a safe manner. This participant exhibited high 

levels of fatigue causing him to become less stable after the first few trials. The 

lead researcher stopped the study to prevent any risk of injury.   

7.4.2 Post-trial analysis of the haptic tap test 
As described in section 7.3.2, prior to the walking trials, all participants carried 

out a haptic tap test to check their general ability to keep in time with a beat. 

Subsequent to the walking trial, the results of this test were more formally 

analysed. The mean time between successive taps was calculated for each 

target tempo for each participant. The resulting mean tap periods for all three 

target periods are summarised in Figure 48. 

Participants in general demonstrated synchronisation to the target rhythm, 

though some mentioned fatigue and physical difficulties during the tapping 

task, as reflected by the relatively large standard deviation values. However, 

the tapping task did not give evidence for exclusion, as all demonstrated 

adequate rhythm perception ability (though see section 7.3.2 for an edge case).  

Interestingly, some participants continued tapping for at least once tap after the 

last tactile cue (see Figure 47 below for an example). This ‘last tap’ was in 

time with the previous taps in the series, indicating anticipation – a 
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neurological principle discussed in section 2.6.2 page 31, and a key part of 

entrainment. This provides further clear evidence of entrainment during the tap 

test. The time of the last tap is shown as a green dot in Figure 48 for each 

participant. 

 

Figure 47. Tap data from one trial showing the last tap after the tactile rhythm stopped; an indication of 

entrainment. Blue triangles signify the beginning of a haptic cue, and red triangles indicate the beginning 

of a tap. 

 

Figure 48 Tap test results for all three target periods: 500, 600 and 700 ms. The error bars show one 

standard deviation from the mean. Green dots indicate the time of the last tap after the tactile rhythm 

ended, as discussed in the text. (Due to technical difficulties, results from MMUP01’s first trial at 500 ms, 

and all trials of MMUP05 could not be reported). 
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7.4.3 Temporal data 
As previously discussed, paretic and non-paretic step timings were determined 

from initial footfall contact by the Haptic Bracelet’s on-board sensors. 

Analysing data from different sensors and combining the information together 

allowed for the analysis of stance and swing times.  From these, the overall 

temporal asymmetry (OTA) ratio value (see Chapter 2, page 19) was calculated 

for every participant in every condition (baseline, cued and post). The way data 

from the Haptic Bracelet’s on board IMU was analysed is described in Chapter 

5, page 101. 

The average reduction on the OTA values across all participants indicates an 

overall improvement, with the OTA value approaching normative asymmetry 

levels – normative range: 0.9-1.1; as defined in (Patterson et al., 2008). The 

results are summarised in Figure 49 below.  

 

Figure 49 Overall temporal asymmetry (OTA) values for all three conditions: baseline, cued and post. 

The figure includes normative levels indicating healthy walking asymmetry. Error bars show one 

standard error of mean 
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However, the inherent wide variability between individual stroke and brain 

injury survivors meant a wide range of OTA values; as shown by the error bars 

in the figure above. In order to statistically compare the baseline overall 

temporal asymmetry (OTA) values with both the ‘cued’ and ‘post’ conditions 

respectively, paired-samples t-tests were conducted. Despite the reduction 

observed in the average OTA value for both the ‘cued’ and ‘post’ conditions 

compared to the baseline (Figure 49), neither condition reached a level of 

statistical significance.  

More specifically, there was not a significant difference in the OTA values in 

the ‘cued’ (t(10)=1.23, p=0.25) or the ‘post’ (t(10)=1.16, p=0.27) conditions. 

Triangulation of temporal data 

For reasons detailed in section 7.2.2 above, motion data concerning gait 

characteristics of only six out of the eleven participants were captured by both 

the prototype Haptic Bracelet system and the Qualisys system (a commercially 

available optical motion capture system).  

Capturing these data from two independent systems allowed for data and 

methodological triangulation (see section 3.4, page 46) as the two independent 

systems used fundamentally different methods to gather data (motion sensor 

data from the Haptic Bracelets versus optical data from the Qualisys) from the 

same events, at the same time.  

The difference in the values produced by the two systems for each condition is 

less than 3% (2.7%, 0.7%, 2.8% respectively), indicating general agreement 

between the two systems. In the later analysis (Page 138), changes were 

required to be greater than ±5% to be considered meaningful. 

The graph in Figure 50 below summarises the temporal data of six participants 

measured simultaneously by both systems.   
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Figure 50 Comparison between data analysis results from the Haptic Bracelet monitor unit (red) and a 

Qualisys motion capture system (blue). 

Methodological note: comparing baseline, cued and post conditions 

Due to the high degree of variability between survivors of hemiparetic stroke, 

and the relatively small number of participants, it is unclear that the most 

useful information to be extracted from the results will take statistical form. 

Rather, a great deal of rich information may be available from considering 

individual cases in detail case by case. Statistical results are considered first 

below, followed by individual cases. 

Consideration of individual results 

Reflecting the inherent wide variability between individual stroke and brain 

injury survivors as noted above, changes to the overall temporal asymmetry 

(OTA) value were normalised by calculating percentage changes from each 

individual’s baseline value. Negative percentage values indicate beneficial 

change – i.e. approach to normative value range of 0.9 to 1.1. These data are 

shown in detail in Table 5, graphed in Figure 51, and summarised for clarity in 

Figure 52. 
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Participant 
code 

OTA OTA percentage change 
from baseline (%) 

Baseline Cued Post Cued Post 
MMUP01 1.32 1.23 1.51 -6.99 14.37 

MMUP02 1.08 1.06 1.04 -1.94 -3.89 

MMUP03 2.27 2.46 1.83 8.46 -19.16 

MMUP04 1.11 1.04 1.25 -6.66 12.30 

MMUP05 1.84 1.58 1.64 -14.11 -10.88 

MMUP06 1.16 1.07 1.22 -7.36 5.13 

OUP01 0.85 0.92 0.88 -7.72 -3.06 

OUP02 1.14 1.14 1.18 0.44 3.80 

OUP03 3.32 1.75 1.56 -47.35 -52.93 

OUP04 0.79 0.79 0.80 -0.04 0.17 

OUP05 0.86 0.76 0.74 11.68 14.01 

Table 5 The overall temporal asymmetry (OTA) values of all participants in all three conditions. OTA is 

calculated using the equation described on section 2.3.2, page 19. Last and second to last columns show 

the change from the baseline towards the normative range of symmetry (0.9 - 1.1), representing the 

healthy portion of the population. Negative values indicate improvement in symmetry. 

 

 

Figure 51 Graphical representation of OTA values shown in Table 5. Perfect symmetry (1.0) and 

normative asymmetry levels in the range of 0.9-1.1 are shown by horizontal green lines. 
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Temporal data results summary 

In this study, essentially three outcomes were possible for the ‘cued’ and ‘post’ 

conditions; a participant’s OTA could improve compared to the baseline, 

worsen, or stay the same. Alterations of the OTA were considered meaningful 

if their magnitude was of more than ±5% compared to each individual’s 

baseline. 

Referring back to Table 5 and Figure 51 (summarised perhaps most clearly in 

Figure 52 below), six out of the eleven brain injury survivors participating in 

this study exhibited immediate improvement in their gait with their OTA value 

decreasing towards better symmetry in the ‘cued’ condition. From these six, 

two maintained a more symmetric OTA value in the ‘post’ condition, three 

became worse, with their OTA value increasing, while one participant returned 

back to his baseline level of asymmetry. 

Two of the eleven participants became more asymmetric during the ‘cued’ 

condition, with their OTA value increasing compared to their baseline. From 

these two participants, one (OUP05) maintained a more asymmetric OTA 

value in the ‘post’ condition while the other (MMUP03) showed a big 

improvement compared to his baseline. 

Three participants did not show any change in their OTA value in either the 

‘cued’ or the ‘post’ condition. These data are summarised in Figure 52 below. 
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Figure 52 Participant distribution based on their OTA percentage change compared to baseline. Green 

indicates beneficial change of more than 5%, red indicates negative change and blue no change. 

7.4.4 Spatial data 
Spatial data usefully complement temporal data for assessing changes in gait 

symmetry. The step length and velocity (calculated using step lengths and time 

of travel) are valuable metrics for assessing the therapeutic effect of rhythm in 

gait rehabilitation (Thaut, 2007; Patterson et al., 2010; Thaut and Abiru, 2010).  

As mentioned previously, spatial data were captured for six out of the eleven 

participants. This involves markers placed on anatomic relevant locations on 

the participants’ body (see section 7.2.4). However, for accurate tracking, each 

marker must be in view to at least two of the eight cameras at all times. When 

line of sight to marker is occluded for all but one camera, the system applies a 

best estimation of the path based on previous motion. This can introduce 

inaccuracies.  

Occlusions arose in the study when some participants needed to use a walking 

stick during the trials. One participant not only had a walking stick, but also, 

due to a recent history of frequent falls, had two carers walk alongside and 
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behind him for safety (see Figure 53). The carer walking behind the participant 

was also pushing a wheelchair to catch him in case of a fall – a common 

practice in gait rehabilitation. 

 

Figure 53 Optical markers required by the Qualisys motion capture system were often blocked by carers 

walking next to the participants for safety reasons or waking aids used by participants. This potentially 

introduced inaccuracies in the data when considering full kinematics analysis. 

In addition to the marker occlusion limitation, the particular optical tracking 

installation used could accurately capture kinematic data only from a relatively 

confined area (called the capture volume) where the cameras were focused. 

More specifically, accurate data from the combined set of markers in the 

“CAST” model seen in Figure 44 (discussed on page 126) could be captured 

only in the middle 4 or 5 m of the 10m runway. This capture volume equated 

roughly to around three steps for each leg. To minimise the effects of this 

limitation, a single marker was tracked over a longer volume (placed on the 

heel – marked as HELL_CAL in Figure 44, page 126). This single marker was 

found retrospectively to have good visibility for at least eight of the ten meters 

of the runway for all six participants. By contrast the temporal data captured by 

the Haptic Bracelets on-board motion sensors was available for the full range 

of motion. 
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Processing of spatial data 

In analysing the spatial data, possible outcomes likely to be of interest to 

physiotherapists and other health professionals include changes in spatial gait 

asymmetry, step lengths, and walking speed. 

Using a Matlab script developed for this purpose, the leg movement 

characterised by a single marker movement placed on the heel of each leg 

(Figure 44, page 126) was analysed, and step lengths calculated. The reason for 

using data from a single marker is discussed in detail in the section above. 

Figure 54 below shows the distance the optical marker moved over time in one 

trial of one participant, thus the gradient of this graph denotes velocity 

(distance/time). Note that the velocity represented by this gradient is what 

might be called “foot flight velocity”; this is because overall walking speed 

depends not just on the velocity of the foot when it is in the air, but also on 

how long the foot spends stationary between steps – however steps were taken 

in the data processing to relate this more closely to walking speed (see section 

7.4.1, page 133). 

When the gradient of the graph in Figure 54 is zero (i.e. the blue line is 

horizontal), the foot is stationary, indicating the end of a step. Changes in 

gradient (marked with vertical black lines) were used to identify when the foot 

moved, allowing for accurate average stride length calculations. 

 

Figure 54 The blue line indicates marker movement. The gradient of the blue line represents velocity. 

Black vertical lines indicate changes in the graph’s gradient, hence, the start and end of individual steps. 
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Two aspects of spatial data were analysed: firstly, step length in the cued and 

post conditions were compared against the baseline, and secondly, the spatial 

asymmetry value was calculated, using the same formula discussed in Chapter 

2, page 24 for overall temporal asymmetry (OTA). 

Figure 55  demonstrates visually the difference in gait pattern between the 

paretic and non-paretic leg seen in one trial. The non-paretic leg lifts higher 

and in a smoother, more uniform arc, while the paretic leg stays closer to the 

ground, lifts for a shorter period, and is almost dragged along. 

 

Figure 55 Qualisys Track Manager (QTM) data. White traces indicate heel markers (red traces show 

markers on other parts of the body – the red dots on the right show to which body location each trace 

corresponds). Observing the path of these markers shows the non- paretic (left) leg following a higher, 

more uniform arc while the paretic leg remains closer to the ground following a much shorter arc. 

As with consideration of the temporal data, due to the great variability between 

participants, useful information can be extracted by considering both changes 

in mean values and changes in individual cases. Changes in mean values are 

considered first. 

When walking following the rhythm in the cued condition, the mean spatial 

symmetry showed a small improvement compared to the baseline – see Figure 

56.  
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Figure 56 The mean spatial asymmetry from all six participants in the three conditions tested: baseline, 

cued and post. Spatial asymmetry is calculated by dividing the average stride length of the paretic leg by 

the average stride length of the non-paretic leg. Higher scores indicate better symmetry – 1.00 is a 

perfect score. Error bars show one standard error of mean. 

This small improvement is further evident by the reduction in the standard 

deviation, shown by the smaller range covered by the error bar in the ‘cued’ 

condition. 

Interestingly, by contrast with the change in symmetry, the average stride 

length decreased by 16 mm in the cued condition compared with the baseline 

and increased by almost 50 mm in the post condition over baseline (Figure 57). 

Bearing in mind that all participants in this study were hemiparetic stroke 

survivors with various degrees of cognitive and motor control deficiencies, it 

may be that the increased cognitive load of attending to the rhythm led to 

shorter stride lengths. A related but slightly different argument might be that 

asking participants to walk while following the haptic rhythm may have led to 

more conscious attention on their movement, increasing cognitive load and 

causing them to take shorter and more careful steps. Further light is cast on 
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these hypotheses by the observation of considerably longer steps in the post 

condition, where the external haptic rhythm was removed, and participants 

were asked to walk to the rhythm from memory. This issue is revisited in 7.5.2. 

 

Figure 57 Average stride lengths for all three conditions: baseline, cued and post. Stride lengths are 

calculated from optical marker data and analysed using bespoke algorithms. Error bars show one 

standard error of mean. 

The standard error value (indicated by the error bars in the figure above) 

remained on similar values for all conditions; ±215mm, ±223mm, and 

±217mm. This suggests that on average, stride length did not become more or 

less variable during either the ‘cued’ or the ‘post’ condition when compared to 

the baseline. Unsurprisingly, in all conditions, the mean paretic stride length 

was shorter than the non-paretic stride length – see Figure 58. 

946.16 930.95 991.75
600

700

800

900

1000

1100

1200

1300

Baseline Cued Post

St
rid

e;
le
ng
th
;(m

m
)

Mean;stride;length



Chapter 7. Study 2: Rhythmic haptic cueing for gait rehabilitation 

7.4 Data analysis and results 

pg. 147 

 

 

Figure 58 The average stride lengths in millimetres from all six participants in the three conditions 

tested: baseline, cued and post. Data were captured by a Qualisys motion capture system tracking a 

single marker on the heel of each foot. In this figure, solid colour indicates values for the paretic leg. 

Error bars show one standard error of mean. 

Further consideration of mean spatial changes is discussed in detail in the 

discussion section (7.5.2, page 155). 

As previously argued, in situations with great individual variation, it is 

important to consider and analyse individual results from all participants before 

drawing firm conclusions. These results are shown on Table 6 and Figure 59. 

For these results in terms of differences, see Table 7. 
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Participant 
code 

Stride lengths (mm) 

Paretic Leg Non-Paretic Leg 

Baseline Cued Post Baseline Cued Post 

MMUP01 1106.71 1086.47 1110.63 1105.03 1080.39 1108.21 

MMUP02 812.59 1001.08 1092.22 801.57 997.30 1090.41 

MMUP03 647.08 586.77 717.40 685.90 621.79 749.60 

MMUP04 1146.11 1182.15 1193.77 1148.95 1194.59 1208.98 

MMUP05 743.89 709.52 630.48 841.82 727.63 767.68 

MMUP06 1159.07 992.25 1117.81 1155.14 991.48 1113.84 

Table 6 Stride lengths of six participants using optical marker data from a Qualisys motion capture 

system. Stride lengths are measured in millimetres. For this table in terms of differences see Table 7. 

 

Figure 59 Graphical representation of data from Table 6. 

To assist with clarity of the results, the percentage changes for the ‘cued’ and 

‘post’ conditions when compared to the baseline is shown in Table 7. 
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Participant 
code 

Stride length change compared to baseline (%) 

Paretic Leg Non-Paretic Leg 

Cued Post Cued Post 

MMUP01 -1.83 0.35 -2.23 0.29 

MMUP02 23.20 34.41 24.42 36.03 

MMUP03 -9.32 10.87 -9.35 9.29 

MMUP04 3.14 4.16 3.97 5.22 

MMUP05 -4.62 -15.25 -13.56 -8.81 

MMUP06 -14.39 -3.56 -14.17 -3.58 

Table 7 Percentage difference of stride lengths compared to the baseline values. Changes below ±5% are 

not considered meaningful.  

Spatial data results summary 

In this section, individual changes in spatial data are summarised. For three of 

the six participants, the mean cued stride length was shorter than the baseline 

by more than 5%. One participant walked with longer stride lengths when cued 

and two did not show any change of more than 5% when walking with the cue. 

When walking to the rhythm from memory in the post condition, the stride 

lengths of two participants increased, one decreased, and three showed no 

change outside 5%. Interestingly, the same two participants were unchanged 

during cueing and post. 

 This data is summarised conveniently in Figure 60.   
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Figure 60 Participant distribution based on their stride length percentage change compared to baseline. 

Green indicates an increase of stride length, red indicates shorter stride length (in both cases >5%) and 

blue no change. 

Walk velocity 

In this section, as previously, mean results are considered first followed by 

consideration of individual changes.  

Mean walk velocity for each condition was calculated for each participant by 

averaging heel marker velocity from all six trials. For the purposes of 

considering means over all participants (Figure 61)  averages were further 

taken across both legs and all six participants. Paralleling the changes to stride 

lengths discussed in the previous section, mean walk velocity compared to 

baseline decreased during the cued condition, and increased during the post 

condition (Figure 61). The hypotheses noted earlier (page 145) concerning 

sensorimotor deficiencies and increased cognitive load may apply to this 

observation.  
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Figure 61 Walk velocity for all participants in all conditions. Velocity was calculated using bespoke 

algorithms from data collected from a commercial optical tracking system. Error bars show one standard 

error of mean. 

Individual changes to walk velocity are presented in the series of charts and 

tables below, starting with Figure 62.  

 

Figure 62 Individual walk velocity data for all participants in all three conditions. 
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One participant walked faster in the cued condition, three more slowly, and 

two showed no change of over 5% from their baseline.  

The effects of the rhythmic haptic cue on the participants’ velocity is 

summarised in Figure 63 below. 

 

7.5 Discussion 
The purpose of this study was to examine the effects of rhythmic haptic cueing 

on spatial and temporal gait characteristics of people with hemiparesis.  

Three kinds of improvement (amongst others) that physiotherapists and other 

relevant health professional seek to achieve in the gait of a hemiparetic stroke 

survivor are: better temporal asymmetry, longer stride length and higher walk 

velocity. Although, given the small number of participants, one must be careful 

in the interpretation of quantitative information, in terms of mean results both 

during and immediately after cueing, this is exactly what was observed. 

Changes in spatial asymmetry will not be considered in more detail here, as the 

changes detailed earlier (section 7.4.4) were relatively slight.  

All participants

MMUP02

MMUP02

MMUP01
MMUP04

MMUP04 MMUP01

MMUP03
MMUP05
MMUP06

MMUP03 MMUP05
MMUP06

Cued 

Post 

n: increased velocity* n: decreased velocity* n: no change* 

*compared to the baseline of each individual 

Baseline 

Figure 63 Participant distribution based on the percentage change of their velocity compared to 

baseline. Green indicates an increase of velocity, red indicates slower walking velocity (in both cases 

by >5%) and blue no change. 
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However, a more nuanced, and arguably more interesting story unfolds when 

considering the results of individuals. Temporal and spatial results by 

individual for all participants are already presented separately in Figure 52 on 

page 141 (temporal); Figure 60 on page 150 (spatial), and Figure 63 on page 

152 (velocity). In this section, the disparate results are integrated in Table 8 

and Figure 64 below which summarises all results using colour coding to 

distinguish between improvements, declines and no change. 

Participant 
code 

Condition   
Cued Post   

OUP01     

OUP02    Key 
OUP03     Temporal asymmetry 

OUP04     Stride length (spatial) 

OUP05     Velocity 

MMUP01              . Improvement* 

MMUP02              . No change* 

MMUP03              . Decline* 

MMUP04          

MMUP05        *Compared to baseline 

MMUP06        

Table 8 Summary of spatiotemporal results 

 

Figure 64 Mean temporal, spatial and velocity changes compared to baseline. 
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7.5.1 Temporal walk symmetry and temporal gait pattern  
Six out of the eleven participants showed immediate improvements on their 

Overall Temporal Asymmetry (OTA) values. This indicates a more symmetric 

walking pattern, with the participants spending more time on their paretic leg, 

reducing the burden on the non-paretic leg.  The wider implications of such a 

change are discussed in section 2.5.1, page 27. Two of these six participants 

retained good OTA value in the post condition, where they were asked to walk 

to the rhythm from memory. This suggests rhythm persistence and continuing 

entrainment influencing their motor response after the cue is removed. An 

analogous phenomenon has been noted in the past by (Thaut, 2007) (p.140) 

where hemiparetic patients were given an audio rhythmic stimulus  for long 

periods of time, before asking them to walk to the rhythm from memory. The 

present study appears to be the first to show a similar persistence effect with a 

haptic cue and to demonstrate that this can take effect with relatively short 

exposure. 

From the remaining four participants with improvements in the cued condition, 

one returned to their baseline symmetry, while the other three improved 

participants showed evidence in the post condition of becoming more 

asymmetric than their baseline. This increase in asymmetry may be attributable 

to fatigue, as the post condition was at the end of the study, after the 

participants had already walked roughly 120m (2x6x10m). While such a 

distance may not tax an able-bodied person, it can be considerably taxing for 

hemiparetics. Two participants commented explicitly that this was the longest 

they had walked since their stroke, and a third had to withdraw (see section 

7.4.1, page 133) due to tiredness. Fatigue may have depressed the performance 

of other participants in the post condition without bringing it below baseline. 

To conclude the discussion of temporal asymmetry, three participants 

(MMUP02, OUP02 and OUP04 – see Figure 52, page 141) showed no change 

in either the cued or post conditions. This may be either because they did not 
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understand or engage with the task or simply because they had far less room 

for improvement than other participants - these three participants had a 

relatively good OTA value in the baseline condition (1.08, 1.14, and 0.79 - 

normative range 0.9-1.1). However, one of these three participants (MMUP02) 

showed improvement in both step lengths and velocity values for both 

conditions, compared to her baseline. This indicates the possibility of 

therapeutic gait related benefits, even without change in temporal gait pattern. 

Unfortunately, no spatial or velocity data were collected for the other two 

participants (OUP02 and OUP04). 

7.5.2 Stride lengths and velocity changes 
In this study, only one out of the six participants both showed an immediate 

improvement in stride length, and maintained it during the post condition. 

MMUP02 who, normally uses a walking stick to ambulate, requested to do the 

trials without her stick, despite the protest of one of the physiotherapists 

present. When asked immediately after the trials, MMUP02 commented: “[…] 

it’s when I’ve gone outside [my house] I’ve got no confidence, so I have the 

walking stick. [...] I felt a lot stronger walking in there without the stick. It 

made a difference in that I had a bit more confidence. I felt confident without 

the stick”. When asked if this confidence was coming from the physiotherapists 

team present in the room she initially agreed, but then suggested further 

reasons: “Yes I felt confident when she [physiotherapist] was there [next to 

her] but when she wasn’t there I still felt that confidence”. 

During the trials, Mrs Donaldson, the clinical gait analyst attending the study, 

also commented on how the posture of this participant changed from being 

crouched over her walking stick to walking upright, looking ahead. “[…] look 

how tall she [MMUP02] stands”. Interestingly, MMUP02 is one of the 

participants that showed no change in her temporal data. This outcome is not 

entirely surprising as there is evidence in the literature to suggest that spatial 
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and temporal parameters need not be directly related (Krasovsky and Levin, 

2009). 

Mrs Cannings, one of the expert physiotherapists collaborating in this research, 

subsequently remarked that OUP02 (one of the participants, who is also one of 

her regular physiotherapy patients) changed her habits after this study to 

include more walks in empty supermarket corridors during early mornings, 

when it is less busy. “[OUP02] became more confident” and “started using a 

lighter walking stick” which was interpreted by the therapist as another sign of 

increased confidence in her capabilities. While watching a video of OUP02 

walking in one of the ‘with cue’ trials, Mrs Cannings commented that: “It’s so 

nice to see her [OUP02] not thinking too much about her right (paretic) leg. 

Just let it go; let it flow”. 

This apparent gradual increase in confidence with increased familiarity with 

the environment and the procedure of the study can also be observed in the 

velocity changes between conditions. Velocity showed similar changes to 

stride length during cueing, with some participants getting worse/slower and 

some better/faster, with a similar pattern carrying on in the post condition. 

After discussing the above findings with the physiotherapists assisting with the 

study, an interesting link between mood and one particular spatial (as opposed 

to temporal) gait characteristic was highlighted with a potential bearing on the 

above results. Physiotherapists and gait rehabilitation experts routinely expect 

a confident mood to be associated with long strides, whereas in situations 

where hemiparetic walkers are insecure and being mindful of how they walk, 

shorter strides are expected. Note that this behaviour is typically observed 

independent of cadence (i.e. walking tempo). 

Therefore, due to the specific link of confidence with stride lengths and walk 

velocity, the relatively short exposure to this novel approach to walking may 

have had a crucial role in the spatial changes observed.  
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Walking to a haptic rhythm mediated via a multi-limb metronome is unusual 

and not often encountered in everyday life. The novelty of this approach may 

have decreased the confidence of some participants, when they walked slower 

and with shorter stride lengths – as observed in the cued condition.  

However, with increased familiarity to the procedure, and having removed the 

task of feeling the rhythm while walking, the confidence for most participants 

increased and walked faster, with longer stride lengths (compared to their 

baseline) in the post condition when they were asked to walk to the rhythm 

from memory.  

7.6 Conclusions 

This chapter has presented a detailed empirical study of gait rehabilitation 

using haptic entrainment.  

The chapter preceding this one showed that people can entrain to a haptic 

rhythm and empirically identified a workable range for such entrainment.  

An overall beneficial decrease in the hemiparetic participants’ overall temporal 

asymmetry (OTA) values was found, indicating an immediate improvement 

and a more symmetric and healthy gait pattern for six out of the eleven 

participants.  

Spatial data were gathered from six of the eleven participants using a motion 

capture system showing three out of the six participants walked slower and 

with shorter strides with the cue than during their baseline. These spatial 

changes may be linked with confidence during walk, with shorter strides 

indicating temporarily decreased confidence levels, or higher cognitive load. 

Temporal asymmetry remained improved during the post condition.  
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Chapter 8 
Conclusions 

This thesis has explored the role of rhythmic cues delivered via the haptic 

modality in the context of entrainment–based gait rehabilitation. In this final 

chapter, the original research question is first revisited, then the main 

conclusions and contributions of the research are summarised. Limitations are 

considered and possible directions for future work are outlined.   

8.1 Research question  

The research question of the thesis was as follows: 

How can entrainment through rhythmic haptic cueing 

assist with gait rehabilitation of neurological 

conditions? 

Answering this question involved four principal activities: 

• the design and implementation of a prototype wearable system (Chapter 

5); 

• a formative study with people affected by neurological conditions and 

health professionals specialised in treating such conditions (Chapter 4); 

• two empirical studies, respectively to: 

o define a workable range for sensorimotor entrainment to 

isochronous haptic rhythms (Chapter 6); 
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o investigate changes in spatiotemporal gait characteristics of 

stroke and brain injury survivors when walking to an 

isochronous haptic rhythm (Chapter 7). 

One result of the formative study was that it was decided to focus principally 

on those with neurologically caused hemiparetic gait: in particular, stroke and 

brain injury survivors. 

8.2 Contributions to knowledge 

Given the great variability of stroke survivors and the limited number of 

available participants, there is no claim in this thesis of statistical evidence able 

to support a formal experimental result of improved gait.  

However, taking into account this great variability of participants, and viewing 

the empirical gait investigation as a set of eleven case studies, more modest 

empirical claims can be made. At a case study level, improvements were seen 

in the temporal data of six out of eleven participants.  

Thus, this thesis has contributed to technologically-mediated neurological gait 

rehabilitation as follows. 

• Presented the first systematic exploration of the haptic sense as a sole 

source of rhythm aiming at motor synchronisation via entrainment in 

the context of gait rehabilitation.  

• Shown that hemiparetic stroke and brain injury survivors are generally 

able to synchronise their steps to a haptically presented rhythm. 

• Shown empirically that this approach was able to yield an immediate 

(though not necessarily lasting) improvement of temporal gait 

characteristics for a substantial proportion of hemiparetic participants. 

• Shown empirically that improvements to spatiotemporal gait 

characteristics can occur immediately subsequent to haptic cueing. 
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• Presented evidence of the persistence in short term memory of 

haptically presented rhythms. 

• Presented the haptic tap test as a screening procedure for those with 

neurological conditions to distinguish between those who have physical 

difficulty walking to a rhythm, versus participants who are unable to 

entrain to a rhythm. 

This thesis also contributed to the knowledge of haptic entrainment by: 

• Identifying a workable range for motor entrainment to a haptically 

presented rhythm. 

Additionally, contributions were made to the interaction design for gait 

rehabilitation. Specifically, this thesis identified: 

• Design issues and design trade-offs, both for the design of physical 

prototypes and subsequent user studies. These involve: device 

placement (section 5.3.1, page 86, and 96); and the importance of 

involving all stakeholders and the technology in joint discussions (i.e. 

section 4.2). 

• Unanticipated user preferences. In the technology probe study (section 

4.2.5, page 66), participants rejected the idea of being given the ability 

to adjust the metronome tempo themselves and expressed a preference 

to leave this task to their carer. Furthermore, one participant in the early 

technology probe formative study (section 4.2) requested only one 

device on his paretic leg to overcome sensory and attention deficits. 

• Tacit conflations of meanings and intentions between health 

practitioners of different medical fields. This highlights the importance 

of user studies involving all available stakeholders in order to discuss 

various aspects of the task at hand.  
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More generally, this thesis has contributed to entrainment-based haptic gait 

rehabilitation through the identification of a number of research issues as 

follows:  

• The need for a better understanding of the interaction of entrainment, 

perception, sensory deficit, attention, memory, cognitive load and 

measurable gait characteristics in people with neurological conditions. 

• The need for a better understanding of the bodily location of entrained 

haptic stimulation as it interacts with issues such as proprioception and 

cognitive load. 

• The need for a better understanding of the interaction issues such as 

confidence and fatigue on gait. 

Finally, the following technological contributions were made: 

• A novel system with appropriate software was implemented to monitor 

and assess gait, avoiding the use of permanent room installations and 

semi-subjective measures. 

• A multi-limb metronome, capable of delivering a steady, isochronous 

haptic rhythm to alternating legs, purpose-built for gait rehabilitation.  

This allows the systematic study of entrainment-based gait 

rehabilitation and the effects of attention and proprioception. 

8.3 Limitations 

8.3.1 Limitations in participant pool 

The number of participants in this research was limited (eleven in the final 

study). In part, this represents the challenges of access to this community. 

Due to safety considerations, participants were screened to be at least capable 

of independent community ambulation. This screening procedure may have 

affected the results in the final study, as discussed below. 
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8.3.2 Medical record access 
Formal access to medical records was not available: medically relevant data 

was collected qualitatively directly from the participants. Consequently, it is 

possible that opportunities may have been missed to link, classify or predict 

results based on finely grained information of this kind.  

8.3.3 Procedure limitations 

Instructions 

It was not always certain that some participants fully understood the task. 

Finding ways to improve the comprehension of instructions might alter the 

results. 

Prototype wearable system used 

The version of the Haptic Bracelet system used in this study was a functional 

prototype for running experiments, rather than a fully usability engineered 

system. 

Wearing a wearable 

Wearing the Haptic Bracelet, and, in the case of participants in Manchester, 

(see Chapter 7) the somewhat bulky optical markers (as well as being observed 

while wearing them) may have influenced the way participants walked. 

Fatigue 

The was some evidence that participants tended to continue without comment 

however tired they may have been feeling during this study - this may have 

affected their results in not easily identifiable ways. 
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8.4 Future work 

8.4.1 Upper limb rehabilitation 

This thesis presented the first systematic exploration of rhythmic haptic cueing 

in the context of gait rehabilitation. However, any rhythmic movement can in 

principle be entrained to an external rhythm. Rhythmic auditory stimulation 

(RAS) is already used for upper limb rehabilitation – currently almost 

exclusively in a research rather than clinical settings. With RAS, participants 

are asked to produce rhythmic movements in time to an auditory rhythm 

(typically musical). Rhythmic haptic cueing may have applications for upper 

limb rehabilitation.  

8.4.2 Haptic rhythm persistence 
Results from the study presented in Chapter 7 (post condition) indicate some 

short-term rhythm persistence in memory, and entrainment to the rhythm from 

memory. This is not the first time this phenomenon was observed, it is however 

the first time observed in the context of gait entrainment using haptically 

presented rhythms.  

This thesis has presented evidence of persistence in short term memory of 

haptically presented rhythms. This rhythm persistence phenomenon may have 

significant implications for certain hemiparetic patients who suffer from 

attention deficits that make it challenging to perceive the rhythm and walk at 

the same time. This suggests a range of studies to investigate this phenomenon 

in more depth. 

8.4.3 Longitudinal study with rhythmic haptic cueing 
This thesis investigated the effects of rhythmic haptic cueing to the gait of 

hemiparetic stroke and brain injury survivors. This thesis has shown 

empirically that improvements to spatiotemporal gait characteristics can occur 

immediately subsequent to haptic cueing, leading to a more symmetric and 

healthy gait pattern for a substantial portion of participants. However, this was 
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a lab-based study, with hemiparetic participants receiving limited exposure to 

the haptic rhythm. The effects of longer exposure to a haptic rhythm for gait 

rehabilitation in a ‘home’ setting are currently unknown. A longitudinal study 

can be designed to investigate the effects of the haptic rhythm to hemiparetic 

patients’ gait over longer exposure times.  

8.4.4 Continued iterative design 
Given that the Haptic Bracelets system was a functional prototype system 

rather than a fully usability engineered system, it needs to be updated and 

moved from their current prototype state to a commercial state. This will 

include making the actual devices smaller and redesigning the straps making 

them more appropriate for the hemiparetic users.  

8.4.5 Tool for physiotherapy 
One of the contributions of this thesis to technologically-mediated neurological 

gait rehabilitation was the presentation of the haptic tap test as a screening 

procedure for those with neurological conditions. This system could be further 

developed to provide a tool for physiotherapists for gait assessment. Such a 

tool could be an addition or an alternative to the semi subjective tests currently 

used by physiotherapists (e.g. TUG and Rivermead mobility index test). The 

kinds of data produced by this approach also appear to have the potential to 

communicate progress in rehabilitation more clearly to patients. 

8.4.6 Investigate wider neurological conditions 
This thesis has shown empirically that rhythmic haptic cueing is able to yield 

an immediate improvement of temporal gait characteristics for a substantial 

proportion of hemiparetic participants; and more specifically survivors of 

stroke and brain injury incidents.  

The approach of rhythmic haptic cueing can be extended to include other 

neurological conditions that lead to motor and gait deficits. Literature in 

rhythmic auditory stimulation (RAS - discussed in section 2.6.1) provides 
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evidence of the benefits of entrainment for neurological conditions such as 

Parkinson’s disease, Cerebral Palsy and Huntington’s disease. A similar 

approach to that followed in this thesis for hemiparetic stroke and brain injury 

survivors could be applied to investigate such conditions. 
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Appendix 2  
Rivermead mobility index 

The main purpose of the Rivermead Mobility Index (RMI) is to quantify 

mobility disability in patients with stroke, spinal cord injury, and acquired 

brain injury. The RMI is clinically relevant in testing functional abilities such 

as gait, balance, and transfers. 

It consists of fourteen self-reported and one direct observation item. The items 

in the test progress in difficulty and are coded as either 0 or 1, depending on 

whether the patient can complete the task according to specific instructions. 

The score of 0 is given for a "No" response and 1 for a "Yes" response. A 

maximum of 15 points is possible. Intuitively, higher scores indicate better 

mobility performance. A score of "0" indicates an inability to perform any of 

the activities on the measure. 

An example RMI test sheet can be found on the next page. 
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Appendix 3  
The Haptic Bracelets system  

gait analysis sample 

The gait analysis software developed as part of the Haptic Bracelet system, can 

produce reports summarising a person’s gait. The items of this report include 

exclusively temporal characteristics such as stride times (heel to heel strikes of 

the same leg), step times (heel to heel strikes of alternating legs), and stance 

and swing times for each leg. Graphs are also provided to help explain to 

physiotherapists and patients the meanings of the measures. The graphical 

representation of the data was greeted with positive comments by all 

physiotherapists involved in this research.  

This Appendix presents two sample reports; one from a healthy adult, and one 

from a hemiparetic patient. 
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Healthy adult report 

 

This report represent data from a healthy adult with no known gait deficiencies. 

Their OTA value indicates perfect symmetry (even though this is not always 

the case even for healthy people – normative range: 0.9-1.1).  
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Hemiparetic adult report 

 

This report represent data from a 73-year-old hemiparetic stroke survivor (Left 

is their hemiparetic side). Their OTA value of 2.38 suggest severe asymmetry. 

The data also indicate this patient is spending more time standing on their 

right, non-paretic time than on their left (longer stance time). They are also 

swinging the non-paretic leg faster (swing time is almost half than the paretic), 

trying to get off the paretic leg as fast as possible. This asymmetric gait pattern 

may lead to health problems as discussed in Chapter 2, section 2.5.
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