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Abstract
Many parasites infect multiple hosts, but estimating the transmission across host 
species remains a key challenge in disease ecology. We investigated the within and 
across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus 
arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We 
hypothesized that grizzly bears may be more likely to be exposed to CDV during out-
breaks in the wolf population because grizzly bears often displace wolves while scav-
enging carcasses. We used serological data collected from 1984 to 2014 in 
conjunction with Bayesian state-space models to infer the temporal dynamics of 
CDV. These models accounted for the unknown timing of pathogen exposure, and we 
assessed how different testing thresholds and the potential for testing errors af-
fected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 
2008) in wolves, which were more obvious when we used higher diagnostic thresh-
olds to qualify as seropositive. There was some evidence for increased exposure 
rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures 
was poorly estimated and depended upon our prior distributions. Grizzly bears were 
exposed to CDV prior to wolf reintroduction and during time periods outside of 
known wolf outbreaks, thus wolves are only one of several potential routes for griz-
zly bear exposures. Our modeling approach accounts for several of the shortcomings 
of serological data and is applicable to many wildlife disease systems, but is most in-
formative when testing intervals are short. CDV circulates in a wide range of carni-
vore species, but it remains unclear whether the disease persists locally within the 
GYE carnivore community or is periodically reintroduced from distant regions with 
larger host populations.
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1  | INTRODUC TION

Estimating disease transmission across host species remains a key 
challenge in disease ecology and has important implications for iden-
tifying host species or populations that act as reservoirs and opti-
mal control efforts (Haydon, Cleaveland, Taylor, & Laurenson, 2002; 
Viana et al., 2014). Canine distemper virus (CDV) is one of the most 
important pathogens of wild carnivores and domestic dogs world-
wide (Deem, Spelman, Yates, & Montali, 2000). Canine distemper 
virus is an example of a disease agent that infects multiple host spe-
cies, but the role of different host species in sustaining the virus over 
time is unclear (but see Craft, Hawthorne, Packer, & Dobson, 2008; 
Viana et al., 2015). More appropriately called carnivore distemper 
virus, CDV infects a wide range of host species in the Canidae, Ursidae, 
Felidae, Mustelidae, Procyonidae, Hyaenidae, and Viverridae families 
(Deem et al., 2000). Canine distemper virus is an acute, highly trans-
missible, and immunizing pathogen similar, in many respects, to other 
morbilliviruses like measles and rinderpest (Greene & Appel, 2006). 
Measles requires a relatively large host population (approximately 
300,000 or more) to provide the continuous supply of susceptible 
hosts for the pathogen to persist (Bartlett, 1957, 1960; Bolker & 
Grenfell, 1995). The higher turnover rate of carnivores compared to 
humans may allow for persistence of CDV at lower populations, but 
model estimates suggest that 50,000–100,000 carnivores would be 
required for even a fifty percent chance of persisting for a period of 
10 years (Almberg, Cross, & Smith, 2010). If we consider coyotes as a 
dominant host, these estimates would still likely translate to an area 
several times larger than the Greater Yellowstone Ecosystem (GYE). 
Although the GYE retains an intact community of large and mesocar-
nivores, they are at relatively low densities for CDV persistence, and 
most domestic dogs are vaccinated. Thus, CDV likely requires either 
large areas or intermittent introductions from other regions where 
mesocarnivores may be more abundant (Almberg et al., 2010).

Three purported CDV outbreaks have occurred in the gray wolf 
(Canis lupus) population of Yellowstone National Park (YNP) since 
their reintroduction in 1995; all three coincided with significant 
pup mortality (Almberg, Mech, Smith, Sheldon, & Crabtree, 2009; 
Almberg et al., 2010; Stahler, Macnulty, Wayne, Vonholdt, & Smith, 
2013). During these outbreaks, coyotes (Canis latrans) and cougars 
(Puma concolor) were also exposed to CDV (Almberg et al., 2009); 
however, comparable information is lacking for bear populations of 
the GYE. Clinical signs of morbidity have been observed in a black 
bear (Ursus americanus) recovered in Pennsylvania (Cottrell, Keel, 
Brooks, Mead, & Phillips, 2013) and surveys in Alaska showed that 
both black and grizzly bears (Ursus arctos) were exposed to CDV 
(Chomel, Kasten, Chappuis, Soulier, & Kikuchi, 1998).

Canine distemper virus is transmitted by close contact via aero-
sols, oral, respiratory, or ocular fluids, but morbilliviruses do not 
survive long outside the host. Thus, both direct and environmental 
transmission across carnivore species may be rare because they may 
not interact frequently. However, feeding on carcasses is a potential 
avenue for grizzly bears to acquire infections from other taxa, partic-
ularly when grizzly bears push wolves off of recent kills (Figure 1). In 

this study, we assess the correlation in CDV dynamics in wolves and 
grizzly bears from the GYE using serological data collected over the 
last 30 years. We hypothesized that grizzly bears would have greater 
seroprevalence after wolf reintroduction in 1995, and CDV exposure 
in bears would be correlated to the timing of distemper outbreaks 
in wolves.

There are several hurdles associated with inferring disease dy-
namics in wildlife populations. For acute infections, like CDV, it is 
unlikely that researchers would capture an animal during the short 
window of time that they are actively infected and shedding the 
pathogen. Serological assays are an alternative data-stream that re-
flect past exposure and not necessarily a current infection, but are 
not without their own issues. For example, there are likely differ-
ences among laboratories; the timing of the infection is known only 
to an interval (e.g., from birth to the date of the first sample); and op-
timal threshold values for distinguishing between positive and nega-
tives tests may be unknown (Gilbert et al., 2013). We address some 
of these issues through the development of a Bayesian state-space 
model that allows for diagnostic testing errors, accounts for the un-
certainty in the timing of the infection, and estimates the correlation 
in the latent disease dynamics across two wildlife hosts.

2  | MATERIAL S AND METHODS

2.1 | Data collection

The National Park Service captured and radio-collared wolves annu-
ally since their reintroduction in 1995, and generally targets breeders 
and 50% of each year’s young, with an emphasis on maintaining con-
tact with each pack. From 1996 to 2014, this resulted in 285 unique 
wolves (130 females, 155 males) and 319 sera samples (van Manen 
et al. 2018). The Interagency Grizzly Bear Study Team (IGBST) also 
captures bears annually across the GYE. From 1984 to 2014, 565 sera 
samples were obtained from 425 unique grizzly bears (134 females, 
291 males). For additional details on the capture and serum neutraliza-
tion testing for CDV antibody titers see Blanchard (1985) and Almberg 

F IGURE  1 Grizzly bear and wolf interaction at a carcass site is a 
potential avenue for cross-species transmission of canine distemper 
virus.Credit: NPS Photo/D. Stahler
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et al. (2009). Sera from wolves and bears were tested by the New York 
State Animal Health Diagnostic Center (Ithaca, NY, USA). To assess 
the sensitivity of our conclusions to different titer cutoffs, we applied 
varying serum neutralization (SN) titer thresholds of greater than or 
equal to 12, 16, or 24 to indicate an exposed individual.

2.2 | Statistical approach

To estimate annual CDV infection hazards, we used a Bayesian 
state-space model to integrate the data streams across the two 
host species and account for the unknown timing of infection and 
potential test errors (Heisey et al., 2010; Viana et al., 2015). Our 
observed data consisted of serological tests from individuals of 
known age (Supporting Information Figure S1). We assumed no 
vertical transmission and lifelong antibody titers, a reasonable bio-
logical assumptions for morbilliviruses (Greene & Appel, 2006). Let 

Λr be the cumulative hazard of infection for time period r such that 
Λr= ∫ r

r−1
h(u)du for the instantaneous hazard h(t), and let γr= log (Λr).

For an individual i in species s that was born in year t and sampled 
in year T, the probability ρi,s(Ti,ti) of exposure can be related to the 
constant instantaneous hazard as follows: 

where γs,k is the apparent log hazard of infection for time interval k. 
This is closely related to a complementary log–log model used for 
interval-censored survival analyses (Heisey et al., 2010; Prentice & 
Gloeckler, 1978). In our case, we should refer to Λr as an “apparent 
hazard” because there may be individuals that become exposed and 
die prior to being sampled. Thus, our exposure estimates are likely 
biased low. Individuals tested more than once that were negative on 
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TABLE  1 Description of the statistical models, prior distribution, and model fit assuming a serum neutralization threshold of ≥16 to 
estimate canine distemper virus (CDV) dynamics in wolves and grizzly bears.

Model # Description Infection hazards Diagnostics pD DIC

No diagnostic errors

 3 Wolves affect bears γk,s = 2 = βk,s = 2 + α1γk,s = 1; γk,s = 1~ N(−6, 4); 
βk,s = 2 ~ N(−6, 4); α1 ~ N(0,4)

NA 29.1 764.2

 2 Species are independent γk,s ~ N(−6, 4) NA 28.3 764.8

 1 No species effect γk ~ N(−6, 4) NA 17.6 928.0

With diagnostic errors

 5.1 Wolves affect bears with diagnostic 
errors

γk,s = 2 = βk,s = 2 + α1γk,s = 1; γk,s = 1~ N(−6, 4); 
βk,s = 2 ~ N(−6, 4); α1 ~ N(0,4)

q+ ~ Beta(25, 0.5); q− ~ 
Beta(25,0.5)

18.7 742.4

 5.2 Wolves affect bears, alt. priors γk,s = 2 = βk,s = 2 + α1γk,s = 1; γk,s = 1~ N(−6, 10); 
βk,s = 2 ~ N(−6, 10); α1 ~ N(0,10)

q+ ~ Beta(25, 0.5); q− ~ 
Beta(25,0.5)

17.5 741.0

 5.3 Wolves affect bears, alt. priors γk,s = 2 = βk,s = 2 + α1γk,s = 1; γk,s = 1~ N(−6, 10); 
βk,s = 2 ~ N(−6, 10); α1 ~ N(0,10)

q+ ~ Beta(10, 0.5); q− ~ 
Beta(10,0.5)

19.0 743.3

 8 Wolves affect bears, time lags γk,s = 2 = γk-1,s = 2 + γk-2, s = 2 + α1γk,s = 1; γk = 1 or 2, 

s = 1~ N(−6, 4); α1 ~ N(0,4)
q+ ~ Beta(25, 0.5); q− ~ 

Beta(25,0.5)
20.8 747.5

 7 Bears affect wolves, time lags γk,s = 1 = γk-1,s = 1 + γk-2,s = 1 + α2γk,s = 2; γk = 1 or 

2,s = 2 ~ N(-6, 4); α2 ~ N(0,4)
q+ ~ Beta(25, 0.5); q− ~ 

Beta(25,0.5)
21.4 747.5

 9 Wolves affect bears next year γk,s = 2 = γk-1, s = 2 + γk-2, s = 2 + α1γk-1, s = 1; γk = 1 or 

2, s = 1~ N(−6, 4); α1 ~ N(0,4)
q+ ~ Beta(25, 0.5); q− ~ 

Beta(25,0.5)
20.7 747.7

 4 Species are independent γk,s ~ N(−6, 4) q+ ~ Beta(25, 0.5); q− ~ 
Beta(25,0.5)

22.8 752.0

 6 Bears affect wolves γk,s = 1 = βk,s = 1 + α2γk,s = 2; γk,s = 2~ N(−6, 4); 
βk,s = 1 ~ N(−6, 4); α2 ~ N(0,4)

q+ ~ Beta(25, 0.5); q− ~ 
Beta(25,0.5)

24.4 754.5

Uniform priors (with and without diagnostic errors)

 3.U Wolves affect bears γk,s = 2 = βk,s = 2 + α1γk,s = 1; γk,s = 1~ U(−20, 2); 
 βk,s = 2 ~ U(-20, 2); α1 ~ U(−4,4)

NA 32.4 763.5

 2.U Species are independent γk,s ~ U(−20, 2) NA 33.1 764.2

 5.U Wolves affect bears with diagnostic 
errors

γk,s = 2 = βk,s = 2 + α1γk,s = 1; γk,s = 1~ U(−20, 2); 
βk,s = 2 ~U(−20, 2); a1 ~ U(−4,4)

q+ ~ Beta(25, 0.5); q− ~ 
Beta(25,0.5)

18.6 743.2

 1.U No species effect γk ~ U(−20, 2) NA 23.3 935.6

k represented the year from 1 to 44, s = 1 for wolves and 2 for grizzly bears.
γ is the log hazard of exposure to CDV.
DIC and pD are the Deviance Information Criterion and the effective number of parameters (Spiegelhalter et al. 2002).
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the initial encounter would have additional intervals in the dataset 
for which ti would be the date of the previous negative test rather 
than the birth date.

To account for testing errors, let q+ represent the probability 
that the test is positive given previous infection (i.e., sensitivity) 
and q− represents the probability that the test is negative given no 
previous infection (i.e., specificity). Accounting for the possibility 
of testing errors, the probability that individual i is observed as 
seropositive can be expressed as P(xi=1)=ρi,sq

+
+ (1−ρi,s)(1−q−),

and the probability of being observed as seronegative is 
P(xi=0)=ρi,s(1−q+)+ (1−ρi,s)q

−. We then assume that the datum 
xi,s is drawn from a Bernoulli distribution with success probability 
P(xi=1).

There are many potential models for how the log hazard, γs,k, 
may vary across species and over time (Table 1). Although we ex-
pect monthly infection hazards to vary during an outbreak year, 
the data were insufficient to estimate that variation. Therefore, 
we accounted for how individuals entered and left the dataset 
using a monthly time step, but assumed the monthly infection haz-
ard was constant for the biological year from March through the 
following February, which aligns with the timing of den emergence 
for bears and the wolf birth pulse. We explored several different 
biological models that included or excluded effects of previous 

years within or across species, as well as the effect of one species 
on another within a given year (Table 1). As an example, we may 
model the bear (s=2) log hazard as: γs=2,k=βk+α1γs=1,k, where α1 is 
the effect of wolves on bears exposure and βk is random intercept 
term for each year. To investigate the directionality of transmis-
sion across species, we compared models with wolves affecting 
bears and vice versa. Our additional models for γs,k are shown 
in Table 1, and an example of the model code is provided in the 
Supporting Information.

We explored several possible prior distributions for the differ-
ent parameters. Initially, we assumed the log hazard γs,k was drawn 
from a Uniform(−20,2) distribution, but we also used a Normal(−6,4) 
and Normal(−6,10) distribution. Recall that the monthly probability 
of exposure, ρ, equals 1 − exp(−exp (γ)), and the annualized proba-
bility of exposure is then 1 − (1 − ρ)12. Thus, these prior distributions 
for γ translate to average annual probabilities of infection of roughly 
0.1–0.4, but the distributions are bimodal with peaks at 0 and 1. For 
test errors, we assumed that q+ and q− were either drawn from a Beta 
(25, 0.5) or Beta (10, 0.5) distribution. To determine the requirement 
of explicitly accounting for test errors, we also ran a model with no 
testing errors, in which case P(xi=1)=ρi,s. We assumed the random 
intercept βk parameters in the model were distributed as Normal(0, 10) 
or Normal(0, 4), which on a log scale is still relatively uninformative. 

F IGURE  2 Map of collection locations for grizzly bears (a) and wolves (b) tested for canine distemper virus. Sera neutralization tests that 
yielded titer values ≥12 and <24 are shown as suspect (white circles). Positive tests (titers ≥24) and negative tests (<12) are shown as red 
triangles and black squares, respectively. Gray areas are elevations over 2500 m and areas outlined in green indicate, from north to south, 
Yellowstone National Park, John D. Rockefeller, Jr. Memorial Parkway, and Grand Teton National Park
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Finally, we assumed prior distributions for the slope parameters αx 
as ∼Normal(0,10) and ∼Normal(0,4). We ran models using R version 
3.3.2, JAGS version 4.2.0, and the R2jags package version 0.5-7 
(Plummer, 2003; R Development Core Team 2016; Su & Yajima, 2015) 
for 200,000 Markov Chain Monte Carlo (MCMC) iterations with a 
burn-in of 5,000 iterations on three chains. We assessed MCMC con-
vergence with the Gelman–Rubin convergence diagnostic (Gelman & 
Rubin, 1992). In a few cases ̂R > 1.1, but visual inspection of the pa-
rameter estimates for the different MCMC chains suggested that the 
differences were biologically minor and limited to poorly performing 
models. We compared models based upon the Deviance Information 
Criteria (DIC) for those models that used the same data and prior dis-
tributions (Spiegelhalter, Best, Carlin, & van der Linde, 2002).

3  | RESULTS

From 1984 to 2014, we tested 319 wolf and 565 grizzly bear sera 
samples from across the GYE (Figure 2). About 26% and 6% of 
the wolf and grizzly bear samples, respectively, yielded SN values 
between 12 to 24 for CDV (Supporting Information Figure S2). As 
a result, CDV seroprevalence in wolves varied from around 30% to 
60% depending on the titer threshold applied, while grizzly bear 
seroprevalence was between 30% and 40% (Figure 3).

The overall seroprevalence masks the potential variability in the in-
fection hazard over time and does not account for the longer life spans 
of bears compared with wolves. All models investigated converged 
well, and based on DIC, models that included an effect of wolf expo-
sure on bear exposure hazards generally performed better (i.e., had 
lower DIC) than models that assumed independent exposure hazards 
between the two host species, or that there was an effect of bear ex-
posure on wolf exposure (Table 1). In addition, models also had lower 
DIC scores when they included the possibility of diagnostic errors 
(Table 1). Therefore, we focus mostly on models 5.1, 5.2, and 5.3 and 
present the results of other models in Supporting Information. At titer 
thresholds of ≥16, our estimates of exposure probabilities highlighted 
probable CDV outbreaks in wolves in 1999, 2005, 2008, and maybe 
2011. These outbreaks of CDV, as indicated by high exposure rates in 
1 year followed by several years of low exposure rates, were not ap-
parent in wolves when applying a titer threshold of twelve (Figure 4).

As an acute and highly immunizing disease, one would expect 
CDV outbreaks to be separated by several years due to herd immu-
nity and a lack of susceptible individuals. Our model estimates based 
on higher SN thresholds suggested that there were no back-to-back 
outbreak years for wolves (Figure 4). This may result in a negative 
correlation between exposure rates in 1 year compared to the next. 
However, when we included one- and 2-year lag effects into the 
model, those parameters had wide credible intervals with a mode 
around zero, and these models performed worse than others based 
on DIC metrics (Table 1). This is probably due to the small number of 
outbreaks in the time series.

Grizzly bears in the GYE did not appear to have the same large 
outbreak years as wolves regardless of the titer threshold (Figure 4). 

Prior to 1996, we had only 16 serological tests on grizzly bears, thus 
the estimated hazards prior to 1997 largely reflect our prior distri-
butions, and probably does not reflect an actual decline in the CDV 
hazard following wolf introduction. That said, 38% of those samples 
collected prior to wolf introduction were seropositive for CDV using 
a threshold of ≥16. The average duration between birth and testing 
was 7.7 years for bears compared to 1.7 years for wolves. As a re-
sult, the grizzly bear data, in general, were less informative about 
when they may have been infected and if there were intermittent 
outbreaks versus more consistent exposures over time.

The association between wolves and bears was generally pos-
itive, but varied depending on model structure and our prior dis-
tributions. There was evidence of a small CDV outbreak in grizzly 
bears in 2005, coinciding with an outbreak in wolves, but outbreaks 
in bears were not apparent in either 1999 or 2008 (Figure 4). The es-
timated slope of the relationship between wolf and bear infections, 
α1, increased as we included more uncertainty into the model, either 
by including potential testing errors or by using more diffuse prior 
distributions (Figure 5). Grizzly bears were also exposed to CDV out-
side of the wolf outbreaks we predicted to have occurred in 1999, 
2005, and 2008.

The posterior distributions for the sensitivity and specificity pa-
rameters q+ and q−, shifted away from their prior distributions even 
though there was no direct information included in the analysis 
about known positive or negative samples (Figure 6). As expected, 
the estimated specificity, q−, declined for both wolves and bears 
with the titer threshold, as more unexposed individuals would test 
positive (1-q−). The sensitivity, q+, for wolf samples, however, also 
decreased when the SN threshold was reduced to 12. The posterior 

F IGURE  3 Canine distemper virus (CDV) seroprevalence and 
95% binomial confidence intervals for male and female grizzly bears 
and wolves using different serum neutralization thresholds, Greater 
Yellowstone Ecosystem, 1984–2014
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distribution on grizzly bear samples, however, did not show similar 
shifts from the prior distribution (Figure 6).

4  | DISCUSSION

Our analyses indicated that there were 3–4 CDV outbreaks in 
wolves in Yellowstone National Park from 1995 to 2014, followed 
by several years of recovery. This supports the results of Almberg 

et al. (2010), which identified outbreaks using only samples from 
juvenile wolves. We expected grizzly bears to be at higher risk of 
CDV during years when a high proportion of wolves were exposed 
to CDV because grizzly bears often displace wolves from feeding 
on carcasses, which is a likely means of transmission between spe-
cies. Contrary to our predictions, we found that grizzly bears had 

F IGURE  4 The mean annual canine distemper virus (CDV) 
exposure probabilities for grizzly bears (black) and wolves (gray) 
assuming different diagnostic thresholds. Thick and thin lines 
represent the 50% and 95% credibility intervals, respectively. 
Estimates were based on Model 5.1 (see Table 1). Wolf estimates 
were assumed to be zero prior to introduction in 1995

F IGURE  5 The posterior distributions of the estimated effect of 
wolf exposures to canine distemper virus on grizzly bear exposure. 
The slope coefficient (α1) depended upon potential diagnostic 
errors, titer threshold, and the prior distribution. Estimates in (a) 
were based on Model 5.1, and the gray line is the normal prior 
distribution with a mean of zero and a variance of four. Assuming a 
titer threshold of 16 in (b), the posterior distribution of α1 increased 
and became more diffuse in models with less informative priors. 
See Table 1 for model details
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been exposed to CDV outside of the times of outbreaks in wolves 
in Yellowstone National Park as well as prior to wolf reintroduc-
tion in 1995. These findings are similar to those by Almberg et al. 
(2010), who found that both cougars and coyotes had evidence 
of CDV exposure prior to wolf introduction in 1995. We found 
only weak support for a relationship between the timing of wolf 
and bear exposures (Figures 4 and 5) as there was evidence of in-
creased CDV exposure in bears during the 2005 wolf outbreak but 
not otherwise.

Despite relatively long time series and a state-space hierarchi-
cal model, it remained difficult to assess correlations in the dis-
ease dynamics among host species, which is an initial step in the 
direction of estimating the amount of cross-species transmission. 
For pathogens with fast growth rates like CDV, an alternative ap-
proach to assessing the directionality of transmission may be to 
assess whether the infections in one species occur prior to the 
second host species using shorter windows of time (e.g., weekly 
or monthly). However, this would require a sampling intensity 
that is unlikely to be achieved in a wildlife host. In our analyses, 
the magnitude of the wolf effect on bears depended on our prior 
distributions, suggesting the data were not particularly informa-
tive about cross-species transmission due to more severe interval 
censoring in the bear disease data (Supporting Information Figure 
S1) and the limited number of outbreaks in wolves. Interestingly, 

models that accounted for the possibility of diagnostic test error, 
estimated stronger connections between the exposure rates of 
wolves and bears (Figure 5), perhaps by allowing for the possibil-
ity that some test-negative bears may have been positive during 
wolf outbreaks, and vice versa. At present, the impacts of CDV 
on grizzly bears are unknown. Clinical disease due to CDV has 
been reported for black bears (Cottrell et al., 2013), but nothing is 
known about population-level impacts. CDV has been related to 
reducing pup recruitment in wolves from 66% in average years to 
18% in outbreak years (Almberg et al., 2009; Stahler et al., 2013). 
To assess CDV impacts on grizzly bear cub survival, we would 
need additional data from females with known years of infection 
(or lack thereof) and their cubs’ survival. Only a few grizzly bears 
in our data had relatively short testing intervals that could have 
provided greater precision in estimating the year of infection, but 
these were often not of females with known reproductive suc-
cess. A dedicated effort to repeatedly sample female grizzly bears 
would be required to assess CDV impacts, but would likely take 
many years to complete.

Our methodological approach addressed key issues associ-
ated with serological data and highlighted the importance of ac-
counting for both observational and process error in serological 
analyses. Several other papers have statistically addressed some 
of these issues (Buzdugan, Vergne, Grosbois, Delahay, & Drewe, 

F IGURE  6 The prior and posterior 
distributions from Model 5.1 of the 
sensitivity (q+, top row) and specificity 
(q−, bottom row), used to estimate canine 
distemper virus dynamics in wolves and 
grizzly bears in the Greater Yellowstone 
Ecosystem, 1984–2014. The prior 
distribution for both q+ and q− was a 
Beta(25, 0.5)



     |  8733CROSS et al.

2017; Conn, Cooch, & Caley, 2010; Heisey et al., 2010; Pepin et al., 
2017). Heisey et al. (2010) illustrated how to account for interval 
censoring, and we built upon this approach to allow for diagnostic 
testing errors. Conn et al. (2010) accounted for different detection 
probabilities using a multi-state mark-recapture approach, which 
was further developed by Buzdugan et al. (2017) to allow for multi-
ple diagnostic assays for a single capture event. Finally, Pepin et al. 
(2017) used data on the dynamics of titer loss within an individual 
to more precisely estimate the timing of infection of that individ-
ual, which also improved population-level estimates of the force of 
infection. In our study, we had only a few individuals that tested 
positive multiple times, and they did not show a strong trend in de-
clining titers that would have allowed for such analysis. Increasing 
titer thresholds represents an alternative way of incorporating the 
assumption that recently infected individuals are likely to have 
higher antibody levels. Our analyses with higher thresholds clearly 
identified purported outbreaks in wolves that were associated with 
years of low pup recruitment in 1999, 2005, and 2008 (Almberg 
et al., 2010; Stahler et al., 2013). This may be because at lower titer 
thresholds one may get more false positive tests (decreasing spec-
ificity) due to nonspecific binding.

Titer thresholds and the inferred sensitivity and specificity of 
the diagnostic tests interacted in sometimes counterintuitive ways. 
The estimated test sensitivity for wolves declined at the lowest titer 
thresholds of 12, even though one would expect the specificity to 
decline and the sensitivity to increase (Figure 6). We hypothesize 
that this is just an artifact and not indicative of some biological mech-
anism, but without data on known infected individuals (perhaps from 
challenge trials) this is difficult to assess. As expected, however, test 
specificity declined for both bears and wolves with the lower titer 
threshold, as more unexposed individuals are observed as test pos-
itive. There was no direct information on sensitivity or specificity in 
this analysis, but the model deviance may decline if an individual’s 
test status can be “re-assigned” as a potential testing error and al-
lowing the transmission parameter either within or across species to 
remain high (or low).

Our statistical modeling approach was largely phenomenolog-
ical in that we did not include mechanistic Susceptible-Infected-
Removed (SIR-type) disease dynamics (Anderson & May, 1991). This 
modeling choice was driven by the speed of the disease process 
relative to the temporal resolution of the data. Most of the CDV 
disease dynamics for a given outbreak occur within a year, whereas 
wolves are only captured over the course of a month or two. Bears 
were captured over a longer time period each year, but the data are 
still too sparse to investigate weekly or monthly dynamics where 
a SIR-type model may be more useful. The between-year CDV dy-
namics are probably due to changing levels of immunity as well as 
the timing of introduction events. The introduction events of CDV 
into the GYE, either from nearby locations or longer-distances, are 
unknown.

The carnivore community of the GYE is still probably too small 
to allow for the local persistence of an acute, highly immunizing 

pathogen like CDV, particularly in the absence of a large unvac-
cinated dog population (Almberg et al., 2010; Bartlett, 1957). It 
is possible that CDV is continuously moving as a wave around the 
GYE at relatively large spatial scales, such that multiple species 
are being infected at the same time (Almberg et al., 2010). Most of 
our wolf data came from the northern portions of Yellowstone NP, 
whereas the grizzly bear data were collected more broadly across 
the entire ecosystem (Figure 2). We observed similar dynam-
ics, however, when we limited the data to just the areas north of 
Yellowstone Lake, and the correlation between bears and wolves 
did not appear to increase (Supporting Information). Future work 
on the persistence of CDV should focus on the potential role of 
mesocarnivores such as skunks (Spilogale gracilis and Mephitis me-
phitis) and raccoons (Procyon lotor) and acquiring CDV isolates for 
molecular analyses that may provide information for assessing 
viral dispersal across large spatial scales.
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