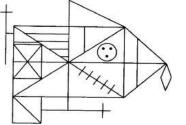

Cognitive mechanisms in visual associative learning & retrieval: Insights from synaesthesia and old age

Gaby Pfeifer

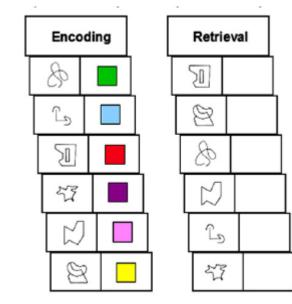
S brighton and sussex medical school

Synaesthesia

- **Stable perceptual phenomenon** in about 5% of the population *(Simner et al., 2006)*
- Enriched sensory experiences in response to certain stimuli
 - Most common is grapheme colour synaesthesia


• Neural basis of Synaesthesia

Structural brain differences (Rouw et al. 2011, Review)


- increased GM volume
- greater WM connectivity

Synaesthesia and Memory

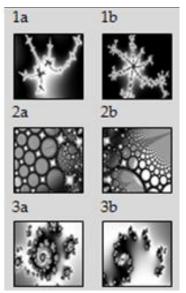
- Memory advantage for verbal stimuli (e.g. Yaro & Ward, 2007; Radvansky et al., 2011)
- Memory advantage for visual stimuli is less consistent:
- Enhanced associative memory found for stimuli containing colour (Pritchard et al., 2013; Rothen & Meier, 2010).
- When colours were replaced by achromatic shapes, the memory advantage disappeared (Gross et al., 2011).
- But: Synaesthetes do have greater visual memory for single abstract shapes (Rothen & Meier, 2010; Gross et al., 2011)

Wechsler Memory Scale

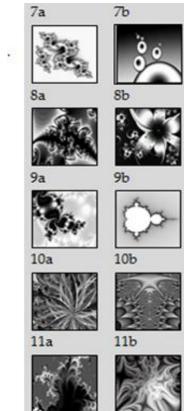
The present study

Question: Do perceptual advantages (as found in synaesthesia) contribute to a general associative memory advantage?

- Synaesthetes' memory advantage for *achromatic abstract stimuli* might be too subtle to be detected against young controls.
- Differences might emerge in comparison to a third group of older adults
 - reduced GM-volume (Oh et al., in press)
 - increased WM-injury (Lockhart et al., 2012)
 - visuo-perceptual decline (Fjell & Walhovd, 2004)
 - reduced activation in memory-related brain areas (Gutchess et al., 2005)
 - All have been related to a visual associative memory deficit.

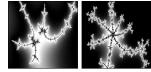

Participants

- 14 young adults with grapheme-colour synaesthesia,
 19 31 years of age (M=22.50)
- 14 young adults, 19 29 years of age (M=22.64)
- 14 older adults, 62 83 years of age (M=68.79)

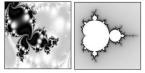

Methods

- *Tasks:* 1) self-paced learning paradigm with performance criterion
 2) associative retrieval, immediate & delayed
- Stimuli: 8 pairs of achromatic fractals

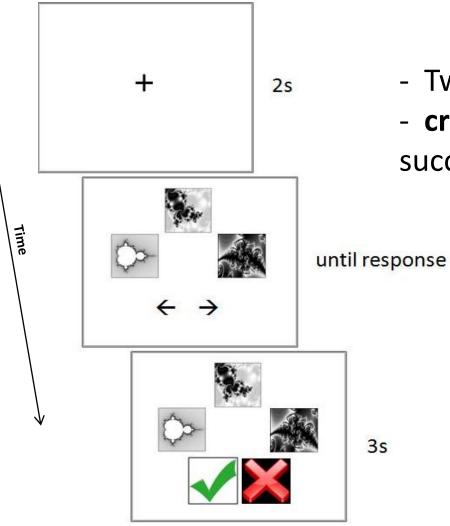
similar pairs, low memory load



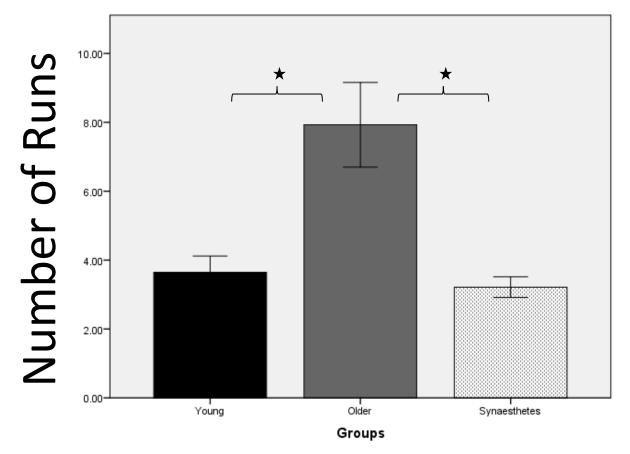
dissimilar pairs, high memory load



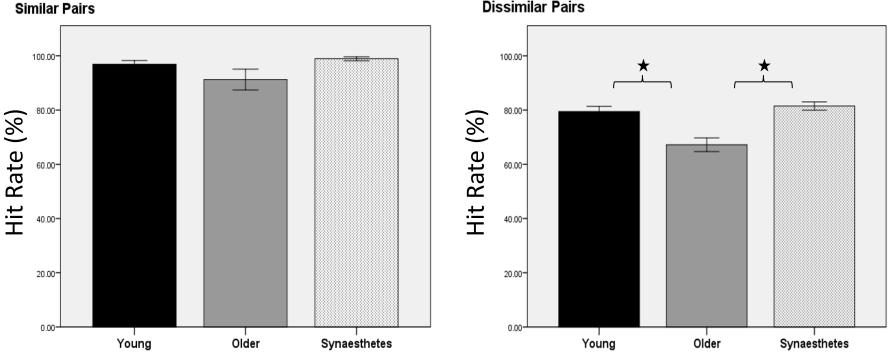
Hypotheses


 Similar pair-associates should benefit *all* participant groups during learning & retrieval.

 Dissimilar pair-associates should bring out enhanced memory performance in synaesthetes, provided that their *enhanced perceptual mechanisms* contribute to better memory. This effect might only be seen in comparison to older adults.



Pair-associative learning


- Two alternative forced choice
- **criterion**: 7 out of 8 Hits in two successive Runs

Results

Error Bars: +/- 1 SE

Similar & Dissimilar pairs

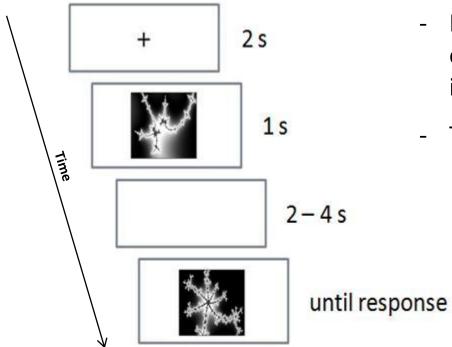
Dissimilar Pairs

Error Bars: +/- 1 SE

No sign. difference

Syns - Young, p = .815Young- Older, p = .231Syns - Older, p = .071

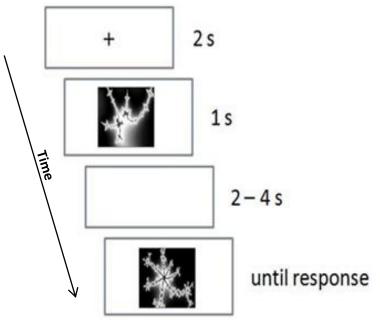
- Error Bars: +/- 1 SE
- → Sign. effect, F[2,39] = 14.42, p < .001


Syns - Young, p = .762Young > Older, p < .001Syns > Older, p < .001

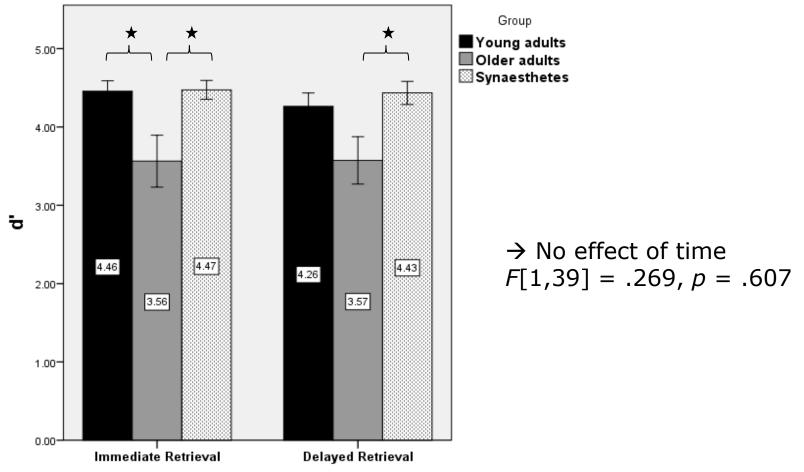
Interim Summary I

Pair-associative learning paradigm

- There was an effect of age in learning the dissimilar pair-associates.
- However, the synaesthetes' enhanced perceptual mechanisms did not facilitate associative learning *over and above* the effects of age.

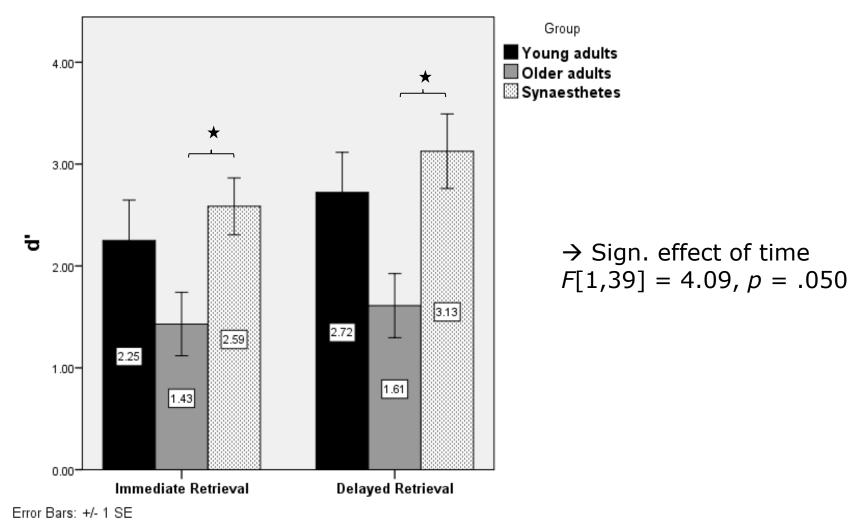

Pair-associative retrieval

- Immediate and delayed retrieval, with completion of visuo-perceptual tasks in between
- Tested on 2 Runs


Signal detection analyses

- d'-prime estimates
- Represent sensitivity in discriminating between signal trials and noise trials
- d' = z (proportion Hits) z (proportion False Alarms)
- Higher d'-prime scores = greater sensitivity

d'-prime, Similar pairs


Similar Pairs

Error Bars: +/- 1 SE

d'-prime, Dissimilar pairs

Dissimilar Pairs

Interim Summary II

Pair-associative retrieval task

- Significantly higher d'-prime scores were only found between synaesthetes and older adults
 - \rightarrow similar pair condition at delayed retrieval
 - \rightarrow dissimilar pair condition at both retrieval stages
- This suggests that the synaesthetes' enhanced perceptual mechanisms lead to enhanced sensitivity in discriminating between matching and and non-matching pair-associates, resulting in a higher effective memory score.

Conclusions

1. Associative memory advantages are obtained even from achromatic, non-synaesthesia-inducing stimuli.

 \rightarrow But the advantages are *subtle* and can only be detected in comparison to older adults.

2. Enhanced perceptual mechanisms (as found in synaesthesia) feed into an associative memory advantage.

Acknowledgements

Dr Natasha Sigala

Prof. Jamie Ward

Dr Nicolas Rothen

Brighton and Sussex University Hospitals

References

•Gross, V. C., Neargarder, S., Caldwell-Harris, C. L., & Cronin-Golomb, A. (2011). Superior encoding enhances recall in color-graphemic synesthesia. *Perception, 40*, 196 - 208.

•Lockhart, S.N., Mayda, A.B.V., Roach, A.E., Fletcher, E., Carmichael, O., Maillard, P., Schwarz, C.G., Yonelinas, A.P., Ranganath, & C., DeCarli, C. (2012). Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. *Frontiers in Human Neuroscience*, *6* (56).

• Pritchard, J., Rothen, N., Coolbear, D., Ward, J. (2013). Enhanced associative memory for colour (but not shape or location) in synaesthesia. Cognition, 127, 230 – 234.

•Gutchess, A.H., Welsh, R.C., Hedden, T., Bangert, A., Minear, M., Liu, L.L., & Park, D.C. (2005). Aging and the Neural Correlates of Successful Picture Encoding: Frontal Activations Compensate for Decreased Medial-Temporal Activity. *Journal of Cognitive Neuroscience 17 (1),* 84–96.

•Rothen, N. & Meier, B. Grapheme–colour synaesthesia yields an ordinary rather than extraordinary memory advantage: Evidence from a group study. *Memory*, 18, 258-264 (2010).

-Rouw, R., Scholte, H. S., & Colizoli, O. (2011). Brain areas involved in Synaesthesia: A review. *Journal of Neuropsychology*, *5*, 214 – 242.

•Yaro, C. & Ward, J. (2007). Searching for Shereshevskii: What is superior about the memory of synaesthetes? *The Quarterly Journal of Experimental Psychology, 60 (5),* 681 – 695.

Ward, J. (2013). Synesthesia. Annual Review of Psychology, 64 (1), 49 - 75.

•Rothen, N., Meier, B., & Ward, J. (2012). Enhanced memory ability: Insights from synaesthesia. *Neuroscience and Biobehavioral Reviews*, *36*, 1952-1963.

•Fjell, A.M., & Walhovd, K.B. (2004). Lifespan changes in P3a. *Psychophysiology*, 41, 575–583.

•Naveh-Benjamin, M. (2000). Adult Age Differences in Memory Performance: Tests of an Associative Deficit Hypothesis. *Journal of Experimental Psychology: Learning, Memory and Cognition, 26 (5),* 1170 – 1187.

brighton and sussex medical school

-Simner, J., Mulvenna, C., Sagiv, N., Tsakanikos, E., Witherby, S. A., Fraser, C., Scott, K., & Ward, J. (2006). Synaesthesia: The prevalence of atypical cross-modal experiences. *Perception, 35*, 1024-1033.

-Oh, H., Madison, C., Villeneuve, S., Markley, C., & Jagust, W.J. (*in press*). Association of Gray Amyloid, and Cognition in Aging. Cerebral Cortex.