The insular glutamatergic system in Alexithymia: A combined fMRI and MRS study.

Sophie Betka^{1,2,4}, Gaby Pfeifer¹, Sarah Garfinkel^{1,3}, Charlotte Rae^{1,3}, Lisa Harris¹, <u>Henrique Sequeira⁴, Theodora Duka², and Hugo Critchley^{1,3}</u>

¹ Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton, BN1 9RR, England; ² University of Sussex,

Psychology Department, Brighton, BN1 9RR, England; ³ Sackler Centre for Consciousness Science, University of Sussex, UK; ⁴ University of Lille, SCALab, CNRS UMR 9193, Lille, 59045, France.

Introduction

Alexithymia (AL) is an **emotion dysfunction** mainly characterized by difficulties in describing and identifying your own emotions. A recent theory suggests that alexithymic features are the outcome of an interoceptive failure.

Behavioral data

A positive correlation was observed between ratings of painful pictures and AL ($\tau = 0.49$, p<0.05).

brighton and sussex medical school

IVES ET SCIENCES AFFECTIVES

Interoception refers to the **sensation of internal bodily** signals, which is supported by the insular cortex (IC) and guides emotional feeling states.

Indeed, AL was found to show **aberrant insular activation**, in studies using functional magnetic resonance imaging (fMRI)^[1,2]. This finding was also corroborated by results of study using Magnetic Resonance Spectroscopy (MRS) showing an association between AL and enhanced insular glutamatergic levels^[3].

Objective: Investigating the relationship between neural correlates of Alexithymia and Interoception, using a combination of fMRI and MRS.

Methods

Participants & Procedure

11 male participants (Age: M=24.82; SD=4.45) filled in the Toronto Alexithymia Scale (TAS-20), afterwards they were asked to preform a

fMRI data

In No Pain condition, the activation of a cluster in the right IC was **positively correlated** with AL ($\tau = 0.60$, p=0.01) and the factor 1 of the TAS-20 (difficulties describing emotions ; $\tau = 0.64$, p<0.01; Figure 3).

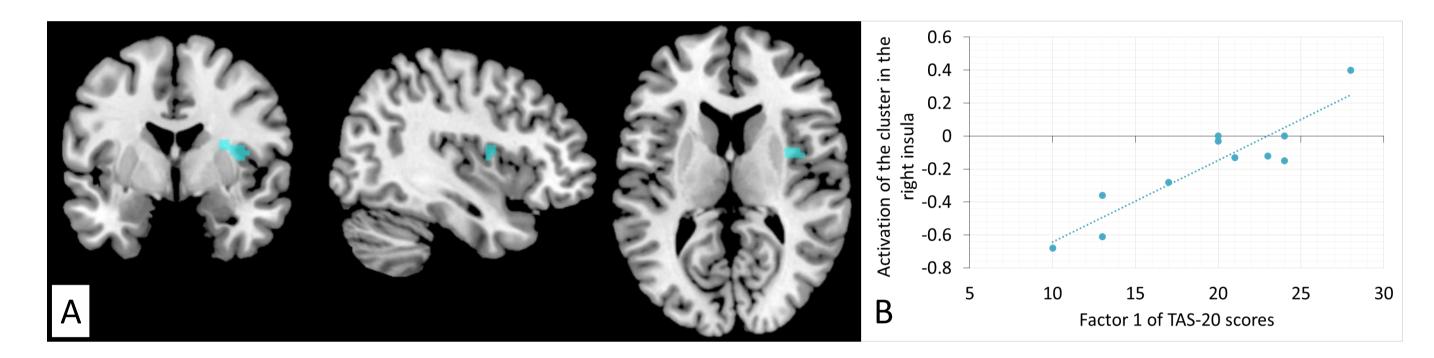
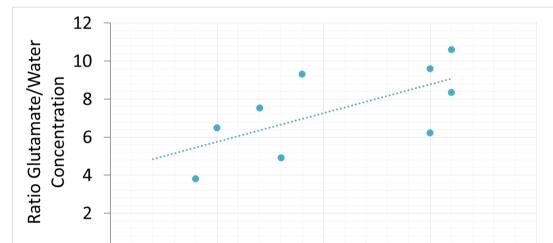



Figure 3. (A) A positive correlation was observed between the activation of cluster in the right IC and AL scores. [MNI 39 -1 11], Height threshold T<3.21, p<0.001 (unc.) (B) The extracted activation of this cluster was also positively correlated to the Factor 1 of the TAS-20.

MRS data

concentrations of the Glutamate insula were positively right mid **correlated** with scores of the factor 2

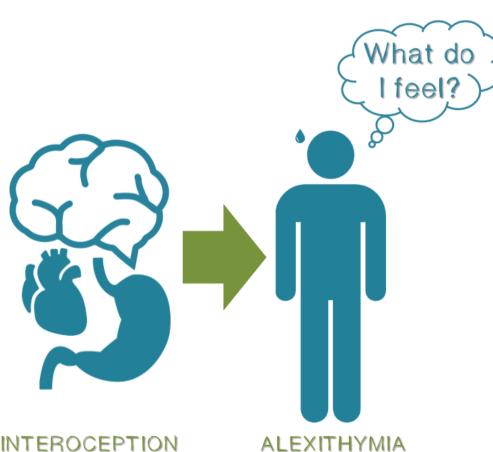
task (Figure 1) during fMRI scanning. Finally, after the fMRI session, a MRS scan was done. Time (ms)

Protocol and Preprocessing

Event-related design, including 64 pictures of hand in painful context and 64 pictures of hand in non painful context^[4]. ~900 volumes were obtained using a T2*weighted multiband echo planar imaging (EPI) sequence; TR=1379ms, TE=42ms, flip angle 90°.All functional images were slice-time and motion corrected, unwarped, coregistered to participants' individual structural volume, and spatially normalised. Contrast images were computed for the interaction for No Pain*TAS-20.

MRS

Protocol and Preprocessing


of the TAS-20 (difficulties identifying emotions; $\tau = 0.57$, p<0.05; Figure 4).

Conclusion

Factor 2 of TAS-20 scores

Figure 4. A positive correlation was observed between the ratio Glutamate/Water and the Factor 2 of the TAS-20.

- Alexithymia is related to a hyper excitability of the insular cortex at functional which seems subtended.
- This hyper excitability seems to be subtended by an increased glutamate concentration.

- This conclusion is in line with the literature emergent supporting alexithymia as the outcome of an interoceptive failure.
- **Interoception** seems to be disrupted in various clinical and subclinical psychiatric populations, and **should be** subject of further studies.

NTEROCEPTION

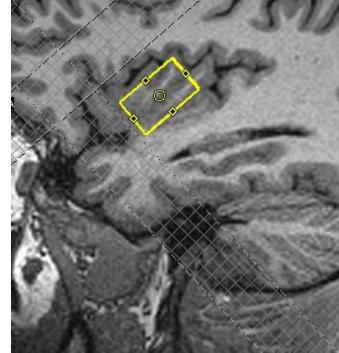


Figure 2. Sagittal view of the VOI position.

Spectrum was acquired with a Point Resolved Spectroscopy (PRESS) sequence; TR=2000ms, TE=40ms, flip angle 90°, FOV=16 cm. A volume of interest (VOI) and a shim box of 10x15x25 mm were placed in the right anterior insula using sagittal and a coronal T1 3D volumes (Figure 2). Spectra were analysed using Tarquin and concentration of Glutamate was obtain as ratio to water. The same scanner was used.

Statistical Analyses

Non-parametric two-tailed correlations between questionnaire scores, behavioural ratings, insular activations and glutamate concentrations were computed, using SPSS 22.

New therapies targeting interoceptive processes should be developed.

References: ^[1] Moriguchi et al., (2007). *Cereb Cortex.17*, 2223-2234. ^[2] Bird et al., (2010). Brain. 133, 1515-1525. ^[3] Ernst et al., (2014). Soc Cogn Affect Neurosci.9, 857-863.^[4] Jackson et al., (2005). Neuroimage.24, 771-779.

Acknowledgements:

Rotary Foundation Society for the Study of Addictions

Contact: <u>H.Critchley@bsms.ac.uk</u> S.Betka@bsms.ac.uk

