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Abstract Sparse component analysis (SCA) is a popular method for address-
ing underdetermined blind source separation (UBSS) in array signal process-
ing applications. We are motivated by problems that arise in the applications
where the sources are densely sparse (i.e. only a limited number of sources are
inactive at each time instant). The separation performance of current underde-
termined source recovery (USR) solutions, including the relaxation and greedy
families, reduces with decreasing the mixing system dimension and increasing
the sparsity level (k). In this paper, we present a k-SCA based algorithm that
is suitable for USR in low dimensional mixing systems. Assuming the sources
are at most (m− 1)-sparse where m is the number of mixtures, the proposed
method is capable of recovering the sources from the mixtures given the mix-
ing matrix using a subspace detection framework. Simulation results show that
the proposed algorithm achieves better separation performance in k-SCA con-
ditions compared with state of the art USR algorithms such as basis pursuit
(BP), minimizing L1-norm (ML1), smoothed L0 (SL0), focal underdetermined
system solve (FOCUSS) and orthogonal matching pursuit (OMP).
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1 Introduction

Blind source separation (BSS) problem refers to recovering the source signals
from their mixtures (so-called observations) with little information about the
mixing system and the source signals [1]. However, to solve the BSS problem,
we need to exploit some a priori knowledge, e.g. the independence of source
signals in independent component analysis (ICA) or the sparsity of the source
signals in sparse component analysis (SCA) [2–5].

An instantaneous linear mixing system in the absence of noise can be for-
mulated as follows:

X = AS, (1)

where X = [x1, ...,xT ] ∈ Rm×T is the mixture matrix, A = [a1, ...,an] ∈ Rm×n

is the mixing matrix, and S = [s1, ..., sT ] ∈ Rn×T is the source matrix (m, n
and T are the number of sensors, sources and signal smaples, respectively).
If there are more sensors than sources i.e. m > n, BSS is an overdetermined
problem and could be solved using ICA where the sources are statistically
independent and non-Gaussian [6, 7]. If there are more sources than sensors
i.e. m < n, the source separation problem is an underdetermined BSS (UBSS)
problem [4,8]. In an underdetermined case, the mixing matrix is non-invertible
and therefore the source recovery is a challenging problem even if the mixing
matrix is known or could be identified.

A two step technique is employed to address the UBSS problem: under-
determined blind identification (UBI) and underdetermined source recovery
(USR) [9]. The mixing matrix (A) is identified using UBI whereas USR recov-
ers the source signals in equation (1).

SCA [2–5, 10, 11] is a general approach to address UBSS problem which
benefits the sparseness of the source signals. In contrast with ICA algorithm,
the SCA could separate the source signals even when the source signals are
dependent or have Gaussian distributions. In SCA approach, a few sources
take the significant values in each instant i.e. the columns of matrix S are
sparse vectors.

In the underdetermined cases, the SCA-based UBSS has applications in
many signal processing problems such as seperation of speech signals [12],
extraction of single trial event related potential (ERP) signals [13] and elec-
troencephalography (EEG) source imaging where it is aimed to reconstruct
the brain sources with few sensors [14,15].

Generally, there are two groups of methods for solving UBSS problem based
on SCA. A number of methods have been proposed employing the sparsity of
the sources in the temporal domain [4] and some other approaches operate in
time-frequency (TF) domain [16–18].
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There are several TF-SCA approachs which assume all or most of the
sources are W-disjoint, i.e. there is at most one active source at each time in-
stant. In this case, the scatter plot of mixed signals shows clear geometrical line
orientations related to the columns of mixing matrix while W-disjointendness
is a restrictive requirement in the most real applications.

The degenerate unmixing estimation technique (DUET) for two sensors [19]
and multiple sensor DUET (MENUET) for multiple sensors [20] are well-
known TF-SCA methods which rely on source W-disjointedness. DUET al-
lows one to estimate the mixing parameters by clustering ratios of the time-
frequency representations of the mixtures. Then, the mixing parameters are
employed to separate the time-frequency representation of one mixture to re-
cover the original sources. MENUET generalized DUET to multiple sensors
using arbitrary geometric arrangement using K-means clustering.

Time-frequency ratio of mixtures (TIFROM) [21, 22] method is another
TF-SCA which first finds single-source TF zones, i.e. a set of adjacent TF
windows, where a single source is active. Then, in each of the mentioned
zones, it estimates a column of the mixing matrix. When all the columns
of the mixing matrix have been estimated, the last step consists in recovering
the sources. TIFROM method relaxes the restrictive W-disjoint assumption
but still needs to have adjacent TF windows with one active source. It is no-
table that the source separation performance of the TF-SCA UBSS algorithms
depends highly on the correctly detection of single source points (SSPs).

Georgiev et al. [4] proposed k-sparse component analysis (k-SCA) approach
to solve the UBSS problem assuming at most m− 1 active sources in each in-
stant. The letter of k denotes the sparsity level and refers to the cardinality
of column source vector at each time instant or any transformed domain bin.
Indeed, they proved that the UBSS problems are solvable as long as the num-
ber of active sources in each time instant is less than the number of mixtures
(k ≤ m − 1). During these years, some k-SCA based UBSS methods have
been proposed based on the k-SCA assumptions in the literature. Most of the
developed k-SCA algorithms for solving UBSS problem focus on identifying
the mixing matrix (UBI) [23–30] and utilise conventional source recovery algo-
rithms i.e. greedy methods, e.g., orthogonal matching pursuit (OMP) [31–33],
relaxation methods, e.g., basis pursuit (BP) [11,34–36] and smoothed L0 (SL0)
algorithm [37,38].

Generally, BP methods expolit the `1-norm minimization algorithm as-
suming the source signals (i.e. the rows of matrix S) are independent and
identically distributed (i.i.d) [34, 39] and their source recovery performance
decreases with higher k. Actually, the most conventional USR algorithms like
BP algorithm achieve a good separation performance for very high dimensional
mixing system (m×n) and they fail when the mixing system dimension is low.

With regards to above discussion, we are motivated to develop a new USR
algorithm based on k-SCA assumptions [4] (discussed in section 3) where k ≤
m−1 and hence is able to solve USR step of UBSS problem without using any
conventional USR algorithm. The proposed method is not based on any BP
algorithms and its approach is more similar to the greedy based source recovery
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approaches. Indeed, based on the k-SCA assumptions, we propose a novel and
effective method to solve the USR problem assuming the mixing matrix (A) is
known or could be identified using methods such as those proposed in [23–30].
It detects the generating subspaces of each mixed data based on eigenvalue
decomposition of concatenated mixed data and the columns of the mixing
matrix. Also, it is able to solve the USR problem even for the cases where
k = m− 1. The proposed algorithm achieves better performance compared to
the standard source recovery methods such as BP, OMP and SL0 algorithms
for low dimensional mixing systems.

The remainder of the paper is organized as follows: The next section briefly
explains the standard approaches for the sparse source recovery. Section 3 re-
views the k-SCA assumptions and related theorem. Section 4 describes our
proposed solution to solve the USR problem based on k-SCA assumptions. In
Section 5 the numerical experiments to compare our proposed algorithm with
standard USR methods are presented. We consider four scenarios to examine
the effects of mixture noise, source noise, sparsity level, mixing matrix esti-
mation error, and dimension of mixing system on source separation signal to
noise Ratio (SNR). In addition, the computational cost is also discussed and
reported for the algorithms in subsection 5.6. Finally, concluding remarks are
discussed in Section 6.

2 The review of standard algorithms for sparse source recovery

We have compared the results of the proposed USR algorithm with those of
standard algorithms. Therefore, in this section, the standard algorithms for
sparse source recovery will be reviewed briefly.

Consider A ∈ Rm×n is a full rank matrix with m < n. Therefore, the
system x = As is an underdetermined linear system and obviously there are
infinitely many possible solutions s. In order to obtain a single and well- defined
solution, we need an additional criteria. If we are interested in seeking the
sparsest solution, the criteria is sparsity of s and thus the problem is as follows:

(P0) : min
s
||s||0 subject to x = As, (2)

where ||s||0 denotes the `0-norm of s, counting the number of nonzero entries
in it. In general, there is no straightforward method to solve (P0) since the
`0-norm is a highly non-smooth function. Therefore, we need some specific
conditions to solve it. Mostly, three approaches has been taken in the literature
to solve the sparse source recovery problem. One approach that is often called
greedy family focuses on the support and then the nonzero values of s could
be obtained using the simple least squares method. The greedy algorithms are
mostly discrete due to the discrete nature of support.

On the contrary, a different approach that often called relaxation family
adopt a continuous optimization to solve (P0). Generally, the relaxation ap-
proach smooths the `0-norm in various form mostly using the convex relaxation
technique [40].
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Furthermore, an alternative view to solve (P0) is smoothed `0-norm (SL0)
algorithm which try to directly minimize the `0-norm [38]. Unlike the BP
methods, which replace `0-norm by other convex functions, SL0 is a non-convex
method and employs graduated-non convex (GNC) procedure to escape the
local minima.

In the following, each approach will be explained individually.

2.1 Greedy approach

Mallat and Zhang [31] have introduced a greedy and myopic method for sparse
decomposition which is usually referred to as matching pursuit (MP). They
shown when the dictionary (mixing matrix) is orthogonal and the observed
signal is composed of k � n atoms, the algorithm recovers the sparse de-
composition exactly after n steps [41]. In fact, MP is based on a suboptimal
forward search through the mixing matrix. Succeeding greedy algorithms such
as OMP [42] and compressive sampling matched pursuit (CoSaMP) [33] are
based on MP concept. OMP method chooses the column of maximal correla-
tion with residue, in fact, its also the one having the steepest decline in residue,
which implies OMP is greedy.

Let x = As and s is a k-sparse signal. Since the number of nonzero co-
efficients of a k-sparse signal is equal to k, if the places of these coefficients
are determined, the non-zero values could be found by inverting or pseudo-
inverting of the corresponding m × k sub-matrices in A. In fact, finding the
non-zero places is the main complexity. In OMP algorithm, the non-zero places
are found one by one. We could use the similarity between x and A and ac-
tually the most likely column is belonged to the support. To find the other
members of the support, the found column effect is deflated. This process will
be repeated to find the other members of support.

2.2 Relaxation approach

On the other hand, relaxation methods smooth the `0-norm and use contin-
uous optimization techniques with the hope to simplify the problem while
preserving its essence. Some example for smoothed version of `0-norm are

ρα(s) = 1 − exp(−s2/α), ρα(s) = s2

α+s2 and ρα(s) = |s|α. As α tends to zero,
these functions get closer to `0-norm.

An popular and interesting algorithm of this family is the focal underdeter-
mined system solver (FOCUSS) [43]. FOCUSS employs a tricky optimization
method called iterative recursive least-squares (IRLS). The core idea is the
representation of smoothed `0-norm (ρα(s)) as a weighted `2-norm as follows:

n∑
q=1

ρα(sq)→
n∑
q=1

ρα(sq)

s2q
s2q =

n∑
q=1

wqs
2
q. (3)
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IRLS iterates between a solution of the `2-norm and update of the weights
(w).

An alternative possible function to smooth the `0-norm, which has drawn
much attention is `1-norm , i.e. |s|. The core idea is to replace `1-norm by an
absolute value of s, which indeed leads to an `1-norm penalty is as follows:

(P1) : min
s
||s||1 subject to x = As, (4)

This convex relaxation technique is called BP [44] and could admit a linear
programming form. In general, BP method could provide good estimation of
sources in comparison with OMP and FOCUSS methods but it is still slow.

2.3 Smoothed `0 approach

Smoothed `0 algorithm [38] approximates the `0-norm of vector s by a smooth
function as follows:

fσ(s) = exp(−s2/σ) (5)

The σ parameter controls the quality of approximation such that the
smaller σ results the closer behaviour of fσ(s) to `0-norm. The aim of this
algorithm is to maximize fσ(s) for a very small σ, which gives the minimum
`0-norm solution. However, fσ(s) for very small σ is highly non-smooth with a
lot of local minima. Smoothed `0 algorithm employs a graduated non-convex
procedure with the hope to escape from these local minima. SL0 shows the
lower complexity in compression with BP and OMP methods.

3 k-Sparse Component Analysis

Most of the sparseness based USR methods, which be reviewd in previous
section, achieve good results when k � m and the dimension of mixing system
(m × n) is high. To overcome this limitation, Georgive et al. [3] proved their
theorem, refereed to as k-SCA. In contrast to the existing SCA algorithms
which generally rely on having k � m, they proved that the UBSS problem
can be tackled using the k-SCA assumptions as long as k ≤ m− 1.

Based on equation (1), the adopted version of instantaneous mixing system
in a vector-wise scheme, can be formulated as follows:

xt =

n∑
q=1

aqst(q), (6)

which xt ∈ Rm×1 includes the m mixture values in instant t, st(q) ∈ R1×1 is
the qth source value in instant t and aq ∈ Rm×1 is the qth column of mixing
matrix.

According to new formulation, the mixture signals in each time instant
(shown by t) is built by linear combination of k weighted columns of A where
k is the number of active sources in each time instant.

The k-SCA assumptions are listed as follows [4]:
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1. Each square m×m submatrix of A is nonsingular.
2. Source matrix S has at most m− 1 active source in each column.
3. Source matrix is able to excite all the possible subspaces sufficiently i.e.,

for any index subset of n− (m− 1) elements I = {i1, ..., in−m, in−m+1} ⊂
{1, ..., n} there exist at least m columns of S matrix such that each of them
has inactive elements in places with indices in I and each m − 1 of them
are linearly independent.

Based on the theorem of uniqueness of sparse represenation [4], for a linear
system of the form As = x and H, the set of all x ∈ Rm, such that s vector
is found with at least n − (m − 1) zero elements, if the k-SCA assumptions
are satisfied, then there is a subset H0 ⊂ H, such that for every x ∈ H\H0

({x ∈ H | x 6∈ H0}) this system has no other solution with this property.

Let I be the set of all subsets of {1, .., n} containing k ≤ m−1 elements. It
is clear that I consists of Cnk (combination k from n) elements. Each element
of I shows the indices of the columns of A that are used to generate the ob-
served data points. Therefore, each data point lies in a union of k-dimensional
subspaces. The number of all possible subspaces will be Cnk . The basis vectors
of the subspaces are k columns of A with the indices in I.

Based on Georgive et al ’s proof [4], as long as k ≤ m − 1, where k is the
number of active sources at each column of S, we can identify A and estimate
S. Essentially, Georgive’s proof guarantees both stages of UBSS (UBI and
USR), however he and his co-authors did not provide any detailed or robust
algorithm to justify the stages for UBI and USR. Albeit, few methods, includ-
ing two approaches proposed by our group recently, extended this method to
solve the UBI problem [23–30].

4 Proposed USR algorithm based on k-SCA assumptions

As mentioned before, so far, no direct method has been proposed to tackle
the USR problem which considers the k-SCA assumptions and the least pos-
sible relaxation to estimate the sparse sources. Therefore, a dedicated method
for solving the above-mentioned USR problem is necessary especially for ap-
plications with more dense sparse sources. In this regard, we have tried to
introduce a fundamental approach when k is known or detected using the
proposed methods in [27,30] for each time instant.

Lets define the disjoint and f -nondisjoint subspaces concepts.

Definition 1 (disjoint subspaces) If there is no common mixing vector
between the subspaces then they are called disjoint subspaces

Definition 2 (f-nondisjoint subspaces) If there are f common mixing
vector between the subspaces then they are called f -nondisjoint subspaces.
Obviously, the number of f -nondisjoint subspaces is ndf = Cn−fm−1−f where
f = 1, ...,m− 1.
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For example, lets subspace P1 is spanned by 1st, 2nd and 3rd columns of
mixing matrix and subspace P2 is spanned by 1st, 3rd and 4th columns of
mixing matrix. In this case, P1 and P2 are 2-nondisjoint subspaces (f = 2)
beacuse there are two common mixing vectors between them (1st and 3rd
columns of A).

For k = 1 the subspaces are disjoint because there are not common mixing
vector to span the subspaces (i.e. k−1 = 0) but if k > 1 there are some nondis-
joint subspaces. Therefore, in general, the subspaces could be nondisjoint.

If we identify an orthogonal complement space which is orthogonal to the
observed data point and k columns of A then, the observed data point lies on
that subspace spanned by those k columns of A, i.e., the observed data point
will be the linear combination of those k vectors.

In the proposed algorithm, in order to find the closest subspace to each
observed vector, we first find the set of all subsets of {1, .., n} containing k ≤
m − 1 elements called I. Ii is the ith member of I representing the indices
of k columns of A where i = 1 : Cnk . For example, assume m = 4, n = 5 and
k = m−1 = 3. In this case the number of all subspaces are d = Cnk = C5

3 = 10
where each nd1 = Cn−1

k−1 = C5−1
3−1 = 6 is a 1-nondisjoint subspace, each nd2 =

Cn−2
k−2 = C5−2

3−2 = 3 is a 2-nondisjoint subspace and each nd3 = Cn−2
k−3 = C5−3

3−3 =
1 is a 3-nondisjoint subspace.

Assuming the columns of the mixing matrix are normalized to `2-norm, for
a given data point xt and all members of I, we calculate the eigenvalues and

eigenvectors of covariance matrix of Fi = [xt A(:, Ii)] (i.e. E{FiFiT }) called
augmented mixing matrix (AMM) using eigenvector decomposition (EVD)
method where i = 1 : Cnk . Fi or ith AMM represents a matrix containing
the observed data in each instant and the selected columns of mixing matrix
which correspond to Ii.

The eigenvector corresponding to minimum eigenvalue is most orthogonal
to Fi. Indeed, we need to find the minimum eigenvalue of each Fi and there
are Cnk minimum eigenvalues which are inserted in min eigenvalues vector (v).
We employed an iterative and numerical method [45] to compute the smallest
eigenvalue.

The number of k-nondisjoint subspaces is used to compute the orthogonal
vectors to the covariance of AMM. For k = m−1, the number of k-nondisjoint
subspaces is ndk = Cn−km−1−m−1 = Cn−k0 = 1. Consequently, when k = m−1 we
find the element of I corresponding to minimum value of v because ndk = 1.
But if k < m − 1 the number of k-nondisjoint interferer subspaces increases
i.e. ndk = Cn−km−1−k > 1. In this case we find ndk member of I corresponding
to ndk first lower values of v. Then, we find k basis vectors that have the
maximum redundancy between ndk members of I. The estimated indices are
inserted in a new vector h. These k basis vectors span those subspaces that
xt lies in it. Thus, we find the generating mixing vectors of each data point
(W). Finally, each source point could be recovered by pseudo-inverse minimum
mean squared error (MMSE) [46,47] as follows:

ŝt = WtT .(Wt.WtT + pN .Im)
−1
.xt, (7)
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x ji k

Observed data 
point
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matrix columns
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Find k redundant 
columns as 
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observed data (x)

Augmented 
Mixing Matrix

Fig. 1: Block diagram to find the subspaces of each data point

where t = 1 : T (T = the number of data points or instant), Wt = A(:,ht),

ŝt = Ŝ(ht, t), xt = X(:, t), Im is the m × m identity matrix and pN is the
power of the additive noise which is estimated using the iterative algorithm
in [48].

Based on the above description, we propose Algorithm 1 to recover the
source matrix based on k-SCA assumptions. The schematic block diagram to
find the subspaces of each data point (xt) has been illustrated in Fig. 1. Since
the degree of membership of each data point to the detected subspaces is
measured using the EVD method, our proposed algorithm is called eigenvalue
membership (EigMem) USR.

Remark: It is worthy to note that for high SNR mixing scenarios, the
proposed algorithm is capable of source recovery without estimating k ≤ m−1.
In these cases, because of having negligible effect of noise on the recovered
sources, the condition on step 7 of Algorithm 1 can be removed, and considered
as true for all k ≤ m− 1.

Algorithm 1 The Proposed USR Algorithm based on k-SCA assumptions

Input: X ∈ Rm×T : the mixed signals, A ∈ Rm×n: the mixing matrix, k: the number of
dominant sources at each time instant.
Output: Ŝ ∈ Rn×T : the estimated source matrix
1: for i = 1 : Cn

m−1
2: I(i, :)← [i1, ..., ik] ⊂ [1, ..., n]; end for.
3: for t = 1 : T do,
4: for j = 1 : Cn

m−1 do,
5: F = [xt,A(:, I(j, :)],
6: v(j, :)← minimum eigenvalue of FFT ; end for.
7: if k = m− 1 then ht ← index from I corresponding to minimum eigenvalue of v,
8: else,
9: ht ← Cn−k

m−1−k indices from I corresponding to Cn−k
m−1−k first lower eigenvalues of v

and find the k frequent indices; end if.
10: Wt = A(:,ht);
11: Employ equation 8 to recover the source data point i.e. S(:, t); end for.
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5 Experiments and Results

In this section, the performance of the proposed approach is experimentally
verified and compared with SL01 [38], BP and BP denoise (BPDN) using
SPGL1 toolbox2 [49, 50], ML13 [8],FOCUSS4 [43, 51] and OMP [42]5.

The evaluation process of the separation performances are quantified in
terms of separation SNR as follows:

SNRq = 10 log10(

∑T
t=1 s2t (q)∑T

t=1 (st(q)− ŝt(q))
2

), (8)

where st(q) and ŝt(q) are qth (q = 1 : n) original and estimated source values
in instant t, respectively and SNRq denotes the separation SNR (the measure
of separation performance) for qth source . The y-axis of all evaluation figures
(2-7) is the average of separation SNRs over n channels, i.e.:

SNR =

∑n
q=1 SNRq

n
(9)

The effects of the additive mixture noise (SNRX), variance of source noise
(V arS), normalized mean square error (NMSE) of the mixing matrix esti-
mation (NMSEA), sparsity level (k) and dimension (m × n) on the perfor-
mance are experimentally analysed. In the following, we will clarify the mix-
ture, source noise and the estimation error of mixing matrix .

The mixture noise refers to the noise added to the mixture signals. The
amount of additive mixture noise to the rth mixture is quantified by

SNRXr = 10 log10(

∑T
t=1 x

2
t (r)∑T

t=1 n
2
t (r)

), (10)

where xt(r) and nt(r) are the rth (r = 1 : m) mixture and noise values in
instant t, respectively and SNRXr denotes the mixture SNR for rth sensor. In
fact, equation (1) is an ideal model and practically we deal with the following
model:

x̃(r) = x(r) + n(r), n(r) ∼ N (0, V arXr ) (11)

where

V arXr =
1

T
(

∑T
t=1 x

2
t (r)

10(SNR
X
r /10)

), (12)

1 http://ee.sharif.edu/ SLzero/
2 http://www.cs.ubc.ca/ mpf/spgl1/
3 https://www.mathworks.com/matlabcentral/fileexchange/48641-sparse-blind-source-

separation–sparse-component-analysis-modal-identification
4 http://dsp.ucsd.edu/ jfmurray/software.htm
5 https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-

sparse-recovery
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where T is the number of signal samples, V arXr and SNRXr are the vari-
ance of additive noise and the predefined SNR value for rth sensor.

The sparse sources artifically are generated similar to the employed proce-
dure in [38]. Source noise refers to the noise during source inactive state i.e.
how much inactive components are really zero. Indeed, the k active sources
in each instant are a zero-mean Gaussian random variable with unit variance
and n − k inactive sources in each instant are a zero-mean Gaussian random
variable with variance V arS � 1.

Let us demonstrate source noise on an example. Consider m mixture signals
are generated using equation (1) with k normally distributed sources (N (0, 1)).
Ideally, k-sparse vector s ∈ Rn×1 has n−k zero components but practically it’s
not possible to have exactly zero components. This non-strict sparsity state
has been modelled by considering the variance of source noise (V arS). For
example, if the variance of source noise is 0.001 then the inactive sources in
each time instant takes the random values with variance 0.001 rather than zero.

Matrix A is assumed to be known or could be identified using the existing
UBI algorithms [23–30]. Note that our algorithm focuses on the source recov-
ery but we add Gaussian noise to A with a predefined NMSEA in order to
evaluate the sensitivity of algorithms to any error in estimation A:

NMSEA = 10 log10(

∑
ij (aij − âij)2∑

ij a
2
ij

), (13)

where âij and âij are the (i, j)th element of the original (A) and estimated

(Â) mixing matrix.

In the next subsections, we present our experiments and their results. In
all experiments, we assume T = 500 (the number of signal samples).

5.1 Experiment 1: Effect of mixture noise on separation SNR

In the this experiment, the effect of additive Gaussian noise variance (V arX)
on the separation SNR is considered. We evaluate the separation of the source
recovery methods in terms of the 6 levels of SNRX (10, 20, 30, 40, 50 and
60 dB). To simulate rth (r = 1 : m) noisy mixture (x̃(r)), we add a Gaussian
noise signal (N (0, V arXr )) to the simulated noiseless mixture (x(r)) according
to equations (12) and (13).

Fig. 2 depicts the average separation performance over 100 simulation trials
versus SNRX for our proposed source recovery method (EigMem-SCA) and
those of 5 conventional methods. In this simulation, we have assumed m = 3,
n = 4 and k = 2 and know the exact A, i.e. the estimation error of the mixing
matrix is zero and there is no source noise, i.e. all the inactive sources are
exactly zero. It can be seen because of employing a robust subspace matching
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process, the proposed algorithm has shown better performance results com-
pared to the conventional methods for all SNRX . It is important to note that
all methods (except BP) has employed the predefined values for noise variance
(V arX) as an input parameter to recover the sources. Although the BPDN
method considers the variance of noise, the result is not significantly different
from the BP method.

10 15 20 25 30 35 40 45 50 55 60

SNR
X

 (dB)

0

10

20

30

40

50

60

S
N

R
 (

d
B

)

EigMem

SL0

BPDN-SPGL1

BP-SPGL1

FOCUSS

OMP

MNL1

Fig. 2: Effect of mixture noise on separation SNR

5.2 Experiment 2: Effect of source noise on separation SNR

In order to consider more realistic sparse sources, the source noise is modeled
using the variance of normal noise over the inactive sources in each time in-
stant. Fig. 3 denotes the average separation SNR over 100 simulation trials
in terms of the variance of source noise (m = 3, n = 4, k = m − 1, noise-
less mixtures and with exact A). It can be seen that the proposed method
achieves better performance than the other algorithms due to the membership
function assigned to each subspace instead of following an `1 or `0 norm mini-
mization framework. Note the standard methods unlike the proposed method
yield almost constant results and are not sensitive to the changes of source
noise variance. Focusing on k-sparsity rather than `1- norm (BP, BPDN and
ML1), pseudo `2- norm (FOCUSS) and greedy way (OMP) results the sig-
nificant difference between our algorithm and others in this scenario. In fact,
`1- norm , pseudo `2- norm and greedy way have undergone larger changes
rather than our method by increasing the source noise specifically in low di-
mensional problems with k 6� m and they couldn’t be a suitable estimation
for k-sparsity.
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Fig. 3: Effect of source noise on separation SNR

5.3 Experiment 3: Effect of estimation error of the mixing matrix on
separation SNR

Fig. 4 shows the average separation SNR of the algorithms versus the es-
timation error of A over 100 simulation trials. We have assumed m = 3,
n = 4, k = 2 and no mixture and source noise. It can be seen that for
NMSEA = −60 to −20 dB, the proposed algorithm achieves better sepa-
ration SNR than the other algorithms. Albeit the separation SNR of proposed
algorithm for NMSEA = −10dB is not satisfactory due to lack of any remedy
process for high mixing estimation error in our proposed algorithm.

5.4 Experiment 4: Effect of sparsity level on separation SNR

Fig. 5 shows the average separation SNR versus the sparsity level (k) over 100
simulation trials for EigMem-SCA algorithm and compares it with those of oth-
ers. We have assumed m = 7, n = 8 and k = 1 : m− 1 and no mixture, source
noise and the mixing estimation error. The results indicate that the proposed
method is not sensitive to sparsity level while the separation performance of
other algorithms reduces with increasing k. Therefore, the EigMem-SCA al-
gorithm is capable of capturing the problems with densely sparse sources. As
mentioned before, the assumptions of standard algorithms are violated in low
dimensional problems by approaching k to m. As a result, a significant dif-
ference could be seen in Fig. 5 between our algorithm and others, specifically
FOCUSS method. It’s worthwhile to explain about the huge performance dif-
ference between FOCUSS and the proposed algorithm. In FOCUSS method
(based on IRLS algorithm) according equation 3, we employ the pseudo `2-
norm which is a trivial modification. It’s obvious that when the dimension is
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Fig. 4: Effect of the NMSEA on separation SNR

low and k is close to m, the FOCUSS trick is not able to approximate the
sparse solutions and pseudo `2-norm isn’t a good alternative for k-sparsity.
FOCUSS method yield the better performance when the k � m.
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Fig. 5: Effect of sparsity level on separation SNR
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5.5 Experiment 5: Effect of dimension on separation SNR

Fig. 6 depicts the average separation performance over 100 simulation trials
for different m × n configurations without any mixture noise, source noise
or mixing system error. It is assumed that k = m − 1. Observing Fig. 6, in
contrast to other algorithms, in the proposed USR algorithm, with increasing
the dimension, the separation SNR remains approximately constant.

In a similar way, the experiment 5 has been done considering the mixture
noise (SNRX=30 dB). The results has been denoted in Fig. 7. In this case,
the proposed algorithm outperforms others but its performance like other al-
gorithms denotes an decreasing trend by increasing the dimension. For the rea-
son that has been mentioned before in previous subsection, FOCUSS method
yields the weak performance in comparison with other methods.
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Fig. 6: Effect of m× n on separation SNR
(without any mixture noise)
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5.6 Computational cost

Our proposed method just like other SCA algorithms suffers from exponen-
tial growth in computation cost. Therefore, more work is needed to solve the
problem in the large-scale. In fact, EigMem-SCA algorithm has more com-
putational cost than other algorithms. However, we have tried to employ the
iterative methods to reduce computational costs. It can also be reduced by
using parallel programming, which is one of the future plan. Numerous al-
gorithms are available for computing the eigenvalues and eigenvectors of a
matrix. The inverse power method [52] can be used to calculate the smallest
eigenvalue. Moreover, Kryolv subspace algorithms [53] could be be employed
to find the first k eigenvalues of a general and also large-scale matrix. These
algorithms reduce the computational cost from O(m3) to O(m2) for a m×m
matrix. If we only need the k smallest or largest eigenvalues, the complexity
order will be only O(k2m)

It’s better to explain the computational cost of EigMem-SCA algorithm
in more detail. Let be assumed a high SNR scenario with the sparsity level
k = m− 1. According to Algorithm 1, to find the spanning subspaces in each
data sample (xt), we need to calculate the smallest eigenvalue of FFT ∈ Rm×m

matrix for Cnk times. Therefore, we need to do a m×m matrix multiplication
and finding the smallest eigenvalue of a m ×m matrix. The matrix multipli-
cation using optimized CW-like algorithm [54] and finding the smallest eigen-
value using Kryolv subspace algorithm require a computational cost of order
O(m2.373) and O(m), respectively. These two operations should be done Cnk
times, which needs a computational cost of order O(nmin(n−k,k)). Indeed, find-
ing the spanning subspaces for each data sample requires the computational
cost of order O(m2.373nmin(n−k,k)) , which is more than other standard USR
algorithms. For example, OMP algorithm requires only O(kmn) floating point
operations per second (FLOPS).

The high computational cost is extremely restrictive in large-scale prob-
lems. Although our experimental scenario in this paper is small-scale problems.
Therefore, the average computation time (ACT) could be compared between
algorithms. The ACT in seconds over 100 trials for a problem with T = 500,
m = 4, n = 7 and k = 3 (without any mixture, source noises and mixing
matrix error) has been reported in Table 1. In average, EigMem-SCA finds
the sparse solution (k = 3) of a linear system of 4 equations and 7 unknowns
in 0.6280/500 = 1.3ms. As can be seen from Table 1, FOCUSS is the fastest
algorithm and BP-SPGL1 is the slowest algorithm.

6 Conclusion

In this work, we proposed a novel approach for recovering the sources in the un-
derdetermined cases given the mixing matrix based on the k-SCA assumptions.
The proposed algorithm considers the possible least relaxation (k 6 m − 1)
to estimate sparse sources and the method is suitable for applications where
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Table 1: Average computation time (seconds) over 100 trials
for a problem with T = 500, m = 4, n = 7 and k = 3

Algorithm ACT(seconds)
FOCUSS 0.0459

ML1 0.4580
OMP 0.4809

EigMem-SCA 0.6280
SL0 0.6469

BP-SGL1 82.8522

the sources are densely sparse. The condition k 6 m − 1 is very promis-
ing in comparison to k � m. The separation performance of most state of
the art USR approaches (e.g. the relaxation and greedy families) deteriorate
when the sparsity level approaches the number of sensors i.e. k → m as oc-
curred in low dimensional mixing systems. We tried to modify the k-SCA
approaches propsed by Georgiev et al. [4]. We showed experimentally that the
proposed method achieves better separation performance compared with SL0,
BP, BPDN, OPM, FOCUSS and ML1. Moreover, by simulating the low di-
mensional synthetic mixing system, it was shown that the proposed algorithm
(in contrast to the other algorithms) keeps the good separation performance
when the sparsity level (k) and also the mixing dimension (m× n) increases.
Future works may include making the algorithm robust against noise capable
of coping with the low SNR mixing (SNR ≤ 10dB) scenarios, extending to
high dimensional mixing systems. The most widely used analytic tool for re-
coverability and stability in the sparse recovery methods is restricted isometry
property (RIP) leading to the restriction on the mixing matrix (A). There-
fore, it is worth researching further in analysing and discussing the extension
of proposed algorithm to Non-RIP systems. Interesting avenues of research
which we are currently investigating include applying the algorithm to the
sparse representation of signals or compressed sensing (CS). Finally, investi-
gating to reduce the computational costs and time (especially using parallel
processing) and applying the proposed algorithm to more realistic problems in
higher dimensions are the interesting and the practical subjects for the future
works.
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32. Rémi Gribonval and Pierre Vandergheynst. On the exponential convergence of matching
pursuits in quasi-incoherent dictionaries. IEEE Transactions on Information Theory,
52(1):255–261, 2006.

33. Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete
and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321,
2009.

34. Ichigaku Takigawa, Mineichi Kudo, and Jun Toyama. Performance analysis of minimum
1-norm solutions for underdetermined source separation. IEEE Transactions on Signal
Processing, 52(3):582–591, 2004.

35. David L Donoho, Michael Elad, and Vladimir N Temlyakov. Stable recovery of sparse
overcomplete representations in the presence of noise. IEEE Transactions on informa-
tion theory, 52(1):6–18, 2006.
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